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Abstract

In recent years, there have been several studies of various ‘approximate’ versions of the key
notion of amenability, which is defined for all Banach algebras; these studies began with work of
Ghahramani and Loy in 2004. The present memoir continues such work: we shall define various
notions of approximate amenability, and we shall discuss and extend the known background,
which considers the relationships between different versions of approximate amenability. There
are a number of open questions on these relationships; these will be considered.

In Chapter 1, we shall give all the relevant definitions and a number of basic results, partly
surveying existing work; we shall concentrate on the case of Banach function algebras. In Chapter
2, we shall discuss these properties for the semigroup algebra ` 1(S) of a semigroup S. In the
case where S has only finitely many idempotents, ` 1(S) is approximately amenable if and only
if it is amenable.

In Chapter 3, we shall consider the class of weighted semigroup algebras of the form ` 1(N∧, ω),
where ω : Z → [1,∞) is an arbitrary function. We shall determine necessary and sufficient
conditions on ω for these Banach sequence algebras to have each of the various approximate
amenability properties that interest us. In this way we shall illuminate the implications between
these properties.

In Chapter 4, we shall discuss Segal algebras on T and on R. It is a conjecture that every
proper Segal algebra on T fails to be approximately amenable; we shall establish this conjecture
for a wide class of Segal algebras.
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1. Preliminaries

1.1. Background. In this memoir, we shall be concerned with Banach algebras and
derivations into bimodules over these algebras. In this first section, we shall recall some
basic properties of Banach algebras to which we shall refer. For full details, see [11].

Let A be an algebra, always over the complex field, C. The algebra formed by adjoining
an identity to A (even when A already has an identity) is denoted by A]. A character
on A is a non-zero homomorphism from A to C; the collection of characters on A will
be denoted by ΦA, and called the character space of A. An algebra A factors if every
element of A is the product of two other elements, and A factors weakly if A = A2, that
is to say, every element of A is a finite sum of products. Of course, A factors whenever
A has a (one-sided) identity.

Let E and F be Banach spaces. Then we denote by B(E,F ) the Banach space of all
bounded linear maps from E to F . We write B(E) for B(E,E), so that B(E) is a unital
Banach algebra with product the composition of operators. The dual of a Banach space
E is denoted by E′, and the duality is expressed by

(x, λ) 7→ 〈x, λ〉, E × E′ → C.

For T ∈ B(E,F ), the dual T ′ of T is defined by

〈x, T ′λ〉 = 〈Tx, λ〉 (x ∈ E, λ ∈ F ′),

so that T ′ ∈ B(F ′, E′). For a subset S of a Banach space E, the annihilator of S is

S◦ = {λ ∈ E′ : λ|S = 0}.

A closed subspace S of E is weakly complemented in E if S ◦ is a complemented subspace
in E′. The projective tensor product of E with itself is denoted by E ⊗̂E; the projective
norm is

‖a‖ := inf
{ ∞∑
i=1

‖bi‖ ‖ci‖ : a =
∞∑
i=1

bi ⊗ ci
}

(a ∈ E ⊗̂E).

Now let A be an algebra and X an A-bimodule. A derivation from A into X is a
linear map D : A→ X such that

D(ab) = a ·Db+Da · b (a, b ∈ A).

Derivations of the form
a 7→ a · x− x · a, A→ X,

for some x ∈ X are inner derivations. In this case, we say that x implements the inner
derivation. Let ϕ ∈ ΦA. Then a point derivation at ϕ is a linear functional d : A → C

[5]



6 H. G. Dales and R. J. Loy

such that
d(ab) = ϕ(a)d(b) + ϕ(b)d(a) (a, b ∈ A);

that is, a derivation d : A→ C, where C has the A-bimodule actions

a · z = z · a = ϕ(a)z (a ∈ A, z ∈ C).

Let A be a Banach algebra. Then A] is also a Banach algebra in a standard way which
gives the adjoined identity norm one. There is a continuous product map π : A ⊗̂A→ A,
so that π is the continuous linear operator satisfying the constraint that

π(a⊗ b) = ab (a, b ∈ A).

A Banach space X which is an A-bimodule is a Banach A-bimodule if the module oper-
ations are continuous; in fact, we shall suppose that

max{‖a · x‖, ‖x · a‖} ≤ ‖a‖ ‖x‖ (a ∈ A, x ∈ X).

For X a Banach A-bimodule, X ′ is also a Banach A-bimodule for module maps defined
by

〈x, λ · a〉 = 〈a · x, λ〉, 〈x, a · λ〉 = 〈x · a, λ〉 (a ∈ A, x ∈ X, λ ∈ X ′).

The Banach algebra A is a dual Banach algebra if there is a ‖·‖-closed submodule X of
A′ such that X ′ = A as a Banach space; this is equivalent to the requirement that X be a
Banach space with X ′ = A and that the product in A be separately σ(A,X)-continuous.

A [bounded ] left approximate identity for A is a [bounded] net (uα) such that
‖a − uαa‖ → 0 for each a ∈ A; similarly for right and two-sided approximate identi-
ties. By Cohen’s factorization theorem [11, Theorem 2.9.24], A factors whenever it has a
bounded left or right approximate identity. From a pointwise perspective, A has bounded
approximate units if there is a constant K > 0 such that, for each a ∈ A and ε > 0, there
is u ∈ A such that ‖u‖ ≤ K and ‖a− au‖+ ‖a−ua‖ < ε. It is standard that this implies
that A has a bounded approximate identity [11, §2.9].

Let G be a locally compact group. We shall have occasion to refer to the group algebra
L 1(G) of G. This is the Banach space{

f : G→ C, f measurable : ‖f‖ :=
∫
G

|f(t)|dµ(t) <∞
}
,

where µ denotes left Haar measure on G and we equate functions that are equal almost
everywhere with respect to µ; the product on L 1(G) is defined by

(f ? g)(t) =
∫
G

f(s)g(s−1t) dµ(s) (t ∈ G, f, g ∈ L 1(G)),

and now (L 1(G), ?, ‖ · ‖) is a Banach algebra. In the case where G is discrete, we write
` 1(G) for L 1(G). For details, see [11, §3.3], for example.

On purely notational matters, we write N = {1, 2, . . .}, Z+ = {0, 1, 2, . . .}, and we
set Nk = {1, 2, . . . , k} (k ∈ N). For an algebra A, we write Mn(A) for the algebra of
n × n-matrices over A, so that Mn(A) = Mn ⊗ A. Let A be a Banach algebra. When
normed as the algebra of operators on the n-fold Cartesian product (A])(n), the algebra
Mn(A) is a Banach algebra. We denote the cardinality of a set S by |S|.
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1.2. Amenability for Banach algebras. The notion of amenability for Banach alge-
bras was introduced by Johnson in 1972 [41], and has been extremely fruitful; after 35
years the consequences continue to be actively studied. There is an extended discussion
of this topic in [11, §2.8]. About the same time as Johnson’s work appeared, Helemskii
and his school in Moscow independently developed the theory of ‘topological homology’
which gave a more categorical approach to many of the same ideas [38].

Let A be a Banach algebra, and let X be a Banach A-bimodule. The space of contin-
uous derivations from A to X is denoted by Z1(A,X), and the space of inner derivations
from A to X by N 1(A,X); the first (continuous) cohomology group of A with coefficients
in X is defined to be the quotient space

H1(A,X) := Z1(A,X)/N 1(A,X).

We shall see below that A is amenable if and only if H1(A,X ′) = {0} for each Banach
A-bimodule X, and that A is contractible if and only if H1(A,X) = {0} for each Ba-
nach A-bimodule X. It is a famous conjecture that every contractible Banach algebra is
finite-dimensional. This is true for commutative Banach algebras and for C∗-algebras; see
[63] for a fuller discussion. The class of amenable Banach algebras is a far richer study
than that of contractible Banach algebras. For example, the determination of which C∗-
algebras are amenable, namely the nuclear ones, has been a major strand of operator
theory in recent decades; see [11, 64].

One of the most famous results is the following theorem [41]; see also [11, Theorem
5.6.42]. It is the origin of the term ‘amenable’ for Banach algebras.

Theorem 1.2.1 (Johnson). Let G be a locally compact group. Then the group algebra
(L 1(G), ?) is an amenable Banach algebra if and only if G is amenable as a locally
compact group.

Let S be a semigroup with semigroup algebra ` 1(S); see Chapter 2 below for more de-
tails of this algebra. The characterization of the semigroups S such that ` 1(S) is amenable
as a Banach algebra is somewhat complicated; such a characterization is given in [13].

Let E be a Banach space. It is a deep and interesting question to determine when
the algebra B(E) of all bounded linear operators on E is amenable. The intuition is that
when E is infinite-dimensional then B(E) is ‘too big’ to be amenable, but this intuition
has recently proved to be false. Let K(E) denote the closed ideal of compact operators in
B(E). A recent paper of Argyros and Haydon [1] produces an infinite-dimensional Banach
space E such that every operator on E has the form ζIE + T , where ζ ∈ C and T is a
compact operator. Thus K(E) has codimension 1 in B(E). This solves the famous ‘scalar-
plus-compact’ problem. It follows from [37] that K(E) is an amenable Banach algebra,
and so B(E) is also amenable. This is the first known example of an infinite-dimensional
Banach space E such that B(E) is amenable.

Consider the case where E is the standard sequence space ` p, where p ≥ 1. In the
case where p = 2, ` 2 is a Hilbert space, and it was shown, effectively by Wassermann
[68], that the C∗-algebra B(H) is amenable only if dim(H) <∞. A completely different
proof that B(` 1) is not amenable was given by Read [58], and a synthesis of these two
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results was given by Ozawa [55]. Finally, building on results in [16], Runde has recently
shown that B(` p) is never amenable for 1 ≤ p ≤ ∞ [65].

An apparently easier question is to determine the amenability of K(E). There are
infinite-dimensional spaces E where the result is known: for example K(` 2) is amenable,
but K(` r ⊕ ` s) is not amenable whenever r, s ∈ (1, 2) ∪ (2,∞) are distinct [37]. Since
amenable algebras have a bounded approximate identity, this question is related to ap-
proximation properties for E and E′ [37]. Nevertheless we still await a full characterization
of the Banach spaces E such that K(E) is amenable.

The related notion of weak amenability was introduced in [3] for commutative al-
gebras, and more generally in [43]. Indeed, by definition, a Banach algebra is weakly
amenable if H1(A,A′) = {0}. For a locally compact group G, the group algebra L 1(G)
is always weakly amenable [11, Theorem 5.6.48], and C∗-algebras are always weakly
amenable [11, Theorem 5.6.77]. The Banach function algebra lipα(T) is not amenable for
0 < α < 1, but it is weakly amenable for 0 < α ≤ 1/2 [3, Theorem 5.6.14].

For the sake of later comparisons, we recall the following properties of amenable
Banach algebras; see [11, §§2.8, 2.9] for the proofs of the statements.

Theorem 1.2.2. Let A be a Banach algebra, and let I be a closed ideal of A.

(i) Suppose that A is amenable. Then A has a bounded approximate identity, and so
A = A2.

(ii) Suppose that A is amenable. Then A/I is amenable.
(iii) Suppose that A is amenable and that I has a bounded approximate identity. Then I

is amenable.
(iv) Suppose that A is amenable and that I is weakly complemented. Then I has a bounded

approximate identity (and so is amenable).
(v) Suppose that I and A/I are amenable. Then A is amenable.

Definition 1.2.3. An approximate diagonal for A is a net (mα) in A ⊗̂A such that, for
each a ∈ A,

‖a ·mα −mα · a‖ → 0 and ‖π(mα)a− a‖ → 0.

A bounded approximate diagonal for A is a bounded net in A ⊗̂A with the above prop-
erties.

One of the most useful characterizations of amenability is the following result from [42];
see also [11, Theorem 2.9.65]. Indeed, essentially all results that determine whether or
not Banach algebras in a particular class are amenable rely on this characterization.

Theorem 1.2.4. A Banach algebra A is amenable if and only if it possesses a bounded
approximate diagonal.

There are two constants that are associated with an amenable Banach algebra that
are relevant for us.

Definition 1.2.5. Let A be a Banach algebra.

(i) For A amenable, the amenability constant of A is the infimum of the numbers C ≥ 1
such that A has an approximate diagonal bounded by C.
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(ii) For a Banach A-bimodule X and an inner derivation D : A→ X, the implementation
constant of D is the infimum of the norms of the elements x ∈ E such that x
implements the derivation.

For calculations involving the amenability constant of some semigroup algebras, see
[13] and [29].

For each k ∈ N, there is a Banach algebra A, a Banach A-bimodule X, an inner
derivation D : A → X ′, and a ∈ A with ‖a‖ = 1 such that ‖ζ‖ is at least k whenever
ζ ∈ X ′ and D(a) = a · ζ − ζ · a. The existence of such A,X,D and a follows from the
construction in Example 1.5.5 below; certainly the implementation constant of such a
derivation D is at least k.

1.3. Basic definitions. We shall be concerned with several variants of the above notion
of amenability. It is known that amenable Banach algebras have rather special proper-
ties. With this in mind, the authors of [25] introduced several wider classes of Banach
algebras by generalizing the notion of amenability to allow for ‘approximate versions’. In
this memoir we shall continue the investigation of these approximate notions of amenabil-
ity, in particular by considering when various Banach function algebras connected with
harmonic analysis have these properties.

We begin by recalling two standard definitions and by defining several variants, and
then we shall give some of the basic consequences of our definitions. Further results in
this area are given in the recent paper [9], which in particular contains interesting results
on bounded approximate contractibility, together with several illuminating examples.

Definition 1.3.1. Let A be a Banach algebra. Then:

(i) A is amenable if, for each Banach A-bimodule X, every continuous derivation
D : A→ X ′ is inner;

(ii) A is contractible if, for each Banach A-bimodule X, every continuous derivation
D : A→ X is inner;

(iii) A is weakly amenable if every continuous derivation D : A→ A′ is inner;
(iv) a continuous derivation D : A → X from A into a Banach A-bimodule X is

approximately inner if there exists a net (ξν) in X such that

D(a) = lim
ν

(a · ξν − ξν · a) (a ∈ A);

(v) A is approximately amenable if, for each Banach A-bimodule X, every continuous
derivation D : A→ X ′ is approximately inner;

(vi) A is approximately contractible if, for each Banach A-bimodule X, every continuous
derivation D : A→ X is approximately inner;

(vii) A is approximately weakly amenable if every continuous derivation D : A → A′ is
approximately inner;

(viii) A is boundedly approximately amenable if, for each Banach A-bimodule X and each
continuous derivation D : A → X ′, there exist K > 0 and a net (ξν) in X ′ such
that ‖b · ξν − ξν · b‖ ≤ K‖b‖ for each b ∈ A and each ν, and such that

D(a) = lim
ν

(a · ξν − ξν · a) (a ∈ A);
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(ix) A is boundedly approximately contractible if, for each Banach A-bimodule X and
each continuous derivation D : A→ X, there exist K > 0 and a net (ξν) in X such
that ‖b · ξν − ξν · b‖ ≤ K‖b‖ for each b ∈ A and each ν, and such that

D(a) = lim
ν

(a · ξν − ξν · a) (a ∈ A);

(x) A is pseudo-amenable if it possesses a (possibly unbounded) approximate diagonal.

The qualifier sequentially will be used when the nets (ξν) in the above definitions can in
fact be chosen to be sequences.

Remarks. The notion of approximate amenability was introduced in [25].
The two notions of ‘approximate amenability’ and ‘approximate contractibility’ are

in fact equivalent [14], [26].
We note that, in the bounded variants of the above definitions, it is the net (Dν) of

approximating inner derivations, where
Dν : b 7→ b · ξν − ξν · b,

that is required to be uniformly bounded, not the implementing net (ξν). It is not
known whether ‘boundedly approximately contractible’ and ‘boundedly approximately
amenable’ are equivalent for all Banach algebras. More surprisingly, it is not known
whether ‘boundedly approximately amenable’ and ‘approximately amenable’ are the
same—all the known examples of approximately amenable Banach algebras are, in fact,
boundedly approximately contractible.

Suppose that A is amenable. Then A is boundedly approximately contractible with
the implementing net bounded [32], [11, Proposition 2.8.59].

Pseudo-amenability was introduced and studied in [28].
Finally, note that, since every inner derivation is continuous, the uniform boundedness

principle shows that any sequentially approximately inner derivation is necessarily con-
tinuous; whether or not every approximately inner derivation is automatically continuous
seems to be a difficult question to answer.

A weakly amenable Banach algebra is not necessarily approximately amenable: as
noted above, a group algebra L 1(G) is always weakly amenable, but it is approximately
amenable if and only if G is amenable [25, Theorem 3.2]. The Banach sequence algebras
` p(N), where 1 ≤ p < ∞, are weakly amenable, but not approximately amenable [14,
Theorem 4.1]. Trivially a commutative, approximately amenable Banach algebra is weakly
amenable; an example of an approximately amenable Banach algebra which is not weakly
amenable is given in [25, Example 6.2].

1.4. Intrinsic characterizations. Analogous to Theorem 1.2.4 there are approximate-
diagonal characterization of the above variants of amenability, and we now give these.

Theorem 1.4.1 ([14, Proposition 2.1]). A Banach algebra A is approximately amenable
if and only if, for each ε > 0 and each finite subset S of A, there exist F ∈ A ⊗ A and
u, v ∈ A such that π(F ) = u+ v, and such that, for each a ∈ S:

(i) ‖a · F − F · a+ u⊗ a− a⊗ v‖ < ε;
(ii) ‖a− au‖ < ε, ‖a− va‖ < ε.
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To test for approximate amenability in the case where our Banach algebra is commu-
tative, we can use the following criterion.

Once and for all we set some notation. Let A be an algebra. For F ∈ A⊗A and a ∈ A,
we define

∆a(F ) = a · F − F · a+ u⊗ a− a⊗ u, (1.4.1)

where u = π(F )/2.

Proposition 1.4.2 ([14, Proposition 2.3]). Let A be a commutative Banach algebra.
Then A is approximately amenable if and only if, for each ε > 0 and each finite subset S
of A, there exist F ∈ A⊗A and u ∈ A with π(F ) = 2u, and such that, for each a ∈ S:

(i) ‖∆a(F )‖ < ε;
(ii) ‖a− au‖ < ε.

Proposition 1.4.3. Let A be a commutative Banach algebra which is boundedly approx-
imately contractible. Then there exists K > 0 such that, for each ε > 0 and each finite
subset S of A, there exist F ∈ A⊗A and u ∈ A with π(F ) = 2u and such that, for each
a ∈ S and each b ∈ A:

(i) ‖∆a(F )‖ < ε;
(ii) ‖∆b(F )‖ ≤ K‖b‖;
(iii) ‖a− au‖ < ε;
(iv) ‖b− bu‖ < K‖b‖.

Proof. By the contractible case of [25, Theorem 2.1], there are a constant K > 0 and
a net (Mν) in A# ⊗̂A# such that, for each a ∈ A#, we have a ·Mν −Mν · a → 0 and
‖a ·Mν −Mν · a‖ ≤ K‖a‖. As in [25, Corollary 2.2], this gives nets (Nν) in A ⊗̂A and
(Fν) and (Gν) in A such that, for each b ∈ A, we have:

(i)′ a ·Nν −Nν · a+ Fν ⊗ a− a⊗Gν → 0;
(ii)′ ‖b ·Nν −Nν · b+ Fν ⊗ b− b⊗Gν‖ ≤ K‖b‖;
(iii)′ a · Fν → a and Gν · a→ a;
(iv)′ ‖b− b · Fν‖ ≤ K‖b‖, ‖b−Gν · b‖ ≤ K‖b‖;
(v)′ π(Nν)− Fν −Gν → 0.

As in [26], we may suppose that Nν is symmetric and that Fν = Gν . Finally, at the
cost of a slight increase in K, we may suppose that each Nν lies in A ⊗ A and that
π(Nν) = 2Fν . It is now standard how to obtain the desired F and u.

Remark. A more explicit version of Proposition 1.4.3 is given in [9, Theorem 2.5]. It
is an open question whether or not the converse of the above proposition holds (cf. [26,
Theorem 5.4]). A criterion for a Banach algebra to be boundedly approximately amenable
is given in [26, Theorem 5.10].

Note that Theorem 1.4.1 and Propositions 1.4.2 and 1.4.3 are all phrased in terms of
requiring, for any finite subset S of A, that there exist elements of A⊗A and A satisfying
certain inequalities for all elements of S. As shown in [14], when the requirement fails,
it is often two-point sets S that suffice to negate these inequalities. We do not know if
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this is always the case. This also raises the question as to the status of singleton sets S.
Indeed, [14, Proposition 3.6], to be generalized below, broaches this problem.

1.5. Pointwise variations. The following pointwise variants of the above notions were
introduced formally by Fereidoun Ghahramani.

Definition 1.5.1. Let A be a Banach algebra. Then:

(i) A is pointwise amenable at a ∈ A if, for each Banach A-bimoduleX, every continuous
derivation D : A→ X ′ is pointwise inner at a, that is, there exists ξ ∈ X ′ such that
D(a) = a · ξ − ξ · a;

(ii) A is pointwise approximately amenable at a ∈ A if, for each Banach A-bimodule X,
every continous derivation D : A → X ′ is pointwise approximately inner at a, that
is, there exists a sequence (ξn) in X ′ such that D(a) = limn→∞(a · ξn − ξn · a).

(iii) A is pointwise [approximately ] amenable if A is pointwise [approximately] amenable
at a for each a ∈ A.

Remark. Trivially, a commutative, pointwise approximately amenable Banach algebra
is weakly amenable.

A small variation of standard arguments in [25] and [26] regarding approximately
amenable and approximate amenability shows that ‘pointwise approximately amenable’
is the same as ‘pointwise approximately contractible’, and gives the following character-
ization of pointwise approximate amenability analogous to Theorem 1.4.1.

Proposition 1.5.2. Let A be Banach algebra, and let a ∈ A. Then A is pointwise approx-
imately amenable at a if and only if, for each ε > 0, there exist F ∈ A⊗A and u, v ∈ A
with π(F ) = u+ v such that:

(i) ‖a · F − F · a+ u⊗ a− a⊗ v‖ < ε;
(ii) ‖a− au‖ < ε, ‖a− va‖ < ε.

In the case where A is commutative, we may take u = v.

Corollary 1.5.3. Let A be a pointwise approximately amenable Banach algebra. Then
A has left and right approximate units. In particular,

a ∈ aA ∩Aa (a ∈ A) and A = A2.

The following is an unpublished result of Fereidoun Ghahramani.

Theorem 1.5.4. Let A be a pointwise amenable, commutative Banach algebra. Then A

is approximately amenable.

It is not known whether or not this theorem holds for arbitrary (non-commutative)
Banach algebras. Indeed, we do not know of a pointwise amenable Banach algebra which
is not already amenable.

One simple way to get an approximately amenable Banach algebra A which is not
amenable is to take A = c0(An), where the An are amenable algebras, each with identity
of norm one, whose amenability constants are unbounded in n; such examples are con-
structed in [25, §6] and also in [13]. Then A is approximately amenable [25, Example 6.1].
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We now indicate how to extend [25, Example 6.2] to obtain an example of an approx-
imately amenable Banach algebra which is not even pointwise amenable.

Example 1.5.5. Take n ∈ N, and consider the algebra M2n of 2n × 2n-matrices over C
with the norm

‖(aij)‖ =
( 2n∑
i,j=1

|aij |2
)1/2

((aij) ∈M2n).

Note that the identity in M2n has norm
√

2n. Take the matrix Pn ∈ M2n as in [25,
Example 6.2]: Pn is ‘anti-diagonal’ and has non-zero terms in the (i, j)-position only if
i+ j = 2n + 1, and then |pi,j | = 1 in this case. We see that ‖Pn‖ = 2n/2.

Define An = M]
2n , so that the identity in An has norm one, and set

Dn : B 7→ PnB
T −BTPn, An → A′n.

Then it is shown in [25, Example 6.2] that Dn is an inner derivation with ‖Dn‖ = 2.
Now let An be the specific matrix

An =
1

(2n − 1)1/2

2n−1∑
r=1

Er,r+1,

where the Eij are the matrix units in M2n , so that An ∈ An with ‖An‖ = 1. Suppose
that Qn ∈ M2n is such that AnQn = QnAn. We first note that Qn is upper-triangular
and that Qn is constant on diagonals. Thus (Qn)i,j = 0 at least when i = 2n−1 +1, . . . , 2n

and j = 2n + 1− i.
Now define A = c0(An), so that A′ = ` 1(A′n), and A is approximately amenable by

[25, Example 6.2]. Set

D : (Bn) 7→ 1
n2

(PnBTn −BTnPn), A→ A′.

Then D is a continuous derivation that is not inner, and so A is not even weakly amenable.
We now claim that, in fact, A is not pointwise amenable. For consider the specific

element A = (ATn/n), which belongs to A, and assume towards a contradiction that D is
pointwise inner at A. Then there exists a sequence R = (Rn) in A′ such that, for each
n ∈ N, we have D(An) = RnAn − RnAn. For each n ∈ N, we see that Rn − Pn/n

2

commutes with An, and so is zero when i = 2n−1 + 1, . . . , 2n and j = 2n + 1 − i. This
shows that Rn takes the value 1/n2 in at least 2n/2 places, and so

‖Rn‖ ≥ 2n/4/n2 →∞ as n→∞.

This contradicts the claim that R = (Rn) is an element of A′, and so A is not pointwise
amenable. ♦

Here are some specific questions about pointwise amenability that we cannot answer.
Let G be a (discrete) group, and consider the group algebra ` 1(G). For which G is
` 1(G) pointwise amenable? Maybe this is true for each group G? In particular, is ` 1(F2)
pointwise amenable, where F2 is the free group on two generators?

We note that pseudo-amenability and approximate amenability agree in the presence
of a bounded approximate identity, and that an approximately amenable, commutative
Banach algebra is pseudo-amenable [28, Proposition 3.2, Corollary 3.4].
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1.6. Results concerning ideals. We shall require the following results.

Proposition 1.6.1.

(i) A Banach algebra A is [pointwise ] approximately amenable if and only is A] is
[pointwise ] approximately amenable.

(ii) Let A be an approximately amenable Banach algebra, and let I be a weakly com-
plemented closed left ideal in A. Then I has a right approximate identity, and so
I2 = I.

(iii) Let A be a pointwise approximately amenable Banach algebra, and let I be a weakly
complemented closed left ideal in A. Then I has right approximate units, and so
I2 = I.

Proof. (i) This is the pointwise version of Proposition 2.4 of [25].
(ii) This is Corollary 2.4 of [25].
(iii) This is the pointwise version of (ii).

Corollary 1.6.2. Each finite-dimensional, pointwise approximately amenable Banach
algebra is semisimple, and hence amenable.

Proof. Let A be a finite-dimensional Banach algebra with radical R. Since A is finite-
dimensional, R is nilpotent, and of course R and R2 are closed ideals in A.

Supposing that A is pointwise approximately amenable, Proposition 1.6.1(iii) shows
that R2 = R, and so R2 = R. Thus Rn = R for each n ∈ N, and so R = {0}, showing
that A is semisimple, and thus amenable.

Proposition 1.6.3. Let A be a pointwise amenable, commutative Banach algebra, and
let I be a weakly complemented, closed ideal in A. Then I has a bounded approximate
identity.

Proof. Let ι : I → A be the natural embedding. We follow the proof of [11, Theorem
2.9.58(ii)] to see that, for each a ∈ I, there exists Q ∈ B(I ′, A′) such that ι′ ◦ Q is the
identity on I ′ and also

Q(a · λ) = a ·Q(λ) (λ ∈ I ′);

this step uses the pointwise version of [11, Theorem 2.8.60]. The argument of Johnson [11,
Theorem 2.9.57] shows that there is Φa ∈ A′′ with a = Φa ·a, whence Q′(Φa) ·a = a. Now
a standard Mazur argument shows there is a bounded sequence (un) in I with una→ a.
This holding for each a ∈ I, [52, Lemma 12] or [17, Theorem 9.7] shows that I has a
bounded approximate identity; it is this last step that needs the hypothesis that A is
commutative.

It follows from Proposition 1.6.3 that closed ideals of finite codimension in commuta-
tive, pointwise amenable Banach algebras have approximate units. In fact being pointwise
amenable is an unnecessarily strong hypothesis, as we shall show in Proposition 1.6.6 be-
low. We do not know whether a (weakly) complemented, closed ideal in a pointwise
amenable Banach algebra necessarily has a bounded approximate identity.

Remark. Let I be a complemented, closed ideal in a Banach algebra A. In the case
where A is amenable, so is I [11, Corollary 2.9.59]. However it does not follow from the
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fact that A is approximately amenable that I is also approximately amenable; for this
see the discussion following [26, Corollary 4.5]. Indeed, we do not know the answer to the
following apparently innocuous question. Let I be a closed ideal of finite codimension in
a unital, approximately amenable Banach algebra A. Is I also approximately amenable?
This is open even when I has codimension two and A is commutative. Fereidoun Ghahra-
mani has pointed out that, if true, this would have far-reaching consequences. For suppose
that A is approximately amenable. Then by [26, Proposition 6.1], A]⊕A is approximately
amenable. But A⊕A is an ideal of codimension one in A] ⊕A, and so would be approx-
imately amenable. Whether in fact A ⊕ A is approximately amenable, given that A is
approximately amenable, is an open question.

On a more positive note we have the following.

Proposition 1.6.4. Let A be a Banach algebra, and let I be a closed ideal in A.

(i) Suppose that A is [pointwise ] approximately amenable. Then A/I is [pointwise ]
approximately amenable.

(ii) Suppose that A is [pointwise ] approximately amenable and that I has a bounded
approximate identity. Then I is [pointwise ] approximately amenable.

(iii) Suppose that I is amenable and that A/I is approximately amenable. Then A is
approximately amenable.

Proof. In the non-pointwise cases, clauses (i) and (iii) are contained in [25, Corollary
2.1], and (ii) is [25, Corollary 2.3]. The pointwise versions are similar.

Lemma 1.6.5. Let A be a commutative, unital Banach algebra, and suppose that each
maximal ideal of A has approximate units. Let I be a closed ideal of finite codimension
in A. Then:

(i) I is the intersection of finitely many distinct maximal ideals;
(ii) I has approximate units.

Proof. We use an idea from [70, Theorem 2].
Let I be a closed ideal of finite codimension, and assume inductively that the result

holds for all proper ideals properly containing I. Let ρ : A → A/I be the quotient
map, and let R denote the radical of A/I. Since R is finite-dimensional and radical, it is
nilpotent, and so, in the case where R 6= {0}, it follows that R2 is a closed and proper
ideal in R. But then ρ−1(R) is a closed ideal in A such that ρ−1(R) properly contains I
and satisfies

ρ−1(R)2 ⊆ ρ−1(R2) 6= ρ−1(R),

contrary to the hypothesis on I. Thus R = {0}, and so A/I ∼= Cn for some n ∈ N.
It is immediate that I = M1 ∩ · · · ∩Mn for some distinct maximal ideals M1, . . . ,Mn,
giving (i).

Finally, by the hypothesis on I, we know that M1∩· · ·∩Mn−1 has approximate units.
Take a ∈ I and ε > 0. Then there exists u1 ∈ M1 ∩ · · · ∩Mn−1 with ‖a − au1‖ < ε.
Since au1 ∈Mn, there exists u2 ∈Mn with ‖au1 − au1u2‖ < ε. Then u := u1u2 ∈ I and
‖a− au‖ < 2ε. Thus a ∈ aI, and so (ii) holds.
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Proposition 1.6.6. Let A be a commutative Banach algebra that is pointwise approx-
imately amenable. Then each closed modular ideal I of finite codimension n is the inter-
section of n distinct maximal ideals and has approximate units.

Proof. This is immediate from Lemma 1.6.5 in the case where A is unital. Otherwise A] is
pointwise approximately amenable, and has the stated properties. But a closed modular
ideal in A has the form A∩J for some closed ideal J of A], and A is of course a (modular)
maximal ideal in A].

We shall also need the following observation.

Proposition 1.6.7. Let A be a Banach algebra. Then:

(i) Mn(A) is amenable if and only if A is amenable;
(ii) Mn(A) is approximately amenable if and only if A is approximately amenable.

Proof. (i) This is [13, Theorem 2.7(i)].
(ii) Suppose that Mn(A) is approximately amenable. Then we follow the proof of

[13, Theorem 2.7(i)], replacing Λ by a suitable net (Λν), to see that A is approximately
amenable.

Conversely, suppose that A is approximately amenable. We modify slightly the proof
of [13, Theorem 2.7(ii)] by replacing the net (uα) by the net given by [25, Corollary 2.2]
(and ignoring the bound estimates).

Let A be a Banach algebra that is approximately weakly amenable. Then A] is also
approximately weakly amenable. However the converse may fail. The group algebra L 1(G)
is weakly amenable for any locally compact group G [11, 44]. However for G = SL(2,R),
the augmentation ideal L 1

0 (G) is not weakly amenable, yet L 1
0 (G)] is weakly amenable

[45]. That L 1
0 (G) is not approximately weakly amenable in this example is shown in [4].

1.7. Banach function algebras. By a Banach function algebra on a locally compact
space X we mean an algebra A of functions on X such that A separates the points of X,
such that A is a Banach algebra with respect to some norm, and such that the topology
on X is the weak topology induced by A.

Let A be a natural Banach function algebra, defined on its locally compact character
space ΦA. Denote by A00 the ideal of functions in A of compact support. For ϕ ∈ ΦA, set
Mϕ = kerϕ, and take Jϕ to be the ideal of functions f ∈ A00 such that ϕ 6∈ supp f . As
in [11, Definition 4.1.31], A is strongly regular if A00 = A and Jϕ = Mϕ for each ϕ ∈ ΦA;
A has bounded relative units if, for each ϕ ∈ ΦA, there is mϕ > 0 such that, for each
compact subset K of ΦA \ {ϕ}, there exists f ∈ Jϕ with f(K) = {1} and ‖f‖ ≤ mϕ, and
for each compact subset K of ΦA, there is f ∈ A with with f(K) = {1} and ‖f‖ ≤ mϕ.
The Banach function algebra A is a Ditkin algebra if f ∈ fA00 for each f ∈ A and f ∈ fJϕ
for each f ∈ Mϕ; and A is a strong Ditkin algebra if Mϕ has a bounded approximate
identity contained in Jϕ for each ϕ ∈ ΦA. We ask if various of these Banach function
algebras are necessarily approximately amenable.

It is not the case that a pointwise approximately amenable Banach algebra A nec-
essarily satisfies the condition that A = A2, but it may be that every approximately
amenable Banach algebra satisfies this condition.
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There exist strongly regular, commutative Banach algebras A such that A = A2, but
A is not a Ditkin algebra, so that the condition that A = A2 does not necessitate that A is
pointwise approximately amenable. Such an example is given by A = ` 1(G) for a totally
ordered η1-group G, as in [11, Example 2.9.45]. This algebra A satisfies the condition that
A = A2 because it has an identity, but it is not pointwise approximately amenable because
the augmentation ideal does not have approximate units. However, in this example the
Banach algebra A is not separable. We do not know of a commutative, separable Banach
algebra, nor even a separable Banach sequence algebra, such that A = A2, but A is
not a Ditkin algebra. Consider the example of the semigroup algebra B = ` 1(S) where
S = (Q+•,+): certainly B is a commutative, separable Banach algebra which is not a
Ditkin algebra, but it is not known whether or not B = B2. An interesting example of a
proper, unital, uniform algebra which is a strong Ditkin algebra is given by Feinstein in
[20]. We do not know whether this example is (pointwise) approximately amenable.

1.8. Banach sequence algebras. By a Banach sequence algebra we mean a (commu-
tative) algebra A on a subset S of Z such that c 00(S) ⊂ A ⊆ c0(S) and such that A
is a Banach algebra under some norm; see [11] for further details. In particular a Ba-
nach sequence algebra on S is a Banach function algebra on S. Here the underlying set
S will be either N or Z; generally results stated for N have an obvious analogue for Z.
For convenience we shall often write a ∈ A as a sequence a = (α(i)), and set δi for the
characteristic function of {i} when i ∈ S; we shall eschew using formal sums such as
a =

∑∞
i=1 α(i)δi, as there is no reason for this series to converge in (A, ‖ · ‖) in general.

For example, for each 1 ≤ p < ∞, the space (` p(N), ‖ · ‖p) is a Banach sequence
algebra on N with respect to the coordinatewise product.

A Banach sequence algebra A on N is strongly regular if and only if c00 is dense in
A, and is a Ditkin algebra if and only if f ∈ fc00 for each f ∈ A. It is shown in [14,
Corollary 3.5] that a Banach sequence algebra which is a strong Ditkin algebra is even
sequentially approximately amenable.

Now let (A, ‖ · ‖) be a Banach sequence algebra on S such that c 00 is dense in A, so
that A is strongly regular. Suppose that A is pointwise approximately amenable. Then by
Proposition 1.5.2, for each a ∈ A and ε > 0, there exists u ∈ c 00 such that ‖a− au‖ < ε.
It follows that A is a Ditkin algebra. We ask if the converse to this holds: Is every Banach
sequence algebra which is a Ditkin algebra necessarily pointwise approximately amenable?
We do not have a counter-example to this possibility.

A strongly regular Banach sequence algebra is not necessarily a Ditkin algebra. An
example M to show this is given in [11, Example 4.5.33]; the example is due to H. Mirkil.
It follows that M is a strongly regular Banach sequence algebra, but M is not pointwise
approximately amenable.

Let A be a Banach sequence algebra on N. For each n ∈ N, we set

en =
n∑
i=1

δi = (

n︷ ︸︸ ︷
1, 1 . . . , 1, 0, 0, . . .),



18 H. G. Dales and R. J. Loy

and, for each subset D ⊂ N, we define PD : A→ c 0 by

PD(a) =
∑
i∈D

α(i)δi (a = (α(i)) ∈ A).

In the case where D is either finite or cofinite in N, PD maps into A. Similar definitions
apply for subsets of Z.

Definition 1.8.1. Let A be a Banach sequence algebra on S. For a = (α(i)) ∈ A and
k ∈ S, the set

{j ∈ S : α(j) = α(k)}

is a level set of a.

Remark. Since A ⊂ c0, the level sets are all finite except possibly for the zero set of a.

Let a = (α(i)) ∈ A and F ∈ c00(S×S); set π(F ) = 2u. Recalling (1.4.1), we have the
fundamental identity

∆a(F )(i, j) = (α(i)− α(j))F (i, j) + u(i)α(j)− u(j)α(i) (i, j ∈ S). (1.8.1)

This formula is used at several key points in the arguments to follow.
We are seeking to verify the conjecture that every Banach sequence algebra A that

is a Ditkin algebra is pointwise approximately amenable; the following theorem achieves
this provided that A satisfies an extra hypothesis.

Theorem 1.8.2. Let A be a Banach sequence algebra on S such that A is a Ditkin algebra,
and let a ∈ A. Suppose that, for each ε > 0, there exists u ∈ c 00 such that ‖a− au‖ < ε

and u is constant on the level sets of a. Then A is pointwise approximately amenable
at a.

Proof. We may suppose that a 6= 0. Set a = (α(i)) ∈ A. Fix ε ∈ (0, ‖a‖), and choose
u ∈ c 00 such that ‖a− au‖ < ε and u is constant on the level sets of a. Then u 6= 0. Set
U = suppu, and then set b = (β(i)) = a− PUa ∈ A. Since A is a Ditkin algebra, we can
choose v ∈ c 00 such that

2‖u‖‖b− bv‖ < ε;

set V = supp v.
We now define our element F ∈ c 00(N×N). Firstly, for i ∈ N, set F (i, i) = 2u(i); this

guarantees that π(F ) = 2u.
Off the diagonal of N× N, we consider several cases.

(i) Suppose that i, j ∈ U with i 6= j and α(i) = α(j). Then we choose F (i, j) arbitrarily;
in this case ∆a(F )(i, j) = 0 because we also have u(i) = u(j).

(ii) Suppose that i, j ∈ U with α(i) 6= α(j). Then, recalling equation (1.8.1), we can
specify F (i, j) so that ∆a(F )(i, j) = 0.

(iii) Suppose that i ∈ U and j ∈ V \U . Then u(i) 6= 0 and u(j) = 0, and so u(i) 6= u(j).
Since u is constant on the level sets of a, it follows that α(i) 6= α(j). Thus we may
choose F (i, j) such that

∆a(F )(i, j) = u(i)α(j)(1− v(j)).
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(iv) Suppose that i ∈ U and j ∈ S \ (U ∪ V ). Set F (i, j) = 0, so that, since v(j) = 0, we
have

∆a(F )(i, j) = u(i)α(j) = u(i)α(j)(1− v(j)).

(v) Suppose that i ∈ V \U and j ∈ U . Again α(i) 6= α(j), and so we may choose F (i, j)
such that

∆a(F )(i, j) = u(j)α(i)(1− v(i)).

(vi) Suppose that j ∈ U and i ∈ S \ (U ∪ V ). Set F (i, j) = 0, so that

∆a(F )(i, j) = u(j)α(i) = u(j)α(i)(1− v(i)).

(vii) Suppose that i, j ∈ S \ U . Set F (i, j) = 0, so that ∆a(F )(i, j) = 0.

Note that certainly F ∈ c 00(S × S) because F (i, j) = 0 when i or j lie outside U ∪ V .
Since u(i) = 0 for i 6∈ U , we see that

∆a(F )(i, j) = (u⊗ (b− bv))(i, j) = ((b− bv)⊗ u)(i, j) = 0,

except possibly when i ∈ U and j 6∈ U or i 6∈ U and j ∈ U . But for j 6∈ U , we have
α(j) = β(j), and so, for (i, j) ∈ U × (V \ U), we see that

∆a(F )(i, j) = u(i)(α(j)− α(j)v(j)) = (u⊗ (b− bv))(i, j),

and similarly, for (i, j) ∈ (V \ U)× U , we have

∆a(F )(i, j) = u(j)(α(i)− α(i)v(i)) = ((b− bv)⊗ u)(i, j).

Further, for i ∈ U and j ∈ S \ (U ∪ V ), so that u(j) = v(j) = 0 and α(j) = β(j), we also
have

∆a(F )(i, j) = (u⊗ (b− bv))(i, j),

and similarly for j ∈ U and i ∈ S \ (U ∪ V ).
By checking each case, we see that

∆a(F ) = u⊗ (b− bv)− (b− bv)⊗ u

in c 00(S × S). Thus

‖∆a(F )‖ = ‖u⊗ (b− bv)− (b− bv)⊗ u‖ ≤ 2‖u‖ ‖b− bv‖ < ε.

We conclude that F and u together satisfy the conditions of Proposition 1.5.2, and
so A is pointwise approximately amenable at a.

Corollary 1.8.3. Let A be a Banach sequence algebra on S such that A is a Ditkin
algebra. Then the set of elements a ∈ A such that A is pointwise approximately amenable
at a is dense in A, and every element a ∈ A is the sum of two elements b, c ∈ A such
that A is pointwise approximately amenable at b and c.

Proof. Let a ∈ A, and denote the (countable) range of a on S by R. Enumerate the
elements of the support of a as {r1, r2, . . .}, and fix ε > 0.

We shall define inductively a sequence (εn). Indeed choose ε1 so that ε1‖δr1‖ < ε and
a(r1)+ε1 /∈ R. Now suppose that ε1, . . . , εn have been chosen. Choose εn+1 /∈ {ε1, . . . , εn}
so that εn+1‖δrn+1‖ < ε/2n+1 and a(rn+1) + εn+1 /∈ R∪{a(r1) + ε1, . . . , a(rn) + εn}. Set
b =

∑∞
n=1 εnδn and c = a+ b. Then b ∈ A and ‖b‖ < ε.



20 H. G. Dales and R. J. Loy

Clearly all the non-zero level sets of both b and c are singletons and so the ‘level
sets hypothesis’ of Theorem 1.8.2 is trivially satisfied for the elements b and c. By the
theorem, A is pointwise approximately amenable at b and c. Since ‖a− c‖ < ε, the result
follows.

Remark 1.8.4. Suppose that the hypothesis of Theorem 1.8.2 holds. For a = (α(i)) ∈ A,
set Z(a) = {j ∈ S : α(j) = 0}. Fix ε > 0, and choose u0 ∈ c 00(S) such that ‖a−au0‖ < ε

and u0 is constant on the level sets of a. Define

u(i) =

{
u0(i), α(i) 6= 0,

0, α(i) = 0.

Set U = suppu. Then u satisfies the same conditions as u0, and in addition Z(a)∩U = ∅.
Set b = (β(i)) = a − PUa ∈ A. Since A is a Ditkin algebra, we can choose v ∈ c 00(S)
such that

2‖u‖‖b− bv‖ < ε;

set V = supp v. As with u, we may suppose that Z(a)∩ V = ∅. Then in the construction
of F , α(i) = 0 or α(j) = 0 only occurs in cases (vi) and (vii), and then F (i, j) = 0.

The point of this modification is as follows. Since A is regular and Z is countable,
spectral synthesis holds in A. Thus for a closed ideal I ⊂ A, if the element a ∈ A in fact
lies in I, then so do u and v, and F ∈ I ⊗ I. Thus we conclude that I is also pointwise
approximately amenable at a.

Corollary 1.8.5 ([14, Proposition 3.6]). For 1 ≤ p < ∞, the Banach sequence algebra
` p is pointwise approximately amenable.

Proof. The algebra ` p is a Ditkin algebra. Take a ∈ ` p. For n ∈ N, define (finite) subsets
Bn of N by

Bn = {j ∈ N : |a(j)| ≥ 1/n},

and define un to be the characteristic function of Bn, so that un is certainly constant on
the level sets of a. Then

(a− aun)(m) =

{
0 (m ∈ Bn),

a(m) (m 6∈ Bn),

so that a − aun → 0 pointwise, and each sequence a − aun is dominated by |a|, so that
‖a− aun‖p → 0.

Thus the hypotheses of Theorem 1.8.2 are satisfied, and so ` p is pointwise approx-
imately amenable at a. Hence ` p is pointwise approximately amenable.

Theorem 1.8.2 is a substantial generalization of [14, Proposition 3.6]. In that result, it
was required that ‖(I−PC)(a)‖ → 0 as the finite subsets C expand to N; this shows that
the hypothesis of Theorem 1.8.2 holds with u a suitable characteristic function. This latter
condition is a stronger requirement than that in Theorem 1.8.2, and, in particular, will be
shown to fail for the example Aω, to be discussed below, for certain weight functions ω;
see in particular §3.8.

Note also that the hypothesis of Theorem 1.8.2 implies that c 00 is dense in A, so that
A must be separable.
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Unfortunately, the ‘level set hypothesis’ of Theorem 1.8.2 is not necessary for pointwise
approximate amenability. For let A = A(Z), the algebra of Fourier transforms of elements
of (L 1(T), ?). Then A is a Banach sequence algebra on Z, and A is even amenable, and
hence pointwise approximately amenable. However the extra hypothesis is not always
satisfied. Indeed, take f ∈ A to be either of the functions constructed in [46, §2] or in
[61, Example A]. The raison d’être of these constructions will ensure that the hypothesis
of Theorem 1.8.2 concerning level sets fails; see also §4.2.

However, for A = L 1(T) we note that by [22, Theorem 1.2] the construction in
Theorem 1.8.2 shows that A is pointwise approximately amenable at elements a ∈ A

whose (non-zero) level sets L have the following property: there is a constant K > 0 such
that, for each L, we have

m,n ∈ L, |n| ≤ |m| ⇒ |n−m| ≤ K|n|1/2. (1.8.2)

Indeed, [61] shows that A is pointwise approximately amenable at a for A = L p(T),
where 1 ≤ p < 2, for elements a whose (non-zero) level sets L satisfy the condition that
m,n ∈ L, |n| ≤ |m| necessitates |n −m| ≤ K|n|(3p−2)/2p. Note that [47] shows that no
restriction on the cardinality of the level sets will circumvent the barrier that these sets
create.

In fact we shall show that a result like the above holds for many Banach sequence
algebras. First we give an elementary estimate.

Lemma 1.8.6. Let K1,K2,K3, δ > 0, and let β = (βn) be a sequence in C. Take p > 1
with conjugate index q. Let m ∈ N, and take r1, . . . , rm ≥ 0. Suppose that {r1, . . . , rm}
satisfies

m∑
n=1

|βn|prn ≤ K3,

and that N is so large that

max
1≤n≤m

rn ≤ K1N
δ and

m∑
n=1

rn ≤ K2N.

Then
m∑
n=1

|βn|r2n ≤ K1K
1/q
2 K

1/p
3 Nδ+1/q.

Proof. We just rearrange the summands to show that the given bound follows from
Hölder’s inequality. Thus

m∑
n=1

|βn|r2n =
m∑
n=1

|βn|r1/pn · r2−1/p
n ≤

( m∑
n=1

|βn| prn
)1/p( m∑

n=1

r(2−1/p)q
n

)1/q

≤ K1/p
3

( m∑
n=1

rn

)1/q

max
1≤n≤m

rn

≤ K1K
1/q
2 K

1/p
3 Nδ+1/q,

as claimed.
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For N ∈ N, we set

uN (k) =

1− |k|
N + 1

(|k| ≤ N),

0 (otherwise).
vN (k) =

{
1 (|k| ≤ N),

0 (otherwise).

Note that these functions are just the Fourier transforms of the Fejér and Dirichlet kernels
on T, respectively.

Definition 1.8.7. Let A be a Banach sequence algebra on Z, let a ∈ A and take δ > 0.
Then a has δ-small level sets if there is a constant K > 0 such that

|i− j| ≤ Kiδ whenever α(i) = α(j) 6= 0.

Note that no assumption is made about the structure of the possibly infinite zero set
of a.

The hypotheses of the next result are satisfied when A = L̂ p(T) and p ≥ 2.

Theorem 1.8.8. Let (A, ‖ · ‖) be a Banach sequence algebra on Z such that the set
{δn : n ∈ Z} of idempotents is bounded, such that A ⊂ ` p for some p > 1, and such that

lim
N→∞

‖b− buN‖ = lim
N→∞

‖b− bvN‖ = 0

for each b ∈ A. Let a ∈ A have δ-small level sets for some 0 < δ < (q − 1)/2q, where q
is the conjugate index to p. Then, for each ε > 0, there exist N ∈ N and F ∈ c00(Z× Z)
such that π(F ) = 2uN and ‖∆a(F )‖ < ε. In particular, A is pointwise approximately
amenable at a.

Proof. Let {Ln : n ∈ N} be an enumeration of the (non-zero) level sets of a, and, for
n ∈ N, take βn to be the constant value of a on Ln. Since a ∈ ` p, we have

K3 :=
∞∑
n=1

|βn|p|Ln| <∞. (1.8.3)

First, choose N ∈ N so that ‖a − auN‖ < ε. Set b = a − auN ; certainly b ∈ A. Now
choose M ∈ N such that 2‖uN‖ ‖b − bvM‖ < ε. By increasing M if necessary, we may
suppose that α(i) 6= α(j) whenever |i| ≤ N , α(i) 6= 0, and |j| > M .

We now construct F ∈ c 00(Z × Z) with the desired properties; the method follows
that of Theorem 1.8.2. For convenience, and to parallel the notation of that theorem,
set u = uN , U = suppuN = [−N,N ], v = vM , and V = supp vM = [−M,M ]. Also set
C = supn ‖δn‖.

Next, as before, choose F on the diagonal on Z × Z such that π(F ) = 2u. Then
proceed as in steps (i)–(vii) of Theorem 1.8.2, where we found, with u′, v′ denoting the
c00-elements that arose there, that

∆a(F ) = u′ ⊗ (b− bv′)− (b− bv′)⊗ u′,

where b = a − au′. With this in mind, we examine how ∆a(F ) differs from the present
value of

H := u⊗ (b− bv)− (b− bv)⊗ u. (1.8.4)
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First, in (i), where i, j ∈ U with i 6= j and α(i) = α(j), we obtain

∆a(F )(i, j) = (u′(i)− u′(j))α(i), (1.8.5)

whereas the expression (1.8.4) gives value 0 since v(j) = 1. Suppose that the level sets of
a that meet [−N,N ] are L1, . . . , Lm (relabelling, if necessary), and, for n = 1, . . . ,m, set
rn = |Ln ∩ [−N,N ]|. Then Lemma 1.8.6 is applicable, taking K1 = K from the δ-small
level sets hypothesis, with K2 = 1, and with K3 as in (1.8.3) above. In the case where
i, j ∈ Ln, we have |i− j| ≤ KNδ, and so equation (1.8.5) gives

|∆a(F )(i, j)| = |βn| |u′(i)− u′(j)| =
|βn|
N + 1

|i− j| ≤ K|βn|Nδ−1.

Noting that ‖δi⊗ δj‖ ≤ C2, we see that the contribution to the new ‖∆a(F )‖ of all these
terms from Ln is at most

C2K|βn|r2nNδ−1.

Thus the total contribution to ‖∆a(F )‖ over all the level sets meeting [N,N ] is at most

C2K3N
δ−1

m∑
n=1

|βn|r2n ≤ C2K1K
1/q
2 K

1+1/p
3 KN2δ−1+1/q,

by Lemma 1.8.6.
Second, in (iii), where i ∈ U and j ∈ V \ U , so that v(j) = 1, there are now two

possibilities. If α(i) 6= α(j), which was necessarily the case before, the same choice as
before gives 0, as does H, since v(j) = 1. But now we have the new possibility that
i, j ∈ Ln for some n ≤ m, in which case ∆a(F )(i, j) = u′(i)βn for any choice of F (i, j).
Set F (i, j) = 0. Now N + 1− |i| ≤ KNδ, whence

|∆a(F )(i, j)| =
(

1− i

N + 1

)
|βn| ≤ |βn|KNδ−1.

All such terms contribute at most

C2KNδ−1
m∑
n=1

|βn| |Ln|2 ≤ C2K1K
1/q
2 K

1/p
3 KN2δ−1+1/q

to the sum ‖∆a(F )‖. A similar estimate holds for the new possibility in (v).
All other cases considered in Theorem 1.8.2 are unchanged.
It follows that, in our new situation, we have the estimate

‖∆a(F )− u⊗ (b− bv)− (b− bv)⊗ u‖ ≤ C2K1K
1/q
2 K

1/p
3 KN2δ−1+1/q.

Since ‖u⊗ (b− bv)− (b− bv)⊗ u‖ < 2ε and δ < (q − 1)/2q, we have ‖∆a(F )‖ < 2ε for
N sufficiently large, as required.

Remark 1.8.9. We do not know whether the constraint that δ < (q−1)/2q is necessary.
However, the following example shows that the above method of proof does not show
that A is pointwise approximately amenable at a for each a ∈ A.

Example 1.8.10 (An element with two-point level sets). For j ∈ N, set nj = 2j , and
select j distinct points in the interval [2j + 1, 2j+1]; enumerate all the latter points in
order of increasing magnitude as {mi : i ∈ N}. Put a mass of i−1 at each mi and ni. For
the resulting sequence a we have a ∈ ` p for each p > 1, each non-zero level set of a has
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exactly two elements, and a fails to have δ-small level sets for any δ > 0 because, for each
δ > 0, we have

|mi − ni|
iδ

∼ 2i − i
iδ
→∞ as i→∞.

Take N ∈ N, say nj ≤ N < nj+1. Then the number of points mi less than nj is (j2 +j)/2.
We see that mi ≤ N ≤ ni whenever j + 1 ≤ i ≤ (j2 + j)/2, and we have

∑
{i :mi≤N≤ni}

a(mi)uN (mi) =
(j2+j)/2∑
i=j+1

1
i

(
1− mi

N + 1

)
≥ 1

2

(j2+j)/2∑
i=j+1

1
i
∼ log j.

Thus the estimates on ‖∆a(F )‖ used in the above proof cannot work for this a. ♦

Example 1.8.11. Let A(D) be the usual disc algebra with the uniform norm, and set
A = {f ∈ A(D) : f(0) = 0}. Then, for f ∈ A, we have

f(z) =
∞∑
k=1

f̂(k)zk (|z| < 1),

where

f̂(k) =
1

2πi

∫ 2π

0

f(eiθ)e−ikθ dθ (k ∈ N),

so that (f̂(k)) ∈ ` 2 ⊂ c0. Recall that for f, g ∈ A, their Hadamard product is

(f ? g)(z) =
∞∑
k=1

f̂(k)ĝ(k)zk (|z| < 1), (1.8.6)

and that this can be written as

(f ? g)(z) =
1

2π

∫ 2π

0

f(ξeiθ)g(ζe−iθ) dθ (|z| < 1), (1.8.7)

where ξζ = z with |ξ|, |ζ| < 1 [67, p. 158]. By the uniform continuity of f and g on D, it
follows from equation (1.8.7) that f ? g ∈ A and that ‖f ? g‖ ≤ ‖f‖ ‖g‖.

Thus (A, ?) is isomorphic to a Banach sequence algebra. Here c00 is certainly dense
in A. By equation (1.8.6), A2 ⊂ A+(D), the algebra of absolutely convergent Taylor series
[11, Example 2.1.13(ii)], so that A2 is properly dense in A, and hence A does not have a
bounded approximate identity. For k ∈ Z, set Zk : z 7→ zk (z ∈ T), and for f ∈ C(T),
set Sn(f) =

∑n
k=n f̂(k)Zk. Then it is well-known that there exists f ∈ C(T) such that

lim supn→∞ Sn(f)(1) = ∞; for example, see [49, §18]. A small modification of the proof
gives a function f ∈ A with this property; such a modification is given explicitly in [72,
Theorem VIII.1.14]. Let (nk) be a strictly increasing sequence in N. Then we may further
slightly modify the proof to see that there exists f ∈ A with lim supk→∞ Snk

(f)(1) =∞.
It follows that, for each strictly increasing sequence (nk) in N, there exists f ∈ A such that
enk

f does not converge to f in A, and so no subsequence of (ek) can be an approximate
identity.

Of course,
A = {f ∈ C(T) : f̂(−n) = 0 (n ∈ Z+)},
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and it is standard that Cesàro means of continuous functions converge uniformly on T,
so by the maximum modulus principle the Fejér kernels define an approximate identity
for A. So, for f ∈ A, we have f ∈ fA00, and so A is a Ditkin algebra.

Take a sequence S = (nk) in N such that nk+1 ≥ 2nk (k ∈ N). Then, by [71, III.E.9],
we have {(f̂(nk)) : f ∈ A} = ` 2, and so the map f 7→ f̂ |S is a continuous epimorphism
of A onto ` 2, whence, by Proposition 1.6.4, A is not approximately amenable.

By Theorem 1.5.4 it follows that A is not pointwise amenable. Is A pointwise approx-
imately amenable? ♦

1.9. On approximate identities. We have the following pointwise variant of [14,
Proposition 3.4]; see also [27, Proposition 3.13]. Note that it picks out the estimate which
underlies the argument of Theorem 1.8.2.

Proposition 1.9.1. Let A be a Banach sequence algebra, and let a ∈ A. Suppose that
there is η > 0 such that, for each ε > 0, there exists u ∈ c00 with

‖u‖ ≥ η and ‖a− au‖ ‖u‖ < ε. (1.9.1)

Then A is pointwise approximately amenable at a.

Suppose that a Banach algebra A is approximately amenable. Then Corollary 1.5.3
shows that A has left and right approximate units; it is not known whether A must have
approximate units. Indeed, all known examples of approximately amenable algebras have
bounded approximate identities. It is known that a boundedly approximately contractible
Banach algebra has a bounded approximate identity [8, Corollary 3.4], and results in [9,
§2] show certain classes of algebras without bounded approximate identities cannot be
approximately amenable.

Both Theorem 1.8.2 and Proposition 1.9.1 posit approximate units with special prop-
erties to deduce approximate amenability consequences. In particular, the hypothesis of
Proposition 1.9.1 is certainly satisfied if A has bounded approximate units. But then A

has a bounded approximate identity [11, §2.9], and so is approximately amenable [14,
Corollary 3.5]. In fact, no Banach algebras A are known for which A satisfies condi-
tion (1.9.1) of Proposition 1.9.1 without A having a bounded right approximate identity.
Regarding this latter, we offer the following observations.

Proposition 1.9.2. Let A be a Banach algebra with a right approximate identity (uα).
Suppose that there is a net (εα) of positive numbers converging to 0 such that, for each
a ∈ A,

sup
α
ε−1
α ‖a− auα‖ <∞. (1.9.2)

Suppose further that A has an element which is not a left topological divisor of zero. Then
(uα) is bounded, and A has a right identity. In particular, this latter holds if A also has
a left approximate identity satisfying the analogue of (1.9.2).

Proof. For k ∈ N, define

Ak = {a ∈ A : sup
α
ε−1
α ‖a− auα‖ ≤ k}.
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Clearly
⋃
Ak = A, and each Ak is closed. Thus some Am has a non-empty interior, and,

being convex and balanced, Am must contain a neighbourhood of zero. Thus there is δ > 0
such that ‖a‖ ≤ δ necessitates ‖a− auα‖ ≤ mεα for all α. It follows that ‖a− auα‖ → 0
uniformly on the unit ball of A. Since A has an element which is not a left topological
divisor of zero, there is α0 such that (uα)α≥α0 is bounded. Now [53, Proposition 1] shows
that A has a right identity.

Finally, when there is a left approximate identity satisfying the analogue of (1.9.2),
[53, Proposition 1] shows that A has an element which is not a left topological divisor of
zero. (It follows that in fact A is unital.)

Corollary 1.9.3. Let A be a Banach algebra, and let (un) and (vn) be left and right
approximate identities, respectively, such that the two sequences (‖un‖ · ‖a − aun‖) and
(‖vn‖ · ‖a− vna‖) are bounded for each a ∈ A. Then (un) and (vn) are bounded.

Proof. Assume towards a contradiction that (u′k) is an unbounded subsequence of (un).
Then (u′k) satisfies the hypothesis of Proposition 1.9.2 on the right with εk = ‖u′k‖−1, a
contradiction of the theorem.

This does not resolve the problem of whether the situation considered in [14, Propo-
sition 3.4] can actually arise in the absence of a bounded approximate identity. The
approximate identity (u(ε,S)) built in the natural way from the elements u for each ε > 0
and each finite S ⊂ A satisfies the condition that

lim
(ε,S)
‖u(ε,S)‖ · ‖a− au(ε,S)‖ = 0 (1.9.3)

for each a ∈ A. However, there is no apparent reason for this to give (1.9.2).
An approximate identity satisfying (1.9.3) is called quasi-bounded in [27, §4].

Corollary 1.9.4. A sequential quasi-bounded approximate identity in a commutative
Banach algebra is in fact bounded.

1.10. Summary of interrelations. The following diagram shows what is known relat-
ing these various notions of amenability (1).

Contractible
-

� × Bdd App Cont
-

� × App Cont

Amenable
?

×

6

-
� × Bdd App Amen

?

??

6

-
� ?? App Amen

?

[14], [26]

6

Ptwise Amen
?

??

6

-
� ×

commutative [Theorem 1.5.4]

-

�

×

Ptwise App Amen
?

×
6

Here × indicates the fact that there is a counter-example to the relevant implication.
The unannotated implications all hold trivially. We are not able to decide whether or not

(1) Uses Paul Taylor’s diagrams.sty macros.



Approximate amenability 27

any of the undecided (‘??’) implications in the diagram are valid or not. (We suspect the
latter.) However, in the remainder of this paper we shall study a variety of examples; in
each case, they will be seen to be consistent with the conjecture that Banach sequence
algebras which are Ditkin algebras are always pointwise approximately amenable, and
are approximately amenable if and only if they have a bounded approximate identity.

2. Semigroup algebras

2.1. Background. Let S be a semigroup. Thus S is a non-empty set with an associative
binary operation, denoted by

(s, t) 7→ st, S × S → S.

An element p ∈ S is an idempotent if p2 = p; we write E(S) for the set of idempotents
of S. The semigroup is regular if, for each s ∈ S, there exists t ∈ S such that sts = s; in
this case, st and ts belong to E(S), and J2 = J for each left or right ideal J in S.

The semigroup S is amenable if there exists a mean Λ on `∞(S) such that Λ is left
and right invariant under the natural action of S [40]; S is right cancellative if, for all
a, x, y ∈ S, xa = ya implies that x = y; S is right weakly cancellative if, for all x, y ∈ S,
the set {z ∈ S : zx = y} is finite.

For a semigroup S, (` 1(S), ? ) will denote the corresponding semigroup algebra. This
algebra is discussed at length in [13]. In particular, it is determined in [13, Theorem
10.12] exactly when ` 1(S) is amenable. However, it is not known when ` 1(S) is weakly
amenable; for some partial results, see [5] and [31]. It is also not known when ` 1(S) is
approximately amenable or pointwise approximately amenable; for some remarks on the
former issue, see [26, §9] and Theorem 2.2.9 below.

The first result is well-known.

Proposition 2.1.1. Let S be a semigroup such that S is regular and amenable. Suppose
further that S is right cancellative. Then S is an amenable group.

Proof. Since S is regular, it follows that, for each s ∈ S, there exists es ∈ E(S) such that
ess = s. Since S is right cancellative, the element es is uniquely defined by this equation.

Since S is amenable, it is left-reversible [56, Proposition (1.23)]; this means that, for
each pair {s, t} in S, there exists x ∈ sS ∩ tS, say x = sy = tz for some y, z ∈ S. Clearly
exsy = sy, and so exs = s because S is right cancellative. Thus ex = es. Similarly ex = et,
and so es = et. Thus there is a unique element e ∈ S such that es = s (s ∈ S).

Let s ∈ S. Then se2 = se, and so se = s, again by right cancellativity. Thus e is the
identity of S.

Take s ∈ S. By the regularity of S, there exists t ∈ S with sts = s, By replacing t by
sts, we may suppose that also tst = t. We have st = ts = e by right cancellativity, and
so t = s−1 ∈ S. Thus S is a group.

Theorem 2.1.2. Let S be a semigroup such that the semigroup algebra ` 1(S) is approx-
imately amenable. Then S is regular and amenable.

Proof. This is [26, Theorem 9.2].
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Example 2.1.3. Let S be the bicyclic semigroup, so that S is the semigroup with identity
generated by two elements p and q subject to the relation pq = e. By [18], S is regular
and amenable. However ` 1(S) is not approximately amenable [30]. It is also not weakly
amenable [6]. ♦

The following result was suggested by [35, Theorem 2.3].

Corollary 2.1.4. Let S be a semigroup such that ` 1(S) is approximately amenable.
Suppose further that S is right cancellative. Then S is an amenable group, and ` 1(S) is
amenable.

Note that N∨ is weakly cancellative and ` 1(N∨) is approximately amenable (see be-
low), but N∨ is certainly not a group. Thus we cannot replace ‘right cancellative’ by
‘weakly cancellative’ in the above corollary.

2.2. The case where E(S) finite. Let S be a semigroup, and suppose that ` 1(S) is an
amenable Banach algebra. Then it was shown in [19] that E(S) is necessarily finite. In
this section, we shall consider semigroups S for which E(S) is finite, and ask when ` 1(S)
is approximately amenable. Indeed, we shall show that this occurs if and only if ` 1(S) is
already amenable.

Proposition 2.2.1. Let S be a semigroup such that E(S) is finite and

S =
⋃
{pSq : p, q ∈ E(S)}. (2.2.1)

Suppose that ` 1(S) has a left approximate identity and a right approximate identity. Then
` 1(S) has an identity.

Proof. This is [13, Proposition 4.3].

Corollary 2.2.2. Let S be a semigroup such that E(S) is finite and ` 1(S) is approx-
imately amenable. Then ` 1(S) has an identity.

Proof. Since ` 1(S) is approximately amenable, it follows from Corollary 1.5.3 that ` 1(S)
has a left approximate identity and a right approximate identity. By Theorem 2.1.2, S is
regular, and so equation (2.2.1) is satisfied. Thus ` 1(S) has an identity by Proposition
2.2.1.

For example, let S = (N∪{∞},+) with∞ an absorbent element. Then E(S) is empty,
S fails to be regular, and so ` 1(S) is not approximately amenable by Theorem 2.1.2, and
` 1(S) has no identity.

Proposition 2.2.3. Let S be a semigroup such that E(S) is finite, and let J be an
ideal in S. Suppose that ` 1(S) is approximately amenable. Then ` 1(J) is approximately
amenable.

Proof. Set I = ` 1(J). Then I is a complemented ideal in ` 1(S); in particular, I is a left
ideal. By Proposition 1.6.1(ii), I has a right approximate identity.

Let T be the opposite semigroup to S, and set B = ` 1(T ). Then B is also approx-
imately amenable. Since I is a left ideal in B, it follows that I has a right approximate
identity as a subalgebra of B, and hence I has a left approximate identity as a subalgebra
of ` 1(S).
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Certainly E(J) is finite, and J is regular, so that

J =
⋃
{pJq : p, q ∈ E(J)}.

By Proposition 2.2.1, I has an identity. By Proposition 1.6.4(ii), I is approximately
amenable.

We shall use the following structure theorem, which combines Theorems 3.12 and 3.13
in [13], where details of the notation are given. (There are many other standard sources
for this result, for example [10] and [40].)

Proposition 2.2.4. Let S be a regular semigroup such that E(S) is finite. Then S has
a principal series

S = J1 ) · · · ) Jk = K(S),

where J1, . . . , Jk are ideals in S and K(S) is the minimum ideal in S, and the series is
such that each quotient Ji/Ji+1 for i = 1, . . . , k− 1 and Jk is isomorphic as a semigroup
to a regular Rees matrix semigroup with a zero of the form Mo(G,P,m, n) for a certain
group G, a sandwich matrix P , and some m,n ∈ N.

Recalling that Ji/Ji+1 can be identified with (Ji \ Ji+1) ∪ {0}, we see that the map

Ψ : {δs + ` 1(J) : s ∈ I \ J} ∪ {` 1(J)} → Ji/Ji+1,

defined by

Ψ(s) =

{
s (s ∈ I \ J),

0 (s = ` 1(J)),

clearly extends to an isometric isomorphism ` 1(Ji)/` 1(Ji+1)→ ` 1(Ji/Ji+1).

Corollary 2.2.5. Let S be a semigroup such that E(S) is finite and ` 1(S) is approx-
imately amenable. Let S have the above principal series. Then the semigroup algebra of
each regular Rees matrix semigroup with a zero that arises as above is unital and approx-
imately amenable.

Proof. We recall that S is regular because ` 1(S) is approximately amenable, and so
it does have a principal series as above. By Proposition 2.2.3, each algebra ` 1(Ji) is
approximately amenable; by Corollary 2.2.2, each of these algebras has an identity. By
Proposition 1.6.4(i), each algebra ` 1(Ji)/` 1(Ji+1) is approximately amenable, whence so
is ` 1(Ji/Ji+1). Since E(Ji/Ji+1) is finite, ` 1(Ji/Ji+1) is unital by Corollary 2.2.2.

The construction of the semigroup algebra for a regular Rees matrix semigroup with a
zero of the formMo(G,P,m, n) is explained in [13, Chapter 4]. A quotient of this algebra
by a one-dimensional ideal Cδo is isometrically isomorphic to a Munn algebra of the form

M(` 1(G), P,m, n),

as explained in [13, p. 62], and this algebra is unital. Take A = ` 1(G), so that A is a unital
algebra with a character (viz., the augmentation character); since M(` 1(G), P,m, n) is
also unital, it follows from [13, Proposition 2.16] that our Munn algebra is isomorphic to
Mn(` 1(G)).
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Proposition 2.2.6. Let G be a group, and let n ∈ N. Then Mn(` 1(G)) is approximately
amenable if and only if it is amenable.

Proof. Suppose that Mn(` 1(G)) is approximately amenable. Proposition 1.6.7(ii) shows
that ` 1(G) is approximately amenable. By [26, Theorem 3.2], the algebra ` 1(G) is approx-
imately amenable if and only if the group G is amenable, and this holds if and only if
` 1(G) is amenable. Thus in our case ` 1(G) is amenable. But now, by Proposition 1.6.7(i),
Mn(` 1(G)) is also amenable.

Corollary 2.2.7. Let G be a group, and let S be the semigroup Mo(G,P, n). Then
` 1(S) is approximately amenable if and only if it is amenable.

Proof. Suppose that ` 1(S) is approximately amenable. Then ` 1(S)/Cδo is approximately
amenable by Proposition 1.6.4(i). Since ` 1(S)/Cδo is isomorphic to Mn(` 1(G)), it follows
from Proposition 2.2.6 that ` 1(S)/Cδo is amenable. By [13, Theorem 2.12], ` 1(S) is
amenable.

Theorem 2.2.8. Let S be a semigroup such that E(S) is finite. Then ` 1(S) is approx-
imately amenable if and only if it is amenable.

Proof. Suppose that ` 1(S) is approximately amenable, so that S is regular. The set E(S)
is finite by hypothesis. Let S have a principal series as above. By Corollary 2.2.5, the
semigroup algebra of each regular Rees matrix semigroup with a zero that arises is approx-
imately amenable. By Corollary 2.2.7, each of these algebras is amenable, and so each alge-
bra ` 1(Ji)/` 1(Ji+1) and ` 1(Jk) is amenable. By Theorem 1.2.2, ` 1(S) is itself amenable.

In view of [13, Theorem 10.12], we now know exactly when ` 1(S) is approximately
amenable in the special case where E(S) is finite. However the finiteness of E(S) is not
necessary for approximate amenability; indeed, ` 1(N∧), which is described below, is even
boundedly approximately contractible.

In specific situations, however, the finiteness of E(S) is necessary. Recall that the
Brandt semigroup S over a group G with index set I is the set of elementary I × I

matrices over G ∪ {0}; it equals the Rees matrix semigroup with zero over G with index
set I and identity sandwich matrix. Clearly |E(S)| ≥ |I|. The amenability of ` 1(S) was
first considered in [18].

Theorem 2.2.9 (Pourabbas and Maysami Sadr [57]). Let S be the Brandt semigroup
over the group G with index set I. Then the following are equivalent:

(i) ` 1(S) is amenable;
(ii) ` 1(S) is approximately amenable;
(iii) I is finite and G is amenable.

3. A weighted semigroup algebra

For our first serious ‘test case’ for the missing implications in the diagram of §1.9, we
study some weighted semigroup algebras. In this section, we shall consider a weighted
version of ` 1(S) for a specific semigroup S.
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3.1. Basic definitions. Let S be a non-empty set, and let ω : S → [1,∞). Then ` 1(S, ω)
is the Banach space of all functions f : S → C such that

‖f‖ω =
∑
s∈S
|f(s)|ω(s) <∞,

with ‖ · ‖ω as the norm. As before, the characteristic function of {s} for s ∈ S will be
denoted by δs, so that f =

∑
f(s)δs (f ∈ ` 1(S, ω)).

Similarly, we have

`∞(S, ω) = {λ : S → C : ‖f‖ω,∞ = sup
s∈S
|f(s)|ω(s) <∞},

and so (`∞(S, ω), ‖ · ‖ω,∞) is a Banach space. The closed subspace consisting of func-
tions λ ∈ `∞ such that, for each ε > 0, there exists a finite subset F of S such that
sup{|f(s)|ω(s) : s ∈ S \ F} < ε is denoted c0(S, ω).

Then `∞(S, 1/ω) is the dual of ` 1(S, ω), with the duality

〈f, λ〉 =
∑
s∈S

f(s)λ(s) (f ∈ `∞(S, ω), λ ∈ `∞(S, ω)).

Similarly, c0(S, 1/ω) is the predual of ` 1(S, ω).
Now let S be a semigroup. A weight on S is a function ω : S → [1,∞) such that

ω(st) ≤ ω(s)ω(t) (s, t ∈ S).

In this case ` 1(S, ω) is a Banach algebra with respect to the product specified by the
requirement that

δs ? δt = δst (s, t ∈ S).

For example, let N∧ be the semigroup which is N with the semigroup operation ∧,
where

m ∧ n = min{m,n} (m,n ∈ N).

Each element of N∧ is an idempotent. It is well known that ` 1(N∧) is weakly amenable,
but not amenable. It is shown in [13, Proposition 10.10] and [26, Example 4.6] that
` 1(N∧) is boundedly approximately amenable. Here we shall consider weighted versions
of ` 1(N∧).

Let ω : N → [1,∞) be any function. Then ω is a weight on the semigroup N∧.
Throughout this section, set

Aω = (` 1(N∧, ω), ‖ · ‖ω),

so that A′ω = `∞(N, 1/ω) as a Banach space; set Eω = c0(N, 1/ω), so that E′ω = Aω as a
Banach space.

Note that c00 ⊂ Aω ⊂ ` 1 and that c00 is dense in Aω, so that Aω is separable.
Let a = (α(i)) ∈ Aω, and take n ∈ N. Then of course

‖δn‖ω = ω(n) (n ∈ N),

and we see that

a ? δn =
n∑
i=1

α(i)δi +
( ∞∑
i=n+1

α(i)
)
δn.
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Throughout we shall set

Tna =
∞∑

i=n+1

α(i)δi (n ∈ N, a = (α(i)) ∈ Aω), (3.1.1)

for the ‘tail’ after the n-th entry of a.
The action in the dual module A′ω is defined for n ∈ N and λ ∈ A′ω by

(δn · λ)(m) =

{
λ(m) (m ≤ n),

λ(n) (m > n),
(m ∈ N).

The projective tensor product Aω ⊗̂Aω is identified with the Banach space
` 1(N× N, ω ⊗ ω), where

(ω ⊗ ω)(i, j) = ω(i)ω(j) (i, j ∈ N).

The projective tensor norm in Aω ⊗̂Aω is also denoted by ‖ · ‖ω; the canonical product
map is πω : Aω ⊗̂Aω → Aω, and the dual of Aω ⊗̂Aω is (Aω ⊗̂Aω)′, identified with
`∞(N× N, 1/(ω ⊗ ω)).

Proposition 3.1.1. Suppose that limn→∞ ω(n) = ∞. Then Eω is a closed submodule
of A′ω, and so Aω is a dual Banach algebra.

Further c0(N×N, 1/(ω⊗ω)) is a closed submodule of (Aω ⊗̂Aω)′, and so Aω ⊗̂Aω is
a dual module.

Proof. This is easily verified (cf. [12, Example 9.13]).

Let ω be as above. Throughout we set

ω̃(n) = inf{ω(i) : i ≥ n} (n ∈ N).

We fix a strictly increasing subsequence (nj) of N as follows. In the case where
limn→∞ ω(n) =∞, so that each infimum above is actually attained, first choose n1 ∈ N
so that ω(n1) = ω̃(1); having defined nj , choose nj+1 ∈ N with nj+1 > nj and so that
ω(nj+1) = ω̃(nj + 1). We note that, for each j ∈ N, we have

ω(nj) ≤ ω̃(nj) ≤ ω(i) (i ≥ nj). (3.1.2)

Otherwise, lim infn→∞ ω(n) <∞, and we take (nj) to be any strictly increasing sequence
in N such that ω(nj)→ lim infn→∞ ω(n).

3.2. The Gel’fand transform. We continue with the above notation. Take a = (α(i))
in Aω, and set

β(n) =
∞∑
i=n

α(i) (n ∈ N), and b = (β(n)).

The characters on Aω have the form a 7→ β(n) for n ∈ N, and so the character space
of Aω is N; the Gel’fand transform of a is just b. In particular,

δ̂n = en = (

n︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . . ) (n ∈ N).

We write Bω for the algebra Âω which is the Gel’fand transform of Aω, so that Bω
is a strongly regular Banach sequence algebra on N. Given b ∈ Bω, the corresponding
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a = (α(i)) ∈ Aω with Gel’fand transform equal to b is specified by

α(i) = β(i)− β(i+ 1) (i ∈ N),

and so

Bω =
{
b ∈ c 0 : ‖b‖ω =

∞∑
i=1

|β(i+ 1)− β(i)|ω(i) <∞
}
.

These are exactly the Feinstein algebras, first studied in [21]; see also [69]. The norm of
b in Bω in these sources is taken to be ‖b‖∞ + ‖b‖ω, but these norms are equivalent to
our norm whenever ω ≥ 1. Note that for a ∈ Aω we have ‖a‖ω = ‖â‖ω as just defined, so
the double usage of ‖ · ‖ω should cause no confusion.

In the case where ω(n) = 1 (n ∈ N), Bω is the algebra of sequences of bounded
variation, bv; see [11, Example 4.1.44].

Proposition 3.2.1.

(i) Let b ∈ Bω. Then ‖b‖ω ≥ ω̃(r)|β(r)| (r ∈ N).
(ii) Let F ∈ Bω ⊗Bω. Then ‖F‖ω ≥ ω̃(r)ω̃(s)|F (r, s)| (r, s ∈ N).
(iii) Let b ∈ Bω. Then limk→∞ ‖Tnk

(b)‖ω = 0.

Proof. (i) Let r ∈ N. For each n > r, we have

‖b‖ω ≥
∞∑
i=r

|β(i+ 1)− β(i)|ω(i) ≥ ω̃(r)
n∑
i=r

|β(i+ 1)− β(i)| ≥ ω̃(r)|β(n+ 1)− β(r)|,

and so the result follows because limn→∞ β(n) = 0.
(ii) Fix ε > 0, and choose m ∈ N and elements b1, . . . , bm, c1, . . . , cm ∈ Bω such that

F =
∑m
j=1 bj ⊗ cj and

∑m
j=1 ‖bj‖ω‖cj‖ω ≤ ‖F‖ω + ε. Let r, s ∈ N. Then

F (r, s) =
m∑
j=1

bj(r)cj(s),

and so, using (i), we have

ω̃(r)ω̃(s)|F (r, s)| ≤
m∑
i=1

‖bj‖ω‖cj‖ω ≤ ‖F‖ω + ε.

This holds for each ε > 0, and so the result follows.
(iii) Take (nj) as above. In the case where limn→∞ ω(n) =∞, we have

|β(nk + 1)|ω(nk) ≤
∞∑

i=nk+1

|αi|ω(nk) ≤
∞∑

i=nk+1

|αi|ω(i) (k ∈ N),

and so |β(nk + 1)|ω(nk) → 0 as k → ∞. On the other hand, if lim infn→∞ ω(n) < ∞,
this limit is obvious because b ∈ c0. Thus

lim
k→∞

‖Tnk
(b)‖ω = lim

k→∞

( ∞∑
i=nk+1

|β(i+ 1)− β(i)|ω(i) + |β(nk + 1)|ω(nk)
)

= 0,

giving (iii).

The following corollary is noted in [21, Corollary 2.5].
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Corollary 3.2.2. The Banach sequence algebra (Bω, ‖ · ‖ω) is a Ditkin algebra.

Proof. This is immediate from clause (iii) of Proposition 3.2.1.

3.3. An approximate identity. Conditions on ω for Aω to have a (bounded) approx-
imate identity were first given in [21]. Indeed, with (nj) as above, define

uj = δnj
(j ∈ N).

For each a = (α(i)) ∈ Aω and j ∈ N, we have ‖a − a ? uj‖ω = ‖â − âenj‖ω, and so
‖a− a ? uj‖ω → 0 as k →∞ by Proposition 3.2.1(iii). Thus we have the following result.

Proposition 3.3.1. For each ω, the sequence (uj) is an approximate identity for Aω;
the sequence is bounded whenever lim infn→∞ ω(n) <∞.

Suppose that limn→∞ ω(n) = ∞. Then it is easily seen that Aω does not have a
bounded approximate identity. In fact, a slightly stronger remark than this holds true;
we recall that each Banach algebra with a bounded approximate identity factors [11,
Theorem 2.9.24].

Proposition 3.3.2. Suppose that limn→∞ ω(n) = ∞. Then the algebra Aω does not
factor weakly.

Proof. Assume towards a contradiction that Aω = A2
ω. Since Aω is separable, it follows

from a theorem of Loy [11, Proposition 2.2.6(i)] that there exist m ∈ N and C > 2
such that each a ∈ Aω with ‖a‖ω = 1 can be written as a =

∑m
j=1 aj ? bj with∑m

j=1 ‖aj‖ω‖bj‖ω ≤ C. Choose n ∈ N so that ω(i) ≥ C (i ≥ n), and write δn in the
above form. Then

1 ≤
m∑
j=1

(
|αj(n)|

∞∑
i=n

|βj(i)|+ |βj(n)|
∞∑
i=n

|αj(i)|
)
,

and so

C2 ≤
m∑
j=1

(
|αj(n)|ω(n)

∞∑
i=n

|βj(i)|ω(i) + |βj(n)|ω(n)
∞∑
i=n

|αj(i)|ω(i)
)

≤ 2
m∑
j=1

‖aj‖ω‖bj‖ω ≤ 2C,

a contradiction.

It is noted in [21, Theorem 2.6] that Bω has bounded relative units if and only if
lim infn→∞ ω(n) < ∞. The question when closed ideals in Bω have bounded approx-
imate identities is answered in [69]; sufficient conditions for closed ideals in Bω to be
complemented as Banach spaces are also given therein.

3.4. Weak amenability and amenability. The Banach algebra Aω is commutative
and is spanned by its idempotents. Thus Aω is always weakly amenable [11, Proposition
2.8.72(i)].
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In the case where ω = 1, the algebra A is not amenable because it has infinitely many
idempotents [13, Proposition 10.5]. It follows that Aω is not amenable for any ω [11,
Proposition 2.8.64].

In fact, [69] proves, with no supposition that ω ≥ 1, that Bω is amenable if and only
if
∑∞
n=1 ω(n) < ∞; [69] also gives conditions that are necessary and sufficient for an

arbitrary closed ideal I to be amenable—in our case, with ω ≥ 1, this happens only if I
is finite-dimensional.

It is proved in [13, Example 11.4] that, in the case where ω = 1, the second dual
algebra (A′′ω,2) is also weakly amenable.

3.5. Pointwise amenability. In this subsection we shall show that the algebras Aω are
never pointwise amenable.

Proposition 3.5.1. Suppose that there is a constant C ≥ 1 and a strictly increasing
sequence (mj) in N such that ω(mj + 1) ≤ Cω(mj) (j ∈ N). Then Aω is not pointwise
amenable.

Proof. By replacing (mj) by (m2j) and C by C2, if necessary, we may suppose that
mj+1 > mj + 1 (m ∈ N). Set T = {mj + 1 : j ∈ N} and

I = {a ∈ Aω : â(n) = 0 (n ∈ N \ T )}

=
{ ∞∑
j=1

α(mj)(δmj+1 − δmj
) :
∞∑
j=1

|α(mj)|ω(mj) <∞
}
,

so that I is a closed ideal in Aω. Then

I ◦ = {λ ∈ A′ω : λ(mj + 1) = λ(mj) (j ∈ N)}.

We claim that I is weakly complemented in Aω. Indeed, define

P : λ 7→ 1
2

∞∑
j=1

(λ(mj) + λ(mj + 1))(δmj
+ δmj+1), A′ω → I ◦.

Clearly P is a linear map, and

sup
n∈N

|(Pλ)(n)|
ω(n)

=
1
2

sup
j∈N

|λ(mj)|+ |λ(mj + 1)|
ω(mj)

≤ 1
2

sup
j∈N

|λ(mj)|
ω(mj)

+
C

2
sup
j∈N

|λ(mj + 1)|
ω(mj + 1)

≤ C + 1
2
‖λ‖ω,

so that P is continuous with ‖P‖ ≤ (C + 1)/2. Since P is a projection onto I ◦, the
subspace I is weakly complemented in Aω.

We next claim that I does not have bounded approximate units. Assume towards a
contradiction that I has bounded approximate units; take K such that, for each a ∈ I,
there is u ∈ I with ‖u‖ω ≤ K and ‖a− a ? u‖ω < 1, say

u =
∞∑
j=1

u(mj)(δmj+1 − δmj
).
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Now choose k > K + 1, and set

a =
k∑
j=1

(δmj+1 − δmj
),

so that a ∈ I. Then

a− a ? u =
k∑
j=1

(1− u(mj))(δmj+1 − δmj ),

and so
∑k
j=1 |1− u(mj)|ω(mj) < 1. Thus

‖u‖ω ≥
k∑
j=1

|u(mj)|ω(nj) ≥
k∑
j=1

ω(mj)− 1 ≥ k − 1 > K,

a contradiction. Hence I does not have bounded approximate units. (This is also a con-
sequence of [69, Lemma 5.3].) By Proposition 1.6.3, Aω is not pointwise amenable.

Now suppose that limn→∞ ω(n) = ∞. Then, by a remark above, Aω itself does not
have a bounded approximate identity, and so, directly from Theorem 1.5.4, Aω is not
pointwise amenable.

Thus we have proved the following result.

Theorem 3.5.2. For each weight ω, the Banach algebra Aω is not pointwise amenable.

3.6. Bounded approximate contractibility. In this subsection we shall determine
when Aω is boundedly approximately contractible.

In the case where lim infn→∞ ω(n) < ∞, it is easy to give an explicit construction
showing that Aω is sequentially (and hence boundedly) approximately contractible, and
hence boundedly approximately amenable (cf. [13, Example 10.10] and [26, Example 4.6]).
The result is also a consequence of Theorem 3.10.1 below.

For n ∈ N, set

Fn = δn ⊗ δn +
n∑
j=1

(δj − δj−1)⊗ (δj − δj−1) ∈ Aω ⊗Aω,

where δ0 = 0. Then π(Fn) = 2δn. Let a ∈ Aω. As in [13] and [26], we have

∆a(Fn) = δn ⊗ Tna− Tna⊗ δn (3.6.1)

with Tna as in (3.1.1), and so

‖∆a(Fn)‖ω ≤ 2ω(n)‖Tna‖ω.

Now let the sequence (nj) be as above, set C = lim infn→∞ ω(n) ≥ 1, and again set
uj = δnj (j ∈ N). Let a ∈ Aω. By an earlier remark, limj→∞ a ? uj = a. Further,

‖∆a(Fnj
)‖ω ≤ C‖Tnj

a‖ω → 0 as j →∞.

This shows that conditions (i) and (iii) of Proposition 1.4.3 are satisfied, and (ii) and (iv)
follow by the uniform boundedness principle.

The next result will be essentially superseded by Theorem 3.9.1 below. However, we
give a proof here as it clarifies the use of boundedness, and also because, surprisingly,
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condition (i) of Proposition 1.4.3 plays no rôle. Further the argument here is in terms
of Aω, whereas that of Theorem 3.9.1 is in terms of the algebra Bω of Gel’fand transforms.

Theorem 3.6.1. Suppose that limn→∞ ω(n) =∞. Then there is no constant K > 0 such
that, for each ε > 0 and a ∈ A, there exist elements u ∈ Aω and F ∈ Aω ⊗ Aω with
π(F ) = 2u and such that:

(i) ‖∆δk
(F )‖ω ≤ K‖δk‖ω = Kω(k) (k ∈ N);

(ii) ‖a− a ? u‖ω < ε.

Proof. Assume towards a contradiction that there is such a constant K > 0. Take a ∈ A
and ε > 0, and corresponding element F ∈ Aω ⊗Aω.

Temporarily fix k ∈ N and set G = ∆δk
(F ) ∈ Aω ⊗Aω. Then

G =
∞∑
j=1

[k−1∑
i=1

F (i, j)δi ⊗ δj +
( ∞∑
i=k

F (i, j)
)
δk ⊗ δj

]

−
∞∑
i=1

[k−1∑
j=1

F (i, j)δi ⊗ δj +
( ∞∑
j=k

F (i, j)
)
δi ⊗ δk

]
−
∞∑
j=1

u(j)δk ⊗ δj +
∞∑
i=1

u(i)δi ⊗ δk.

Evaluating the expression for G at the point (k, s) ∈ N× N, we see that

G(k, s) =



∞∑
i=k+1

F (i, s)− u(s) (s < k),

∞∑
i=k

F (i, k)−
∞∑
j=k

F (k, j) (s = k),

∞∑
i=k

F (i, s)− u(s) (s > k).

(3.6.2)

We also note that u(k) = G(k, k)/2.
Since ` 1(N, ω) ⊗̂ ` 1(N, ω) = ` 1(N× N, ω ⊗ ω) isometrically, we have

‖∆b(F )‖ω =
∞∑
i=1

∞∑
s=1

|G(i, s)|ω(i)ω(s) ≤ K‖δk‖ = Kω(k),

and so
∞∑
s=1

|G(k, s)|ω(s) ≤ K. (3.6.3)

Also,
∞∑
s=1

∞∑
i=k

|F (i, s)|ω̃(k)ω(s) ≤
∞∑
s=1

∞∑
i=k

|F (i, s)|ω(i)ω(s) ≤ ‖F‖ω,

whence
∞∑
s=1

∞∑
i=k

|F (i, s)|ω(s) ≤ ‖F‖ω
ω̃(k)

.
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Similarly,

lim
k→∞

∞∑
j=k

|F (k, j)|ω(k) ≤ ‖F‖ω
ω̃(k)

.

It follows from (3.6.2) and (3.6.3) that, for each k ∈ N, we have

‖u‖ω =
∞∑
s=1

|u(s)|ω(s) ≤ K +
2‖F‖ω
ω̃(k)

.

Thus ‖u‖ω ≤ K since ω̃(k)→∞ as k →∞.
We conclude that, for each a ∈ A and ε > 0, there exists u ∈ A with ‖u‖ω ≤ K and

such that ‖a− a ? u‖ω ≤ ε. So Aω has bounded approximate units. By [11, §2.9], Aω has
a bounded approximate identity, a contradiction of Proposition 3.3.2.

Corollary 3.6.2. The Banach algebra Aω is boundedly approximately contractible if
and only if lim infn→∞ ω(n) <∞.

Proof. This follows from Proposition 1.4.3 and Theorem 3.6.1.

Remark. The above result is also a consequence of [9, Theorem 3.3].

3.7. Pointwise approximate amenability

Theorem 3.7.1. For each weight ω, the Banach algebra Aω is pointwise approximately
amenable.

Proof. We shall show that the hypotheses of Theorem 1.8.2 are satisfied.
By Proposition 3.2.2, Aω is a Ditkin algebra, which confirms one hypothesis of The-

orem 1.8.2.
Now take a ∈ A, set b = β(i) = â, and take ε > 0. Choose n ∈ N such that

∞∑
j=n

|β(j + 1)− β(j)|ω(j) < ε. (3.7.1)

Next, choose η > 0 with

2η
n∑
j=1

ω(j) < ε, (3.7.2)

and then set D = {i ∈ N : |β(i)| ≥ η}, a finite set. We define

β̃(i) =

{
ηβ(i)/|β(i)| (i ∈ D),

β(i) (i ∈ N \D),

and then set b̃ = (β̃(i)). We note that |β̃(i)| ≤ min{|β(i)|, η} (i ∈ N) and that

|β̃(i)− β̃(j)| ≤ min{|β(i)− β(j)|, 2η} (i, j ∈ N). (3.7.3)

In particular, b̃ is constant on the sets of constancy of b. Finally, we define u = (u(i)) ∈ CN

by setting
(1− u(i))β(i) = β̃(i) (i ∈ N),

taking u(i) = 0 in the case where β(i) = 0. We see that u(i) = 0 (i ∈ N \ D), and so
u ∈ c00. Also we see that u is constant on the level sets of b, and that b− bu = b̃.
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Further, we calculate that

‖b− bu‖ω =
n∑
j=1

|β̃(j + 1)− β̃(j)|ω(j) +
∞∑

j=n+1

|β̃(j + 1)− β̃(j)|ω(j)

≤ 2η
n∑
j=1

ω(j) +
∞∑

j=n+1

|β(j + 1)− β(j)|ω(j)

by (3.7.3), and so ‖b̃‖ω < 2ε by (3.7.2) and (3.7.1).
The result now follows from Theorem 1.8.2.

3.8. Convergence of ‘tails’. Following Theorem 1.8.2 above, we foreshadowed that the
requirement

‖(I − PC)(a)‖ → 0 as the finite subsets C expand to N, (3.8.1)

a condition which was used in [14, Proposition 3.6], was not necessarily satisfied in Aω
for certain weight functions ω. We shall see that the two cases where ω(n) = nα (n ∈ N),
and where ω(n) = nαn (n ∈ N), for α > 0, give contrasting conclusions. We shall work
in Bω.

Take b ∈ Bω. First consider the situation when (I − PC)(b) has the form of zeros,
then an ‘alternating interval’, then an unchanged tail of b:

(I − PC)(b) = (0, . . . , 0, bk, 0, bk+2, 0, . . . , 0,

unchanged (k+2`)-tail︷ ︸︸ ︷
bk+2`, bk+3`, . . . ),

where k, ` ∈ N. (Some of the bj could be zero as well.) The corresponding element in Aω
is given by

a′ = (0, . . . , 0,
k−1

bk ,
k

−bk, . . . ,
k+2`−1

bk+2` ,

unchanged (k+2`)-tail︷ ︸︸ ︷
ak+2`, ak+3`, . . . ).

So the original a (with â = b) has been modified by setting the first k − 2 elements to 0,
then replacing 2` terms by sums of certain tails.

Then

‖a′‖ω =
∑̀
i=0

|bk+2i|(ω(k + 2i− 1) + ω(k + 2i)) + |bk+2`|ω(k + 2`) +
∞∑

i=k+2`

|ai|ω(i)

≥
∑̀
i=0

∣∣∣ ∞∑
j=k+2i

aj

∣∣∣(ω(k + 2i− 1) + ω(k + 2i)). (3.8.2)

In particular, in the case where ω(n) = nα for α > 0 and an = 1/n2ω(n) = n−2−α, this
becomes∑̀
i=0

[(k + 2i− 1)α + (k + 2i)α]
∞∑

j=k+2i

j−2−α ∼
∑̀
i=0

2(k + 2i)α

1 + α
(k + 2i)−1−α

=
2

1 + α

∑̀
i=0

1
k + 2i

∼ 21−α

1 + α
log
(
k + 2`
k

)
,
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which is arbitrarily large as ` increases for each fixed k ∈ N. In particular, by first
increasing k, and then increasing ` in terms of k, we see that ‖(I − PC)b‖ω 9 0 as C
expands, and so (3.8.1) fails to hold.

On the other hand, consider the case where ω(n) = nαn for some α > 0. Choose
p > 2/α, so that i2ω(i) ≤ ω(j) (j > i+ p). Then we have

∑̀
i=0

∣∣∣ ∞∑
j=k+2i

aj

∣∣∣(ω(k + 2i− 1) + ω(k + 2i)) ≤ 2
∑̀
i=0

∞∑
j=k+2i

|aj |ω(k + 2i)

≤ 2
∑̀
i=0

(k + 2i)−2
{ ∞∑
j=k+2i+p

|aj |ω(j)
}

+ 2(p− 1)
∞∑
j=k

|aj |ω(j).

Now, given ε > 0, choose k0 ∈ N so large that the k-th tails of a have norm less than ε

for each k > k0. Then, for each k > k0, we have∑̀
i=0

∣∣∣ ∞∑
j=k+2i

aj

∣∣∣(ω(k + 2i− 1) + ω(k + 2i)) ≤ 2ε
∑̀
i=0

(k + 2i)−2 + 2(p− 1)ε < 2(p+ 1)ε.

Thus, for k sufficiently large, we have ‖a′‖ω < 2(p+3)ε since the last two terms of (3.8.2)
converge to zero as k →∞.

Now given any (I − PC)(b), by setting alternate entries to zero, we have an element
of the above form. What change has this done to our estimates? If

(I − PC)(b) = (. . . , bq−1, bq, bq+1, . . . ) is modified to (. . . , bq−1, 0, bq+1, . . . ),

then a′ changes from

(. . . , bq − bq−1, bq+1 − bq, bq+2 − bq+1, . . . ) to (. . . ,−bq−1, bq+1, bq+2 − bq+1, . . . ).

In the norm calculation we are thus replacing

|bq − bq−1|ωq−1 + |bq+1 − bq|ωq = |aq−1|ωq−1 + |aq|ωq (3.8.3)

by

|bq−1|ωq−1 + |bq+1|ωq =
∣∣∣ ∞∑
j=q−1

aj

∣∣∣ωq−1 +
∣∣∣ ∞∑
j=q

aj

∣∣∣ωq.
This latter need not be larger, but in our estimates we replace this with

∞∑
j=q−1

|aj |ωq−1 +
∞∑
j=q

|aj |ωq,

which is clearly larger than (3.8.3).
It follows that the ‘alternating form’ is the worst possible scenario, so that indeed

(3.8.1) holds when ω(n) = nαn.

3.9. Approximate amenability. We continue with the above notation concerning Aω.

Theorem 3.9.1. Suppose that limn→∞ ω(n) =∞. Then Aω is not approximately amen-
able.

Proof. Let (nk) be the sequence defined at the end of §3.1 above, so that ω(nk) → ∞.
Take a subsequence s(j) of (nk) such that, for each j ∈ N, we have:
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(i) sj ≥ sj−1 + 2;
(ii) ω(sj) ≥ (j + 1)4.

Here we take s0 = 0; set ω(0) = 1 for convenience.
Define p, q > 0 by

p

∞∑
i=1

1
ω(si)i2

= 1, q

∞∑
i=1

1
ω(si + 1)i2

= 1;

since ω(si + 1) ≥ ω(si) (i ∈ N), we have q ≥ p.
Define sequences (β(j)) and (γ(j)) by setting

β(j) = p

∞∑
i=j

1
ω(si)i2

and γ(j) = q

∞∑
i=j

1
ω(si + 1)i2

for j ∈ N. Note that β(1) = γ(1) = 1 and that

β(i)− β(i+ 1) =
p

ω(si)i2
, γ(i)− γ(i+ 1) =

q

ω(si + 1)i2
(i ∈ N). (3.9.1)

Set ri = si − si−1 (i ∈ N), and define

b = (

r1︷ ︸︸ ︷
β(1), . . . , β(1),

r2︷ ︸︸ ︷
β(2), . . . , β(2), . . . ),

c = (

r1+1︷ ︸︸ ︷
γ(1), . . . , γ(1),

r2︷ ︸︸ ︷
γ(2), . . . , γ(2), . . . ).

(It is only the first block in c that is longer than the corresponding block of b.)
Clearly β(n)→ 0 and γ(n)→ 0 as n→∞, so that both the sequences b and c belong

to the space c0. Further, by (3.9.1), we have b, c ∈ Bω .
For j ∈ N, we have

ω(sj)ω(sj−1 + 1)β(j) ≥ ω(sj)ω(sj−1)p
∞∑
i=j

1
ω(si)i2

≥ ω(sj−1)p/j2 ≥ j2p (3.9.2)

and, similarly,

ω(sj)ω(sj + 1)γ(j) ≥ ω(sj)q/j2 ≥ j2q. (3.9.3)

Finally, take ε > 0 such that

ε < min{p/π2, 1/2}. (3.9.4)

Assume towards a contradiction that Aω is approximately amenable. Then, by Prop-
osition 1.4.2, there exists F ∈ c00(N× N) such that u = π(F )/2 and F satisfy

‖b− bu‖ω < ε, ‖c− cu‖ω < ε, ‖∆b(F )‖ω < ε, ‖∆c(F )‖ω < ε.

In particular |b(1)(1− u(1))| ≤ ‖b− bu‖ω < 1/2, so that |u(1)| > 1/2.
Let j ∈ N. Since b has constant value β(j) on the block {sj−1 +1, . . . , sj}, we see that

∆b(F )(sj , sj−1 + 1) = (u(sj)− u(sj−1 + 1))β(j).

Similarly, γ(sj + 1) = γ(sj), and so

∆c(F )(sj + 1, sj) = (u(sj + 1)− u(sj))γ(j).
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It follows from Proposition 3.2.1(ii) and (3.1.2) and (3.9.2) that we have

ε ≥ ‖∆b(F )‖ω ≥ ω(sj)ω(sj−1 + 1)|u(sj)− u(sj−1 + 1)|β(j)

≥ j2p|u(sj)− u(sj−1 + 1)|. (3.9.5)

Similarly, using (3.9.3) instead of (3.9.2), we see that

ε ≥ ‖∆c(F )‖ω ≥ j2q|u(sj + 1)− u(sj)|. (3.9.6)

Then (3.9.5), (3.9.6), and (3.9.4) together show that

|u(1)− u(sk)| ≤ 2ε
p

∞∑
i=1

1
i2
<

1
3

for each k ∈ N, whence

|u(sk)| ≥ 1
2
− 1

3
=

1
6

(k ∈ N).

This contradicts the fact that u(sk) = 0 for all sufficiently large k ∈ N.
Hence Aω is not approximately amenable.

3.10. Summary. Putting all the above results together yields a complete description of
the amenability (and some other) properties of the weighted semigroup algebras Aω.

Theorem 3.10.1. Let ω : N → [1,∞) be a function, and set Aω = (` 1(N∧, ω), ?). Then
the following conditions on ω are equivalent:

(a) lim infn→∞ ω(n) <∞;
(b) Aω is boundedly approximately contractible;
(c) Aω is boundedly approximately amenable;
(d) Aω is approximately amenable;
(e) Aω has a bounded approximate identity;
(f) Aω factors;
(g) Aω factors weakly;
(h) Aω has bounded relative units.

The Banach algebras Aω are always weakly amenable and pointwise approximately amen-
able, but they are never pointwise amenable.

In particular, the algebras Aω do not give counter-examples to any of the questioned
implications in the diagram at the end of §1.

Recall that for ω : N→ [1,∞) and 1 ≤ p <∞, we have

` p(ω) = {f : N→ C : ‖f‖p =
∑
|f(i)|pω(i) <∞},

under pointwise operations.
The following table gives a quick comparison of Aω with other common sequence

algebras. The ` p(ω) results follow from the absence of a bounded approximate identity
and Corollary 1.8.5, and the properties of the James algebra follow from Proposition 1.6.1
and [11, Example 4.1.44].



Approximate amenability 43

` p(ω) Aω James

Amenable never
P
ωi <∞ no

Ptwise amenable never never no
Approx. amenable never lim inf ω <∞ yes
Ptwise approx. amenable always always yes
Bounded ai never lim inf ω <∞ yes

Remark. A consequence of the above characterization is that, if A and B are both
pointwise approximately amenable, the same need not be true of A ∩ B taken with the
maximum of the norms. For take ω1 and ω2 to be weights satisfying (a) above, but
such that ω1 ∨ ω2 →∞. Then Aω1 and Aω2 are pointwise approximately amenable, but
Aω1∨ω2 = Aω1 ∩Aω2 is not.

Note that an analogous remark holds for amenability. Indeed, take the continuous
weights t 7→ et and t 7→ e−t on (R,+). Then L 1(et) and L 1(e−t) are amenable, yet the
algebra L 1(et) ∩ L 1(e−t) = L 1(e|t|) is not [36, Theorem 0], [26, Theorem 8.6].

3.11. A subsidiary example. Changing the semigroup operation on N, we consider
the weighted semigroup algebra A = ` 1(N∨, ω), where N∨ is the set N with the product

m ∨ n = max{m,n} (m,n ∈ N).

Here δ1 is the identity of A. Take ϕ ∈ ΦA, and suppose that ϕ(δj) = 1 for some j ∈ N.
For i > j, we have δi ? δj = δi, and so ϕ(δi) = 0. For i < j, we have δi ? δj = δj , and so
ϕ(δi) = 1. Thus, if there is a least j ∈ N with ϕ(δj+1) = 0, then

ϕ(a) =
j∑
i=1

αi (a = (α(i)) ∈ A).

Otherwise ϕ(δj) = 1 for all j ∈ N, and so

ϕ(a) = ϕ∞(a) =
∞∑
i=1

αi (a = (α(i)) ∈ A).

Thus ΦA = N ∪ {∞}, with Gel’fand map

a 7→
( j∑
i=1

αi : j ∈ N ∪ {∞}
)
.

Setting β(0) = 0, the element a with transform (β(i)) is given by

α(i) = β(i)− β(i− 1) (i ∈ N).

Consider B = ker ϕ∞, so that

B̂ =
{
β ∈ c0 : ‖β‖ =

∞∑
i=1

|β(i)− β(i− 1)|ω(i) <∞
}

=
{
β ∈ c0 : |β(1)|ω(1) +

∞∑
j=1

|β(j + 1)− β(j)|ω(j + 1) <∞
}
.
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Noting that
∞∑
j=1

|β(j + 1)− β(j)|ω(j + 1) ≤ |β(1)|ω(1) +
∞∑
j=1

|β(j + 1)− β(j)|ω(j + 1)

≤
∞∑
j=1

|β(j + 1)− β(j)|(ω(j + 1) + 1)

≤ 2ω(1)
∞∑
j=1

|β(j + 1)− β(j)|ω(j + 1),

we see that B ' Bσ, where σ(j) = ω(j + 1) (j ∈ N). But the amenability properties
of Bσ have been characterized in Theorem 3.10.1 in terms of the finiteness or other-
wise of lim infn→∞ σ(n), which is exactly the same as the finiteness or otherwise of
lim infn→∞ ω(n). Finally, B and A = B] have the same amenability properties, so we are
done.

4. Segal algebras

4.1. Introduction. In this section, we shall consider the amenability properties of some
Segal algebras. For earlier discussions on this topic, see [23], [24], and [28]; for more recent
results see [9]. In particular, it is proved in [24, Theorem 2.1, Corollary 3.3] that each
symmetric Segal algebra on a SIN group and on an amenable group (this includes all
Segal algebras on locally compact abelian groups) is approximately weakly amenable.

Here we shall concentrate on Segal algebras on only the locally compact abelian groups
T and R, but for the convenience of the reader, we recall the following general definition
taken from [11, Definition 4.5.26]; for a more detailed account, see [24, §1] and [60, §6.2].
For a function f on G, and a ∈ G, we denote by af the function x 7→ f(ax), G→ C.

Definition 4.1.1. Let G be a locally compact abelian group. A Banach algebra (S, ‖·‖S)
is a Segal algebra on G if:

(i) S is a dense subalgebra of (L 1(G), ?, ‖ · ‖1);
(ii) ‖f‖1 ≤ ‖f‖S (f ∈ S);
(iii) S is isometrically translation-invariant, and the map a 7→ af, G→ S, is continuous

for each f ∈ S.

The Segal algebra S is proper if S 6= L 1(G).

For a locally compact abelian group G, we write Γ for the dual group; for f ∈ L 1(G)
the Fourier transform of f on Γ is denoted by F(f) = f̂ , and

A(Γ) = {f̂ : f ∈ L 1(G)},

so that A(Γ) is a self-adjoint, regular, natural Banach function algebra on Γ [11, §4.5].
The subalgebra of A(Γ) consisting of transforms with compact support is denoted by
A00(Γ), and, for a Segal algebra S, we write

S00 := {f ∈ S : f̂ ∈ A00(Γ)}.
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We shall require the following properties of Segal algebras; see [60, Propositions 6.2.5
and 6.2.8], [59], and [7].

Lemma 4.1.2. Let S be a Segal algebra on a locally compact abelian group G. Then:

(i) the character space of S is Γ;
(ii) S00 = L 1(G)00 is dense in S;
(iii) S is a Ditkin algebra.

Let G be a locally compact abelian group, and take q with 1 ≤ q <∞. Then we define

Sq(G) = {f ∈ L 1(G) : f̂ ∈ L q(Γ)},

with the norm
|||f |||q = ‖f‖1 + ‖f̂‖q (f ∈ Sq(G)).

Clearly (Sq(G), ||| · |||q) is a Segal algebra on G. In particular, the algebra (S1(G), ||| · |||1)
is often called the Lebesgue–Fourier algebra of G, and is denoted by LA(G); see, for
example, [24]. The algebras Sq(G) were first studied in [50], and more recently in [34],
where they are denoted Aq2. For example it is shown in [34, Theorem 2] that we have
Sq1(G) ( Sq2(G) whenever 1 ≤ q1 < q2 and G is non-compact.

Since the Fourier transform F : Sq(G)→ L q(Γ) is continuous, it induces a continuous
operator

F ⊗ F : Sq(G) ⊗̂ Sq(G)→ L q(Γ) ⊗̂ L q(Γ);

we write F̂ for (F ⊗ F)(F ), and when convenient view it as an element of L q(Γ× Γ).
For the remainder of this section, we define and fix

γj =


1

j2 + |j|
(j ∈ Z \ {0}),

0 (j = 0),
(4.1.1)

and set γ = (γj). Note that γj ↘ 0 as j →∞ and that

kγk ≤
∞∑

j=k+1

γj (k ∈ N). (4.1.2)

This latter inequality is the key property of the sequence γ, and dictates the definition of
γ in (4.1.1); for example, we cannot replace 1/(j2 + |j|) by 1/(|j|m + |j|) for any m > 2.

We are interested in the possible approximate amenability of Segal algebras, and make
the following observation in the general abelian situation.

Remark 4.1.3. Let G be a locally compact abelian group. By [60, Theorem 6.2.38], the
Fourier transform maps the Feichtinger algebra S 1(G) bicontinuously onto S 1(Γ). For
G compact, so that Γ is discrete, [60, Proposition 6.2.9(ii)] shows that this latter algebra
is ` 1(Γ), the two norms from S 1(Γ) and ` 1(Γ) being equivalent. In particular the map

f 7→ f̂ , S 1(G)→ ` 1(Γ),

is a Banach algebra isomorphism, where the pointwise product is taken on ` 1(Γ). It follows
that S 1(G) fails to be approximately amenable wheneverG is an infinite, compact abelian
group. This result is also shown in [9, Proposition 5.1].
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4.2. The approximate amenability of Segal algebras on T. In this subsection, we
shall often write f(θ) for f(eiθ), and regard f as a function on [0, 2π]. Also we normalize
Lebesgue measure on T to have total mass 1, and so

‖f‖p =
(

1
2π

∫ 2π

0

|f(θ)|p dθ
)1/p

for f ∈ L p(T) and p ≥ 1. For 1 < p <∞, p′ will always denote its conjugate index, and
we set

p̃ = max{2, p′}.

We recall that L q(T) ⊂ L p(T) ⊂ L 1(T) whenever 1 < p < q, and that ‖f‖1 ≤ ‖f‖p when
p ≥ 1 and f ∈ L p(T). For q ≥ 1 the algebras (L q(T), ?, ‖ · ‖q) are Segal algebras on T;
they are proper whenever q > 1.

It follows from Lemma 4.1.2 that each Segal algebra on T can be regarded as a Banach
sequence algebra on Z that is a Ditkin algebra. We have already asked whether or not
every such Ditkin algebra is necessarily pointwise approximately amenable. By a result
of Ghahramani and Zhang [28], all Segal algebras on T are pseudo-amenable.

Thus we have a conjecture, also stated in [28]:

Every proper Segal algebra on T fails to be approximately amenable. (4.2.1)

We shall establish the conjecture for a fairly wide class of such Segal algebras on T.
The most obvious Segal algebras on T are the algebras (L p(T), ?), where p ≥ 1, and

Sq(T) for q ≥ 1. We start by defining a common generalization of these algebras.

Definition 4.2.1. Let (A, ‖ · ‖A) be a Banach sequence algebra on Z. For p ≥ 1, set

Sp,A = {f ∈ L p(T) : f̂ ∈ A},

and define
|||f |||p,A = ‖f‖p + ‖f̂ ‖A.

We shall write Sp,q for Sp,` q .

Lemma 4.2.2. Let (A, ‖ · ‖A) be a Banach sequence algebra on Z. Suppose that A is such
that a function g on Z belongs to A if and only if |g| belongs to A, and that, in this case,
‖g‖ = ‖ |g| ‖. Take p ≥ 1. Then (Sp,A, ||| · |||p,A) is a Segal algebra on T.

Proof. That (Sp,A, ||| · |||p,A) is a Banach algebra is clear, and it is also immediate that
‖f‖1 ≤ |||f |||p,A for f ∈ Sp,A. Since Sp,A contains the trigonometric polynomials, Sp,A is
certainly dense in (L 1(T), ‖·‖1). The space Sp,A is clearly translation-invariant, and each
translation is an isometry; this follows because the sequence (einθg(n))n∈Z belongs to A
whenever g ∈ A and they have the same norm. Finally, if t→ 0, then

‖tf − f‖p,A = ‖tf − f‖p + ‖(eit − 1)f̂‖A → 0.

Thus (Sp,A, ||| · |||p,A) satisfies the conditions of Definition 4.1.1.

Remark 4.2.3. In fact, given a Segal algebra on T, Ŝ is a Banach sequence algebra on
Z with norm inherited from S, and S = S1,bS with equivalent norms.

We shall make repeated use of the classical Hausdorff–Young inequality [72, Theorem
XII.2.3], which we state here for future reference.
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Theorem 4.2.4 (Hausdorff–Young). Let 1 ≤ p ≤ 2. Then, for each f ∈ L p(T), f̂ ∈ ` p′

and
‖f̂ ‖p′ ≤ ‖f‖p.

Further, if (an) ∈ ` p, then there is f ∈ L p′
(T) with f̂ = (an) and

‖f‖p′ ≤ ‖f̂ ‖p.

Examples 4.2.5. (i) Take p, q ≥ 1. For 1 < p ≤ 2, we have

‖f̂ ‖p′ ≤ ‖f‖p (f ∈ L p(T))

by Theorem 4.2.4, so we have Sp,q = Sp,p′ = L p(T) for q ≥ p′. If p ≥ 2, we have

‖f̂ ‖2 = ‖f‖2 ≤ ‖f‖p (f ∈ L p(T)),

and so Sp,q = Sp,2 = L p(T) for q ≥ 2. Thus every Segal algebra (L p(T), ? ) for p ≥ 1 has
the form Sp,q for suitable q. Further, S1,q = Sq(T), as defined earlier.

For 1 ≤ q ≤ 2 and f ∈ Sp,q, Theorem 4.2.4 shows that ‖f‖q′ ≤ ‖f̂ ‖q; by Hölder’s
inequality, ‖f‖p ≤ ‖f‖q′ when p ≤ q′. Thus Sp,q ∼= ` q(Z) when 1 ≤ q ≤ 2 and p ≤ q′.

(ii) Partition N into infinite subsets (Tj) (j ∈ N), and define

A =
{

(α(n)) ∈ c 0 : lim
j→∞

(
j
∑
n∈Tj

|α(n)|j
)1/j

= 0
}
,

with norm the supremum of the sum terms. Clearly A 6⊂ ` q for any q ≥ 1, and ` 1 6⊂ A. ♦

We shall seek to determine when the algebras of the form Sp,q are approximately
amenable and when they are pointwise approximately amenable. As a guide, recall that
S1,q ' ` q(Z) in the case where 1 ≤ q ≤ 2, and so, as in [14], S1,q is pointwise approx-
imately amenable, but not approximately amenable. We shall show that no Sp,q is ap-
proximately amenable, so confirming the conjecture in some special cases. Recall that it
follows from Theorem 1.5.4 that Sp,q fails to be pointwise amenable whenever it fails to
be approximately amenable.

We shall need the following (complex) version of [72, Lemma XII.6.6].

Theorem 4.2.6. Take p > 1. Suppose that (an) is a real-valued sequence with an ↘ 0 as
n→∞. Then

∞∑
n=1

np−2apn <∞ (4.2.2)

is a necessary and sufficient condition for there to be a function f ∈ L p(T) such that
f̂(n) = an (n ∈ N).

Actually, [72, Lemma XII.6.6] shows that (4.2.2) ensures that
∑∞
n=1 an cosnx and∑∞

n=1 an sinnx define functions in L p(T), whence
∑∞
n=1 aneinx is in L p(T) (and con-

versely).
For an element H ∈ ` r ⊗̂ ` r, we shall write ‖H‖r for its projective norm.

Theorem 4.2.7. Let A be a Banach sequence algebra on Z. Take p > 1, and suppose
that ` r ⊂ A for some r > p̃/2. Then Sp,A is not approximately amenable, and hence not
pointwise amenable.
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Proof. We write S for Sp,A, and ||| · ||| for ||| · |||p,A.
We shall again consider the argument of [14, Theorem 4.1].
As noted in Example 4.2.5(i), we have |||f ||| ≥ ‖f̂ ‖ep (f ∈ S). It follows that, for each

F ∈ S00 ⊗ S00, we have
|||∆f (F )|||Sb⊗S ≥ ‖∆a(F̂ )‖ep,

where a = f̂ .
In the proof of the cited theorem, we found sequences a and b with certain properties.

The actual sequences are

a = (γβ1 , 0, γ
β
2 , 0, . . . ) and b = (0, γβ1 , 0, γ

β
2 , . . . );

here
β = 1/p̃− δ (4.2.3)

for some appropriately small δ > 0, and γ = (γj) was specified in equation (4.1.1). Since
γβj ∼ j−2β as j → ∞ and 2βp̃ = 2 − 2δp̃ > 1 for δ sufficiently small, we have a, b ∈ ` ep.
Since r > p̃/2, we also have

2rβ = 2r/p̃− 2rδ > 1

for δ > 0 sufficiently small, because 2r > p̃. It follows immediately that we may suppose
that γβ ∈ ` r ⊂ A. Further our estimates imply that a, b ∈ ` r ⊂ A.

As in the cited theorem there exists ε > 0 such that there is no element G in
` ep(N)⊗ ` ep(N) for which all the following inequalities hold:

‖∆a(G)‖ep < ε, ‖∆b(G)‖ep < ε, (4.2.4)

‖a− aπ(G)/2‖ < ε, ‖b− bπ(G)/2‖ < ε. (4.2.5)

We shall show that a, b ∈ Ŝ, say a = ĝ and b = ĥ, where g, h ∈ S. Once we have
established this, it will follow that, whenever F ∈ S00 ⊗̂S00 satisfies ‖f − fπ(F )/2‖ < ε

and ‖g − gπ(F )/2‖ < ε, then

|||∆g(F )|||+ |||∆g(F )||| ≥ ε,

and hence the condition for approximate amenability given in Proposition 1.4.2 fails.
It remains to show that the specified elements a and b belong to Ŝ.
Suppose firstly that 1 < p < 2, and consider the sequence γβ . We claim that

∞∑
j=1

jp−2γpβj <∞.

In fact jp−2γpβj ∼ j−ρ as n→∞, where

ρ := 2pβ + 2− p = 2p(1− 1/p− δ) + 2− p = p(1− 2δ),

and so ρ > 1 provided that δ < (p− 1)/2p.
In the second case, where p ≥ 2, we need a slightly different argument. Here we note

that, for each f ∈ L p(T), we have f ∈ L 2(T) and ‖f̂‖2 ≤ ‖f‖p. Now apply the above
argument with β = (1− 2δ)/2. We have

jp−2γpβj ∼ j
−(2−pδ) as n→∞,
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and 2− pδ > 1 provided that δ < 1/p, so again we have
∞∑
j=1

jp−2γpβj <∞

for suitable δ > 0.
Thus in both cases, provided that δ > 0 is sufficiently small, Theorem 4.2.6 applies

to show there exists a function f ∈ L p(T) with f̂(j) = γβj (j ∈ N). Thus f ∈ S.
Now define g, h ∈ L p(T) by

g(z) = f(z2), h(z) = zg(z) (z ∈ T).

Then ĝ = a and ĥ = b, whence g, h ∈ S = Sp,A.
Thus we have found elements g and h of Sp,A that demonstrate that the conditions

for approximate amenability given in Proposition 1.4.2 fail. It follows from Theorem 1.5.4
that S is not pointwise amenable.

We note that [9, Example 3.7(e)] shows that L p(T) is not boundedly approximately
amenable for p > 1; we strengthen this in the next result which answers in the negative
Open Question 2 of [24].

Corollary 4.2.8. Let p > 1. Then the Segal algebra (L p(T), ? ) is not approximately
amenable, and hence it is not pointwise amenable.

Proof. We just note that Sp,p′ = L p(T) and that p′ > p̃/2 always holds.

There remains the case where p = 1 in Theorem 4.2.7. Note that Example 4.2.5(ii)
shows that there are Banach sequence algebras A such that A 6⊂ ` q for any q ≥ 1.

Theorem 4.2.9. Let A be a Banach sequence algebra on Z. Suppose that ` r ⊂ A ⊂ ` q

for some q ≥ 1 and r > q/2. Then S1,A is not approximately amenable, and hence it is
not pointwise amenable.

Proof. Again we set S = S1,A, and argue as above. For each f ∈ S, certainly we have
|||f ||| ≥ ‖f̂ ‖q, and so, for each F ∈ S00 ⊗ S00, we have

|||∆f (F )|||Sb⊗S ≥ ‖∆ bf (F̂ )‖q.
We now take

β = 1/q − δ.
We first note that, since γβj ↘ 0 as j → ∞ and γβ is a convex sequence, there exists
f ∈ L 1(T) with f̂ = γ [72, Theorem V.1.5]. Also, since r > q/2, we again have

2βr = 2r/q − 2rδ > 1

for δ > 0 sufficiently small; for each such δ, we have γ ∈ ` r, and hence f ∈ S1,A.
The proof concludes as before.

Corollary 4.2.10. Let q ≥ 1. Then the Segal algebra Sq is not approximately amenable,
and hence it is not pointwise amenable.

Proof. The rôle of r in the above is to ensure that f̂ ∈ A for a certain element f ∈ L 1(T).
Here A = ` q, so to ensure that f̂ ∈ A, we just need 2βq = 2 − 2qδ > 1; this holds for
δ > 0 sufficiently small, and so the result follows.
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We conclude that, for many proper Segal algebras S on T, it is indeed true that A
is not approximately amenable, so supporting the conjecture of Ghahramani and Zhang.
We do not know if the constraints imposed in the above theorems are really necessary.

4.3. Segal algebras on R. In this section we shall show that certain Segal algebras on
R are not approximately amenable.

Fix q with 1 ≤ q <∞, and consider the well-known Segal algebras

Sq = {f ∈ L 1(R) : f̂ ∈ L q(R̂)}

on R; the general case was mentioned in §4.1. Of course R̂ = R, but we need to distinguish
between the two copies of the real line. Set

A(R̂) = {f̂ : f ∈ L 1(R)}.

We need some preliminaries to show that the constructions to be given below are
well-defined.

Let S be a Segal algebra on R. For F ∈ S00 ⊗ S00, we have

F̂ ∈ A00(R̂)⊗A00(R̂) ⊂ C00(R̂× R̂).

Thus for a function w ∈ L q(R̂), we can certainly define

∆w(F̂ )(x, y) = (w(x)− w(y))F̂ (x, y) + u(x)w(y)− w(x)u(y) (x, y ∈ R̂),

where u = π(F̂ )/2. Further it is clear that, for each f ∈ S, we have

∆̂f (F ) = ∆ bf (F̂ ).

Now let 0 ≤ ξ ≤ 1 denote a (fixed) C∞(R̂) function such that

ξ(t) =

{
1 (|t| < 1/4),

0 (|t| ≥ 1/2),

and, for j ∈ Z, denote by ξj the translate of ξ centred on j. We continue to take γ as in
equation (4.1.1), and write

β =
1
q
− α

q′
,

which is a slight modification to the previous version of β. We take β = 1 in the case
where q = 1. Take α > 0 sufficiently small so that qβ = 1 − αq/q′ > 1/2 (there is no
constraint on α > 0 when q = 1), and then define

a =
∞∑
j=1

γβj ξ2j−1, b =
∞∑
j=1

γβj ξ2j .

Clearly a, b ∈ L q(R̂). Also, a, b ∈ C∞(R̂) and a, b, a′, b′ ∈ C0(R̂) (where ′ denotes the
derivative), and so a, b ∈ A(R̂), say a = f̂ and b = ĝ, where f, g ∈ L 1(R). Indeed, clearly
f, g ∈ Sq.

Finally, take L q00(R) to be the space of functions in L q(R) of compact support. For
an element H ∈ L r(R̂) ⊗̂ L r(R̂), we shall write ‖H‖r for its projective norm, as before.

Theorem 4.3.1. Let q ≥ 1. Then the Segal algebra Sq is not approximately amenable,
and hence it is not pointwise amenable.
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Proof. We again follow the argument of [14, Theorem 4.1]. Once again, to simplify nota-
tion we write S for Sq and ||| · ||| for ||| · |||q; as usual, we write ‖ · ‖q for the norm in L q(R̂).
We shall show that, for a suitable choice of β and for a certain ε > 0, there is no element
F ∈ S00 ⊗ S00 such that both the following inequalities are true:

‖∆a(G)‖q + ‖∆b(G)‖q < ε; (4.3.1)

‖a− au‖q + ‖b− bu‖q < ε. (4.3.2)

Here, the specific functions a and b were defined above, and G = F̂ and u = π(G)/2.
Note this is not quite the same as in [14], as here we cannot adjust on the diagonal, as
can be done in the case of sequence algebras.

We also note that
|||∆f (F )|||S b⊗S ≥ ‖∆a(G)‖q

and that
|||f − f ? v||| ≥ ‖a− au‖q,

so it is sufficient to work with the quantities a, b and u = π(G)/2 = v̂ on R̂.
By construction, a and b are sums of functions which are supported on pairwise

disjoint neighbourhoods of points of Z+, and a and b have disjoint supports. For i, j ∈ N
and w ∈ L q(R̂), we write wj for the restriction of w to [j − 1/4, j + 1/4] and ∆w(i, j) for
the restriction of ∆w(G) to the square [i − 1/4, i + 1/4] × [j − 1/4, j + 1/4]. (Note that
the functions wj need not be continuous even when w is continuous.) As in (1.4.1), we
have

∆w(G)(i, j)(x, y) = (wi(x)− wj(y))G(x, y) + ui(x)wj(y)− wi(x)uj(y)

for x, y ∈ R̂.
We may suppose that the ε > 0 to be chosen will satisfy ε < 1/2.
Now assume towards a contradiction that F satisfies

|||∆f (F )|||S b⊗S + |||∆g(F )|||S b⊗S < ε and |||f − f ? v||| < ε, (4.3.3)

where π(F ) = 2v. Then (recalling that u = v̂)

1
2q

> |||f − f ? v|||q ≥ ‖a− au‖qq ≥
∫ 5/4

3/4

|1− u|q,

and so 1 ≥ ‖u1‖q > 1/2.
Take i, j ∈ N, and consider the point (2i− 1, 2j) ∈ N× N. For (x, y) in the rectangle

[2i− 5/4, 2i− 3/4]× [2j− 1/4, 2j+ 1/4], we have ξ2i−1(x) = ξ2j(y) = 1, and we calculate
the values

∆a(2i− 1, 2j)(x, y) = γβi (G(x, y)− u2j(y)),

∆b(2i− 1, 2j)(x, y) = γβj (u2i−1(x)−G(x, y)).

In the case where i ≤ j, so that γi ≥ γj , geometrical considerations show that

|G(x, y)− u2j(y)|qγqβi + |u2i−1(x)−G(x, y)|qγqβj ≥ γ
qβ
j (|u2i−1(x)− u2j(y)|/2)q.

The points (2i, 2j − 1) taken with i ≤ j − 1 and j ≥ 2, so that γi ≥ γj , lead to a similar
estimate for (x, y) in the rectangle [2i− 1/4, 2i+ 1/4]× [2j − 5/4, 2j − 3/4].
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For w ∈ L q00(R̂) and λ = (λj ∈ ` 1 with λj ≥ 0 (j ∈ N), we define

Φq(λ,w)(x, y)=
∞∑
j=1

λj

j∑
i=1

|w2i−1(x)−w2j(y)|q+
∞∑
j=2

λj

j−1∑
i=1

|w2i(x)−w2j−1(y)|q. (4.3.4)

Then, recalling that a and b have disjoint supports, we see that

2q(‖∆f (G)‖qq + ‖∆g(G)‖qq) ≥ ‖Φq(γqβ , u)‖1.

Set
θq = inf{‖Φq(γqβ , w)‖1 : w ∈ L q00(R̂), 1/2 ≤ ‖w1‖q ≤ 1}.

Note that the infimum is taken over a larger set than Ŝ00; this is because we shall
be truncating functions and need to stay within the relevant space when we do this. We
shall seek to show that θq > 0, for then (4.3.1) fails for each ε > 0 sufficiently small, and
so S is not approximately amenable.

Suppose for the moment that q = 1, so that β = 1. In this case, with λ = γ, (4.3.4)
gives

‖Φ1(γ,w)‖1 =
∞∑
j=1

γj

j∑
i=1

‖w2i−1(x)−w2j(y)‖1 +
∞∑
j=2

γj

j−1∑
i=1

‖w2i(x)−w2j−1(y)‖1. (4.3.5)

Consider the values of ‖Φ1(γ,w)‖1 for suppw ⊂ [0, d + 1/2], for some d ∈ N with
d ≥ 2. Indeed, take such w not identically 0 on [d − 1/2, d + 1/2]. We claim that, by
setting w to zero on this interval, the value of ‖Φ1(γ,w)‖1 is reduced.

To establish this claim, first suppose that d = 2k + 1 for some k ∈ N. By the change
specified, we first increase each term in the summand

γk+1

k∑
i=1

‖w2i(x)− w2k+1(y)‖1

by at most ‖w2k+1‖1γk+1/2, and so ‖Φ1(γ,w)‖1 increases by at most k‖w2k+1‖1γk+1/2.
On the other hand, the term

∞∑
j=k+1

γj‖w2k+1(x)− w2j(y)‖1 =
∞∑

j=k+1

γj‖w2k+1(x)− 0‖1 =
( ∞∑
j=k+1

γj

)
‖w2k+1‖

becomes 0. The other terms are not affected. However, for each k ∈ N, we have

kγk+1 ≤ kγk ≤
∞∑

j=k+1

γj

by the key property (4.1.2), and so, in total, the value of ‖Φ1(γ,w)‖1 has been decreased.
The case d = 2k is similar.
By continuing, we see that, subject to the constraints that we have imposed, and in

particular that w ∈ L 1
00 and 1/2 ≤ ‖w1‖1 ≤ 1, we have

θ1 ≥ ‖Φ1(γ,w1)‖1 = γ1‖w1‖1 ≥ 1/4.

Hence we obtain the required contradiction in the case where q = 1.
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Now suppose that q > 1. We have chosen α > 0 so small that qβ = 1− qα/q′ > 1/2.
Then

∞∑
j=1

jγ1+α
j <∞ and

∞∑
j=1

γqβj <∞,

and so, in particular, the element γqβ is a sequence in ` 1 which is positive and decreasing.
Note that (1 + α)/q′ = 1, so that γ = γβ · γ(1+α)/q′ . Set

δ =
( ∞∑
j=1

jγ1+α
j

)1/q′

=
( ∞∑
j=1

j∑
i=1

γ1+α
j

)1/q′

.

Fix u ∈ Ŝ00 with 1/2 ≤ ‖u1‖q ≤ 1. Applying Hölder’s inequality to each integral, we
have the estimate

1/4 ≤ ‖Φ1(γ, u)‖1

=
∞∑
j=1

γj

j∑
i=1

‖u2i−1(x)− u2j(y)‖1 +
∞∑
j=2

γj

j−1∑
i=1

‖u2i(x)− u2j−1(y)‖1

≤
(

1
4

)1/q′[ ∞∑
j=1

γj

j∑
i=1

‖u2i−1(x)− u2j(y)‖q +
∞∑
j=2

γj

j−1∑
i=1

‖u2i(x)− u2j−1(y)‖q
]
.

Now let (xr) be the sequence with generic term γβj ‖u2i−1−u2j‖q or γβj ‖u2i−u2j−1‖q,
and (yr) the sequence with corresponding generic term γ

(1+α)/q′

j . Applying Hölder’s in-
equality to the sequence (xryr), we find that

1
4
≤ δq

[ ∞∑
j=1

γqβj

j∑
i=1

‖u2i−1(x)− u2j(y)‖qq +
∞∑
j=2

γqβj

j−1∑
i=1

‖u2i(x)− u2j−1(y)‖qq
]
.

Thus 1/4 ≤ δq‖Φq(γ, u)‖1. It follows that θq ≥ 1/(4δq), as required.
This concludes the proof of Theorem 4.3.1.

There is another important family of Segal algebras on R, namely Sp = L 1(R)∩L p(R),
where p > 1 [60, Example 1.5.2 and Proposition 1.5.6]. Here ‖f‖Sp

= ‖f‖1 + ‖f‖p for
f ∈ Sp.

Theorem 4.3.2. Suppose that 3/2 < p ≤ 2. Then L 1(R) ∩ L p(R) is not approximately
amenable, and hence it is not pointwise amenable.

Proof. Suppose that 1 < p ≤ 2, so that Sp ⊂ Sp′ . Assume for the moment that the
functions f, g of Theorem 4.3.1 lie in L 1(R) ∩ L p(R), and that f̂ , ĝ ∈ L p

′
(R̂). Then

the same argument as in Theorem 4.3.1 applies to show that L 1(R) ∩ L p(R) fails to be
approximately amenable.

Now, as before, f̂ , ĝ ∈ L p′
(R̂) provided that

p′β = 1− αp′/p > 1/2,

and this latter is true if α > 0 is sufficiently small. Write h = ξ̌. Since ξ ∈ C∞(R) and is
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of compact support, we certainly have h ∈ L p(R). But for t ∈ R, we have

f(t) =
( ∞∑
j=1

γβj e−(2j−1)ti
)
h(t), g(t) = e−tif(t),

so that
‖f‖p, ‖g‖p ≤ ‖h‖p‖γp‖p,

which is finite provided that
pβ = p/p′ − α > 1/2.

This holds for α > 0 sufficiently small exactly when p > 3/2. Thus f, g ∈ L 1(R)∩L p(R)
for p > 3/2. So we have shown that L 1(R)∩L p(R) is not approximately amenable in the
case where 3/2 < p ≤ 2.

The case where 1 < p ≤ 3/2 remains unresolved.

4.4. The pointwise approximate amenability of Segal algebras on T. We have
seen that many, perhaps all, proper Segal algebras on T are not approximately amenable,
and hence not pointwise amenable. The only property in this area that they may have
is that they are pointwise approximately amenable. We now give some brief remarks
concerning when Segal algebras on T are pointwise approximately amenable.

First consider the algebras Sp,q. For 1 ≤ q ≤ 2 and p ≤ q′, we have Sp,q = ` q, and so
Sp,q is pointwise approximately amenable by Corollary 1.8.5.

What about the case where q > 2? Theorem 1.8.2 cannot be used for these algebras.
For take a specific f as given by Rider in [61, Example A]. Then, again by Theorem 4.2.4,

f ∈
⋂

1≤p<2

L p(T) ⇒ f̂ ∈
⋂
q>2

` q(Z) ⇒ f ∈
⋂
q>2

Sq.

But, as noted in §1.8, the function f fails to satisfy the hypothesis of Theorem 1.8.2. By
[22, Corollary 3.5], the closed subalgebra generated by f in L 1(T) is not itself a Ditkin
algebra, so it is not pointwise approximately amenable.

Now we consider whether or not the Segal algebra (L p(T), ? ) is pointwise approx-
imately amenable when p > 1. By our earlier theorem, this is immediate for the special
case where p = 2. Unfortunately, it is again the case that Theorem 1.8.2 cannot be used
for any value of p 6= 2: if p < 2, then the above example of Rider shows that the ‘level sets
problem’ closes the door to a solution along these lines, and, if p > 2, similar examples of
Oberlin [54] and of Bachelis and Gilbert [2] do the same. Thus we do not know whether
or not L p(T) is pointwise approximately amenable for any p > 1, save for p = 2.

Note that there exist Banach sequence algebras with ` 1 ⊂ A ⊂ ` p which are not
pointwise approximate amenable. Indeed, take

Ap =
{

(xi) ∈ ` p : sup
n∈N

1
n

n∑
i=1

|x(i+ 1)− x(i)| <∞
}
,

with the obvious norm. This satisfies ` 1 ⊂ Ap ⊂ ` p, but

A2
p ⊂

{
(xi) ∈ ` p :

1
n

n∑
i=1

|x(i+ 1)− x(i)| → 0
}
,

and so Ap fails to be pointwise approximately amenable by Corollary 1.5.3 since A2
p 6= Ap.
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4.5. Postscript. Since obtaining the above results, we have received the fine paper [8],
which contains interesting new results on approximate amenability, including the theorem
that no proper Segal algebra on Rd or Td, d ∈ N, can be approximately amenable, thus
confirming conjecture (4.2.1) in full generality.

5. Open questions

We list here some questions that we believe are open:

1. Are the notions of ‘boundedly approximately amenable’ and ‘approximately amen-
able’ the same? All the known examples of approximately amenable Banach algebras
are, in fact, boundedly approximately contractible.

2. Does every approximately amenable Banach algebra have a bounded approximate
identity? All known examples do.

3. Is every approximately inner derivation automatically continuous?
4. As shown in [14], when the inequalities characterizing approximate amenability fail,

it is often a two-point set that suffices to negate these inequalities. Is this is always
the case?

5. Is there a pointwise amenable Banach algebra which is not already amenable?
6. For which groups G is ` 1(G) pointwise amenable? In particular, is ` 1(F2) pointwise

amenable, where F2 is the free group on two generators?
7. Let I be a closed ideal of finite codimension in a unital, approximately amenable

Banach algebra A. Is I also approximately amenable? This is open even when I has
codimension two and A is commutative.

8. Is there a commutative, separable Banach algebra, or even a Banach sequence algebra,
such that A = A2, but A is not a Ditkin algebra?

9. An interesting example of a proper, unital, uniform algebra which is a strong Ditkin
algebra is given by Feinstein in [20]. Is this example (pointwise) approximately
amenable?

10. Characterize those semigroups S with ` 1(S) approximately amenable (and E(S)
infinite).

11. Is every Banach sequence algebra which is a Ditkin algebra necessarily pointwise
approximately amenable? In particular, what can be said about Sp,q for general p
and q?
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