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Abstract

In this memoir, we shall consider weighted convolution algebras on discrete groups and semi-
groups, concentrating on the group (Q, +) of rational numbers, the semigroup (Q+•, +) of strictly
positive rational numbers, and analogous semigroups in the real line R. In particular, we shall
discuss when these algebras are Arens regular, when they are strongly Arens irregular, and when
they are neither, giving a variety of examples. We introduce the notion of ‘weakly diagonally
bounded’ weights, weakening the known concept of ‘diagonally bounded’ weights, and thus ob-
taining more examples. We shall also construct an example of a weighted convolution algebra
on N that is neither Arens regular nor strongly Arens irregular, and an example of a weight ω
on Q+• such that lim infs→0+ ω(s) = 0.
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1. Introduction

Let A be a Banach algebra, and regard A as a closed subspace of its second dual A′′. Then
there are two natural products on A′′; they are called the first and second Arens products,
and are denoted by 2 and 3, respectively. We now briefly recall the definitions; for some
notations, details, and history, see below. As usual, A′ and A′′ are Banach A-bimodules.
For λ ∈ A′ and Φ ∈ A′′, define λ · Φ ∈ A′ and Φ · λ ∈ A′ by

〈a, λ · Φ〉 = 〈Φ, a · λ〉, 〈a,Φ · λ〉 = 〈Φ, λ · a〉 (a ∈ A),

and, for Φ,Ψ ∈ A′′, define

〈Φ 2 Ψ, λ〉 = 〈Φ,Ψ · λ〉, 〈Φ 3 Ψ, λ〉 = 〈Ψ, λ · Φ〉 (λ ∈ A′).

Then (A′′,2) and (A′′,3) are both Banach algebras containing A as a closed subalgebra.

Definition 1.1. Let A be a Banach algebra. The left and right topological centres of A′′

are defined by

Z
(`)
t (A′′) = {Φ ∈ A′′ : Φ 2 Ψ = Φ 3 Ψ (Ψ ∈ A′′)},

Z
(r)
t (A′′) = {Φ ∈ A′′ : Ψ 2 Φ = Ψ 3 Φ (Ψ ∈ A′′)},

respectively.

Thus A ⊂ Z
(`)
t (A′′) and A ⊂ Z

(r)
t (A′′). The map

LΨ : Φ 7→ Ψ 2 Φ, A′′ → A′′,

is weak-∗ continuous if and only if Ψ ∈ Z
(`)
t (A′′).

See [12, 13, 53, 56, 57, 58] for extensive discussions of these centres.

Definition 1.2. Let A be a Banach algebra. Then A is Arens regular if

Z
(`)
t (A′′) = Z

(r)
t (A′′) = A′′;

A is left strongly Arens irregular if Z
(`)
t (A′′) = A, right strongly Arens irregular if

Z
(r)
t (A′′) = A, and strongly Arens irregular if it is both left and right strongly Arens

irregular. A subset V of A′′ is determining for the left topological centre of A′′ if Φ ∈ A
whenever Φ ∈ A′′ and Φ 2 Ψ = Φ 3 Ψ (Ψ ∈ V ).

In the case where A is commutative, as it will be in most of this memoir, we have

Φ 2 Ψ = Ψ 3 Φ (Φ,Ψ ∈ A′′),

so that (A′′,3) is just the opposite algebra to (A′′,2) and Z
(`)
t (A′′) and Z

(r)
t (A′′) are each

just the centre Z(A′′) of (A′′,2); in this case, A is strongly Arens irregular whenever it
is left strongly Arens irregular.

[5]



6 H. G. Dales and H. V. Dedania

Clearly A is left strongly Arens irregular if and only if A′′ is determining for the left
topological centre.

A closed subalgebra and a quotient of an Arens regular Banach algebra by a closed
ideal are themselves Arens regular.

Our aim in this memoir is to determine the topological centre of various weighted
convolution algebras on Q and on Q+•, and also, to some extent, on Z, N, R, and R+•

(where each of these sets is regarded as a discrete subsemigroup of (R,+)), showing the
possibilities that can arise. For example, let S be Q or Q+•. By [10, Corollary 1], there
exists an Arens regular weight ω on S; see Examples 9.14 and 9.17, below. We shall show
in this memoir that ` 1(S, ω) is not Arens regular for many weights ω on S, and that it
is strongly Arens irregular for a large class of weights ω.

In this work, certain known proofs are repeated for the sake of completeness.
In Chapter 2, we shall summarize some history concerning Arens products on the

second duals of Banach algebras, Arens regularity, and strong Arens irregularity; we
shall introduce some notation to be used throughout the memoir.

In Chapter 3, we shall introduce the Banach space ` 1(S, ω) for a non-empty set S and
a function ω : S → R+•. We shall also refer to the Stone–Čech compactification βS of S.

In Chapter 4, we shall define a weight ω on a semigroup S, and then introduce the
weighted convolution algebra (` 1(S, ω), ?) as a Banach algebra. We shall establish some
basic properties of these algebras; some of these results are repeated from [18].

Let A be a Banach algebra. In Chapter 5, we shall explain what it means for a subset
V of A′′ to be determining for the topological centre of A′′. Let ω be a weight on a
semigroup S, and let T be a subset of S. We shall recall the definition of ‘ω is diagonally
bounded on T ’, and introduce the important notion of ‘ω is weakly diagonally bounded
on T ’. We shall find that, in the case where Aω := ` 1(S, ω) for a weight ω on a semigroup
S and ω is weakly diagonally bounded on a suitable subset of S, there is a finite subset
of A′′ω that is determining for the topological centre of A′′ω. These results are extensions
of those in [13]. We shall note that every weight on the group (R,+) is strongly Arens
irregular.

In Chapter 6, we shall give various examples of weights on subsemigroups S of the
group R. A key point is that several of them are weakly diagonally bounded, rather than
diagonally bounded, on suitable subsets of S.

In Chapter 7, we shall consider algebras on subsets of the unit interval I, rather than on
semigroups; these algebras are quotients of the weighted convolution algebras considered
earlier. The results are proved mainly because they will be required in Chapter 8, which
is devoted to a proof of the fact that ` 1(R+•, ω) is strongly Arens irregular for each
continuous weight ω on R+•.

In Chapter 9, we shall consider conditions for the Arens regularity of an algebra
` 1(S, ω); such conditions were first given by Craw and Young in [10]. A considerable
number of examples of weights are given in this chapter. Also, we shall show that there
is no weight on R+• such that ` 1(R+•, ω) is semisimple and Arens regular; we leave open
the possibility that there is a weight on R+• such that ` 1(R+•, ω) is radical and Arens
regular.
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In Chapter 10, we shall construct a weight ω on N such that the algebra ` 1(N, ω) is
radical, but is neither Arens regular nor strongly Arens irregular; we have not found a
weight ω such that ` 1(N, ω) is semsimple, but neither Arens regular nor strongly Arens
irregular.

Finally, in Chapter 11, we shall construct a weight ω on the semigroup (Q+•,+) with
lim infs→0+ ω(s) = 0, and shall investigate its properties; again the fact that our weight
is weakly diagonally bounded, rather than diagonally bounded, on a suitable subset of
Q+• will be important.

A list of questions that we think are open and a summary of the results known to us
are given at the end of the memoir.

We are grateful to Dona Strauss for some valuable discussions.

2. Background and notation

We first give some more background, some notation that we shall use, and some history
of our problem; for further details, see [11, 12, 13].

Let E be a Banach space. Then the closed unit ball of E is denoted by E[1]; the dual
space of E is denoted by E′, and the second dual by E′′; we regard E as a closed subspace
of E′′ via the canonical embedding. The action of λ ∈ E′ on x ∈ E and the action of
Λ ∈ E′′ on λ ∈ E′ are denoted by

〈x, λ〉 and 〈Λ, λ〉,

respectively. However, because of the profusion of dual spaces below, we cannot maintain
full consistency in this.

The Banach algebra of all bounded linear operators on a Banach space E, with the
usual operator norm, is denoted by B(E).

Let A be an algebra (always over the complex field C). Then we set

A[2] = {ab : a, b ∈ A} and A2 = linA[2],

the linear span of A[2]. The (Jacobson) radical of A is denoted by radA; the algebra A
is semisimple if radA = {0} and radical if radA = A. For a ∈ A, we set

La(b) = ab, Ra(b) = ba (b ∈ A).

In the case where A is a Banach algebra, we see that La, Ra ∈ B(A) for each a ∈ A. We
say that a ∈ A is [weakly ] compact if both La and Ra are [weakly] compact operators
on A. It is a theorem of Watanabe (see [59, Proposition 1.4.13]) that A is an ideal in
(A′′,2) if and only if each element of A is weakly compact.

Let A be a Banach algebra. Then A′ and A′′ are Banach A-bimodules with respect
to the maps defined as follows: for a ∈ A and λ ∈ A′, we define a · λ and λ · a in A′ by

〈b, a · λ〉 = 〈ba, λ〉 and 〈b, λ · a〉 = 〈ab, λ〉

for b ∈ A; for a ∈ A and Λ ∈ A′′, we define a · Λ and Λ · a in A′′ by

〈a · Λ, λ〉 = 〈Λ, λ · a〉 and 〈Λ · a, λ〉 = 〈Λ, a · λ〉
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for λ ∈ A′. Thus we see that the two Arens products, defined above, are bilinear maps
A′′ × A′′ → A′′ that extend these natural module actions, which are defined as maps
A×A′′ → A′′ and A′′ ×A→ A′′.

The two Arens products 2 and 3 on A′′ are determined by the following formulae,
where all limits are taken in the weak-∗ topology σ(A′′, A′) of A′′. Let Φ,Ψ ∈ A′′, and
take nets (aα) and (bβ) in A with Φ = limα aα and Ψ = limβ bβ . Then

Φ 2 Ψ = lim
α

lim
β
aαbβ , Φ 3 Ψ = lim

β
lim
α
aαbβ .

The maps
RΨ : Φ 7→ Φ 2 Ψ, A′′ → A′′,

are weak-∗ continuous on (A′′,2) for each Ψ ∈ A′′.
A criterion for the Arens regularity of a Banach algebra A has been given by Pym [60]

(see also [11, Theorem 2.6.17] and [12, Chapter 3], where more details are given). Indeed,
A is Arens regular if and only if, for each pair {(am), (bn)} of bounded sequences in A

and each λ ∈ A′, the two repeated limits

lim
m→∞

lim
n→∞

〈ambn, λ〉 and lim
n→∞

lim
m→∞

〈ambn, λ〉

are equal whenever they both exist.
For further discussions of these products, see [11, 12, 13], for example.
The pioneering work on what are now called the Arens products on the space A′′ for

a Banach algebra A is that of Richard Arens in 1951 [1, 2]. For example, Arens proved
that (` 1, ·) is Arens regular, but that (` 1, ?) is not Arens regular.

The first systematic study of Arens products is due to Civin and Yood in 1961 [9]; in
particular, they proved that, in the case where G is a locally compact abelian group, the
group algebra (L1(G), ?) is Arens regular if and only if G is finite; this was established for
an arbitrary locally compact group G by Young in 1973 [65]; for shorter proofs, see [62]
and [54, Proposition 5.2]. It was finally proved by Lau and Losert in 1988 that L1(G) is
strongly Arens irregular for each locally compact group G [50], following an earlier proof
for the compact case in [48]. For another proof in a special case, see [33].

We are indebted to Craw and Young [10] for the seminal study in 1974 of the second
duals of weighted group algebras; we shall recall some of their results below.

Now let S be a semigroup, with corresponding semigroup algebra (` 1(S), ?) (see Chap-
ter 4). It was shown by Young in [64] that ` 1(S) is Arens regular if and only if there
do not exist sequences (sm) and (tm) in S such that the two sets {smtn : m < n} and
{smtn : m > n} are distinct; see also [5]. We shall discuss this result in Chapter 9.

The first result on the strong Arens irregularity of ` 1(S) seems to be that of But-
cher [8], who proved that ` 1(S) is strongly Arens irregular whenever S is a countable,
cancellative, abelian semigroup such that S∗ is the union of two disjoint left ideals of βS.
Lau proved in [49] that ` 1(S) is strongly Arens irregular whenever the semigroup S is
cancellative.

Once we know that an algebra is strongly Arens irregular, it is natural to ask which
sets are determining for the left topological centre; one seeks the ‘smallest possible’ sets
with this property. This is the topic of Chapter 5 of the present memoir, where we shall
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discuss such sets for weighted convolution algebras ` 1(S, ω), and also recall the earlier
results on this topic for the algebras ` 1(S). The ‘best’ result is that certain subsets
of βS of cardinality 2 are determining for the left topological centre of ` 1(S); see [13,
Chapter 12] for an extensive account.

Now let G be locally compact group. One would like to know which subsets of L1(G)′′

are determining for the left topological centre. It was proved by Neufang in [56] that a
set which consists of the continuous linear extensions to L1(G)′′ of the points of βGd is
determining for the left topological centre. This result is strengthened in [14], where it
is proved that the spectrum (or character space) of L∞(G) is determining for the left
topological centre of L1(G)′′. However, it is so far left open whether or not there is always
a finite subset of L1(G)′′ which is determining for the left topological centre.

It is a related open question to determine whether or not the measure algebra M(G) of
a locally compact group G is strongly Arens irregular; this question is discussed in [25]. It
is proved by Neufang in [57, Theorem 3.5] that this is the case when G is a locally compact
and non-compact group (with non-measurable cardinal). However, the case where G is
a compact group, and especially the case where G is the circle group T, appears to be
open; some partial results are given in [14, Chapter 9].

Let G be locally compact group, and denote by A(G) the Fourier algebra of G; for
the definition, see [11, Definition 4.5.29]. Then A(G) is a Banach function algebra on G;
in the case where G is abelian, A(G) is isomorphic to the algebra (L1(Γ), ?), where Γ is
the dual group to G.

First, we consider when A(G) is Arens regular. The first result on this question is
that of Lau and Wong in [54]: for an amenable locally compact group G, A(G) is Arens
regular if and only if G is finite. It is proved in [52] that G is discrete whenever A(G) is
Arens regular; further, in the case where G is discrete and G contains an infinite amenable
subgroup, A(G) is not Arens regular. This latter result subsumes a result of Forrest [22,
Corollary 3.8] that A(G) is not Arens regular whenever G contains F2, the free group on
two generators. It remains an open problem whether or not A(G) is Arens regular in the
case where G is an infinite group that does not contain any infinite amenable subgroup;
such groups exist.

Second, we consider when A(G) is strongly Arens irregular. Lau and Losert proved in
[51] that A(G) is strongly Arens irregular whenever G is amenable and discrete (and in
some other special cases), and this is proved in some further cases in [52]. See also [44]
for an extension of this result, and [63, Corollary 2.4] for a different proof that A(G) is
strongly Arens irregular when G is amenable and discrete. However, it is proved by Losert
in [55] that A(G) is not strongly Arens irregular whenever G is a group containing F2;
Losert explores the nature of Z

(`)
t (A(G)′′) in this paper.

Viktor Losert has announced in lectures some further remarkable results in this area;
for example, A(G) is strongly Arens irregular when G is the compact, connected group
SU(2), but A(G) is not strongly Arens irregular when G is the related group SU(3).
Further, A(G) is not strongly Arens irregular whenever G is the locally compact group
SL(n,R) (where n ≥ 2). Indeed, Losert gives a description of the topological centre of
A(G)′′ at least in the case where n = 2; the description involves ‘radial functions’.
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Again, let G be locally compact group. Then there is a generalization of the Fourier
algebra A(G): this is the Figà-Talamanca–Herz algebra Ap(G), defined for p > 1, so that
the Fourier algebra A(G) is now A2(G). For the definition, see [11, Definition 4.5.29].
Again, Ap(G) is a natural Banach function algebra on G. It is shown by Forrest in [22]
that G is discrete whenever Ap(G) is Arens regular; it is further shown in [22] that, for
many classes of discrete groups, in fact G is finite whenever Ap(G) is Arens regular. This
latter result is extended in [23], where it is proved that every abelian subgroup of G is
finite whenever G is a group such that Ap(G) is Arens regular.

There is a further generalization of the algebras Ap(G). Let G be a locally compact,
non-compact group, and denote by Arp(G) the Banach function algebra Ap(G) ∩ Lr(G),
where p > 1 and r ≥ 1. These algebras are commutative, regular (in the sense of [11,
Definition 4.1.6]), natural Banach function algebras on G with respect to the norm which
is the sum of the norms in Ap(G) and Lr(G), and they are dense ideals in Ap(G). It is
shown by Granirer in [35] that G is necessarily discrete whenever Arp(G) is Arens regular.

Further results on the Arens regularity of quotients of some of the above algebras are
given by Graham in [29–32].

It is an important fact that every C∗-algebra A is Arens regular and that (A′′,2) is
also a C∗-algebra; this was first shown by Civin and Yood in [9]. A proof of this result
is given in [11, Corollary 3.2.37], a different proof is given in [7, 38.19], and there is a
discussion of the result in [12, Example 4.2]. It was shown by Young in [66] that the
Banach algebra K(E) of all compact operators on a Banach space E is Arens regular if
and only if E is reflexive; see [11, Theorem 2.6.23] for a more general result. A study of
the topological centres of the algebras K(E) in the case where the Banach space E is not
reflexive is given in [12, Chapter 6].

It is also proved in [66] that a Banach space E is reflexive whenever the Banach
algebra B(E) is Arens regular. It was proved by Daws in 2004 [15] that the converse is
almost true, in that B(E) is Arens regular whenever E is super-reflexive. Thus the Banach
algebras B(` p), defined for 1 ≤ p ≤ ∞, are Arens regular if and only if 1 < p < ∞. For
a discussion of this result, see [12, Chapter 6]. It is interesting that, for 1 < p < ∞, the
second dual algebra (B(` p)′′,2) is semisimple if and only if p = 2 [17].

Important surveys of Arens products were given by Duncan and Hosseiniun in [19]
and by Filali and Singh in [21].

The two topological centres of the space A′′ were first systematically studied by Lau
and Ülger in 1996 [53], where they are denoted by Z1 and Z2, respectively; some questions
that were raised in [53] were answered in [24] and [28]. Two recent preprints that present
the theory of topological centres in an abstract setting are those of Hu, Neufang, and
Ruan [46, 47]. Paper [46] concludes with a useful list of the 11 open problems concerning
topological centres that were posed by Lau and Ülger in [53], and the present situation
regarding their solution; most of these problems have now been resolved.

A number of other examples involving second duals is given in [12, Chapter 4].
A notion related to that of ‘strong Arens regularity’ is that of ‘extreme non-Arens

regularity’, as introduced by Granirer in [34]; for more on this topic, see [42, 43, 45].

We now record some notation that we shall use.
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We define the sets Nn = {1, 2, . . . , n} and Z+
n = {0, 1, . . . , n} for n ∈ N. However, Zn

denotes the set {0, 1, . . . , n − 1}, regarded as a quotient group of (Z,+). We shall also
write P for the set of prime numbers. For p, q ∈ N, we write p | q if p divides q in N and
p - q if p does not divide q in N. Let Q be the set of rational numbers. Here when we say
that p/q ∈ Q, we understand that p ∈ Z and q ∈ N and that p and q are coprime, written
(p, q) = 1. Throughout this memoir, we shall discuss Banach algebras on semigroups S;
we shall concentrate on the case where S is the group (Q,+) or the subsemigroup

Q+• = {p/q ∈ Q : p, q ∈ N}

of (Q,+) (so that 0 6∈ Q+•). Of course the semigroup Q+• is countable, cancellative, and
abelian.

We also set R+ = {x ∈ R : x ≥ 0}, R+• = {x ∈ R : x > 0}, I = [0, 1], and
D = {z ∈ C : |z| < 1}.

We write |V | for the cardinality of a set V ; in particular, |R| = c.
Let S be a non-empty set. For a function f ∈ CS , we define

supp f = {s ∈ S : f(s) 6= 0}.

For each s ∈ S, δs is the characteristic function of the singleton {s}, so that supp δs = {s}.
Let f be a function on R+ with f 6= 0. Then we set

α(f) = inf supp f.

Let f ∈ CS . As in [12], we write
Lim
s→∞

f(s) = ζ,

where ζ ∈ C, if, for each ε > 0, there is a finite subset F of S such that

|f(s)− ζ| < ε (s ∈ S \ F ),

so that f ∈ c0(S) if and only if Lims→∞ f(s) = 0. In the case where f ∈ RS , we also
define

Lim sup
s→∞

f(s) and Lim inf
s→∞

f(s)

in R ∪ {∞} ∪ {−∞} similarly.

3. Examples of Banach spaces

We now introduce the Banach spaces that we shall refer to.

Definition 3.1. Let S be a non-empty set, and let ω : S → R+• be a function. Then

Aω := ` 1(S, ω) =
{
f =

∑
s∈S

f(s)δs : ‖f‖ω =
∑
s∈S
|f(s)|ω(s) <∞

}
.

Clearly (` 1(S, ω), ‖ · ‖ω) is a Banach space. The dual of this Banach space is

A′ω = `∞(S, 1/ω) = {λ ∈ CS : sup{|λ(s)|/ω(s) : s ∈ S} <∞},

with the norm also denoted by ‖ · ‖ω, so that

‖λ‖ω = sup{|λ(s)|/ω(s) : s ∈ S} (λ ∈ `∞(S, 1/ω)).
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The duality 〈·, ·〉ω between Aω and A′ω is defined as follows: if f =
∑
s∈S f(s)δs ∈ Aω

and λ =
∑
s∈S λ(s)δs ∈ A′ω, then

〈f, λ〉ω =
∑
s∈S

f(s)λ(s).

The space
Eω := c0(S, 1/ω) = {f ∈ CS : Lim

s→∞
f(s)/ω(s) = 0}

is a closed subspace of A′ω, and Aω = E′ω. The second dual space of Aω is (A′′ω, ‖ · ‖ω),
and the annihilator of Eω in A′′ω is denoted by E◦ω, so that

A′′ω = Aω ⊕ E◦ω
as a Banach space.

In the special case where ω(s) = 1 (s ∈ S), we write ` 1(S) for ` 1(S, ω), `∞(S) for
`∞(S, 1/ω), ‖ · ‖1 for ‖ · ‖ω, and 〈·, ·〉 for 〈·, ·〉ω.

We remark that a bounded linear operator on such a space ` 1(S, ω) is compact if and
only if it is weakly compact [20, Corollary IV.8.13].

The following definition is given in [12, p. 96].

Definition 3.2. For s ∈ S, the normalized point mass at s is defined to be δs/ω(s), and
is denoted by δ̃s.

Clearly ‖δ̃s‖ω = 1 (s ∈ S).
The Stone–Čech compactification of a non-empty set S is βS; βS is regarded as a

compact, totally disconnected space and is identified with the collection of ultrafilters
on S in the standard way. We shall write βRd for the Stone–Čech compactification of R
when R has the discrete topology. For T ⊂ S, we identify βT with T , the closure of T in
βS, and we set T ∗ = T \ T , the growth of T . Let ω : S → R+• be a function. Then we
denote by βTω the weak-∗ closure of {δ̃t : t ∈ T} in A′′ω; we regard T as a subset of βTω;
we set T ∗ω = βTω \ T , the growth of T in βSω. Thus βTω is a closed subset of the unit
ball (A′′ω)[1] (in the weak-∗ topology), and so it is a compact space.

As Banach spaces, we identify `∞(S) with C(βS) and ` 1(S)′′ withM(βS), the Banach
space of complex-valued, regular Borel measures on βS. For details, see [13]. The sets
of positive and real-valued functions in C(βS) are denoted by C(βS)+ and CR(βS),
respectively, and the support of λ ∈ C(βS) is suppλ. The sets of positive and real-valued
measures in M(βS) are M(βS)+ and MR(βS), respectively. Each measure µ ∈ MR(βS)
has the unique Hahn decomposition µ = µ1 − µ2, where µ1, µ2 ∈M(βS)+, the measures
µ1 and µ2 are mutually singular, and ‖µ‖ = ‖µ1‖+ ‖µ2‖.

Definition 3.3. Let S be a non-empty set, and let ω : S → R+• be a function. We
define

θω : f 7→ f/ω, ` 1(S)→ Aω = ` 1(S, ω).

Clearly the map θω is a linear isometry, and θω(δs) = δ̃s for each s ∈ S. The dual of
θω is the map

θ′ω : λ 7→ λ/ω, `∞(S, 1/ω) = A′ω → `∞(S) = C(βS),
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and the second dual is the isometry θ′′ω : M(βS)→ A′′ω. In fact, we shall usually write θω
for θ′′ω; we set (A′′ω)R = θω(MR(βS)), so that

A′′ω = (A′′ω)R + i(A′′ω)R.

Clearly the map θω|βT : βT → βTω is a homeomorphism for each T ⊂ S.
We further note that, if µ, ν ∈M(βS) are mutually singular measures, then

‖θω(µ) + θω(ν)‖ω = ‖θω(µ)‖ω + ‖θω(ν)‖ω. (3.1)

4. Semigroups and weights

We now introduce the notion of a weight on a semigroup and of the associated weighted
convolution algebras.

Definition 4.1. A semigroup is a non-empty set S with an associative product, initially
denoted by juxtaposition.

In this case, we shall write Ls : t 7→ st and Rs : t 7→ ts for the left and right translation
operators on S for each s ∈ S. An element s ∈ S is left (respectively, right) cancellable
if the maps Ls and Rs, respectively, are injective; s is cancellable if it is both left and
right cancellable; S is cancellative if each s ∈ S is cancellable. The semigroup S is weakly
cancellative if the equations xs = t and sx = t have only finitely many solutions for x
for each s, t ∈ S. For much more on semigroups (and semigroup algebras), see [13]. For
example, we shall frequently consider the semigroups (N,+), (Q+•,+), and (R+•,+); of
course, each is abelian and cancellative.

Let U and V be non-empty subsets of a semigroup S. Then

UV = {uv : u ∈ U, v ∈ V };
we set U2 = UU .

Example 4.2. Here is a further example of a semigroup. The set S = (Z+)<ω is the
family of all sequences

x = (x1, x2, . . . , xk, 0, 0, . . . ),

where k ∈ N and x1, x2, . . . , xk ∈ Z+; the set S is a semigroup with respect to coord-
inatewise addition, and is denoted by ((Z+)<ω,+).

Definition 4.3. Let S be a semigroup. A semi-character on S is a map θ : S → D such
that

θ(st) = θ(s)θ(t) (s, t ∈ S)

and θ 6= 0. The space of semi-characters on S is denoted by ΦS .

Definition 4.4. Let S be a semigroup. A weight on S is a function ω : S → R+• which
is submultiplicative on S, in the sense that

ω(st) ≤ ω(s)ω(t) (s, t ∈ S). (4.1)

A weight ω on a group G is symmetric if

ω(s−1) = ω(s) (s ∈ G).
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In the case where S has an identity eS , we require also that ω(eS) = 1.
Let ω1 and ω2 be weights on a semigroup S. Then ω1ω2 is also a weight on S.
Two weights ω1 and ω2 on a semigroup S are said to be equivalent if there is a

continuous isomorphism from ` 1(S, ω1) onto ` 1(S, ω2). Properties involving topological
centres and Arens regularity are unaffected by a change to an equivalent weight.

Definition 4.5. Let ω be a weight on R+ or R+•. Then ω is a continuous weight if ω
is a continuous function (for the usual topology), and ω is a measurable weight if ω is a
measurable function (with respect to Lebesgue measure).

Proposition 4.6. Let ω be a weight on a semigroup S. Then ` 1(S, ω) is a Banach
algebra with respect to a product ? that satisfies the condition that

δs ? δt = δst (s, t ∈ S).

The above product ? is the convolution product on ` 1(S, ω). At least in the case where
S is a group, the weighted convolution algebras

(` 1(S, ω), ?, ‖ · ‖ω)

are called Beurling algebras [12, 61]. We shall term the Banach algebras ` 1(S, ω) the
weighted convolution algebras on S; the Banach algebra ` 1(S) is also called the semigroup
algebra on S. These Banach algebras have been much discussed recently; see, for example,
[13] and [16].

It is standard and easily seen that, for each semi-character θ ∈ ΦS , the map∑
f(s)δs 7→

∑
f(s)θ(s), ` 1(S)→ C,

is a character on the Banach algebra ` 1(S), and that each character on ` 1(S) arises in this
way; the topology of pointwise convergence on ΦS coincides with the Gel’fand topology
when ΦS is viewed as the character space of ` 1(S).

Let S be an abelian semigroup. Then ` 1(S) is semisimple if and only if ΦS separates
the points of S, in the sense that, for each s, t ∈ S with s 6= t, there exists ϕ ∈ ΦS such
that ϕ(s) 6= ϕ(t) [39, Theorem 3.5], and this holds if and only if S is separating , in the
sense that s = t whenever s, t ∈ S with st = s2 = t2 [39, Theorem 5.8]. These conditions
are certainly satisfied in the case where S is cancellative.

We shall now discuss weighted convolution algebras on a semigroup S.
Let ω be a weight on S. Then an algebra ` 1(S, ω) is commutative if and only if S is

abelian.

Definition 4.7. Let ω be a weight on a semigroup S. Then ω is radical or semisimple
if Aω = ` 1(S, ω) is a radical or semisimple Banach algebra, respectively.

Let ω be a weight on a semigroup S. For s ∈ S, we set

νs = inf{ω(sn)1/n : n ∈ N}.

Thus νs = limn→∞ ω(sn)1/n, and νs is the spectral radius of δs in the Banach algebra
Aω; s is quasi-nilpotent if νs = 0, so that δs is quasi-nilpotent in Aω. Suppose that ω is a
radical weight on S. Then clearly νs = 0 (s ∈ S). It is shown in [11, Example 2.3.13(ii)]
that Aω is a radical Banach algebra whenever νs = 0 (s ∈ S) and ω(st) = ω(ts) (s, t ∈ S).
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For example, let S2 be the free semigroup on two generators, and let |w| be the length of
a word w in S2. Set

ω(w) = exp(−|w|2) (w ∈ S2).

Then ω satisfies the above conditions, and so ω is a radical weight on S2.
Note that we do not necessarily suppose that a weight ω on a semigroup S is such

that ω(s) ≥ 1 (s ∈ S), written ‘ω ≥ 1’. However, let G be an amenable group, and let ω
be a weight on G. Then there is a weight ω̃ on G which is equivalent to ω and such that
ω̃ ≥ 1 [12, Theorem 7.44].

Let G be a group. Then it is a famous conjecture that ` 1(G,ω) is semisimple for each
weight ω on G; this is proved in [12, Theorem 7.13] whenever G is a maximally almost
periodic group and ω is an arbitrary weight on G and whenever G is an arbitrary group
and ω is a symmetric weight on G, but the conjecture is open in the general case.

Proposition 4.8. Let S be an abelian semigroup, and let ω be a weight on S. Then ω

is a semisimple weight if and only if S is separating and νs > 0 (s ∈ S).

Proof. Set Aω = ` 1(S, ω). Let s ∈ S. Of course, since Aω is commutative, δs ∈ radAω if
and only if νs = 0, and

νs = sup{|ϕ(δs)| : ϕ ∈ Φω},

where Φω is the character space of Aω. Clearly |ϕ(δs)| ≤ ω(s) (s ∈ S) for each ϕ ∈ Φω.
First suppose that S is separating and that νs > 0 (s ∈ S). We take f ∈ radAω, so

that ϕ(f) = 0 (ϕ ∈ Φω). Now take t ∈ S. Since νt > 0, there exists ϕ0 ∈ Φω such that
ϕ0(δt) 6= 0. Define

g(s) = f(s)ϕ0(δs) (s ∈ S),

so that g ∈ ` 1(S). For each θ ∈ ΦS , define

ϕθ : h 7→
∑
{h(s)ϕ0(δs)θ(s) : s ∈ S}, Aω → C,

so that ϕθ ∈ Φω. We have∑
{g(s)θ(s) : s ∈ S} = ϕθ(f) = 0 (θ ∈ ΦS),

and so g ∈ rad ` 1(S). Since S is separating, it follows that g = 0, and so f(t) = 0.
This holds for each t ∈ S, and so f = 0. It follows that Aω is semisimple, and so ω is
semisimple.

Conversely, suppose that ω is semisimple. Let s ∈ S. Since δs 6∈ radAω, necessarily
νs > 0. Now take elements s, t ∈ S with st = s2 = t2. Then

ϕ(δs)ϕ(δt) = ϕ(δs)2 = ϕ(δt)2 (ϕ ∈ Φω),

and so ϕ(δs) = ϕ(δt) (ϕ ∈ Φω). Since Aω is semisimple and commutative, it follows that
δs = δt, and so s = t. Thus S is separating.

Definition 4.9. A difference semigroup in R+• is a subsemigroup S of (R+•,+) such
that a− b ∈ S whenever a, b ∈ S and a > b.

For example, Q+• is a difference semigroup in R+•.
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Proposition 4.10. Let S be a difference semigroup in R+•, and let ω be a weight on S.
Then exactly one of the following two possibilities occurs:

(i) ω is a radical weight;
(ii) there is a weight ω̃ on S with ω̃ ≥ 1 such that ` 1(S, ω) is isometrically isomorphic

to ` 1(S, ω̃); further ω is semisimple.

Proof. Suppose that (i) fails, so that ω is not a radical weight. Then there exists s0 ∈ S
such that νs0 > 0, and so there exists ϕ in the character space of ` 1(S, ω) with ϕ(δs0) 6= 0.
Define

α(s) = ϕ(δs) (s ∈ S),

so that α(st) = α(s)α(t) (s, t ∈ S) and |α(s)| ≤ ω(s) (s ∈ S).
Assume towards a contradiction that α(s) = 0 for some s ∈ S. For t ∈ S with t > s,

we have t − s ∈ S because S is a difference semigroup, and so α(t) = α(t − s)α(s) = 0.
For t ∈ S with t ≤ s, we have nt > s for some n ∈ N, and so α(t) = α(nt)1/n = 0. Thus
α(t) = 0 (t ∈ S), a contradiction. Hence α(s) 6= 0 (s ∈ S).

Define

ω̃(s) =
ω(s)
|α(s)|

(s ∈ S).

Then ω̃ is a weight on S with ω̃ ≥ 1. For f ∈ ` 1(S, ω̃), set

θ(f)(s) =
f(s)
|α(s)|

(s ∈ S).

Then θ : ` 1(S, ω̃)→ ` 1(S, ω) is an isometric isomorphism. Since ω̃ ≥ 1, we see that νs ≥ 1
(s ∈ S), and so, by Proposition 4.8, ` 1(S, ω̃) is semisimple. Hence ω is semisimple, and
(ii) holds.

We conclude that each weight on N, on Q+•, and on R+• is either radical or semi-
simple.

Definition 4.11. Let ω be a weight on a subsemigroup S of R+•. Then

νω = inf{ω(s)1/s : s ∈ S}.
Proposition 4.12. Let ω be a weight on Q+•. Then:

(i) νω = ν
1/s
s (s ∈ Q+•);

(ii) the weight ω is semisimple if and only if νω > 0, and ω is radical if and only if
νω = 0.

Proof. (i) (This is part of [18, Lemma 2.5].) Clearly νω ≤ ν
1/s
s (s ∈ Q+•). Now take

s ∈ Q+•. For each ε > 0, there exists t ∈ S with ω(t)1/t < νω + ε. Choose m,n ∈ N with
ms = nt. Then

ω(ms)1/ms = ω(nt)1/nt ≤ ω(t)1/t < νω + ε,

and so ν1/s
s ≤ νω + ε. This holds for each ε > 0, and so ν1/s

s ≤ νω.
(ii) This is now immediate from Proposition 4.8 and some earlier remarks.

We shall see in Example 4.18 that the above result does not necessarily hold for a
weight ω on R+•.
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Proposition 4.13. Let S be a difference semigroup in R+•, and let ω be a weight on S.
Then the following conditions on ω are equivalent:

(a) lims→∞ ω(s)1/s = νω;
(b) there exist a, b ∈ R+• with 0 < a < b such that

sup{ω(s) : s ∈ S ∩ (a, b)} <∞.

The conditions imply that inf{ω(s) : s ∈ S ∩ (0, c)} > 0 for each c > 0.

Proof. The result is trivial if S ∩ (0, ε) = ∅ for some ε > 0, and so we can suppose that
S is dense in R+•.

The equivalence of (a) and (b) is [18, Lemma 2.6]. Indeed, it is immediate that (a)
implies (b). We recall the proof that (b) implies (a).

Suppose that (b) is satisfied, with

sup{ω(s) : s ∈ S ∩ (a, b)} = M <∞,

say. Assume towards a contradiction that ω is unbounded on S ∩ [b, d] for some d > b.
Then there is a sequence (sn) in S ∩ [b, d] with ω(sn) → ∞ as n → ∞; by passing to
a subsequence, we may suppose that sn → t0 as n → ∞, where t0 ∈ [b, d]. Since the
semigroup S is dense in R+•, there exists t1 ∈ S with t1 ∈ (t0 − b, t0 − a). Since S is
a difference semigroup, we have sn − t1 ∈ S (n ∈ N), and so, for each sufficiently large
n ∈ N, we have sn − t1 ∈ S ∩ (a, b). Hence

ω(sn) ≤ ω(sn − t1)ω(t1) ≤Mω(t1),

a contradiction. Thus ω is bounded on S ∩ [b, d] for each d > b.
Now fix c > 0. Suppose first that c > b, and set

Mc = sup{ω(s) : s ∈ S ∩ (c, 2c)},

so that, by the previous paragraph, Mc < ∞. For large s ∈ S, there exist m ∈ N and
r ∈ S with c ≤ r < 2c and s = mc+ r. Thus

ω(s)1/s ≤ ω(c)m/sM1/s
c ,

and so lim sups→∞ ω(s)1/s ≤ ω(c)1/c. Now suppose that c ≤ b. Then there exists n ∈ N
with nc > b, and so

lim sup
s→∞

ω(s)1/s ≤ ω(nc)1/nc ≤ ω(c)1/c.

Thus lim sups→∞ ω(s)1/s≤ νω. Since ω(s)1/s ≥ νω (s ∈ S), we have established clause (a).
Now take c > 0. Assume towards a contradiction that there exists a sequence (sn)

in S ∩ (0, c) such that ω(sn) → 0. By passing to a subsequence, we may suppose that
sn → x ∈ [0, c]. Take t ∈ S with x < t < x+ (b− a)/4. Then we may suppose that

|sn − t| < (b− a)/2 (n ∈ N).

Set s = (a+ b)/2. Then s+ t− sn ∈ S ∩ (a, b) (n ∈ N), and so

0 < ω(s+ t) ≤ ω(sn)ω(s+ t− sn) ≤Mω(sn)→ 0 as n→∞,

a contradiction. Thus inf{ω(s) : s ∈ S ∩ (0, c)} > 0.
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The following proposition is [18, Lemma 2.7]. A weight on S = Q+• which does not
satisfy these equivalent conditions will be discussed in Chapter 11.

Proposition 4.14. Let S be a subsemigroup of R+•, and let ω be a weight on S. Then
the following conditions on ω are equivalent:

(a) there exist a, b ∈ R+• with a < b such that

inf{ω(s) : s ∈ S ∩ (a, b)} > 0;

(b) there exists c ∈ R+• such that

inf{ω(s) : s ∈ S ∩ (0, c)} > 0;

(c) lim infs→0+ ω(s) ≥ 1;
(d) lim infs→0+ ω(s) > 0.

Proof. The result is trivial if S ∩ (0, ε) = ∅ for some ε > 0, and so we can suppose that
S is dense in R+•.

(a)⇒(b). Since S is dense in R+•, we may suppose that a, b ∈ S and that there exists
c ∈ S∩(0, b−a). Assume towards a contradiction that there is a sequence (sn) in S∩(0, c)
with ω(sn)→ 0 as n→∞. For each n ∈ N, we have a+ sn ∈ S ∩ [a, b] and

ω(a+ sn) ≤ ω(a)ω(sn),

and so inf{ω(s) : s ∈ S ∩ (a, b)} = 0, a contradiction. Thus (b) holds.
(b)⇒(c). Set ` = lim infs→0+ ω(s), and take (sn) in S with sn → 0 and ω(sn)→ ` as

n→∞. Then
` ≤ lim inf

n→∞
ω(2sn) ≤ lim inf

n→∞
ω(sn)2 = ` 2.

By (b), ` > 0, and so ` ≥ 1.
(c)⇒(d)⇒(a). These are immediate.

Corollary 4.15. Let S be a difference semigroup in R+•, and let ω be a weight on S

such that
lim inf
s→0+

ω(s) < 1.

Then sup{ω(s) : s ∈ S ∩ (a, b)} =∞ for each a, b ∈ R with 0 < a < b.

Proof. Assume towards a contradiction that sup{ω(s) : s ∈ S ∩ (a, b)} < ∞ for some
a, b ∈ R with 0 < a < b. It follows from Proposition 4.13 that inf{ω(s) : s ∈ S∩(0, c)} > 0
for each c > 0, and so clause (b) of Proposition 4.14 holds. Hence clause (c) of that
proposition holds, a contradiction.

Corollary 4.16. Let ω be a weight on Q+• such that

lim inf
s→0+

ω(s) < 1.

Then ω is a radical weight.

Proof. Assume towards a contradiction that ω is not a radical weight. By Proposition
4.12(ii), νω > 0, and so there exists δ ∈ (0, 1) such that ω(s) > δs (s ∈ Q+•). But now
inf{ω(s) : s ∈ Q+• ∩ (0, 1)} ≥ δ, and so, by Proposition 4.14, lim infs→0+ ω(s) ≥ 1, a
contradiction.
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We prove the following standard result; more general results are given in [40, §7.4].

Proposition 4.17. Let ω be a measurable weight on R+•. Then:

(i) sup{ω(s) : s ∈ (a, b)} <∞ for each a, b ∈ R+• with 0 < a < b;
(ii) inf{ω(s) : s ∈ (0, c)} > 0 for each c > 0;
(iii) lim infs→0+ ω(s) ≥ 1.

Proof. (i) Take η with exp η = ω, so that η : R+• → R is a subadditive function. For
α > 0, set

Eα = {t ∈ (0, α) : η(t) ≥ η(α)/2}.

Then each set Eα is a measurable subset of R+, and (0, α) = Eα ∪ (α − Eα) because
η(α) ≤ η(s) + η(t) whenever s, t ∈ (0, α) with s + t = α. Hence m(Eα) ≥ α/2, where m
denotes Lebesgue measure.

Assume towards a contradiction that η is not bounded above on the interval (a, b) for
some a, b ∈ R with 0 < a < b. For each n ∈ N, set

Fn = {t ∈ (a, b) : η(t) ≥ n},

so that Fn is a measurable subset of R+, and then choose tn ∈ (a, b) with η(tn) > 2n.
Thus, for each n ∈ N, we have Etn ⊂ Fn, and so

m(Fn) ≥ m(Etn) ≥ tn/2 > a/2.

Set F =
⋂
{Fn : n ∈ N}, so that F is a measurable subset of R+ with m(F ) ≥ a/2 > 0.

For each t ∈ F , we have η(t) ≥ n for each n ∈ N, a contradiction.
Thus sup{ω(s) : s ∈ (a, b)} <∞ for each a, b ∈ R with 0 < a < b.
(ii) and (iii) follow from Propositions 4.13 and 4.14.

Example 4.18. Let H be a (Hamel) basis for the linear space R over the field Q; we
may suppose that 1 ∈ H. Then, for each x ∈ R•, there exist a unique α0 ∈ Q and unique
numbers α1, . . . , αn ∈ Q• and elements h1, . . . , hn ∈ H such that

x = α01 + α1h1 + · · ·+ αnhn.

Now define ω(x) = exp(α0). Then clearly ω is a weight on R with lim infs→0+ ω(s) = 0.
In this case lim infs→0+ ω(s) = 1 on Q+•.

However, ν1 = e, and so ω is not a radical weight; indeed, it is semisimple. This shows
that Corollary 4.16 does not necessarily hold for weights on R+•. Further, νh1 = 1, and
so clause (i) of Proposition 4.12 fails in this case.

More generally, we can define η(h) arbitrarily for h ∈ H, and extend η to be an
additive function on R+•. Set ω = exp η, so that

ω(x+ y) = ω(x)ω(y) (x, y ∈ R+•),

and hence ω is a weight on R+•. Clearly νh = exp η(h) (h ∈ H), and so ω is semisimple.
However,

νω ≤ inf{exp(η(h)/h) : h ∈ H},

and so we can arrange that νω = 0. This shows that clause (ii) of Proposition 4.12 fails
in this case.
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For a discussion of compact elements in weighted semigroup algebras, see [18]; we shall
give an elementary proof of the following proposition, which is part of [18, Corollary 3.6].
More general results were given by N. Grønbæk in his thesis [36].

Let S be an abelian semigroup, and let ω be a weight on S. Then it is clear that the
collection of compact elements of Aω forms a closed ideal in Aω. For further remarks on
this closed ideal, see [18].

Proposition 4.19. Let ω be a weight on a cancellative, abelian semigroup S.

(i) Let f ∈ ` 1(S, ω). Then f is a compact element of ` 1(S, ω) if and only if

Lim
t→∞

∑
s∈S
|f(s)|ω(s+ t)

ω(t)
= 0.

(ii) The only compact element of ` 1(S, ω) is 0 if and only if δs is not a compact
element of ` 1(S, ω) for each s ∈ S.

Proof. Set Aω = ` 1(S, ω).
(i) Suppose that Lf is a compact operator on Aω. For each sequence (tn) of distinct

points of S, the sequence (δ̃tn) is contained in the unit ball of Aω, and so the sequence
((δtn ? f)/ω(tn) : n ∈ N) has a convergent subsequence, corresponding to (nj), say. Since
S is cancellative, the only possible limit of such a subsequence is 0. Hence

lim
j→∞

∑
s∈S
|f(s)|

ω(s+ tnj )
ω(tnj )

= lim
j→∞

∑
s∈S

‖δtnj ? f‖ω
ω(tnj )

= 0.

It follows that Limt→∞
∑
s∈S |f(s)|ω(s+ t)/ω(t) = 0.

For the converse, first take s ∈ S such that Limt→∞ ω(s+ t)/ω(t) = 0.
To show that δs is compact, it suffices to suppose that S is countable. Choose finite

subsets Sj of S such that Sj ⊂ Sj+1 (j ∈ N) and
⋃
{Sj : j ∈ N} = S, and define

Qj : g 7→ g | Sj , Aω → Aω (j ∈ N).

Then each Qj is a finite-rank operator on Aω, and hence is compact. Thus each operator
Lδs ◦Qj is compact.

Now fix ε > 0, and choose j0 ∈ N such that ω(s + t)/ω(t) < ε whenever t ∈ S \ Sj0 .
For each j ≥ j0 and g ∈ (Aω)[1], we have∑

u∈S
|(δs ? Qjg)(u)− (δs ? g)(u)|ω(u) =

∑
t∈S
|(Qjg − g)(t)|ω(s+ t)

≤
∑

t∈S\Sj

|g(t)|ω(t)
ω(s+ t)
ω(t)

≤ ε,

and so ‖δs ? Qj − δs‖ ≤ ε (j ≥ j0). Thus Lδs = limj→∞ Lδs ◦ Qj is a compact operator
on Aω, and δs is compact in Aω.

Now suppose that f ∈ Aω is such that

Lim
t→∞

∑
s∈S
|f(s)|ω(s+ t)/ω(t) = 0.
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Then Limt→∞ ω(s+ t)/ω(t) = 0 for each s ∈ supp f , and so δs is compact for each such s,
whence f is compact.

(ii) This is now immediate.

Let ω be a weight on a semigroup S. Then the module actions on A′ω = `∞(S, 1/ω)
are determined as follows: for each s ∈ S and λ ∈ Aω, we have

(s · λ)(t) = λ(ts), (λ · s)(t) = λ(st) (t ∈ S). (4.2)

Definition 4.20. A weight ω on a semigroup S is Arens regular or strongly Arens irreg-
ular on S if the algebra ` 1(S, ω) has the corresponding property.

The seminal discussion of the Arens regularity of weighted semigroup algebras was
given by Craw and Young in [10]; we shall give their condition for a weight on a cancella-
tive semigroup to be Arens regular in Theorem 9.4.

Example 4.21. Let ω be a weight on a semigroup S, and again set Aω = ` 1(S, ω).
Suppose further that T is a semigroup and that θ : S → T is a semigroup epimorphism.
Define

ω̃(x) = inf{ω(s) : θ(s) = x} (x ∈ T ),

so that ω̃(x) ≥ 0 (x ∈ T ). In the case where ω̃(x) > 0 (x ∈ T ), we see that ω̃ is a
weight on T ; it is called the induced weight . Set Aeω = ` 1(T, ω̃). Clearly θ induces a
continuous algebra epimorphism θ : Aω → Aeω such that θ(δs) = δθ(s) (s ∈ S), and Aeω
is isometrically isomorphic to Aω/ker θ. Further, ω̃ is Arens regular whenever ω is Arens
regular.

Following [10], we shall also use the following standard notation: for a weight ω on a
semigroup S, we set

Ω(s, t) =
ω(st)

ω(s)ω(t)
(s, t ∈ S). (4.3)

Thus 0 < Ω(s, t) ≤ 1 (s, t ∈ S). Let G be a group. Then we see that

Ω(s, t) ≥ 1
ω(t)ω(t−1)

(s, t ∈ G). (4.4)

Let ω be a weight on a semigroup S. For each s ∈ S, the function t 7→ Ω(s, t), S → I,
has a continuous extension to a function βS → I; the value of this function at v ∈ βS is
denoted by Ω(s, v). Next, the function s 7→ Ω(s, v), S → I, has a continuous extension
to a function βS → I; the value of this function at u ∈ βS is denoted by Ω2(u, v). Let
u, v ∈ βS, say u = limα sα and v = limβ tβ . Then we express Ω2(u, v) by the repeated
limit

Ω2(u, v) = lim
α

lim
β

Ω(sα, tβ); (4.5)

of course the repeated limit is independent of the nets (sα) and (tβ). Similarly, we define

Ω3(u, v) = lim
β

lim
α

Ω(sα, tβ).

The following well-known result is proved in detail in [12, Proposition 3.1].
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Theorem 4.22. Let ω be a weight on a semigroup S, and let u, v ∈ βS. Then there are
sequences (sm) and (tn) in S such that

Ω2(u, v) = lim
m→∞

lim
n→∞

Ω(sm, tn) and Ω3(u, v) = lim
n→∞

lim
m→∞

Ω(sm, tn).

Let S be a semigroup, let ω be a weight on S, and let Aω = ` 1(S, ω) and Eω be
as above. The first and second Arens products on A′′ω are now denoted by 2ω and 3ω ,
respectively; however, we write just 2 and 3 in the special case where ω = 1. Suppose
that S is a weakly cancellative semigroup. Then, essentially as in [13, Theorem 4.6], we
see that Eω is a submodule of A′ω, so that Aω is a dual Banach algebra, and that

(A′′ω,2ω) = Aω n E◦ω

as a semidirect product; in this case, the Banach algebra Aω is left strongly Arens irregular
if and only if Z

(`)
t (A′′ω) ∩ E◦ω = {0}.

We remark that Aω may be a dual Banach algebra even when S is not weakly can-
cellative: see Example 9.13, below.

Definition 4.23. Let V be a semigroup which is also a compact topological space. Then
V is a compact right topological semigroup if the map Rv is continuous on V for each
v ∈ V .

For the theory of compact right topological semigroups, see [6, 13, 41], for example.
Let S be a semigroup. Then (βS,2) is a compact right topological semigroup that is

a subsemigroup of (M(βS),2). This structure is discussed extensively in [13] and in the
monographs [6, 41]. For u ∈ βS, we shall often identify u with the element δu, regarded
as a measure in M(βS). For example, we may regard θω(u) as an element of βSω ⊂ A′′ω
when ω : S → R+• is a function on S.

Let ω be a weight on S, and take elements u, v ∈ βS, say u = limα sα and v = limβ tβ ,
where (sα) and (tβ) are nets in S, and let λ ∈ C(βS). Then

〈θω(u) 2ω θω(v), λω〉ω = lim
α

lim
β
〈δ̃sα ? δ̃tβ , λω〉ω = lim

α
lim
β

Ω(sα, tβ)〈u 2 v, λ〉,

and so
〈θω(u) 2ω θω(v), λω〉ω = Ω2(u, v)〈u 2 v, λ〉 (4.6)

and
‖θω(u) 2ω θω(v)‖ω = Ω2(u, v). (4.7)

It follows from (4.6) that
〈θω(µ) 2ω θω(v), λω〉ω = 0 (4.8)

whenever µ ∈M(βS), v ∈ βS, and λ ∈ C(βS) are such that (suppλ) ∩ (βS 2 v) = ∅.
Similarly, 〈θω(u)�ω θω(v), λω〉ω = Ω3(u, v)〈u�v, λ〉 for u, v ∈ βS and λ ∈ C(βS), and

so we have
|〈θω(µ) �ω θω(v), λω〉ω| ≤ ‖µ‖ sup

x∈βS
|〈x � v, λ〉| ≤ ‖µ‖ ‖λ‖ (4.9)

for each µ ∈M(βS), v ∈ βS, and λ ∈ C(βS).
The question when ` 1(Z, ω) has the above-mentioned properties of Arens regularity

and strong Arens irregularity is discussed in detail in [12, Chapter 9]. For example, whilst
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` 1(Z) is strongly Arens irregular, the algebras ` 1(Z, ωα) are Arens regular whenever
α > 0 [10], [12, Example 9.1]; here

ωα(n) = (1 + |n|)α (n ∈ Z). (4.10)

In this latter case,
Ω2(u, v) = Ω3(u, v) = 0 (u, v ∈ Z∗).

Further, there are several examples (e.g., [12, Examples 9.7, 9.8, 9.15, 9.16]) of weights ω
on Z that are neither Arens regular nor strongly Arens irregular; however, no such weight
on N was given in [12]. Necessary and sufficient conditions for ω to be Arens regular are
specified in [12, Theorem 8.11], but such conditions for ω to be strongly Arens irregular
are not known; some specific open questions are raised in [12]. For example, it is known,
as we shall see below, that ` 1(Z, ω) is strongly Arens irregular whenever

lim inf
n→∞

ω(n)ω(−n) <∞, (4.11)

but it is open whether or not ` 1(Z, ω) is necessarily strongly Arens irregular whenever ω
satisfies the weaker condition that

lim inf
n→∞

ω(n) <∞ and lim inf
n→∞

ω(−n) <∞.

5. Sets determining for the topological centre

The following definition is taken from [13, Definition 12.3]. Recall that we regard a Banach
algebra A as being a subset of A′′.

Definition 5.1. Let A be a Banach algebra. A subset V of A′′ is determining for the
left topological centre of A′′ if Φ ∈ A whenever Φ ∈ A′′ and Φ 2 Ψ = Φ 3 Ψ (Ψ ∈ V ).

Clearly A is left strongly Arens irregular if and only if A′′ is determining for the left
topological centre. In the case where A is commutative, we say that V is determining
for the topological centre, and so V is determining for the topological centre if Φ ∈ A

whenever Φ commutes in (A′′,2) with each element of V .
Let S be a semigroup, and set A = ` 1(S). In [13, Chapter 12], it is shown that

certain ‘small’ subsets of βS ⊂ M(βS) are determining for the left topological centre of
A′′ = M(βS). For example, it is proved in [13, Theorem 12.15] that, for each infinite
semigroup S such that S is ‘weakly cancellative and nearly right cancellative’ (which
includes the case where S is cancellative, and, in particular, where S is a group), there is
a two-element subset V = {a, b} of βS such that V is determining for the left topological
centre. (It follows that A is strongly Arens irregular whenever S is cancellative; however,
[13, Example 7.33] shows that this is not necessarily the case when S is just weakly
cancellative.) Properties of such points a and b are investigated; for example, it is shown
in [13, Theorem 12.8] that, in the case where S is infinite, countable, and cancellative
and P and Q are infinite subsets of S, we may choose a ∈ P ∗ and b ∈ Q∗. In this
section, we shall show that a modification of the arguments in [13] gives a similar result
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for certain Beurling algebras ` 1(G,ω) and more general weighted convolution algebras
on semigroups.

The following definition was given in [12, Definition 7.41].

Definition 5.2. Let G be an infinite group, let ω : G → R+• be a function on G, and
let T be a subset of G. The function ω is diagonally bounded on T if

dT := sup{ω(t)ω(t−1) : t ∈ T} <∞. (5.1)

In the case where ω is a weight on G, it follows from (4.4) that condition (5.1) is
satisfied if and only if

1/dT ≤ Ω(s, t) ≤ 1 (s ∈ G, t ∈ T ). (5.2)

This condition has proved to be significant in several contexts. For example, a Banach
algebra ` 1(G,ω) is amenable if and only if G is an amenable group and ω is diagonally
bounded on G [38]; for a new proof of this latter result, see [26].

Clearly a weight ω on Z is diagonally bounded on an infinite subset of Z if and only
if

lim inf
n→∞

ω(n)ω(−n) <∞,

as in (4.11).
We now extend the above definition.

Definition 5.3. Let S be a semigroup, let ω be a weight on S, and let T be a subset
of S. Then:

(i) ω is diagonally bounded on T , with bound dT > 0, if

1/dT ≤ Ω(s, t) ≤ 1 (s ∈ S, t ∈ T ); (5.3)

(ii) ω is weakly diagonally bounded on T , with bound cT > 0, if

1/cT ≤ Ω2(u, v) ≤ 1 (u ∈ S∗, v ∈ T ∗).

Clearly a diagonally bounded weight on a semigroup is weakly diagonally bounded,
and a weight on a group G is diagonally bounded on a subset T of G in the sense of
Definition 5.3(i) if and only if it is diagonally bounded on T in the old sense. Trivially
the weight ω = 1 is diagonally bounded on each semigroup S.

Let S be a semigroup. A weight ω is weakly diagonally bounded on a subset T of S,
with bound cT > 0, if and only if

Lim inf
s∈S, s→∞

Lim inf
t∈T, t→∞

Ω(s, t) ≥ 1/cT ;

explicitly, this holds if and only if, for each ε > 0, there is a cofinite subset S0 of S such
that, for each s ∈ S0, there is a cofinite subset Ts of T with

1
cT

(1− ε) ≤ Ω(s, t) ≤ 1 (t ∈ Ts). (5.4)

We shall give a variety of examples of weakly diagonally bounded weights below.
Let ω be a weight on an infinite, countable, cancellative semigroup S such as Q or

Q+•, and suppose that ω is weakly diagonally bounded on an infinite subset of S. We
do not know whether or not there is always a weight equivalent ω̃ to ω on S such that ω̃
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is weakly diagonally bounded on an infinite subset T of S, with bound cT < 2, or even
cT = 1.

Let S be an infinite semigroup, and let ω be a weight on S that is weakly diagonally
bounded on an infinite subset T of S, with bound cT > 0. Suppose that λ ∈ C(βS),
u ∈ S∗, and v ∈ T ∗ are such that 〈u 2 v, λ〉 ≥ 0. Then it follows from (4.6) that

〈θω(u) 2ω θω(v), λω〉ω ≥
1
cT
〈u 2 v, λ〉,

and so, since { n∑
i=1

αiδui : α1, . . . , αn ∈ R+, u1, . . . , un ∈ S∗, n ∈ N
}

is weak-∗ dense in M(S∗)+ and the map RΨ is continuous on (A′′ω,2) for Ψ = θω(v), we
see that

〈θω(µ) 2ω θω(v), λω〉ω ≥
1
cT
〈µ 2 v, λ〉 (5.5)

for each µ ∈M(S∗)+, v ∈ T ∗, and λ ∈ C(βS)+.
Now take µ ∈MR(S∗), and suppose that µ has the Hahn decomposition µ = µ1−µ2,

say. Take ε > 0. Then there are ν1, ν2 ∈M(S∗)+, with supports K1 and K2, respectively,
in βS such that K1 ∩K2 = ∅ and ‖µ1 − ν1‖+ ‖µ2 − ν2‖ < ε. Take open neighbourhoods
U1 and U2 of K1 and K2, respectively, in βS such that U1 ∩ U2 = ∅, and then take
functions λ1, λ2 ∈ C(βS)+

[1] with suppλj ⊂ Uj and 〈νj , λj〉 ≥ (1− ε)‖νj‖ for j = 1, 2. Set
λ = λ1 − λ2, so that λ ∈ CR(βS)[1] and

〈ν1 − ν2, λ〉 = 〈ν1, λ1〉+ 〈ν2, λ2〉.

We have
〈µ, λ〉 > 〈ν1, λ1〉+ 〈ν2, λ2〉 − ε > (1− ε)‖µ‖ − 4ε. (5.6)

Let µ ∈ MR(βS) have the Hahn decomposition µ = µ1 − µ2, and take a ∈ T ∗ such
that a is right cancellable in (βS,2). Then µ2a ∈MR(βS), and the Hahn decomposition
of µ2a is µ1 2a−µ2 2a. By [13, Proposition 4.4(iii)], we have ‖µ2a‖ = ‖µ‖. Take ε > 0.
Then there exists an element λ = λ1 − λ2 ∈ CR(βS)[1] with the above properties. We
have

〈θω(µ) 2ω θω(a), λω〉ω =
2∑
j=1

〈θω(µj) 2ω θω(a), λjω〉ω by (4.8)

≥ 1
cT

2∑
j=1

〈µj 2 a, λj〉 by (5.5)

>
1− ε
cT
‖µ 2 a‖ − 4ε

cT
by (5.6)

=
1− ε
cT
‖µ‖ − 4ε

cT
.

Let K be a clopen subset of βS with S2a ⊂ K. It follows from (4.8) that, by replacing
λ by λ|K, we may suppose that suppλ ⊂ K.

Thus we have obtained the following result.
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Proposition 5.4. Let ω be a weight on an infinite semigroup S such that ω is weakly
diagonally bounded on an infinite subset T of S, with bound cT . Let µ ∈ MR(βS) with
‖µ‖ = 1, and let a ∈ T ∗ be right cancellable in βS, with S 2 a ⊂ K, where K is a clopen
subset of βS. Set Φ = θω(µ) ∈ A′′ω and v = θω(a). Then, for each ε > 0, there exists
λ ∈ CR(βS)[1] with suppλ ⊂ K such that

1
cT

(1− ε) ≤ 〈Φ 2ω v, λω〉ω ≤ ‖Φ 2ω v‖ω ≤ 1. (5.7)

We shall now generally restrict ourselves to consideration of countable, cancellative
semigroups, but we shall make a few remarks about the uncountable semigroups R
and R+•; some more general definitions and results for arbitrary locally compact groups
and more general semigroups are given in [13] and [58].

It is noted in [12] that a straightforward modification of the proof [12, Theorem 11.9]
shows the following (the result is also given in [58] with a different proof). Let G be an
infinite, countable group, and let ω be weight on G such that ω is diagonally bounded
on an infinite subset of G. Then ω is strongly Arens irregular. We shall modify a proof
given in [13] that shows that, under the same hypotheses, there is a finite subset of A′′ω
that is determining for the left topological centre.

In fact, we shall prove our result under the weaker hypothesis that ω is weakly diag-
onally bounded, rather than just diagonally bounded, on an infinite subset of G; examples
to be given below will show that this change considerably extends the collection of weights
for which the result is known. In particular, we shall show in Example 6.4 that there is
a weight ω on the group (Q,+) such that ω is weakly diagonally bounded on an infinite
subset of Q, but that ω is not diagonally bounded on any infinite subset of Q.

The preliminary proposition is proved by modifying part of the proof of [13, Theorem
12.7]; we give the details. (The result in [13] is exactly the case n = 2 of the following
proof.)

Proposition 5.5. Let S be an infinite, countable, cancellative semigroup, let T be an
infinite subset of S, and let n ∈ N. Then there exist a1, . . . , an ∈ T ∗ and pairwise disjoint,
infinite subsets U1, . . . , Un of S such that a1, . . . , an are right cancellative in βS and

(βS 2 ai) ∩ (βS 2 aj) = ∅ (i, j ∈ Nn with i 6= j),

and S 2 ai ⊂ U i for i ∈ Nn. Further, for each x ∈ S∗, the set (x � S) ∩ Ur is non-empty
for at most one value of r ∈ Nn.

Proof. Indeed, for this we may suppose that S has an identity eS .
We enumerate S as a sequence (sk : k ∈ Z+), where s0 = eS . For s = sj and t = sk

in S, we set s 4 t if j ≤ k and s ≺ t if j < k; for t ∈ S, we set [t] = {s ∈ S : s 4 t}; for a
subset F of S, we set

[F ] =
⋃
{[t] : t ∈ F},

so that [F ] is finite whenever F is finite.
We shall construct a certain sequence (tk) in S by induction. First, set t0 = s0 = eS .

Once t0, . . . , tk have been defined, set

Tk = {s0, . . . , sk, t0, . . . , tk}.
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The sequence (tk) will satisfy the following two conditions for each k ∈ Z+:

(i) sTk ∩ [Tk] = ∅ whenever s ∈ S with tk+1 4 s;
(ii) rs ≺ ttk+1 whenever r, s, t ∈ Tk.

Take k ∈ Z+, and assume that t0, . . . , tk have been specified in S. Since S is cancell-
ative, the set ⋃

j≤k

{s ∈ S : tjs ∈ T 2
k }

is finite. We choose tk+1 to be any element of S that is not in the above set. It is clear
that clauses (i) and (ii) are satisfied, and so the inductive construction continues.

Note that sk 4 tk (k ∈ Z+), and so
⋃
{[tk] : k ∈ Z+} = S.

Define ϕ : S → Z+ by setting

ϕ(s) = min{k ∈ Z+ : s ∈ [tk]} (s ∈ S).

Suppose that ϕ(s) = j ∈ N. It follows from (ii) that we have tk−1 ≺ stk ≺ tk+1

whenever k > j, and so
ϕ(stk) ∈ {k, k + 1} (k > j). (5.8)

Now suppose that j ≥ 2 and k ≤ j − 2. Then u ≺ ssk for each u ∈ Tj−2 by (i),
above, because sTj−2 ∩ [Tj−2] = ∅; further, ssk ≺ tk+1 by (ii), because s ∈ Tj . Thus
ϕ(ssk) ∈ {j − 1, j, j + 1}, and so we can conclude that

ϕ(ssk) ∈ {j − 1, j, j + 1} (k + 2 ≤ j). (5.9)

For each s ∈ S, set γ(s) ≡ ϕ(s) taken modulo 4n. Then γ : S → Z4n is a (continuous)
map into a finite set, and so it has a continuous extension, also denoted by γ, to a map
γ : βS → Z4n. It follows from (5.9) that

γ(x 2 s) ∈ {γ(x)− 1, γ(x), γ(x) + 1} (x ∈ S∗, s ∈ S), (5.10)

where addition and subtraction in Z4n are taken modulo 4n.
For r = 1, . . . , n, define

Ar = {tk : γ(tk) = 4(r − 1) + 1}, Ur = Ai ∪ {tk : γ(tk) = 4(r − 1) + 2},
so that each of A1, . . . , An is an infinite subset of S, Ar ⊂ Ur for each r ∈ Nn, and the
sets {U1, . . . , Un} are pairwise disjoint. For each r = 1, . . . , n, choose ar ∈ A∗r .

We claim that each ar is right cancellable in (βS,2). Indeed, let u1 and u2 be distinct
points of βS, and take N1, N2 ⊂ S such that N1 ∩ N2 = ∅, u1 ∈ N1, and u2 ∈ N2. For
j = 1, 2, set

Yj = {sitk : si ∈ Nj , tk ∈ Ar, i < k},
so that Yj ∈ uj 2 ar. Take i1, i2, k1, k2 ∈ N with i1 < k1, i2 < k2, and i1 6= i2. Then
si1tk1 6= si2tk2 ; this holds for k1 < k2 by (ii), and for k1 = k2 because S is cancellative.
It follows that Y1 ∩ Y2 = ∅, and so u1 2 a 6= u2 2 a, as required for the claim.

It follows from (5.8) that S 2 ai ⊂ U i for i ∈ Nn.
Take x ∈ S∗. Then γ(x) = i for some i ∈ Z4n. Take s ∈ S, and suppose that x�s ∈ Ur,

where r ∈ Nn. Then it follows from (5.10) that

i ∈ {4(r − 1), 4(r − 1) + 1, 4(r − 1) + 2, 4(r − 1) + 3}.
Thus there is at most one value of r ∈ Nn such that (x � S) ∩ Ur 6= ∅.
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Theorem 5.6. Let S be an infinite, countable, cancellative semigroup, and let ω be a
weight on S such that ω is weakly diagonally bounded on an infinite subset T of S, with
bound cT . Take n ∈ N with n > cT . Then there is a subset V of T ∗ω with |V | = n such
that V consists of right cancellable elements of (βS,2) and V is determining for the left
topological centre of ` 1(S, ω)′′.

Proof. Let a1, . . . , an ∈ T ∗ and U1, . . . , Un ⊂ S be as specified in Proposition 5.5.
For r ∈ Nn, we set vr = θω(ar) ∈ A′′ω, and we define V = {v1, . . . , vn}, so that |V | = n.
Let Φ ∈ (A′′ω)R with ‖Φ‖ω = 1, take ε > 0, and let r ∈ Nn. It follows from Proposi-

tion 5.4 that there exists λr ∈ CR(βS)[1] with suppλr ⊂ Ur such that

1
cT

(1− ε) ≤ 〈Φ 2ω vr, λrω〉ω. (5.11)

Let f ∈ lin {δu : u ∈ S∗} with ‖f‖1 ≤ 1. Then we can write

f = f1 + · · ·+ fn,

where, for each r ∈ Nn, we have fr ∈ lin {δu : u ∈ S∗} and u � S ⊂ Ur whenever
u ∈ supp fr; we have

∑n
r=1 ‖fr‖1 ≤ 1, and so there exists j ∈ Nn such that ‖fj‖1 ≤ 1/n.

It follows from (4.9) that

|〈θω(f) �ω θω(s), λjω〉ω| ≤ 1/n (s ∈ S). (5.12)

Now take µ ∈M(S∗)[1], say µ = limα gα, where

gα ∈ lin {δu : u ∈ S∗}

with ‖gα‖1 ≤ 1 for each α. For each α, there exists jα ∈ Nn such that (5.12) holds (with
gα for f and jα for j), and so, by passing to a subnet, we may suppose that there exists
j ∈ Nn such that (5.12) holds (with gα for f) for each α. Since the map Φ 7→ Φ �ω θω(s)
is weak-∗ continuous on A′′ω for each s ∈ S, it follows that there exists j ∈ Nn such that

|〈θω(µ) �ω θω(s), λjω〉ω| ≤ 1/n (s ∈ S).

The map Φ 7→ θω(µ) �ω Φ is weak-∗ continuous on A′′ω for each µ ∈M(S∗), and so we see
that, for each Φ ∈ (E◦ω)R with ‖Φ‖ω ≤ 1, there exists j ∈ Nn such that

|〈Φ �ω vj , λjω〉ω| ≤ 1/n. (5.13)

Take Φ ∈ E◦ω with Φ 2ω v = Φ �ω v (v ∈ V ), say Φ = Φ1 + iΦ2, where Φ1,Φ2 ∈ (E◦ω)R.
Assume towards a contradiction that Φ1 6= 0, say ‖Φ1‖ω = 1. It follows from (5.11) and
(5.13) that there exists j ∈ Nn such that

(1− ε)/cT < 〈Φ1 2ω vj , λjω〉ω = |〈Φ �ω vj , λjω〉ω| ≤ 1/n,

which is indeed a contradiction for suitably small ε > 0 because n > cT . Thus Φ1 = 0.
Similarly, Φ2 = 0, and so Φ = 0.

We have proved that V is determining for the left topological centre of ` 1(S, ω)′′.

We have proved in the above theorem that there is an appropriate subset V of T ∗ω
with |V | = n > cT . We do not know if we can always find sets with smaller cardinality
with the required properties.
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Corollary 5.7. Let S be an infinite, countable, abelian, cancellative semigroup, and let
ω be a weight on S such that ω is weakly diagonally bounded on an infinite subset of S.
Then ω is strongly Arens irregular on S. In particular, ` 1(S) is semisimple and strongly
Arens irregular.

Proof. By the theorem, ` 1(S, ω) is left strongly Arens irregular. Since ` 1(S, ω) is com-
mutative, ω is strongly Arens irregular on S.

We state as a further corollary a result that is contained within a trivial modification
of the above proof.

Corollary 5.8. Let S be an infinite, countable, cancellative semigroup, and let ω be a
weight on S such that ω is weakly diagonally bounded on an infinite subset W of S, with
bound cW . Suppose that µ ∈MR(S∗)[1] and ε > 0. Then there exist elements a ∈W ∗ and
λ ∈ `∞R (S, ω) with ‖λ‖ω = 1 such that

〈θω(µ) 2ω θω(a), λ〉ω >
1
cW

(1− ε) and |〈θω(µ) �ω θω(a), λ〉ω| < ε.

The following is a special case of the above corollary.

Corollary 5.9. Let W be an infinite subset of Q+•. Take ε > 0 and µ ∈MR((Q+•)∗)[1].
Then there exist a ∈ (Q+•)∗ and λ ∈ `∞R (Q+•) with ‖λ‖ = 1 such that

〈µ 2 a, λ〉 > 1− ε and |〈a 2 µ, λ〉| < ε.

Finally, we make some remarks concerning uncountable semigroups. It can be checked
that a modification of the proof of [13, Theorem 12.15] by the introduction of a weight,
in the same manner as in the modification of [13, Theorem 12.7] to give Theorem 5.6,
will give the following two results.

Theorem 5.10. Let S be an infinite, cancellative semigroup, and let ω be a weight on S

such that ω is weakly diagonally bounded on a subset W of S for which |W | = |S|. Then
ω is strongly Arens irregular.

Before giving the next theorem, we clarify some terminology. We have taken the real
line R to have the discrete topology, and have formed the Stone–Čech compactification
βRd. Take an element a ∈ βRd such that a ∈ I∗. Then a is an ultrafilter on I, and so
we have the notion of whether or not this filter is convergent. Since I is compact (in the
usual topology on I), a must converge in this topology to a point of I, say a→ s0. This
means that each open interval in R that contains s0 is a member of a.

Theorem 5.11. Let ε > 0 and µ ∈MR((R+•)∗)[1]. Then there exist elements a ∈ I∗ and
λ ∈ `∞R (R+•) with ‖λ‖ = 1 such that ‖µ 2 a‖ = ‖µ‖ and a→ 0 and such that

〈µ 2 a, λ〉 > 1− ε and |〈a 2 µ, λ〉| < ε. (5.14)

In particular, µ 2 a 6= a 2 µ.

Proof. The modification of the proof of [13, Theorem 12.7] consists in dividing the set T
of that proof into n parts, rather than two parts (as in Theorem 5.6), where 1/n < ε. The
proof gives an element a ∈ I∗ such that a is right cancellable in (βRd,2) and an element
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λ ∈ `∞R (R) with ‖λ‖ = 1 such that λ and a satisfy (5.14). Since a is right cancellable, it
follows from [13, Proposition 4.4(iii)] that ‖µ 2 a‖ = ‖µ‖.

Since a is an ultrafilter on I, there is a point s0 ∈ I such that a → s0. By replacing
a by a − s0 (which does not change any of the above properties), we may suppose that
a → 0. Since a is an ultrafilter on R and (−1, 1) ∈ a, either [0, 1) ∈ a or (−1, 0] ∈ a;
in the latter case, we replace a by −a (which again does not change any of the above
properties). Thus we may suppose that [0, 1) ∈ a, and hence that a ∈ I∗.

Since µ ∈MR(R+•), we may suppose that λ ∈ `∞R (R+•).

In fact, the following weaker result than Theorem 5.10 is sufficient to obtain a result
about the group R. Theorem 5.12 was already proved in [12, Corollary 11.10]; the result
in Corollary 5.13 generalizes [10, Corollary 1], which states that ω is not Arens regular
for each weight ω on R.

Theorem 5.12. Let G be a group, and let ω be a weight on G such that ω is diagonally
bounded on a subset W of G for which |W | = |G|. Then ω is strongly Arens irregular.

Corollary 5.13. Let ω be a weight on the group (R,+). Then ω is strongly Arens
irregular.

Proof. For n ∈ N, set Rn = {t ∈ R : ω(t)ω(−t) ≤ n}. Assume that |Rn| < c for each
n ∈ N. Then

|R| =
∣∣∣⋃{Rn : n ∈ N}

∣∣∣ < c,

a contradiction. Thus ω is diagonally bounded on a subset W of R for which |W | = c,
and so ω is strongly Arens irregular.

The above result does not apply to weights on the semigroup (R+•,+); in Example
9.10, we shall give a weight on R+• which is neither Arens regular nor strongly Arens
irregular. However, we shall prove in Theorem 8.1 that a continuous weight on R+ is
strongly Arens irregular, and in Corollary 9.19 that a semisimple weight on R+• cannot
be Arens regular.

6. Examples of weights

We now give some examples of weights on the semigroups that we are considering. For a
large collection of weights on Z, see [12].

Example 6.1. Let S be a subsemigroup of R+ or R+• such that S contains a sequence
(tn) with tn ↘ 0, and set T = {tn : n ∈ N}, an infinite subset of S. Suppose that ω is a
continuous weight on R+, so that ω|S is a weight on S.

We claim that ω (as a weight on S) is weakly diagonally bounded on T , with bound
cT = 1. Indeed, fix ε > 0. For each s ∈ S, there exists ns ∈ N such that

ω(s+ tn) > (1− ε)ω(s) and ω(tn) < 1 + ε
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for each n ≥ ns, where we recall that ω(1) = 1. Let Ts = {tn : n ≥ ns}, so that Ts is a
cofinite subset of T . For each t ∈ Ts, we have

Ω(s, t) =
ω(s+ t)
ω(s)ω(t)

≥ 1− ε
1 + ε

,

giving the claim.
In the case where S is countable, it follows from Theorem 5.6 that there is a two-

element subset of T ∗ω that is determining for the topological centre of ` 1(S, ω)′′, and so
ω is strongly Arens irregular.

For example, set ω(s) = exp(−s2) (s ∈ Q+•). Clearly ω is a continuous weight on R+,
and ω is radical; by the above remarks, ω is strongly Arens irregular as a weight on Q+•.

However, we cannot apply this argument and Theorem 5.10 to the weight function
ω : s 7→ exp(−s2) on R+• because this function is not weakly diagonally bounded on any
uncountable subset of R+•. Indeed, note that

Ω(s, t) = exp(−2st) (s, t ∈ R+•).

Assume towards a contradiction that T is an uncountable subset of R+• such that ω is
weakly diagonally bounded on T , with bound c > 0. Then there exists t0 > 0 such that
T ∩ (t0,∞) is infinite. There is a cofinite subset S0 of R+• such that, for each s ∈ S,
there is a cofinite subset Ts of T with exp(−2st) ≥ 1/2c (t ∈ Ts). Choose s0 ∈ S with
exp(−2s0t0) < 1/2c, and then choose t1 ∈ Ts0 ∩ (t0,∞) with exp(−2s0t1) ≥ 1/2c. We
have

1
2c
≤ exp(−2s0t1) ≤ exp(−2s0t0) <

1
2c
,

a contradiction.
This leaves open the question whether or not the weight

ω : s 7→ exp(−s2), R+• → R+•,

is strongly Arens irregular; this will be resolved in Example 8.2, below.

Example 6.2. An interesting example of a weight ω on Z is given in [12, Example 9.17];
it is due to J. F. Feinstein. Each n ∈ Z \ {0} can be written in the form

n =
r∑
j=1

εj2aj , (6.1)

where εj ∈ {−1, 1} and aj ∈ Z+ for each j ∈ N, and where

a1 ≥ · · · ≥ ar.

We define η(n) to be the minimum value of r ∈ N that can arise in (6.1), and take
η(0) = 0; we set ω = exp η, so that ω is a semisimple weight on Z. Set T = {2k : k ∈ N},
an infinite subset of Z. Then η(n) = 1 (n ∈ T ), and so ω is diagonally bounded on T

with dT = e2. However, ω is unbounded on Z.
We claim that ω is weakly diagonally bounded on T with bound cT = 1. Indeed, take

n as in (6.1), with r = η(n). For each k ∈ N with 2k > 2a1+1, we have η(n+ 2k) = r+ 1,
and so Ω(n, 2k) = 1, giving the claim.
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We conclude from Corollary 5.7 that ` 1(Z, ω) is strongly Arens irregular, a fact that
was already proved in [12, Example 9.17], and now that there is a two-element subset of
Z∗ω that is determining for the topological centre of ` 1(Z, ω)′′.

We remark that it was left open in [12] whether or not, with this particular weight ω,
the Banach algebra (` 1(Z, ω)′′,2) is semisimple; this is still an open question.

Example 6.3. We next consider a special weight on the group (Q,+) (or the semigroup
(Q+•,+)). Let f : N→ R be an increasing function with

f(1) = 1 and f(mn) ≤ f(m)f(n) (m,n ∈ N).

For example, we can take

f(n) = n or f(n) = 1 + log n for n ∈ N. (6.2)

Then define
ω(p/q) = f(q) (p/q ∈ Q•), (6.3)

where we recall that we are supposing that (p, q) = 1 in the expression p/q. Also set
ω(0) = 1.

Clearly each such ω is a symmetric weight on Q with ω ≥ 1; also ω|Q+• is a semisimple
weight.

For each n ∈ N and p/q ∈ Q •, we have ω(n+p/q) = ω((nq+p)/q) and (nq+p, q) = 1,
and so Ω(n, p/q) = 1. Thus ω is diagonally bounded on N, with dN = 1.

We conclude that each such Banach algebra of the form ` 1(Q, ω) or ` 1(Q+•, ω) is
strongly Arens irregular; further, there is a two-element subset of Q ∗ω or (Q+•)∗ω, respec-
tively, that is determining for the topological centre of ` 1(Q, ω)′′ or of ` 1(Q+•, ω)′′.

Now set T = {1/r : r ∈ P}. In the case where f(n) = n (n ∈ N), the weight ω is not
diagonally bounded on T . Indeed, take r ∈ P with r > 2, and set s = t = 1/r. Then

ω(s+ t) = r and ω(s) = ω(t) = r,

and so Ω(s, t) = 1/r. Thus inf{Ω(s, t) : s, t ∈ T} = 0, and so (5.3) fails for any dT > 0.
However, we claim that ω is weakly diagonally bounded on T , with bound cT = 1.

Indeed, given s = p/q ∈ Q, let Ts = {1/r : r ∈ P, r > q}, a cofinite subset of T . For
t = 1/r ∈ Ts, we have

s+ t =
pr + q

qr
with (pr + q, qr) = 1,

and so ω(s+ t) = qr = ω(s)ω(t). Thus Ω(s, t) = 1 (s ∈ S, t ∈ Ts), giving the claim. The
fact that inf T = 0 will be important later.

Example 6.4. We consider another special weight on the group (Q,+) (or the semigroup
(Q+•,+)). Let

ω(p/q) = 1 + |p|+ q (p/q ∈ Q•), (6.4)

and set ω(0) = 1. Again ω is a symmetric weight on Q with ω ≥ 1; also ω|Q+• is a
semisimple weight. The weight ω is not bounded, and hence not diagonally bounded, on
any infinite subset of Q.
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Again set T = {1/r : r ∈ P}. We claim that ω is weakly diagonally bounded on T ,
with bound cT = 1. Indeed, given ε > 0, we see that

|p|+ q

1 + |p|+ q
> 1− ε

for all save finitely many p/q ∈ Q, say for p/q ∈ S0, where S0 is a certain cofinite subset
of Q. Given s = p/q ∈ S0, take t = 1/r, where r ∈ P with r > q. Then

Ω(s, 1/r) =
1 + |pr + q|+ qr

(1 + |p|+ q)(2 + r)
→ |p|+ q

1 + |p|+ q
as r →∞,

and so Ω(s, 1/r) > 1− ε (s ∈ S0, t ∈ Ts) for a certain cofinite subset Ts of T , giving the
claim.

We again conclude that there is a two-element subset of Q ∗ω or of (Q+•)∗ω that is
determining for the appropriate topological centre, so that ` 1(Q, ω) and ` 1(Q+•, ω) are
strongly Arens irregular. However,

ω(n) = 2 + |n| (n ∈ Z \ {0}),

and so the closed subalgebra ` 1(Z, ω) of ` 1(Q, ω) is Arens regular.

Example 6.5. It is clear that a radical weight ω on N cannot be diagonally bounded
on any infinite subset of N. For let ω be a radical weight on N, and assume towards a
contradiction that Ω(1, n) ≥ δ > 0 for infinitely many values of n ∈ N. Then

νω = lim
n→∞

ω(n)1/n ≥ lim inf
n→∞

ω(n+ 1)
ω(n)

≥ ω(1)δ > 0,

a contradiction of the fact that ω is radical.
However, we shall now exhibit a radical weight ω on N such that ω is weakly diagonally

bounded on an infinite subset of N.
We first inductively define a sequence (mk : k ∈ N) in N by setting m1 = 1 and

mk+1 = 2mk + 1 (k ∈ N), and then we define a function η : N → N by setting η(1) = 1
and by using the inductive formula

η(mk + 1) = max{2η(mk), (2mk + 1)k},
η(mk + 1 + r) = η(mk + 1) + η(r) (r ∈ Nmk),

for k ∈ N. Clearly η is an increasing function on N.
We claim that η(m+n) ≥ η(m)+η(n) (m,n ∈ N). This is trivially true for m = n = 1.

Assume that it is true whenever m + n ≤ mk, where k ∈ N, and take m,n ∈ N with
m + n ≤ mk+1; we may suppose that m + n ≥ mk + 1. First, suppose that m,n ≤ mk.
Then

η(m+ n) ≥ η(mk + 1) ≥ 2η(mk) ≥ η(m) + η(n).

Second, suppose that m ≥ mk + 1, say m = mk + 1 + r, where r ∈ Z+
mk

. Then n ≤ mk

and

η(m+ n) = η(mk + 1) + η(r + n) ≥ η(mk + 1) + η(r) + η(n) = η(m) + η(n).

This establishes the claim.
Set ω = exp(−η). Then, by the claim, ω is a weight on N.
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Let k ∈ N. For each n ∈ N with mk + 1 ≤ n ≤ mk+1, we have

η(n)
n
≥ η(mk + 1)

mk+1
=
η(mk + 1)
2mk + 1

≥ k,

and so ω(n)1/n ≤ exp(−k). Thus limn→∞ ω(n)1/n = 0, and ω is radical.
Let T = {mk + 1 : k ∈ N}, so that T is an infinite subset of N. For each m ∈ N, set

Tm = {n ∈ T : n > m}, a cofinite subset of T . For m ∈ N and n = mk + 1 ∈ Tm, we have

Ω(m,n) = exp(η(m) + η(mk + 1)− η(mk + 1 +m)) = 1,

and so ω is weakly diagonally bounded on T , with cT = 1.
We conclude from Theorem 5.6 that there is a two-element subset of N∗ω that is

determining for the topological centre of ` 1(N, ω)′′, and then from Corollary 5.7 that ω
is strongly Arens irregular.

7. Algebras on subsets of I

Throughout this section, we take S to be either (Q+•,+) or (R+•,+) and T = S ∩ (0, 1],
and let ω be a weight on the semigroup S. We denote by Aω and Bω the Banach spaces
` 1(S, ω) and ` 1(T, ω), respectively, and we regard Bω as a closed, complemented subspace
of Aω, so that B′′ω is a closed, complemented subspace of A′′ω; as usual, (Aω, ?) is a weighted
convolution algebra on S. We write A and B for Aω and Bω, respectively, in the special
case where ω = 1.

Set
Iω = {f ∈ Aω : α(f) ≥ 1, f(1) = 0} ∪ {0},

so that Iω is a closed ideal in Aω. We define the product ?B on Bω by identifying Bω
with the quotient Banach algebra Aω/Iω. Thus, for s, t ∈ T , we have δs ?B δt = δs+t if
s + t ≤ 1 and δs ?B δt = 0 if s + t > 1. Each f ∈ Bω with α(f) > 0 is nilpotent, and so
Bω is a radical Banach algebra.

We remark that, although the Banach algebra B has a rather innocent appearance,
there are apparently challenging open questions about it. For example, it is not known
whether or not B = B2. Further, it is not known whether or not B contains a non-zero
semigroup over Q+• (in the terminology of [11]).

It is easy to see that the only compact element of B is 0, and so certainly B is not an
ideal in (B′′,2).

The first Arens products in A′′ω and B′′ω are denoted by 2ω and 2B
ω , respectively. Set

Fω = c0(T, 1/ω),

so that Bω is a dual Banach algebra, with predual Fω, and hence B′′ω = Bω n F ◦ω , as
before, where F ◦ω is the annihilator of Fω in B′′ω. To show that Bω is strongly Arens
irregular, it suffices to show that, for each µ ∈ F ◦ω with µ 6= 0, there exists ν ∈ F ◦ω with
µ 2

B
ω ν 6= ν 2

B
ω µ. We shall do more than this in the case where S = Q+• under a mild

condition on ω.
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Let µ ∈ F ◦ω , say µ = limα fα, where (fα) is a net in Bω. We may suppose that supp fα
is finite for each α. Further, we have

lim
α
fα(t) = 0 (t ∈ T ),

and so we may suppose that supp fα ⊂ (0, 1).

Theorem 7.1. Let ω be a weight on the semigroup Q+•. Suppose that ω is weakly diag-
onally bounded, with bound cW < 2, on a subset W of Q+• for which inf W = 0. Set
Bω = ` 1(T, ω), and let µ ∈ F ◦ω with µ 6= 0. Then there exists v ∈W ∗ω such that

µ 2
B
ω v 6= v 2

B
ω µ.

In particular, Bω is strongly Arens irregular.

Proof. We may suppose that µ ∈ (F ◦ω)R and that ‖µ‖ω = 1, and we may regard µ as an
element of A′′ω in the above notation. Since inf W = 0, we may also suppose that W is a
sequence that decreases to 0. Choose µ̃ ∈MR((Q+•)∗)[1] with θω(µ̃) = µ; we have µ̃ 6= 0.

Fix ε > 0 with (
2
cW

+ 1
)
ε <

2
cW
− 1. (7.1)

By Corollary 5.8, there exist a ∈W ∗ and λ ∈ (A′ω)R with ‖λ‖ω = 1 such that
1
cW

(1− ε) < r ≤ 1 and |s| < ε,

where we set r = 〈θω(µ̃) 2ω θω(a), λ〉ω and s = 〈θω(a) 2ω θω(µ̃), λ〉ω. Set v = θω(a) ∈W ∗ω ,
so that

r = 〈µ 2ω v, λ〉ω and s = 〈v 2ω µ, λ〉ω.

Finally, set λ1 = λ|(0, 1] and λ2 = λ|(1,∞), so that λ1 ∈ B′ω.
We first claim that r = 〈µ 2

B
ω v, λ1〉ω. Indeed,

r = lim
m

lim
n
〈fm ? δ̃tn , λ〉ω

for certain sequences (fm) in Bω and (tn) in W . We may suppose that supp fm ⊂ (0, 1)
for each m ∈ N, and so, for each fixed m ∈ N, we have supp(fm ? δ̃tn) ⊂ (0, 1) eventually
because tn → 0. It follows that

r = lim
m→∞

lim
n→∞

〈fm ? δ̃tn , λ〉ω

= lim
m→∞

lim
n→∞

〈fm ?B δ̃tn , λ〉 = 〈µ 2
B
ω v, λ1〉ω,

as required.
Now set α = 〈v 2ω µ, λ1〉 = 〈v 2

B
ω µ, λ1〉 and β = 〈v 2ω µ, λ2〉, so that α + β = s. For

each ζ ∈ T, we have ‖λ1 + ζλ2‖ω = 1 in A′ω. But

|α+ ζβ| ≤ ‖λ1 + ζλ2‖

because ‖v2ωµ‖ω ≤ 1, and so we have |α+ζβ| ≤ 1 (ζ ∈ T). This shows that |α|+ |β| ≤ 1.
Assume towards a contradiction that α = r. Then

1 ≥ |α|+ |β| = r + |s− r| ≥ 2r − |s| > 2
cW

(1− ε)− ε,
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a contradiction of (7.1). Thus α 6= r. This implies that

〈µ 2
B
ω v, λ1〉ω 6= 〈v 2

B
ω µ, λ1〉ω,

and so µ 2
B
ω v 6= v 2

B
ω µ, as required.

We do not know whether or not the constraint ‘cW < 2’ is necessary in the above
theorem.

We claim that an amalgamation of the proof of Theorem 7.1 with results in Exam-
ple 6.1 proves the following result. We omit the details, which are notationally compli-
cated.

Theorem 7.2. Let ω1 be a continuous weight on R+, and let ω2 be a weight on Q+•

such that ω2 is weakly diagonally bounded, with bound cW < 2, on a subset W of Q+•

for which inf W = 0. Set ω = ω1ω2. Then Aω is strongly Arens irregular.

We remark that it will be shown in Example 9.16, below, that it is not sufficient to
suppose that ω2 is weakly diagonally bounded on N for the conclusion to hold.

Example 7.3. For s = p/q ∈ Q+•, set

ω(p/q) = q exp(−s2) or ω(p/q) = (1 + p+ q) exp(−s2).

Then ω is a radical, strongly Arens irregular weight on the semigroup (Q+•,+).

We now give a similar result to Theorem 7.1 in the case where S = R+•, rather than
S = Q+•; we cannot apply Corollary 5.8 directly because R+• is not countable. We give
the result only in the case where the weight is 1. As before, set B = (` 1(I), ?B ) and
F = c0(I); 2B denotes the first Arens product in B′′.

Theorem 7.4. Let B = (` 1(I), ?B), and take µ ∈ F ◦ with µ 6= 0. Then there exists
a ∈ (0, 1)∗ with a→ 0 and µ 2B a 6= a 2B µ. In particular, B is strongly Arens irregular.

Proof. We may suppose that µ ∈ F ◦R and that ‖µ‖ = 1; we regard µ as an element of
MR(R∗) \ ` 1(R).

By Theorem 5.11, there exists a ∈ I∗ such that a→ 0 and

‖µ 2 a‖ = ‖µ‖ = 1, (7.2)

and µ 2 a 6= a 2 µ, where 2 denotes the first Arens product in M(βRd).
We first claim that

µ 2 a = µ 2B a. (7.3)

Indeed, fix ε > 0, and take f ∈ ` 1([0, 1)). Then there exists η > 0 such that

‖f ? δr − (f ? δr)|I‖ < ε (0 < r < η).

Since a→ 0, it follows that ‖f 2a−f 2B a‖ ≤ ε. Since ` 1([0, 1)) is weak-∗ dense in M(I∗),
it follows that ‖µ 2 a− µ 2B a‖ ≤ ε. But this holds true for each ε > 0, and so the claim
is proved.

Assume towards a contradiction that µ 2B a = a 2B µ. Then it follows from (7.2) and
(7.3) that

‖a 2B µ‖ = 1. (7.4)
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Our second claim is that, given ε > 0, there exists t ∈ (0, 1) such that |µ((t, 1)∗)| < ε.
Indeed, assume that this is not the case. Then there exists ε > 0 such that |µ((t, 1)∗)| ≥ ε
for each t ∈ (0, 1). Thus we have ‖(δr ? µ)|I‖ < 1 − ε. Since the map Rµ is weak-∗
continuous on (B′′,2B), it follows that ‖a 2B µ‖ ≤ 1 − ε, a contradiction of (7.4). We
have established the second claim.

For each t ∈ (0, 1), set µt = µ|(0, t)∗. By the second claim, limt→1− ‖µt−µ‖ = 0, and
so

lim
t→1−

‖a 2B µt − a 2B µ‖ = 0 and lim
t→1−

‖a 2 µt − a 2 µ‖ = 0.

But a 2B µt = a 2 µt for each t ∈ (0, 1), again because a ∈ I∗ and a → 0, and so
a 2B µ = a 2 µ.

Since µ 2 a 6= a 2 µ, we conclude that a 2B µ 6= µ 2B a, and so B is strongly Arens
irregular.

8. Continuous weights on R+

Let ω be a continuous weight on R+ or R+•. In this section we shall prove that ` 1(R+•, ω)
is strongly Arens irregular.

In the following proof, we shall use a function κ : R+• → I, defined by

κ(t) = lim sup
s→∞

Ω(s, t) (t ∈ R+•).

Let (rn) be a sequence in R+• such that rn ↘ 0. We note that, by passing to a subse-
quence, we may suppose that there are two cases: either

(i) there exists n0 ∈ N such that κ(rn) > 4/5 (n ≥ n0), or
(ii) κ(rn) ≤ 4/5 (n ∈ N).

For example, cases (i) and (ii) arise when

ω(s) = 1 + s and ω(s) = exp(−s2) for s ∈ R+•,

respectively.
We again set A = (` 1(R+), ?) and B = (` 1(I), ?) in the notation of Chapter 7.

Theorem 8.1. Let ω be a continuous weight on R+, and set Aω = ` 1(R+•, ω). For each
µ ∈ E◦ω with µ 6= 0, there exists an element v ∈ (R+•)∗ω with µ2ω v 6= v2ωµ. In particular,
Aω is strongly Arens irregular.

Proof. Assume towards a contradiction that there exists µ ∈ (E◦ω)R with ‖µ‖ω = 1 such
that µ 2ω v = v 2ω µ for each v ∈ (R+•)∗ω.

We make a first reduction. For each t > 0, set

It = {f ∈ Aω : α(f) ≥ t, f(t) = 0} ∪ {0},

so that It is a closed ideal in Aω. The quotient map is

πt : Aω → Aω/It =: At,
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and this map extends to a map π′′t : A′′ω → A′′t . Since ω is continuous on the closed interval
[0, t] of R, there exist constants m,M > 0 such that

m ≤ ω(s) ≤M (0 ≤ s ≤ t).

This shows that At is isomorphic to ` 1(Q∩ (0, t]) by a linear homeomorphism, and hence
At is isomorphic to B by a linear homeomorphism.

Assume towards a contradiction that there exists t > 0 with

ν := π′′t (µ) 6= 0.

Then ν ∈ A′′t \ At, and so, by Theorem 7.4, there exists at ∈ (0, t)∗ with ν 2 at 6= at 2 ν

in A′′t . Choose v ∈ (0, t)∗ω such that π′′(v) = at. Then necessarily µ 2ω v 6= v 2ω µ in A′′ω,
a contradiction. Thus we may suppose that we have π′′t (µ) = 0 for each t > 0.

Take µ̃ ∈ (A′′)R such that θω(µ̃) = µ; we have ‖µ̃‖ = 1.
By Theorem 5.11 (with ε = 1/10), there exist elements a ∈ I∗ with a → 0 and

λ̃ ∈ `∞R (R+•) with ‖λ̃‖ = 1 such that

〈µ̃ 2 a, λ̃〉 > 9/10, |〈a 2 µ̃, λ̃〉| < 1/10.

Set λ = λ̃ω and v = θω(a), so that λ ∈ A′ω with ‖λ‖ω = 1 and v ∈ I∗ω. We have

〈µ̃ 2 a, λ̃〉 − 〈µ 2ω v, λ〉 = lim
m→∞

lim
n→∞

∑
s

λ̃(s+ rn)f̃m(s)(1− Ω(s, rn)) (8.1)

and
〈a 2 µ̃, λ̃〉 − 〈v 2ω µ, λ〉 = lim

n→∞
lim
m→∞

∑
s

λ̃(s+ rn)f̃m(s)(1− Ω(s, rn)) (8.2)

for some sequence (fm) of real-valued functions in A[1] of finite support and some sequence
(rn) in (0, 1) with rn ↘ 0; the details of the construction of these sequences are given
in [12, Proposition 3.1], and inspection of that proof shows that we may suppose that
rn ↘ 0 and that r1 < t0 in case (i), above. By our first reduction, limm→∞ α(fm) =∞.

By the hypothesis on ω, we have limt→0+ Ω(s, t) = 1 (s ∈ R+•), and so, for each ε > 0
and m ∈ N, there exists n0 ∈ N such that

|1− Ω(s, rn)| < ε (n ≥ n0, s ∈ supp fm).

It follows that

|〈µ̃ 2 a, λ̃〉 − 〈µ 2ω v, λ〉| ≤ lim sup
m→∞

ε
∑
s∈R+•

|f̃m(s)| = ε.

The above holds for each ε > 0, and so 〈µ̃ 2 a, λ̃〉 = 〈µ 2ω v, λ〉. Thus 〈µ 2ω v, λ〉 ≥ 9/10.
We now compare 〈a 2 µ̃, λ̃〉 and 〈v 2ω µ, λ〉.
First, suppose that case (i) occurs. Then it follows from (8.2) that

|〈v 2ω µ, λ〉| ≤ |〈a 2 µ̃, λ̃〉|+ lim sup
n→∞

lim sup
m→∞

∑
s∈R+•

|fm(s)|(1− Ω(s, rn))

≤ 1
10

+ lim sup
n→∞

lim sup
m→∞

∑
s∈R+•

|fm(s)|(1− Ω(s, rn)).
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For n ∈ N, choose mn ∈ N so that Ω(s, rm) > 4/5 whenever m ≥ mn and s ∈ supp fm;
this uses the fact that limm→∞ α(fm) =∞. Thus

|〈v 2ω µ, λ〉| ≤
1
10

+
1
5

=
3
10

<
9
10
≤ 〈µ 2ω v, λ〉,

and so µ 2ω v 6= v 2ω µ, a contradiction.
Second, suppose that case (ii) occurs. Then we see directly that

|〈v 2ω µ, λ〉| ≤ lim sup
n→∞

lim sup
s→∞

Ω(s, tn) = lim sup
n→∞

κ(tn) ≤ 4
5
<

9
10
≤ 〈µ 2ω v, λ〉,

and so again µ 2ω v 6= v 2ω µ, a contradiction.
This concludes the proof.

Example 8.2. The following question was left open in Example 6.1: Is the weight

ω : s 7→ exp(−s2), R+• → R+•,

strongly Arens irregular? We now see from the above theorem that this is the case. The
weight ω is a radical weight.

9. Conditions for Arens regularity

A condition for the Arens regularity of weighted convolution algebras on cancellative
semigroups was given as [5, Corollary (3.8)(i)]; results for more general semigroups are
given elsewhere in [5]. The first definition is from [12, Definition 3.2(ii)]; more general
versions are given in [5].

Definition 9.1. Let X and Y be non-empty sets, and let f : X ×Y → C be a function.
Then f 0-clusters on X × Y if

lim
m→∞

lim
n→∞

f(xm, yn) = lim
n→∞

lim
m→∞

f(xm, yn) = 0

whenever (xm) and (yn) are sequences of distinct elements of X and Y , respectively, and
both repeated limits exist.

Suppose that f : X × Y → R+ is bounded and that (xm) and (yn) are sequences
in X and Y , respectively. Then, by taking successive subsequences of (xm) and (yn), we
can suppose that the two repeated limits of (f(xm, yn) : m,n ∈ N) exist. Thus f fails
to 0-cluster on X × Y if there exist sequences (xm) and (yn) of distinct elements in X

and Y , respectively, such that

lim inf
m→∞

lim inf
n→∞

f(xm, yn) > 0.

In particular, f fails to 0-cluster on X × Y if there exist δ > 0 and sequences as above
such that

f(xm, yn) ≥ δ whenever m,n ∈ N with m < n.

The following theorem is proved by exactly the argument of [12, Theorem 8.8]; the
result originates in the work of Craw and Young in [10, Theorem 1].
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Theorem 9.2. Let ω be a weight on a semigroup S, and let X and Y be infinite subsets
of S. Suppose that Ω 0-clusters on X × Y , and let µ ∈ M(X∗ω) and ν ∈ M(Y ∗ω ). Then
µ 2ω ν = 0.

Corollary 9.3. Let ω be a weight on an abelian semigroup S, and let X be an infinite
subset of S. Suppose that Ω 0-clusters on X ×S. Then ω is not strongly Arens irregular.

Proof. Since S is abelian, Ω also 0-clusters on S ×X.
Let µ ∈M(X∗ω). Then µ 2ω ν = ν 2ω µ (ν ∈ Aω) and

µ 2ω ν = ν 2ω µ = 0 (ν ∈ E◦ω).

There exists µ ∈M(X∗ω) \ {0}, and then µ ∈ Z(A′′ω) \Aω. Thus Aω is not strongly Arens
irregular.

The following theorem of Craw and Young is [10, Theorem 1]; see [12, Chapter 8] for
related results.

Theorem 9.4. Let ω be a weight on a cancellative semigroup S. Then ω is Arens regular
if and only if Ω 0-clusters on S × S.

Corollary 9.5. Let ω1 be an Arens regular weight on a cancellative semigroup S, and
let ω2 be any weight on S. Then ω1ω2 is an Arens regular weight on S.

Proof. Since ω1 is an Arens regular weight, the corresponding function Ω1 0-clusters on
S × S. But then Ω1Ω2, which corresponds to ω1ω2, 0-clusters on S × S, and so ω1ω2 is
Arens regular.

The corollary below contrasts with [27, Theorem 2.2], which states the following.
Let ω be a continuous weight on R+ such that every element of the Banach algebra
(L1(R+, ω), ?) is compact. Then L1(R+, ω) is strongly Arens irregular.

Corollary 9.6. Let S be a subsemigroup of (R,+), and let ω be a weight on S such
that each element of ` 1(S, ω) is compact. Then ω is Arens regular.

Proof. By Proposition 4.19(i),

Lim
t→∞

ω(s+ t)/ω(t) = 0 (s ∈ S).

Let (sm) and (tn) be sequences of distinct elements of Q+•. Then

lim
n→∞

Ω(sm, tn) = 0 (m ∈ N),

and so Ω 0-clusters on S × S; by the theorem, ω is Arens regular.

Corollary 9.7. Let S be a dense, difference subsemigroup of R+•, and let ω be a weight
on S such that ω is bounded on S ∩ (a, b) for some a, b ∈ R with 0 < a < b. Then ω is
not Arens regular.

Proof. By hypothesis, there exists M > 0 with ω(s) ≤ M (s ∈ S ∩ (a, b)). By Proposi-
tion 4.13, there exist δ > 0 such that ω(s+ t) > δ (s, t ∈ S ∩ (0, b)). Let (sm) and (tn) be
sequences of distinct elements of S ∩ (a, b). Then

Ω(sm, tn) ≥ δ/M2 > 0 (m,n ∈ N),

and so Ω does not 0-cluster on the set S × S. By Theorem 9.4, ω is not Arens regular.
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Example 9.15, below, will show that such a weight ω is not necessarily strongly Arens
irregular.

Example 9.8. Let ω(n) = exp(−n2) (n ∈ N). Then ω is a radical, Arens regular weight
on N. Indeed, we see that

Ω(m,n) = exp(−2mn) (m,n ∈ N),

and so Ω 0-clusters on N× N.

Example 9.9. Let ωα(n) = (1 + |n|)α (n ∈ Z), where α > 0. Then ωα is a weight on Z.
Clearly ωα is Arens regular, as remarked in [10]. Similarly, ωα|N is a semisimple, Arens
regular weight on N. Of course, ` 1(Z) and ` 1(N) are strongly Arens irregular.

Example 9.10. Let ω(s) = exp(1/s) (s ∈ Q+•). Then ω is a semisimple weight on Q+•,
and

Ω(s, t) ≤ exp(−1/s) (s ∈ Q+•).

It follows that ω is not weakly diagonally bounded on any infinite subset of Q+•.
Since ω is bounded on the set [1,∞), ω is not Arens regular by Corollary 9.7.
Set X = {1/m : m ∈ N}, an infinite subset of Q+•. For t ∈ Q+• and m ∈ N, we have

Ω(1/m, t) ≤ exp(−m). Thus Ω 0-clusters on X ×Q+•, and so, by Corollary 9.3, ω is not
strongly Arens irregular.

Now let ω(s) = exp(1/s) (s ∈ R+•), so that ω is a semisimple weight on R+•. By the
same argument, ω is neither Arens regular nor strongly Arens irregular on R+•.

By replacing ω by the weight given by

ω(s) = exp
(
−s2 +

1
s

)
,

we obtain a radical weight on Q+• or R+• that is neither Arens regular nor strongly
Arens irregular.

We give another example of the same phenomenon; it is a preliminary to the more
important Example 9.12.

Example 9.11. For m ∈ Z+ and p/q ∈ Q+• ∩ (0, 1), set

ω(m) = 1 +m, ω(m+ p/q) = 1 +m+ q.

First, we claim that ω(s+ t) ≤ ω(s)ω(t) for s, t ∈ Q+. This is immediate in the case
where s, t ∈ Z+. Now suppose that s = m+ p/q and t = n+ u/v, where m,n ∈ Z+ and
p/q, u/v ∈ Q+• ∩ (0, 1). Then

ω(s+ t) ≤ 2 +m+ n+ qv ≤ (2 +m)(1 + n) + q(1 + v)

≤ (1 +m+ q)(1 + n+ v) = ω(s)ω(t).

Similarly our inequality holds when s = m ∈ Z+ and t = n + u/v, with n ∈ Z+ and
u/v ∈ Q+• ∩ (0, 1). Thus the claim holds.

Since ω(s) ≥ 1 (s ∈ Q+), the weight ω is semisimple on Q+.
Second, we claim that Ω does not 0-cluster on Q+ × Q+, and hence, by Theorem

9.4, ω is not Arens regular. Indeed, let (qm) be a strictly increasing sequence of prime
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numbers, and set xm = ym = 1/qm (m ∈ N). Then Ω(xm, yn) = 1 whenever m,n ∈ N
with m 6= n, and so the claim holds.

Third, we claim that Ω does 0-cluster on the set N×Q+, and hence, by Corollary 9.3,
ω is not strongly Arens irregular. Indeed, for each n ∈ Z+ and p/q ∈ Q+• ∩ (0, 1), set

ϕ(n+ p/q) = n+ q

(with ϕ(n) = n); we note that ϕ(yn)→∞ as n→∞ for every sequence (yn) of distinct
elements of Q+. Let (xm) be a sequence of distinct elements of N, so that xm → ∞ as
m→∞. Then

Ω(xm, yn) =
1 + xm + ϕ(yn)

(1 + xm)(1 + ϕ(yn))
,

and so both repeated limits of (Ω(xm, yn) : m,n ∈ N) are 0.
We conclude that ω is a semisimple weight on Q+ or Q+• that is neither Arens regular

nor strongly Arens irregular.

Example 9.12. Let ω be the weight on Q+ specified in Example 9.11, and extend ω to
Q by setting ω(−s) = ω(s) (s ∈ Q+•). Thus

ω(−n+ p/q) = n+ q (n ∈ N, p/q ∈ Q+• ∩ (0, 1)).

To show that ω is submultiplicative on Q, we must verify that

ω(s− t) ≤ ω(s)ω(t) (s, t ∈ Q+•). (9.1)

Certainly ω|Z is submultiplicative. Take s = m+ p/q and t = n+ u/v, as above. Then

ω(s− t) ≤ 1 + |m− n|+ qv ≤ 1 +m+ n+ qv

≤ (1 +m+ q)(1 + n+ v) = ω(s)ω(t).

Similarly (9.1) holds in the cases where s = m and t = n+ u/v and where s = m+ p/q

and t = n. Thus we have verified (9.1).
As before, Ω does not 0-cluster on Q+ × Q+, and hence, by Theorem 9.4, ω is not

Arens regular.
We already know that Ω 0-clusters on N × Q+. Again as before, take (xm) and (yn)

to be sequences of distinct elements of N and Q+, respectively. Then

Ω(xm,−yn) ≤ 1 + xm + ϕ(yn)
(1 + xm)(1 + ϕ(yn))

,

in the earlier notation, and so both repeated limits of (Ω(xm, yn) : m,n ∈ N) are 0. This
shows that Ω 0-clusters on N×Q, and hence that ω is not strongly Arens irregular.

We conclude that ω is a symmetric weight on Q that is neither Arens regular nor
strongly Arens irregular.

Example 9.13. For m,n ∈ N, set m ∧ n = min{m,n}. Then

N∧ = (N,∧)

is an abelian semigroup, as in [13, Example 3.36]. The semigroup N∧ is not weakly
cancellative.
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Let ω : N→ [1,∞) be any function. Then ω is a weight on N∧. Set Eω = c0(N, 1/ω),
as before. For m ∈ N and λ = (λn : n ∈ N) ∈ Eω, we have

lim sup
n→∞

(δ̃m · λ)(n)
ω(n)

= lim sup
n→∞

λm
ω(m)ω(n)

≤ lim sup
n→∞

‖λ‖ω
ω(n)

. (9.2)

Now suppose that ω(n)→∞ as n→∞. Then

δ̃m · λ ∈ Eω (m ∈ N).

Thus Eω is an Aω-submodule of A′ω, and so Aω is a dual Banach algebra.
Further, let (sm) and (tn) be two sequences of distinct elements of N, so that

lim
m→∞

sm = lim
n→∞

tn =∞.

For each fixed m ∈ N, we have

lim sup
n→∞

Ω(sm, tn) = lim sup
n→∞

1
ω(tn)

= 0,

and so Ω 0-clusters on N× N. By Theorem 9.4, Aω is Arens regular.
On the other hand, suppose that lim infn→∞ ω(n) < ∞. Then there exist C > 0

and an infinite subset T of N such that ω(n) < C (n ∈ T ). For each m ∈ N, set
Tm = {n ∈ T : n ≥ m}, a cofinite subset of T . Then

Ω(m,n) = 1/ω(n) ≥ 1/C (n ∈ Tm),

and so ω is weakly diagonally bounded on T . By Corollary 5.7, ω is strongly Arens
irregular on N.

The present example generalizes [13, Example 7.3.2].

The following example, giving a radical, Arens regular weight on Q+•, slightly extends
[10, Corollary 1]; a more explicit example of such a weight will be given in Example 9.17,
below.

Example 9.14. Let S be the semigroup ((Z+)<ω,+), as above. Set

ω(x) = 1 + x1 + 2x2 + · · ·+ kxk (x = (x1, x2, . . . , xk, 0, 0, . . . ) ∈ S).

Then it is immediately checked that ω is a weight on S and that ω(xm)→∞ as m→∞
for each sequence (xm) of distinct elements of S.

We have

Ω(x, y) =
ω(x) + ω(y)− 1

ω(x)ω(y)
(x, y ∈ S),

and so Ω 0-clusters on S × S. Thus ω is Arens regular on S.
The map

θ : (x1, x2, . . . , xk, 0, 0, . . . ) 7→
k∑
j=1

xj
j
, S → Q+•,

is a semigroup epimorphism. Clearly ω(x) ≥ 1 (x ∈ S), and so we obtain an induced
weight ω̃ which is Arens regular on Q+•, as in Example 4.21. Since ω̃ ≥ 1, the weight ω̃
is semisimple.
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Similarly, the map

θ : (x1, x2, . . . , xk, 0, 0, . . . ) 7→
k∑
j=1

x2j − x2j−1

j
, S → Q,

is a semigroup epimorphism, and so we obtain an Arens regular weight on the group Q.
By multiplying the above weight ω̃ on Q+• by the weight s 7→ exp(−s2), we obtain a

radical, Arens regular weight on Q+•.

Example 9.15. We give an example of a bounded, radical weight ω on Q+• such that ω
is neither Arens regular nor strongly Arens irregular.

Indeed, set ω(s) = 1/(m+ 1)! whenever m < s ≤ m+ 1 for some m ∈ Z+. To see that
ω is a weight on Q+•, let s, t ∈ Q+•, and take m,n ∈ Z+ such that m < s ≤ m+ 1 and
n < t ≤ n+ 1. Then m+ n < s+ t ≤ m+ n+ 2, and so

ω(s+ t) ≤ 1
(m+ n+ 1)!

≤ 1
(m+ 1)!

1
(n+ 1)!

= ω(s)ω(t),

as required.
For m,n ∈ N, set sm = 1/m and tn = 1/n. Then Ω(sm, tn) = 1 for m,n ≥ 2, and

so Ω does not 0-cluster on Q+• × Q+•; by Theorem 9.4, ω is not Arens regular. Since
Ω(m, t) ≤ 1/m (m ∈ N, t ∈ Q+•), it is immediate that Ω 0-clusters on N×Q+•, and so,
by Corollary 9.3, ω is not strongly Arens irregular.

Example 9.16. Let ω1(s) = exp(−s2) (s ∈ R+). Then ω1 is a continuous weight function
on R+. Let

ω2(p/q) = 1 + log q (p/q ∈ Q+•).

Then, as in Example 6.3, ω2 is a weight on Q+• with ω2 ≥ 1, and ω2 is diagonally
bounded on N, with dN = 1; by Corollary 5.7, ω2 is strongly Arens irregular. (Indeed,
by Theorem 5.6, there is a two-element subset V of N∗ω2

that is determining for the
topological centre of Aω2 .)

However, we claim that ω := ω1ω2 is not strongly Arens irregular on Q+•; cf. a remark
in Chapter 7. To see this, we apply the condition of Corollary 9.3, taking

X = {1 + 1/n : n ∈ N},

an infinite subset of Q+•.
Let (xm) and (yn) be two sequences of distinct elements of X and Q+•, respectively,

say xm = pm/qm (m ∈ N) and yn = rn/sn (n ∈ N). We have xm ≥ 1 (m ∈ N), and so

Ω(xm, yn) ≤ 1 + log qm + log sn
(1 + log qm)(1 + log sn)

exp(−2yn) ≤ exp(−2yn)

for each m,n ∈ N. Necessarily qm → ∞ as m → ∞. By passing to a subsequence, we
may suppose that (yn) either converges to a point of R+ or diverges to ∞.

First, suppose that limn→∞ yn =∞. Since Ω(xm, yn) ≤ exp(−2yn), certainly

lim
m→∞

lim
n→∞

Ω(xm, yn) = lim
n→∞

lim
m→∞

Ω(xm, yn) = 0.
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Second, suppose that limn→∞ yn < ∞. By passing to a further subsequence, we may
suppose that sn →∞ as n→∞, and so

lim sup
m→∞

lim sup
n→∞

Ω(xm, yn) ≤ lim sup
m→∞

1
1 + log qm

= 0.

Thus limm→∞ limn→∞ Ω(xm, yn) = 0. Similarly,

lim
n→∞

lim
m→∞

Ω(xm, yn) = 0.

It follows that Ω 0-clusters on X×Q+•, and so, by Corollary 9.3, ω is not strongly Arens
irregular, as claimed.

We also claim that the weight ω is not Arens regular on Q+•. To see this, we take
xm = 1/pm (m ∈ N), where (pm) is a strictly increasing sequence of prime numbers, and
let yn = n (n ∈ N). Then

Ω(xm, yn) = exp(−2n/pm) (m,n ∈ N),

and so

lim
m→∞

Ω(xm, yn) = 1 (n ∈ N) and lim
n→∞

Ω(xm, yn) = 0 (m ∈ N).

Thus both repeated limits of the double sequence (Ω(xm, yn) : m,n ∈ N) exist and they
are unequal, so that Ω does not 0-cluster on Q+•×Q+•. By Theorem 9.4, ω is not Arens
regular on Q+•.

In summary, the weight

ω : p/q 7→ (1 + log q) exp(−p2/q2), Q+• → R+•,

is a radical weight on Q+• that is neither Arens regular nor strongly Arens irregular.

We cannot see an example in which ω1 is a continuous weight function on R+, ω2 is
a strongly Arens irregular weight on Q+•, and ω1ω2 is Arens regular on Q+•.

Example 9.17. We now show that there are a continuous weight function ω1 on R+•

and a strongly Arens irregular weight ω2 on Q+• such that ω := ω1ω2 is Arens regular
on Q+•.

First, set
ω1(s) = exp(−s2 + 1/s) (s ∈ R+•),

as in Example 9.9, so that ω1 is a continuous weight function on R+•, and take

ω2 : p/q 7→ 1 + log q

to be as in Example 9.16, so that ω2 is a strongly Arens irregular weight on Q+•. Set
ω := ω1ω2; we must show that ω 0-clusters on Q+• ×Q+•.

Again, we take (xm) and (yn) to be two sequences of distinct elements of Q+•, say
xm = pm/qm (m ∈ N) and yn = rn/sn (n ∈ N), as above. For each m,n ∈ N, the number
Ω(xm, yn) is not greater than

1 + log qm + log sn
(1 + log qm)(1 + log sn)

exp
(
−2xmyn +

1
xm + yn

− 1
xm
− 1
yn

)
By passing to subsequences, we may suppose that both of (xm) and (yn) either converge
to a point of R+ or diverge to ∞.
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The argument of Example 9.16 shows that the function Ω 0-clusters on Q+• × Q+•

in the case where limm→∞ xm <∞, and so we may suppose that limm→∞ xm =∞. But
now

lim sup
m→∞

Ω(xm, yn) ≤ lim sup
m→∞

exp(−2xmyn) = 0

for each n ∈ N, and so limn→∞ limm→∞Ω(xm, yn) = 0. In the case where limn→∞ yn > 0,
it follows similarly that

lim
m→∞

lim
n→∞

Ω(xm, yn) = 0.

In the case where limn→∞ yn = 0, we have

lim sup
n→∞

Ω(xm, yn) ≤ lim sup
n→∞

exp
(

1
xm + yn

− 1
xm
− 1
yn

)
= 0,

and so limm→∞ limn→∞Ω(xm, yn) = 0.
Thus Ω 0-clusters on Q+• ×Q+•, and so ω is Arens regular.

We conclude this section by considering whether or not there can be an Arens regular
weight on the semigroup (R+•,+); this question was left open in the seminal paper of
Craw and Young [10]. Our partial answer is given by essentially the proof of Theorem 5.12.

Theorem 9.18. Let ω be a weight on R+• such that lim infs→0+ ω(s) > 0. Then ω is not
Arens regular.

Proof. By Proposition 4.14, (d)⇒(b), there exist c ∈ R+• and δ > 0 such that

inf{ω(s) : s ∈ (0, c)} ≥ δ.

For n ∈ N, set Rn = {t ∈ (0, c) : ω(t) ≤ n}. Since |(0, c)| = c, there exists n0 ∈ N such
that |Rn0 | = c; in particular, Rn0 is infinite, and so there exists a sequence (rn) of distinct
points in Rn0 . Clearly,

Ω(rm, rn) ≥ δ/n2
0 (m,n ∈ N).

This shows that Ω fails to 0-cluster on R+• × R+•, and so, by Theorem 9.4, ω is not
Arens regular.

Corollary 9.19. Let ω be a weight on R+• that is either measurable or semisimple.
Then ω is not Arens regular.

Proof. Suppose that ω is measurable. Then it follows from the theorem and Proposition
4.17 that ω is not Arens regular.

Suppose that ω is semisimple. Then it follows from Proposition 4.10 that there is
a weight ω̃ on R+• with ω̃ ≥ 1 such that ` 1(R+•, ω) is isometrically isomorphic to
` 1(R+•, ω̃). By the theorem, ω̃ is not Arens regular, and hence ω is not Arens regular.

We believe that it is true that no weight on R+• is Arens regular, but we cannot see
this yet.
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10. A weight on N

In this section we shall exhibit a radical weight on N that is neither Arens regular nor
strongly Arens irregular. We observe that no such example is given in [12]. A somewhat
related example is given in [4, Chapter 2] (see also [3]), but that example can be shown
to be Arens regular.

We proceed through some preliminary results and notation.
A base point in N is a number of the form 2k, where k ∈ Z+, together with numbers

of the form 2k + 2j , where k ∈ N and j ∈ Z+
k−1, so our initial base points are

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, . . . .

The special base points are

mk = 2k + 2k−1 (k ∈ N),

and we set X = {mk : k ∈ N}. We also fix an increasing sequence (αk : k ∈ Z+) in R+,
with α0 = 0. In fact, (αk : k ∈ Z+) is rapidly increasing, in that we require that α1 = 4
and that

αk+1 ≥ (22k+3 + 1)αk (k ∈ Z+). (10.1)

We note that αk ≥ 4k (k ∈ N). For convenience, we also set

βk = 2k+2αk ≥ αk + αk−1 (k ∈ N).

We define a function η at our base points by

η(2k) = αk (k ∈ Z+), η(2k + 2j) = αk + αj (k ∈ N, j ∈ Z+
k−1).

We then define (the graph of) η to be linear between (b1, η(b1)) and (b2, η(b2)) whenever
b1 and b2 are adjacent base points, save that we define η(t) for t ∈ (mk, 2k+1) by linear
interpolation between (mk, η(mk)) and (2k+1, βk). We also set η(t) = 0 (t ∈ I). Thus we
have defined η : R+ → R+. Clearly η is an increasing function on R+. Note that

αk+1 − βk ≥ (22k+3 − 2k+2)αk ≥ 23k+2 (k ∈ N), (10.2)

and so η has a ‘big jump’ from 2k+1 − 1 to 2k+1 for large k ∈ N.

Lemma 10.1. Let k ∈ N, and let s, t ∈ N with s+ t < 2k. Then

η(2k + s+ t)− η(2k + s)− η(t) ≥ max{η(s/4), η(t/4)} ≥ 0.

Proof. We set C = η(2k + s+ t)− η(2k + s)− η(t).
First, suppose that 2j1 + 2j2 ≤ s < 2j1 + 2j2+1 and that

2k1 + 2k2 ≤ t < 2k1 + 2k2+1,

where j2 < j1 < k and k2 < k1 < k. We also suppose that j1 ≥ k1, that s+ t− 2j1 < 2j1 ,
and that j1 < k − 1. Then

2k + s+ t ∈ (2k + 2j1 , 2k + 2j1+1),

where 2k + 2j1 and 2k + 2j1+1 are adjacent base points (and 2k + 2j1+1 6∈ {2n : n ∈ N}),
and so

η(2k + s+ t) = αk + αj1 +
s+ t− 2j1

2j1
(αj1+1 − αj1).
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Further, 2k + s ∈ (2k + 2j1 , 2k + 2j1+1), and so

η(2k + s) = αk + αj1 +
s− 2j1

2j1
(αj1+1 − αj1).

Finally, η(t) < βk1 ≤ 2j1+2αj1 . Thus

C ≥ t

2j1
(αj1+1 − αj1)− 2j1+2αj1 ≥

1
2j1
· 22j1+3αj1 − 2j1+2αj1 ≥ 2j1αj1

by (10.1), and so C ≥ η(s/2) in this case, noting that s < 2j1+1. It follows that we have
η(s/2) < η(2j1) = αj1 .

We continue to suppose that we are considering the case where

2j1 + 2j2 ≤ s < 2j1 + 2j2+1 and 2k1 + 2k2 ≤ t < 2k1 + 2k2+1,

where j2 < j1 < k and k2 < k1 < k, that j1 ≥ k1, and that s+ t− 2j1 < 2j1 , but we now
take j1 = k − 1. Then essentially the same estimates give

C ≥ t

2k−1
(βk − αk−1)− 2k+1αk−1 ≥

1
2k−1

(2k+2αk − αk−1)− 2k+1αk−1

≥ (22k+6 − 2k+1)αk−1 ≥ 2kαk−1 > η(s/2).

We continue to suppose that 2j1 +2j2 ≤ s < 2j1 +2j2+1 and 2k1 +2k2 ≤ t < 2k1 +2k2+1,
where j2 < j1 < k and k2 < k1 < k, and that j1 ≥ k1, but we now allow s+ t− 2j1 ≥ 2j1

(necessarily 2j2 + 2k1 + 2k2 ≤ 3 · 2j1). Then η(2k + s+ t) ≥ αk +αj1+1, and the estimates
for η(2k + s) and η(t) are unchanged, and so we see that

C ≥ αj1+1 − αj1 −
1
2

(αj1+1 − αj1)− 2j1+1αj1 ≥
1
2
αj1+1 − (2j1+1 + 1)αj1

≥ (22j1+2 − 2j1+1)αj1 ≥ 2j1αj1

by (10.1), and so again C ≥ η(s/2) in this case.
Finally, it may be that s has the form 2j1 or 2j1 + 1, where j1 < k, rather than

satisfy the inequalities 2j1 + 2j2 ≤ s < 2j1 + 2j2+1, and still j1 ≥ k1. In this case, we
carry through all the above estimates, replacing the term 2j2 by 0 to obtain the same
conclusions. Similarly, in the case where t has the form 2k1 or 2k1 + 1, where k1 < k, we
replace the term 2k2 by 0 in the above.

In all the above cases, we have C ≥ η(s/2) ≥ η(s/4). But t ≤ 2s (because j1 ≥ k1),
and so η(t/4) ≤ η(s/2) ≤ C. Thus the lemma holds in this case.

The formulae are not symmetric in s and t, but nevertheless essentially the same
estimates apply in the case where j1 ≤ k1 to imply the same conclusion.

Theorem 10.2. There is a radical weight on N that is neither Arens regular nor strongly
Arens irregular.

Proof. Let η be the function η : N→ R+ defined above.
We first verify that

η(s+ t) ≥ η(s) + η(t) (s, t ∈ N). (10.3)

The result is vacuously true when s + t = 1. Now assume inductively that (10.3) holds
whenever s, t ∈ N with s+t ≤ 2k−1, where k ∈ N, and suppose that 2k ≤ s+t ≤ 2k+1−1.
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We may suppose that s ≥ t. First, consider the case where s ≤ 2k − 1. Then

η(s+ t) ≥ η(2k) = αk ≥ 2k+2αk−1 + 1 > 2βk−1 ≥ 2η(2k − 1) ≥ η(s) + η(t).

Second, suppose that s ≥ 2k, say s = 2k + r, where r ∈ Z+
2k−1

. Then r + t < 2k, and so
Lemma 10.1 shows that

η(s+ t)− η(s)− η(t) = η(2k + r + t)− η(2k + r)− η(t) ≥ 0,

as required. Thus (10.3) is proved by induction on k.
We set ω = exp(−η), so that ω is a weight on N.
We have η(2k)/2k = αk/2k ≥ 2k, and so limn→∞ ω(n)1/n = 0. Thus ω is a radical

weight.
We claim that ω is not Arens regular. Indeed, take xm = ym = 2m for m ∈ N. Then

(xm) and (yn) are sequences of distinct elements of N with Ω(xm, yn) = 1 whenever
m,n ∈ N with m 6= n, and so Ω fails to 0-cluster on N × N. By Theorem 9.4, ω is not
Arens regular.

We next claim that Ω 0-clusters on X×N, and so, by Corollary 9.3, ω is not strongly
Arens irregular.

Take y, k ∈ N, and set

Cy,k = η(mk + y)− η(mk)− η(y) = η(2k + 2k−1 + y)− η(2k + 2k−1)− η(y).

First, fix y ∈ N, and consider lim infk→∞ Cy,k. We may suppose when calculating Cy,k
that y < 2k−1 and η(y) < αk−1, and so

Cy,k ≥
y

2k−1
(βk − αk − αk−1)− αk−1 ≥

βk − αk
2k

− 2αk−1 ≥ 7αk − 3αk−1 ≥ 4αk−1.

Thus limk→∞ Cy,k =∞.
Second, fix k ∈ N, and consider lim infy→∞ Cy,k. We may suppose that y = 2j + s,

where j > k + 2 and s ∈ N with s < 2j . Then Lemma 10.1 applies with j for k and with
t = mk in the case where s+mk < 2j to show that

Cy,k = η(2j + s+mk)− η(y)− η(mk) ≥ η(mk/4) ≥ η(2k−2) = αk−2.

In the case where s+mk ≥ 2j , we have

Cy,k ≥ αj+1 − βj − αk − αk−1 ≥ 4αj − αk − αk−1

by (10.2). It follows that, in each case, Cy,k ≥ αk−2. Thus

lim
k→∞

lim inf
y→∞

Cy,k =∞,

and so indeed Ω 0-clusters on X × N.

We should like to find a modification of the above weight ω to give a semisimple
weight on N that is neither Arens regular nor strongly Arens irregular. Unfortunately we
cannot see how to manufacture such a weight.
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11. A strange weight on Q+•

In this section, our main goal is to construct a weight ω on Q+• with lim infs→0+ ω(s) = 0.
In Proposition 4.14, we gave equivalent conditions for this property. We prove directly in
clause (i) that our weight ω is radical, but it follows from Corollary 4.16 that any weight
on Q+• satisfying clause (iii) must be radical.

An attempt to exhibit such a weight is given in [11, p. 159]. Unfortunately, the attempt
fails, and the construction indicated is not correct; we apologise for this.

A Banach algebra (A, ‖ · ‖) is uniformly radical (see [11, Definition 2.3.11]) if

lim
n→∞

sup{‖an‖1/n : a ∈ A[1]} = 0;

a weight ω on a semigroup S is uniformly radical if the Banach algebra ` 1(S, ω) is
uniformly radical.

Theorem 11.1. There exists a weight ω on Q+• with the following properties:

(i) ω is radical, but not uniformly radical;
(ii) lim sups→0+ ω(s) =∞;
(iii) lim infs→0+ ω(s) = 0;
(iv) inf{ω(s) : s ∈ Q+• ∩ (a, b)} = 0 for each a, b with 0 < a < b;
(v) sup{ω(s) : s ∈ Q+• ∩ (a, b)} =∞ for each a, b with 0 < a < b;

(vi) the only compact element in ` 1(Q+•, ω) is 0;
(vii) ω is strongly Arens irregular.

The proof of this theorem will be given in several steps, in which we maintain the same
notation. We shall obtain various other properties of ω en route to the main theorem.

First, we define our weight ω. To attain our main aim of (iii), it is sufficient to exhibit
a mapping η : Q+• → R such that

η(s+ t) ≤ η(s) + η(t) (s, t ∈ Q+•)

and
lim inf
s→0+

η(s) = −∞,

for we then set ω = exp η. In this case, clause (iv) of Theorem 11.1 will follow from
Proposition 4.14 and clause (v) will follow from Corollary 4.15.

Choose a strictly increasing sequence (qj) of prime numbers with q1 ≥ 3 such that

qj/qj+1 ↘ 0 as j →∞ and qj+1 > (j + 1)qj (j ∈ N).

Of course, qn > n (n ∈ N).
As before, set S = (Z+)<ω; we again suppose that, in the representation of

α = (α1, . . . , αm) =
m∑
j=1

αjδj ∈ S,

we have αm ≥ 1 (unless α = 0).
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Given two elements α = (α1, . . . , αm) ∈ S and β = (β1, . . . , βn) ∈ S, we set

N(α, β) =
m∑
i=1

αiei −
n∑
j=1

jβj

(thus defining m and n when α and β are non-zero), and

θ(α, β) =
m∑
i=1

αi
i

+
n∑
j=1

βj
qj
qj+1

.

We note that, for each x = a/b ∈ Q+•, there exist α, β ∈ S such that θ(α, β) = x. Indeed,
we can take α = aδb and β = 0.

As a preliminary remark, we note that the function ϕ : t 7→ et− t2 on R has derivative

ϕ′(t) = et − 2t ≥ 1− t+
t2

2
=

1
2

((t− 1)2 + 1) ≥ 1
2
,

and so ϕ is increasing on R. In particular, et − t2 ≥ 1 for t ≥ 0. Also

ϕ(s) ≥ ϕ(2t) ≥ et (s ≥ 2t, t ≥ 1) (11.1)

because ϕ(2) > 0 and every derivative of the function t 7→ e2t − 4t2 − et at t = 1 is
positive.

Lemma 11.2. Let x ∈ Q+• and take α, β ∈ S with θ(α, β) = x = a/b, where a, b ∈ N and
(a, b) = 1, and set r = [x].

(i) Suppose that 1 ≤ n ≤ x. Then

N(α, β) ≥ −x2qr+1/qr.

(ii) Suppose that qn > x. Then

βn ≤
n∑
j=1

βj < qn+1.

(iii) Suppose that n ≥ 1 and b ≥ qn+1. Then

N(α, β) ≥ −
n∑
j=1

jβj ≥ −a
a∑
j=1

j.

(iv) Suppose that n ≥ x and qn+1 - b. Then

N(α, β) ≥ exp(qn+1)− q2
n+1 ≥ 1.

(v) Suppose that k ∈ N, that qk+1 is the largest prime factor of b, and that x ≤ n < k.
Then N(α, β) ≥ 1.

Proof. (i) We have

x = θ(α, β) ≥
n∑
j=1

βj
qj
qj+1

≥
( n∑
j=1

βj

) qn
qn+1

≥
( n∑
j=1

βj

) qr
qr+1

because r ≥ n ≥ 1, and so

N(α, β) ≥ −
n∑
j=1

jβj ≥ −r
n∑
j=1

βj ≥ −
xrqr+1

qr
≥ −x

2qr+1

qr
.
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(ii) Assume that
∑n
j=1 βj ≥ qn+1. Then

x ≥
n∑
j=1

βj
qj
qj+1

≥
( n∑
j=1

βj

) qn
qn+1

≥ qn,

a contradiction. Hence the result holds.
(iii) For each j ∈ Nn, we have

a

b
≥ βj

qj
qj+1

≥ βj
qn
qn+1

.

But b ≥ qn+1, and so a ≥ βjqn ≥ βj . In particular, a ≥ βnqn ≥ qn > n. Hence

N(α, β) ≥ −
n∑
j=1

jβj ≥ −a
n∑
j=1

j ≥ −a
a∑
j=1

j.

(iv) First assume that α = 0 or that α 6= 0 and m < qn+1. Then we multiply both
sides of the equation θ(α, β) = a/b by b · qn+1! and rearrange to see that

a · qn+1!− b
m∑
i=1

αi
qn+1!
i
− b

n−1∑
j=1

βjqj
qn+1!
qj+1

= βnbqn(qn+1 − 1)!.

The left-hand side of this equation is a multiple of qn+1. However, qn+1 is certainly not
a factor of qn(qn+1 − 1)!, qn+1 is not a factor of b by hypothesis, and qn+1 > βn by (ii).
Thus the right-hand side of this equation is not a multiple of qn+1, a contradiction. Hence
m ≥ qn+1 (and αm ≥ 1).

As above, we have
n∑
j=1

βj ≤
xqn+1

qn
.

Since x ≤ n and n < qn < qn+1, we have
n∑
j=1

jβj ≤ n
n∑
j=1

βj ≤
nxqn+1

qn
≤ q2

n+1.

Therefore
N(α, β) ≥ αmem − q2

n+1 ≥ exp(qn+1)− q2
n+1 ≥ 1

by the preliminary remark.
(v) First, assume that α = 0 or that α 6= 0 and m ≤ qk+1 − 1. Then

(qk+1 − 1)! · θ(α, β) =
m∑
i=1

αi
i

(qk+1 − 1)! +
n∑
j=1

βj
qj
qj+1

(qk+1 − 1)!

is an integer, but (qk+1 − 1)! · a/b is not an integer because qk+1 is not a factor of
a · (qk+1 − 1)!, a contradiction of the fact that θ(α, β) = a/b. Hence m ≥ qk+1. By (ii),∑n
j=1 βj < qn+1, and so

n∑
j=1

jβj < nqn+1 < q2
k.

Thus N(α, β) ≥ exp(qk+1)− q2
k ≥ exp(qk+1)− q2

k+1 ≥ 1, as required.
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Corollary 11.3. For each x ∈ Q+•, there exists f(x) ∈ R such that N(α, β) ≥ f(x)
whenever θ(α, β) = x.

Proof. If β = 0, then N(α, β) ≥ 0, and so we may suppose that β 6= 0, and hence that
n ≥ 1. If x ≥ n, then N(α, β) ≥ −x2qr+1/qr by (i). If x ≤ n, then N(α, β) ≥ −a

∑a
j=1 j

by (iii) and (iv).

Definition 11.4. For each x ∈ Q+•, set

η(x) = inf{N(α, β) : θ(α, β) = x}.

The above corollary shows that η(x) ∈ R for each x ∈ Q+•. It is immediate that η is
subadditive on Q+•, and so ω = exp η is a weight on Q+•.

Lemma 11.5. The weight ω is radical.

Proof. Let k ∈ N. Take α = 0 and β = qk+1δk ∈ S. Then θ(α, β) = qk, and so we have
η(qk) ≤ N(α, β) = −kqk+1. Thus

ω(qk)1/qk ≤ exp(−kqk+1/qk) < exp(−k),

and so νω = 0. By Proposition 4.12(ii), ω is radical.

Lemma 11.6. Let k ∈ N.

(i) η(1/k) = ek, and so lim sups→0+ ω(s) =∞.
(ii) η(qk/qk+1) = −k, and so lim infs→0+ ω(s) = 0.

Proof. (i) Certainly η(1/k) ≤ ek; we must show that η(1/k) ≥ ek.
Take α, β ∈ S with θ(α, β) = 1/k. If β = 0, then α 6= 0 and m ≥ k, so that

N(α, β) ≥ em ≥ ek.

Thus we may suppose that n ≥ 1 ≥ 1/k. We have
1
k
≥ βn

qn
qn+1

≥ 2
qn+1

,

and so 2k ≤ qn+1. By Lemma 11.2(iv) (with a = 1 and b = k) and (11.1), we have

N(α, β) ≥ exp(qn+1)− q2
n+1 ≥ ek

by a preliminary remark, as required.
(ii) Certainly η(qk/qk+1) ≤ −k, which already implies that

lim inf
s→0+

ω(s) = 0.

We shall show that η(qk/qk+1) ≥ −k.
Take α, β ∈ S with θ(α, β) = qk/qk+1. If β = 0, then clearly N(α, β) ≥ 0 > −k,

and so we may suppose that n ≥ 1. Since (qj/qj+1) is a strictly decreasing sequence,
necessarily n ≥ k and β1 = · · · = βk−1 = 0 (in the case where k ≥ 2). If n = k, then
α = 0 and βk = 1, and so N(α, β) = −k. If n > k, then n > qk/qk+1 and qn+1 - qk+1,
and so, by Lemma 11.2(iv), N(α, β) ≥ 1. Thus η(qk/qk+1) ≥ −k, as required.

We denote by Q the set of elements in Q+• of the form qk/qk+1 for some k ∈ N, where
(qk) is our specified sequence.
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Lemma 11.7.

(i) Let s, t ∈ Q. Then ω(s+ t) = ω(s)ω(t).
(ii) Let s1, . . . , sn ∈ Q with s1 + · · ·+ sn < 1. Then

ω(s1 + · · ·+ sn) = ω(s1) · · ·ω(sn).

Proof. (i) We may suppose that s = qk/qk+1 and t = q`/q`+1 for some k, ` ∈ N with
k ≤ `, so that η(s) + η(t) = −k − `. We must show that η(s+ t) ≥ −k − `.

Choose α, β ∈ S with

θ(α, β) = s+ t =
qk
qk+1

+
q`
q`+1

=
a

b
,

where a = qkq`+1 + q`qk+1 and b = qk+1q`+1 with (a, b) = 1 because qk+1 ≥ 3.
First, suppose that β = 0. Then N(α, β) ≥ 0 ≥ −k − `.
Second, suppose that β 6= 0. Then n ≥ 1 > s + t because we have s, t ∈ (0, 1/2). If

qn+1 - qk+1q`+1, then N(α, β) ≥ 0 by Lemma 11.2(iv), and so certainly N(α, β) ≥ −k−`.
If qn+1 | qk+1q`+1, then either n = k or n = `. Suppose that n = k. Then

m∑
i=1

αi
i

+
k−1∑
j=1

βj
qj
qj+1

+ (βk − 1)
qk
qk+1

=
q`
q`+1

,

and so N(α, β) + k ≥ −`, whence N(α, β) ≥ −k − `. A similar argument applies in the
case where n = `.

(ii) This proceeds by induction on n ∈ N. The case where n = 2 is proved in (i), and
the inductive step is essentially the same.

The following result will be strengthened later.

Corollary 11.8. The weight ω is not Arens regular.

Proof. Take xm = ym = qm/qm+1 (m ∈ N). Then

Ω(xm, yn) = 1 (m,n ∈ N)

by Lemma 11.7(i), and so Ω does not 0-cluster on Q+• ×Q+•.

Corollary 11.9. The weight ω is not uniformly radical.

Proof. For n ∈ N, choose k ∈ N with nqk/qk+1 < 1; such a k exists because qj/qj+1 ↘ 0
as j → ∞. Set a = δs/ω(s), where s = qk/qk+1, so that a ∈ (Aω)[1]. Then clearly
‖an‖ω = ω(ns)/ω(s)n, and so, by Lemma 11.7(ii), ‖an‖ω = 1. It follows that Aω is not
uniformly radical.

Lemma 11.10. The only compact element in ` 1(Q+•, ω) is 0.

Proof. By Proposition 4.19(ii), we must show that no element δs for s ∈ Q+• is compact.
Since δs2 is compact whenever δs1 is compact and s2 ≥ s1 in Q+•, it suffices to show that
δs is not compact whenever s = q` for some ` ∈ N.

Fix such an element s. By Proposition 4.19(i), we must show that there exists M > 0
such that

{t ∈ Q+• : η(t)− η(s+ t) ≤M}
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is infinite. In fact, we shall take M = (s+ 1)2qs+1/qs, and show that

η(t)− η(s+ t) = η(qk/qk+1)− η(q` + qk/qk+1) ≤M (t ∈ Q)

for each k ∈ N. By Lemma 11.6(ii), η(qk/qk+1) = −k (k ∈ N), and so we must show that
η(q` + qk/qk+1) ≥ −M − k (k ∈ N).

Let k ∈ N, and suppose that θ(α, β) = q` + qk/qk+1, where, again,

θ(α, β) =
m∑
i=1

αi
i

+
n∑
j=1

βj
qj
qj+1

.

If β = 0, then N(α, β) ≥ 0. If 1 ≤ n ≤ s+ t, then

N(α, β) ≥ −(s+ t)2qs+1/qs

by Lemma 11.2(i), and so N(α, β) ≥ −M . If n ≥ s+ t and qn+1 - qk+1, then N(α, β) ≥ 1
by Lemma 11.2(iv). Finally, suppose that n ≥ s + t and qn+1 | qk+1. Then necessarily
n = k and s = θ(α, β−δk). By Lemma 11.2(iv), 1 ≤ N(α, β−δk), and so N(α, β) ≥ 1−k.
Thus, in each case, N(α, β) ≥ −M − k, and so η(q` + qk/qk+1) ≥ −M − k, as required.

Lemma 11.11. The weight ω is weakly diagonally bounded, with bound cQ = 1, on the
infinite subset Q of Q+•.

Proof. It is sufficient to show that, for each s ∈ Q+•, there exists ks ∈ N such that

η(s+ qk/qk+1) + k = η(s) (k ≥ ks), (11.2)

where we recall that η(qk/qk+1) = −k (k ∈ N) by Lemma 11.6(ii).
In fact, set s = a/b, and choose ks ∈ N such that

ks ≥ (s+ 1)2qr+1/qr + η(s) + b,

where r = [s + 1] ∈ N. We fix k ≥ ks, and set x = s + qk/qk+1; the denominator
of x is bqk+1. We note that 0 ≥ η(s) − k, and also that [x] ≤ [s + 1] = r, so that
q[x]+1/q[x] ≤ qr+1/qr.

Take α, β ∈ S with θ(α, β) = x: we shall show that

N(α, β) ≥ η(s)− k.

If β = 0, then N(α, β) ≥ 0.
If β 6= 0 and 1 ≤ n ≤ x, then N(α, β) ≥ −x2q[x]+1/q[x] by Lemma 11.2(i), and so

N(α, β) ≥ −(s+ 1)2qr+1/qr ≥ η(s)− k.

If n ≥ x and qn+1 - bqk+1, then N(α, β) ≥ 1 by Lemma 11.2(iv).
If n ≥ x and qn+1 | bqk+1, then either qn+1 | b and n < k or n = k, noting that

we have qk+1 > k + 1 > b. In the case where n < k, certainly qk+1 is the largest prime
factor of bqk+1, and so N(α, β) ≥ 1 by Lemma 11.2(v). In the case where n = k, we have
βθ(α, β − δk) = x− qk/qk+1 = s, and so

η(s) ≤ N(α, β − δk) = N(α, β) + k.

Thus N(α, β) ≥ η(s)− k.
We have verified the required inequality in each case.
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Corollary 11.12. The weight ω is strongly Arens irregular.

Proof. This now follows from the above lemma by using Corollary 5.7.

Proof of Theorem 11.1. This is contained within the union of the above results.

12. Open questions

We believe that the following questions are open.

1. Let ω be a weight on an infinite, countable, cancellative semigroup S such as Q or
Q+•. Suppose that ω is weakly diagonally bounded on an infinite subset of S. Is
there an equivalent weight ω̃ to ω on S such that ω̃ is weakly diagonally bounded
on an infinite subset T of S, with bound cT < 2, or even cT = 1?

2. Let G be a group, and let ω be a weight on G. Is the Banach algebra ` 1(G,ω)
always semisimple?

3. Let ω be a weight on Z such that

lim inf
n→∞

ω(n) <∞ and lim inf
n→∞

ω(−n) <∞.

Is ` 1(Z, ω) necessarily strongly Arens irregular?
4. Let ω be a weight on S = Q or S = Q+•. Suppose that there is a finite subset V

of S∗ω such that V is determining for the topological centre of ` 1(S, ω). Is there a
subset W of S∗ω such that |W | = 2 and W is determining for the topological centre
of ` 1(S, ω)?

5. Is the constraint ‘cW < 2’ in Theorem 7.1 necessary?
6. Is there an example such that ω1 is a continuous weight function on R+, ω2 is a

strongly Arens irregular weight on Q+•, and ω1ω2 is Arens regular on Q+•?
7. Is there a semisimple weight on N that is neither Arens regular nor strongly Arens

irregular?
8. Is there an Arens regular weight on R+•? Such a weight must be radical and

non-measurable.

13. Summary

We conclude with a summary of the examples that we have found. Usually, references are
to examples in the present memoir, but there are some references to the memoir [12]. The
word ‘neither’ means ‘neither Arens regular nor strongly Arens irregular’. All semigroups
are subsemigroups of (R,+). Recall that each weight on each of the semigroups N, Q+•,
and R+• is either radical or semisimple, and that each weight on each of the groups Z,
Q, and R is semisimple.
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S is ω is ω is Examples

Arens regular Example 9.8

N radical strongly Arens irregular Example 6.5

neither Theorem 10.2

Arens regular Example 9.9

N semisimple strongly Arens irregular ` 1(N), Example 9.9,

neither Not known

Example 9.9

Arens regular [12, Examples 9.1, 9.13]

[12, Example 9.14]

Z semisimple strongly Arens irregular Examples 6.2, 9.9

[12, Example 9.6]

neither [12, Examples 9.7, 9.8]

[12, Examples 9.15, 9.16]

Arens regular Examples 9.14, 9.17

Q+• radical strongly Arens irregular Examples 6.1, 7.3

Theorem 11.1

neither Examples 9.10, 9.15, 9.16

Arens regular Example 9.14

Q+• semisimple strongly Arens irregular ` 1(Q+•), Examples 6.3, 6.4

neither Examples 9.10, 9.11

Arens regular Example 9.14

Q semisimple strongly Arens irregular ` 1(Q), Examples 6.3, 6.4

neither Example 9.12

Arens regular Not known

R+• radical strongly Arens irregular Example 8.2

neither Example 9.10

Arens regular Not possible,

by Corollary 9.19

R+• semisimple strongly Arens irregular ` 1(R+•)

neither Example 9.10

R semisimple strongly Arens irregular Always, by Corollary 5.13
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