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Abstract

Lie systems form a class of systems of first-order ordinary differential equations whose general
solutions can be described in terms of certain finite families of particular solutions and a set
of constants, by means of a particular type of mapping: the so-called superposition rule. Apart
from this fundamental property, Lie systems enjoy many other geometrical features and they
appear in multiple branches of mathematics and physics. These facts, together with the authors’
recent findings in the theory of Lie systems, led them to write this essay, which aims to describe
the new achievements within a self-contained guide to the whole theory of Lie systems, their
generalisations, and applications.
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1. The theory of Lie systems

1.1. Motivation and general scheme of the work. It is a little surprising that
the theory of Lie systems [153, 154, 157, 224], which studies a very specific class of
systems of first-order ordinary differential equations, can be employed to investigate a
large variety of topics [8, 12, 53, 55, 59, 98, 144, 202, 212]. Indeed, although being a
Lie system is an exception rather than a rule [128], these equations frequently turn
up in multiple branches of mathematics and physics. For instance, linear systems of
first-order differential equations, Riccati equations [86], and matrix Riccati equations
[103, 116, 117, 131] are Lie systems that very frequently appear in the literature [62, 98,
112, 141, 207, 212, 234]. This obviously motivates the study of the theory of Lie systems
as a means to investigate the properties of various remarkable differential equations and
their applications.

The research of Lie systems involves the analysis of multiple interesting geometric
and algebraic problems. For example, determination of Lie systems defined on a fixed
manifold is related to the existence of finite-dimensional Lie algebras of vector fields over
the manifold [157, 210]. Furthermore, the study of Lie systems leads to the investigation
of foliations [35], generalised distributions [38], Lie group actions [141], finite-dimensional
Lie algebras [40, 157, 210], etc. As a result, Lie systems provide methods to study the
integrability of systems of first-order differential equations [40], control theory [32, 61, 79,
187], geometric phases [98], certain problems in quantum mechanics [46, 51], and other
topics. Finally, it is remarkable that the theory of Lie systems has been investigated by
means of different techniques and approaches, like Galois theory [17, 19] or differential
geometry [38, 60, 186, 220].

When applying Lie systems to study more general systems of differential equations
than merely first-order ones (see for instance [34, 35, 52, 77, 202]), the interest of their
analysis becomes even more evident. For example, various systems of second-order differ-
ential equations, which very frequently appear in classical mechanics, can be studied by
means of Lie systems. Dissipative Milne–Pinney equations [45], Milne–Pinney equations
[52], Caldirola–Kanai oscillators [54], t-dependent frequency harmonic oscillators [55], or
second-order Riccati equations [48, 225] are just some examples.

The relevance of the above studies, along with the determination of new applications
of Lie systems, is twofold. On one hand, they allow us to obtain novel results about
interesting differential equations. On the other hand, such examples may show us new
features or generalisations of the notions appearing in the theory of Lie systems that
have not been previously observed. Let us briefly provide a case in point. While studying
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second-order differential equations by means of Lie systems [52, 53, 202], a new type of
‘superposition-like’ expression describing the general solution of certain systems of second-
order differential equations appeared. These papers led to the definition of a possible
superposition rule for such systems whose main properties are still under analysis [48]. In
addition, these works took different approaches to second-order differential equations: by
means of SODE Lie systems [52] and through regular Lagrangians [54]. Relations between
these approaches and the existence of new approaches are still an open question [48].

Apart from the investigation of the above open problems, perhaps the most active
field of research into Lie systems is concerned with the development of new generalisa-
tions of Lie systems and superposition rules. Quasi-Lie systems [34, 35, 42], t-dependent
superposition rules [34], PDE Lie systems [38, 172], SODE Lie systems [52], partial su-
perposition rules [38, 153], quantum Lie systems [60], or stochastic Lie–Scheffers systems
[144] are just a few such generalisations that have been carried out in order to analyse
non-Lie systems with techniques similar to those developed for Lie systems. Indeed, the
list of generalisations is much larger and even sometimes the term ‘superposition rule’
has been used with different, nonequivalent, meanings [197, 215].

In view of the above and many other reasons, the theory of Lie systems, along with
its multiple generalisations, can be regarded as a multidisciplinary active field of research
which involves the use of techniques from diverse branches of mathematics and physics as
well as their applications to control theory [25, 26, 32, 59, 61, 79, 119, 187, 212], physics
[39, 54, 58, 234], and other fields [31].

Our work starts by surveying briefly the historical development of the theory of Lie
systems and several of their generalisations. In this way, we aim to provide a general
overview of the subject, the main authors, trends, and the principal works dedicated to
the major results. Special attention has been paid to provide a complete bibliography,
which contains numerous references that cannot be easily found elsewhere. Furthermore,
we provide a detailed account of the works of the main contributors to the theory of
Lie systems: Lie [153–157], Vessiot [222–227], Winternitz [8, 9, 13, 112, 105, 173, 174,
233–236], Ibragimov [120–125], etc. Additionally, we present the main contents of some
works which have been written in other languages than English, e.g. [153, 222, 223, 225].

After our brief overview of the history of Lie systems, the fundamental notions of this
theory and other related topics are presented. More specifically, along with a recently
developed differential geometric approach to the investigation of Lie systems [38], results
about application of Lie systems to quantum mechanics, partial differential equations
(PDEs), and systems of second- and higher-order differential equations are discussed.
This, together with the historical introduction, furnishes a self-contained presentation of
the topic which can be used both as an introduction to the subject and as a reference
guide to Lie systems.

Later on, in Chapter 2, our survey focuses on methods of analysing second-order dif-
ferential equations. Chapter 3 is concerned with various applications of Lie systems in
quantum mechanics. Subsequently, we describe a theory of integrability of Lie systems
in Chapter 4. This theory is employed to investigate some systems of differential equa-
tions appearing in classical mechanics in Chapter 5 and various Schrödinger equations in
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Chapter 6. Finally, Chapters 7 and 8 describe the theory and applications of a new pow-
erful technique, the quasi-Lie schemes, developed to apply the methods invented for Lie
systems to a much larger set of systems of differential equations. In the same way as Lie
systems, this method can straightforwardly be applied to second- and higher-order differ-
ential equations and quantum mechanics. Finally, diverse applications of this technique
are presented in Chapter 8.

1.2. Historical introduction. It seems that Abel was the first to deal with the concept
of superposition rule, while analysing linearisation of nonlinear operators [128]. Apart
from this very early treatment, the fundamentals of the theory of Lie systems were laid
down towards the end of the XIX century by the Norwegian mathematician Sophus Lie
[153, 154, 155, 157] and the French one Ernest Vessiot [222–228]. Indeed, Lie systems are
also frequently referred to as Lie–Vessiot systems to honour their contributions.

The first study that focused on analysing differential equations admitting a super-
position rule was carried out by Königsberger [136] in 1883. He proved that the only
first-order ordinary differential equations on the real line admitting a superposition rule
that depends algebraically on the particular solutions are (up to a diffeomorphism) Ric-
cati equations, linear and homogeneous linear differential equations. Later on, in 1885,
Lie proposed a special class of systems of first-order ordinary differential equations [153,
p. 128] whose general solutions can be obtained out of certain finite families of particular
solutions and sets of constants [18, 220].

Despite the above mentioned achievements, these pioneering works did not draw much
attention. Nevertheless, the situation changed from 1893. At that time, Vessiot and Guld-
berg proved, independently, a slightly more general form of Königsberger’s main result.
They demonstrated that (up to diffeomorphism) Riccati equations and linear differential
equations are the only differential equations over the real line admitting a superposition
rule [108, 122, 128, 222]. This result attracted Lie’s attention [154], who claimed that
their contribution is a simple consequence of his previous work [153]. More specifically,
he stated that systems which admit a superposition rule are those he had defined in 1885
[155]. In view of these criticisms, Lie did not recognise the value of Vessiot and Guldberg’s
discovery [128]. Nevertheless, some credit to them must be given, as the theory of Lie
does not easily lead to the case provided by Vessiot and Guldberg [128].

Lie’s remarks gave rise to one of the most important results about the theory of Lie
systems, today called the Lie Theorem [157, Theorem 44]. This theorem characterises
systems of first-order ordinary differential equations admitting a superposition rule. In
addition, it provides some information on the form of such a superposition rule. In [157],
Lie and Scheffers presented the first detailed discussion of Lie systems. In recognition of
that work, some authors also call Lie systems Lie–Scheffers systems.

In spite of this important success, the Lie Theorem, as stated by Lie, contains some
small gaps in its proof as well as a slight lack of rigour about the definition of superposi-
tion rule. This was noticed and fixed at the beginning of the XXI century by Cariñena,
Grabowski, Marmo, Blázquez, and Morales [18, 38].
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After Lie’s reply, Vessiot recognised the importance of Lie’s work and proposed to
call Lie systems those systems of first-order ordinary differential equations admitting a
superposition rule [224]. Apart from this first ‘trivial result’, Vessiot furnished many new
contributions to the theory of Lie systems [223, 224, 226, 228] and proposed various gener-
alisations [225, 227, 228]. For instance, he showed that a superposition-like expression can
be used to analyse particular types of second-order Riccati equations [225]. More specifi-
cally, he proved that for some of these equations, general solutions can be obtained from
families of four particular solutions, their derivatives, and two real constants. As far as
we know, this is the first result concerning superposition rules for nonlinear second-order
differential equations.

After a deep initial study of superposition rules and Lie systems [108, 153–155, 222,
224–228], the topic was almost forgotten for nearly a century. Just a few works were
devoted to superposition rules [76, 80–82, 149, 198]. In the seventies, nevertheless, the
interest in the topic revived and many authors focused again on investigating Lie systems,
their generalisations, and applications to mathematics, physics and control theory [127,
130, 175]. Among the reasons that motivated that rebirth of the theory of Lie systems,
we can emphasise the importance of the works of Winternitz and Brockett. On one hand,
Brockett analysed the rôle of certain Lie systems in control theory [25, 26], which initiated
a research field that continues until the present [32, 59, 61, 79, 119, 185, 187, 201, 212].
On the other hand, Winternitz and his collaborators made a huge contribution to the
theory of Lie systems and their applications to physics, mathematics and control theory
[8, 9, 13–15, 21, 112, 114, 141, 234, 236].

Let us discuss in more detail some of Winternitz’s results. Using diverse results derived
by Lie [156, 157], Winternitz and his collaborators developed and applied a method of
deriving superposition rules [202, 209, 235]. They also studied the problem of classification
of Lie systems through transitive primitive Lie algebras [210], a concept that also appeared
in some of Winternitz’s works about the integrability of Lie systems [21, 22]. Winternitz
also analysed discrete problems and numerical approximations of solutions by means of
superposition rules [179, 188, 202, 219] and, finally, with collaborators, developed a new
generalisation of superposition rule, the so-called super-superposition rule, in order to
study the general solutions of various types of superequations [12, 13].

Besides these theoretical achievements, Winternitz et al. applied their methods to the
analysis of multiple discrete and differential equations with applications to mathematics,
physics and control theory. For instance, many superposition rules were derived for matrix
Riccati equations [8, 112, 141, 174, 188, 212], which play an important rôle in control
theory, as well as for diverse Lie systems, like projective Riccati equations [21], various
superequations [12, 13], and others [9, 14, 15, 99, 114]. Finally, Winternitz’s paper on
Milne–Pinney equations [202] is also worth mentioning; it is one of the first papers devoted
to analysing second-order differential equations through Lie systems.

Currently, many researchers investigate Lie systems and other closely related topics.
Let us merely point out here some of them along with some of their works: Blázquez
and Morales [17–19], Cariñena [34, 37, 38], Clemente [32], Grabowski [37–39], Ibragimov
[120, 121, 122, 124], de Lucas [34, 35, 52], Lázaro-Camí and Ortega [144], Marmo [37,
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38, 39], Odzijewicz and Grundland [172], Ramos [40, 59, 62], Rañada [43, 52, 53, 55]
and Nasarre [57, 58]. As a result of their contributions, multiple interesting results about
the fundamentals, applications, and generalisations of the theory of Lie systems were
furnished.

Among the above works, we describe briefly the content of [34, 37, 38]. The book
[37] presents an instructive geometric introduction to the basic topics of the theory of
Lie systems. [38] provides multiple relevant contributions to the theory of Lie systems.
First, it fixes a remarkable gap in the proof of the Lie Theorem. Additionally, it establishes
that a superposition rule amounts to a certain type of flat connection, which substantially
clarifies its properties. The furnished demonstration of the Lie Theorem shows that the
Lie system notion can be naturally extended to the case of PDEs. Finally, this work
led, more or less indirectly, to the characterisation of families of systems of first-order
differential equations admitting a t-dependent superposition rule [35] and to the definition
of mixed and partial superposition rules [38, 52]. Finally, we mention the usefulness of
the Lie scheme concept provided in [34], which generalises Lie systems and leads to the
discovery of new properties for various systems of differential equations, including non-Lie
systems, appearing in physics and mathematics [34, 42, 45, 48, 56].

Let us now discuss some of the authors’ contributions that led them to write this
essay. On one hand, Cariñena and his collaborators investigated the integrability of Lie
systems [40, 43, 47, 50, 54, 63], a generalisation of the Wei–Norman method for the study
of Lie systems [57], application of Lie systems techniques to analyse systems of second-
order differential equations [48, 49, 52, 53], and other topics like the analysis of certain
Schrödinger equations [46, 51, 59]. In this way, they provided a continuation of diverse
previous articles dedicated to some of these themes [77, 172, 202, 225] and they opened
several new research lines [59].

Besides the above contributions, Cariñena and his collaborators also developed numer-
ous applications of Lie systems to classical physics [39, 43–45, 52, 54, 55, 58, 62], quantum
mechanics [46, 51, 59, 60], financial mathematics [31], and control theory [60, 61].

Apart from the aforementioned generalisations of Lie systems that are related to
other works in the literature [6, 172, 202, 225], a new generalisation of Lie systems and
superposition rules was carried out by Cariñena, Grabowski and de Lucas in the theory
of quasi-Lie schemes [34]. One one hand, this approach provides us with a method to
transform differential equations of a certain type into equations of the same type, e.g.
Abel equations into Abel equations [56]. This can also be used to transform differential
equations into Lie systems [34], which leads to the quasi-Lie system notion. Such systems
inherit some properties of Lie systems and, for instance, they admit superposition rules
showing an explicit dependence on the independent variable of the system [34, 48].

Quasi-Lie schemes admit multiple applications. They can be used not only to analyse
the properties of Lie and quasi-Lie systems but also to investigate many other systems,
e.g. nonlinear oscillators [34], Emden–Fowler equations [42], Mathews–Lakshmanan oscil-
lators [34], dissipative and non-dissipative Milne–Pinney equations [45], and Abel equa-
tions [56]. As a consequence, various results about the integrability properties of such
equations have been obtained and many others are being analysed at present. Further-
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more, the appearance of t-dependent superposition rules led to the examination of the
so-called Lie families, which cover, as particular cases, Lie systems and quasi-Lie schemes.
Additionally, they can be used to analyse the exact solutions of very general families of
differential equations [35].

As a result of all the above mentioned achievements, there exists today a vast collection
of methods and procedures to analyse Lie systems from different points of view. All these
tools can be used to provide interesting results in mathematics, physics, control theory,
and other fields. At the same time, these applications motivate the development of new
techniques, generalisations, and applications of this theory, which yields multiple and
interesting topics for further research.

1.3. Fundamentals about Lie systems and superposition rules. Our main purpose
in this section is to review the basic notions and fundamental results concerning the theory
of Lie systems to be employed and analysed throughout our essay. Here, as well as in the
major part of our essay, we mostly restrict ourselves to analysing differential equations
on vector spaces and we assume that mathematical objects, e.g. flows of vector fields, are
smooth, real, and globally defined. This will allow us to highlight the key points of our
exposition and omit several irrelevant technical aspects that can be easily deduced from
our presentation. Nonetheless, numerous differential equations on manifolds and diverse
technical points will be presented when relevant.

Definition 1.1. Given the projections π : (x, v) ∈ TRn 7→ x ∈ Rn and π2 : (t, x) ∈
R × Rn 7→ x ∈ Rn, a t-dependent vector field X on Rn is a map X : (t, x) ∈ R × Rn 7→
X(t, x) ∈ TRn such that the diagram

TRn

π

��
R× Rn

X

::ttttttttt π2 // Rn

is commutative, i.e. π ◦X = π2.

In view of the above definition, X(t, x) ∈ π−1(x) = TxRn and hence Xt : x ∈ Rn 7→
Xt(x) ≡ X(t, x) ∈ TRn is a vector field over Rn for every t ∈ R. Thus, it is immediate
that each t-dependent vector field X is equivalent to a family {Xt}t∈R of vector fields
over Rn.

The t-dependent vector field concept includes, as a particular instance, the standard
vector field notion. Indeed, every vector field Y over Rn can be naturally regarded as a
t-dependent vector field X of the form Xt = Y for every t ∈ R. Conversely, a ‘constant’
t-dependent vector field X over Rn, i.e. Xt = Xt′ for every t, t′ ∈ R, can be considered
as a vector field Y = X0 over this space.

As vector fields, t-dependent vector fields also admit local integral curves (see [29]).
For each t-dependent vector field X over Rn, this gives rise to the generalised flow gX ,
i.e. the map gX : R× Rn → Rn such that gX(t, x) ≡ gXt (x) = γx(t) with γx(t) being the
unique integral curve of X such that γx(0) = x.
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Definition 1.2. A t-dependent vector field X over Rn is said to be projectable under a
projection p : Rn → Rn′ if every Xt is projectable, as a usual vector field, under such a
map.

The usage of t-dependent vector fields is fundamental in the theory of Lie systems.
They provide us with a geometrical object which contains all information necessary to
study systems of first-order differential equations. Let us start by showing how systems
of first-order differential equations are described by means of t-dependent vector fields.

Definition 1.3. Given a t-dependent vector field

X(t, x) =
n∑
i=1

Xi(t, x)
∂

∂xi
, (1.1)

over Rn, its associated system is the system of first-order differential equations determin-
ing its integral curves, that is,

dxi

dt
= Xi(t, x), i = 1, . . . , n. (1.2)

Note that there exists a one-to-one correspondence between t-dependent vector fields
and systems of first-order differential equations of the form (1.2). That is, every t-
dependent vector field has an associated system of first-order differential equations and
each system of this type, in turn, determines the integral curves of a unique t-dependent
vector field. Taking this into account, we can use X to refer to both a t-dependent vec-
tor field and the system of equations describing its integral curves. This simplifies our
exposition and it does not lead to confusion as the difference of meaning is clear from
context.

The following definition and lemma, whose proof is straightforward and will not be
detailed, simplify the statements and proofs of various results in the theory of Lie systems.

Definition 1.4. Given a (possibly infinite) family A of vector fields on Rn, we denote
by Lie(A) the smallest Lie algebra V of vector fields on Rn containing A.

Lemma 1.5. Given a family A of vector fields, the linear space Lie(A) is spanned by the
vector fields in

A, [A,A], [A, [A,A]], [A, [A, [A,A]]], . . .

where [A,B] denotes the set of Lie brackets of elements of A and B.

Throughout this work two different notions of linear independence are used frequently.
For clarity, we provide the following definition.

Definition 1.6. Let us denote by X(Rn) the space of vector fields over Rn. We say that
the vector fields X1, . . . , Xr on Rn are linearly independent over R if they are linearly
independent as elements of X(Rn) when considered as an R-vector space, i.e. whenever

r∑
α=1

λαXα = 0

for certain constants λ1, . . . , λr, then λ1 = · · · = λr = 0. On the other hand, X1, . . . , Xr

are said to be linearly independent at a generic point if they are linearly independent as
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elements of X(Rn) when regarded as a C∞(Rn)-module. That is, if
r∑

α=1

fαXα = 0

on Rn for certain functions f1, . . . , fr ∈ C∞(Rn), then f1 = · · · = fr = 0.

In this essay, we frequently deal with linear spaces of the form Rn(m+1). Such spaces
are always considered as a product Rn× m+1 times. . . ×Rn. Each point of Rn(m+1) is denoted
by (x(0), . . . , x(m)), where x(j) stands for a point in the jth copy of the manifold Rn within
Rn(m+1).

Associated with Rn(m+1), there exists a group Sm+1 of permutations whose elements,
Sij , with i ≤ j = 0, 1, . . . ,m, act on Rn(m+1) by permuting the variables x(i) and x(j).
Finally, let us define the projections

pr : (x(0), . . . , x(m)) ∈ Rn(m+1) 7→ (x(1), . . . , x(m)) ∈ Rnm (1.3)

and
pr0 : (x(0), . . . , x(m)) ∈ Rn(m+1) 7→ x(0) ∈ Rn. (1.4)

We now proceed to introduce the notion of superposition rule, which plays a central
role in the study of Lie systems.

For each system of first-order ordinary homogeneous linear differential equations on
Rn of the form

dyi

dt
=

n∑
j=1

Aij(t)y
j , i = 1, . . . , n, (1.5)

where Aij(t), with i, j = 1, . . . , n, is a family of t-dependent functions, its general solution
y(t) can be written as a linear combination of the form

y(t) =
n∑
j=1

kjy(j)(t), (1.6)

with y(1)(t), . . . , y(n)(t) being a family of n generic (linearly independent) particular so-
lutions, and k1, . . . , kn being a set of constants. The above expression is called a linear
superposition rule for system (1.5).

Linear superposition rules allow us to reduce the search for the general solution of a
linear system to the determination of a finite set of particular solutions. This property is
not exclusive to homogeneous linear systems. Indeed, for each linear system

dyi

dt
=

n∑
j=1

Aij(t)y
j +Bi(t), i = 1, . . . , n, (1.7)

where Aij(t), Bi(t), with i, j = 1, . . . , n, are a family of t-dependent functions, its general
solution y(t) can be written as a linear combination of the form

y(t) =
n∑
j=1

kj(y(j)(t)− y(0)(t)) + y(0)(t), (1.8)
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with y(0)(t), . . . , y(n)(t) being a family of n + 1 particular solutions such that y(j)(t) −
y(0)(t), with j = 1, . . . , n, are linearly independent solutions of the homogeneous problem
associated with (1.7), and k1, . . . , kn being a set of constants.

In a more general way, system (1.5) becomes a (generally) nonlinear system

dxi

dt
= Xi(t, x), i = 1, . . . , n, (1.9)

through a diffeomorphism ϕ : Rn 3 y 7→ x = ϕ(y) ∈ Rn. In view of the linear superposi-
tion rule (1.6), the general solution x(t) of the above system can be described in terms
of a family of certain particular solutions x(1)(t), . . . , x(m)(t) as

x(t) = ϕ
( n∑
j=1

kjϕ
−1(x(j)(t))

)
.

This clearly shows that there exist many systems of first-order differential equations whose
general solutions can be described, nonlinearly, in terms of certain families of particular
solutions and sets of constants. Another relevant family of equations with this property
are Riccati equations [4, 64, 102, 112, 170, 189, 212] of the form

dx

dt
= b1(t) + b2(t)x+ b3(t)x2, (1.10)

with x ∈ R̄ ≡ R ∪ {∞}. More specifically, for each Riccati equation, its general solution
x(t) can be cast in the form

x(t) =
x1(t)(x3(t)− x2(t))− kx2(t)(x3(t)− x1(t))

(x3(t)− x2(t))− k(x3(t)− x1(t))
, (1.11)

where x1(t), x2(t), x3(t) are three particular solutions of the equation and k ∈ R̄.
It is worth noting that, given a fixed family of three different particular solutions with

initial conditions within R, if we only choose k in R, the above expression does not give
the whole general solution of the Riccati equation, as x2(t) cannot be recovered.

The above examples show the existence of a certain type of expression, called a global
superposition rule, which enables us to express the general solution of certain systems
of first-order ordinary differential equations in terms of certain families of particular
solutions and a set of constants. Let us state a rigorous definition of this notion for
systems of differential equations in Rn.

Definition 1.7. The system of first-order ordinary differential equations
dxi

dt
= Xi(t, x), i = 1, . . . , n, (1.12)

is said to admit a global superposition rule if there exists a t-independent map Φ : (Rn)m×
Rn → Rn of the form

x = Φ(x(1), . . . , x(m); k1, . . . , kn) (1.13)

such that the general solution x(t) of (1.12) can be written as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn), (1.14)

with x(1)(t), . . . , x(m)(t) being any generic family of particular solutions of (1.12), and
k1, . . . , kn being a set of n constants related to initial conditions.



Lie systems: theory, generalisations, and applications 15

To give a meaning to the above definition, it is necessary to specify the sense in
which the term ‘generic’ is used. Precisely, expression (1.14) is said to be valid for any
generic family of m particular solutions if there exists an open dense subset U ⊂ (Rn)m

such that (1.14) is satisfied for every set of particular solutions x1(t), . . . , xm(t) such that
(x1(0), . . . , xm(0)) lies in U .

Let us now show that the aforementioned examples admit a global superposition rule.
Consider the function Φ : (Rn)n × Rn → Rn of the form

Φ(x(1), . . . , x(n); k1, . . . , kn) =
n∑
j=1

kjx(j). (1.15)

This mapping is a superposition rule for system (1.5). Indeed, for each set of particular
solutions x(1)(t), . . . , x(m)(t) of (1.5) such that (x(1)(0), . . . , x(m)(0)) belongs to the open
dense subset

U =

(x(1), . . . , x(n)) ∈ (Rn)n

∣∣∣∣∣∣∣ det

x1
(1) . . . x1

(n)

. . . . . . . . .

xn(1) . . . xn(n)

 6= 0


of (Rn)n, the general solution x(t) of (1.5) can be written in the form (1.6). Likewise, a
superposition rule can now be proved to exist for the systems (1.9) obtained from (1.5)
by means of a diffeomorphism.

The function Φ : (Rn)n+1 × Rn → Rn of the form

Φ(x(0), . . . , x(n); k1, . . . , kn) =
n∑
j=1

kj(x(j) − x(0)) + x(0) (1.16)

is a superposition rule for the system (1.7). In fact, for each set of particular solutions
x(0)(t), . . . , x(n)(t) of (1.7) such that (x(0)(0), . . . , x(n)(0)) belongs to the open dense sub-
set

U =

(x(0), . . . , x(n)) ∈ (Rn)n+1

∣∣∣∣∣∣∣det

x1
(1) − x

1
(0) . . . x1

(n) − x
1
(0)

. . . . . . . . .

xn(1) − x
n
(0) . . . xn(n) − x

n
(0)

 6= 0


of (Rn)n+1, the general solution x(t) of (1.7) can be put in the form (1.8).

Finally, let us analyse the case of Riccati equations in R̄. This example differs a little
from the previous ones, as it concerns a differential equation defined in the manifold
R̄ ' S1. Nevertheless, the generalisation of Definition 1.7 to manifolds is obvious. It is
only necessary to replace Rn by a manifold N . Then the map Φ : R̄3 × R̄ → R̄ of the
form

Φ(x(1), x(2), x(3); k) =
x(1)(x(3) − x(2))− kx(2)(x(3) − x(1))

(x(3) − x(2))− k(x(3) − x(1))
(1.17)

is a global superposition rule for Riccati equations in R̄. To verify this, it is sufficient
to note that given one of these equations with three particular solutions, x(1)(t), x(2)(t),
x(3)(t), such that (x(1)(0), x(2)(0), x(3)(0)) ∈ U , where

U = {(x(1), x(2), x(3)) ∈ R3 |x(1) 6= x(2), x(1) 6= x(3) and x(2) 6= x(3)},
its general solution can be cast in the form (1.11).
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The aforementioned superposition rules illustrate that for each permutation of their
arguments x(1), . . . , x(m), e.g. an interchange of the arguments x(i) and x(j), one has, in
general,

Φ(x(1), . . . , x(i), . . . , x(j), . . . , x(m); k) 6= Φ(x(1), . . . , x(j), . . . , x(i), . . . , x(m); k).

Nevertheless, it can be proved (cf. [38]) that there exists a map ϕ : k ∈ Rn 7→ ϕ(k) ∈ Rn
such that

Φ(x(1), . . . , x(i), . . . , x(j), . . . , x(m); k) = Φ(x(1), . . . , x(j), . . . , x(i), . . . , x(m);ϕ(k)).

It is interesting to note that, if we consider Riccati equations defined on the real line, a
global superposition rule for such equations would be a map of the form Φ : Rm×R→ R.
Obviously, expression (1.17) does not give rise to a global rule of this form. Indeed, if
we restrict (1.17) to R3 ×R, we will not be able to recover x(2)(t) from a set of different
particular solutions, x(1)(t), x(2)(t), x(3)(t), for any k ∈ R. Even more, the function (1.17)
is not globally defined over R3×R. Nevertheless, such a function is what is known in the
literature as a superposition rule for Riccati equations over the real line [108, 157, 222].

In the literature, superposition rules appear as a ‘milder’ version of the aforemen-
tioned global superposition rules. In other words, superposition rules have almost the
same properties as global superposition rules but, for instance, they may fail to recover
certain particular solutions. Although it is enough to bear in mind the above example
of Riccati equations to understand the main difference between both notions, the precise
definition of a local superposition rule is very technical (see [18]) and it does not provide,
in practice, any much deeper information about Lie systems. That is why, as usual in
the literature [37, 108, 122, 123, 153, 157, 222–234], we will assume hereafter that su-
perposition rules recover general solutions and are globally defined. This simplifies our
theoretical presentation considerably and it highlights the main features of superposition
rules and Lie systems. Despite these assumptions, a fully rigorous treatment of the gen-
eral case can be easily carried out and some technical remarks will be discussed when
relevant.

A relevant question now arises: which systems of first-order ordinary differential equa-
tions admit a superposition rule? Several works have been devoted to investigating this
question. Its analysis was accomplished by Königsberger [136], Vessiot [222], and Guld-
berg [108]. They proved that every system of first-order differential equations defined over
the real line admitting a superposition rule is, up to a diffeomorphism, a Riccati equation
or a first-order linear differential equation.

Apart from these preliminary results, it was Lie [153, 154, 157] who established the
conditions ensuring that a system of first-order differential equations of the form (1.12)
admits a superposition rule. His result, today named the Lie Theorem, reads in modern
geometric terms as follows.

Theorem 1.8 (Lie Theorem). A system of first-order ordinary differential equations
(1.12) admits a superposition rule (1.13) if and only if its corresponding t-dependent
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vector field (1.1) can be cast in the form

X(t, x) =
r∑

α=1

bα(t)Xα(x), (1.18)

with X1, . . . , Xr being a family of vector fields over Rn spanning an r-dimensional real
Lie algebra V of vector fields.

In the proof of his theorem [157, Theorem 44], Lie also claimed that the dimension of
the decomposition (1.18) and the number m of particular solutions for the superposition
rule are related. More specifically, he proved that the existence of a superposition rule
depending on m particular solutions for a system (1.12) in Rn implies that there exists
a decomposition (1.18) associated with a Lie algebra V satisfying dimV ≤ m · n, which
is referred to as Lie’s condition. Conversely, given a decomposition of the form (1.18),
we can ensure the existence of a superposition rule for system (1.12) whose number of
particular solutions obeys the same condition.

Although the Lie Theorem solves theoretically the problem of determining whether
a system (1.12) admits a superposition rule, it does not answer many other questions
concerning superposition rules. Let us briefly comment on some of these.

• From a practical point of view, it is not straightforward, using solely the Lie Theorem, to
prove that a system of first-order differential equations does not admit a superposition
rule. Later on in this section, we will sketch a procedure to do so.

• The Lie Theorem says nothing about the possible existence of multiple superposition
rules for the same system. What is more, it does not explain explicitly how to determine
any of such superposition rules (although its proof [157, Theorem 4] furnishes some key
hints). These questions are addressed later in this chapter, where we review a recent
geometrical approach to Lie systems developed in [38].

• A system X(t, x) admitting a superposition rule may be written in the form (1.18)
in one or, sometimes, several different ways. Each of these decompositions is related
to a different finite-dimensional Lie algebra V of vector fields. Such Lie algebras are
generally called the Vessiot–Guldberg Lie algebras associated with a system. The Lie
Theorem does not explain the possible relations amongst all possible Vessiot–Guldberg
Lie algebras of a system (1.12). In fact, only Lie’s condition suggests that different
Vessiot–Guldberg Lie algebras may be related to different superposition rules. We will
discuss these questions, in a more extensive way, later in this section and the next.

• Finally, it is worth noting that the Lie Theorem cannot be used to characterise straight-
forwardly systems of first-order differential equations of the form F i(t, x, ẋ)
= 0 with i = 1, . . . , n. Indeed, this is an open question.

The discovery of the Lie Theorem [157] in 1893 established definitively the notion
of Lie system, which, on the other hand, had already been suggested long time ago by
Lie [153], and whose name was coined by Vessiot in [224] in recognition of Lie’s success
in characterising systems admitting a superposition rule. The definition goes as follows.

Definition 1.9. A system of the form (1.12) is a Lie system if the corresponding t-
dependent vector field (1.1) admits a decomposition of the form (1.18).
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In view of the Lie Theorem, the above definition can be rephrased by saying that
(1.12) is a Lie system if and only if it admits a superposition rule. Hence, it is obvious
that the systems (1.5), (1.7) and (1.10), which admit the global superposition rules (1.15),
(1.16) and (1.17), respectively, are Lie systems. Let us analyse these examples in more
detail. This brings the opportunity to illustrate diverse characteristics of Lie systems and
the Lie Theorem, to be discussed here and in the forthcoming sections.

Consider again the homogeneous linear system (1.5). It describes the integral curves
of the t-dependent vector field

X(t, x) =
n∑

i,j=1

Ai j(t)xj
∂

∂xi
, (1.19)

which is a linear combination of vector fields of the form

X(t, x) =
n∑

i,j=1

Ai j(t)Xij(x), (1.20)

with the n2 vector fields

Xij = xj
∂

∂xi
, i, j = 1, . . . , n. (1.21)

Furthermore,
[Xij , Xlm] = δimXlj − δljXim,

where δim is the Kronecker delta, i.e. the vector fields (1.21) generate an n2-dimensional
Vessiot–Guldberg Lie algebra isomorphic to the Lie algebra gl(n,R) (see [62]).

In view of decomposition (1.20), each system (1.5) is a Lie system. This is not a
surprise, as each system (1.5) admits the superposition rule (1.15) and the Lie Theorem
states that every system admitting a superposition rule must be a Lie system. Moreover,
in view of Lie’s condition, since homogeneous linear systems in Rn admit a superposition
rule depending on n particular solutions, their associated t-dependent vector fields must
take values in some Lie algebra of dimension at most n2. Indeed, decomposition (1.20)
shows that X(t, x) takes values in a Lie algebra isomorphic to gl(n,R), which clearly
obeys Lie’s condition corresponding to the superposition rule (1.15).

Note that we have italicised the last ‘some’ in the paragraph above. We did it because
we wanted to stress that a Lie system can take values in different Lie algebras, some of
which do not need to satisfy the same Lie’s condition. This will become clearer in the
next example.

Let us now turn to an inhomogeneous system of the form (1.7). It describes the integral
curves of the t-dependent vector field

X(t, x) =
n∑
i=1

( n∑
j=1

Ai j(t)xj +Bi(t)
) ∂

∂xi
, (1.22)

which is a linear combination with t-dependent coefficients,

Xt =
n∑

i,j=1

Ai j(t)Xij +
n∑
i=1

Bi(t)Xi, (1.23)
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of the vector fields (1.21) and

Xi =
∂

∂xi
, i = 1, . . . , n. (1.24)

The above vector fields satisfy the commutation relations

[Xi, Xj ] = 0, i, j = 1, . . . , n, [Xij , Xl] = −δljXi, i, j, l = 1, . . . , n.

This shows that the vector fields (1.21) and (1.24) span a Lie algebra of vector fields
isomorphic to the (n2 +n)-dimensional Lie algebra of the affine group [62]. Thus, in view
of decomposition (1.23), systems (1.7) are Lie systems.

As systems (1.7) admit a superposition rule (1.16) depending on n + 1 particular
solutions, Lie’s condition implies that their t-dependent vector fields must take values in
some Lie algebra of dimension at most n(n + 1). In fact, the above results easily show
that this is the case.

The previous example shows that a Lie system may admit various Vessiot–Guldberg
Lie algebras. Recall that every homogeneous linear system (1.5) is related to a t-dependent
vector field taking values in a Lie algebra isomorphic to gl(n,R). Additionally, as a par-
ticular instance of system (1.7), its t-dependent vector field also takes values in the above
defined n2 + n-dimensional Lie algebra of vector fields. In other words, linear systems
admit at least two nonisomorphic Vessiot–Guldberg Lie algebras.

Now, we can illustrate how different superposition rules for the same system may
be associated with multiple, nonisomorphic, Vessiot–Guldberg Lie algebras and lead to
distinct Lie’s conditions. We showed that linear systems admit a linear superposition
rule, which leads, in view of Lie’s condition, to the existence of an associated Vessiot–
Guldberg Lie algebra of dimension at most n2, which was determined. Nevertheless, the
above-mentioned second Vessiot–Guldberg Lie algebra for linear systems does not satisfy
this condition. On the contrary, this Lie algebra shows that there must exist a second
superposition rule, namely (1.8), which, along with this Vessiot–Guldberg Lie algebra,
satisfies a new Lie’s condition.

To sum up, the Lie Theorem implies that a system admitting a superposition rule is
related to the existence of, at least, one Vessiot–Guldberg Lie algebra satisfying the Lie’s
condition relative to this superposition rule. Nevertheless, the system can possess more
Vessiot–Guldberg Lie algebras, some of which do not need to obey Lie’s condition for the
assumed superposition rule. In that case, the other Vessiot–Guldberg Lie algebras are
related to other superposition rules for which a new Lie’s condition is satisfied.

We now consider Riccati equations (1.10). They determine the integral curves of the
t-dependent vector field on R̄ of the form

X(t, x) = (b1(t) + b2(t)x+ b3(t)x2)
∂

∂x
. (1.25)

As Riccati equations admit a global superposition rule, they must satisfy the assumptions
detailed in the Lie Theorem. Indeed, note thatX is a linear combination with t-dependent
coefficients of the three vector fields

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = x2 ∂

∂x
, (1.26)
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which generate a three-dimensional Lie algebra with defining relations

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3. (1.27)

Thus, as expected, Riccati equations obey the conditions given by Lie to admit a su-
perposition rule. Moreover, Riccati equations are associated with a Vessiot–Guldberg
Lie algebra isomorphic to sl(2,R). Since this Lie algebra is three-dimensional and Ric-
cati equations admit a superposition rule depending on three particular solutions, it is
immediate that the equations (1.10) satisfy the corresponding Lie’s condition.

The existence of different Vessiot–Guldberg Lie algebras for a system of first-order
ordinary differential equations is an important question because their characteristics de-
termine, among other features, the integrability by quadratures of Lie systems [31].

Let us now turn to determining when a system (1.12) is not a Lie system. In order to
analyse this question, it is useful to rewrite the Lie Theorem in the following, abbreviated,
form.

Proposition 1.10 (Abbreviated Lie Theorem). A system X on Rn is a Lie system if
and only if Lie({Xt}t∈R) is finite-dimensional.

In view of the above result, determining that (1.12) is not a Lie system reduces
to showing that Lie({Xt}t∈R) is infinite-dimensional. The standard procedure to prove
this consists in demonstrating that there exists an infinite chain {Zj}j∈N of linearly
independent vector fields over R obtained through successive Lie brackets of elements in
{Xt}t∈R. In order to illustrate how this is usually done, consider the particular example
based on the study of the Abel equation of the first type

dx

dt
= x2 + b(t)x3, b(t) 6= 0,

where b(t) is additionally a nonconstant function. These equations describe the integral
curves of the t-dependent vector field

Xt = (x2 + b(t)x3)
∂

∂x
.

Consider the chain of vector fields

Z1 = x2 ∂

∂x
, Z2 = x3 ∂

∂x
, Zj = [X1, Xj−1], j = 3, 4, 5, . . . .

Since Zj = xj+1∂/∂x, it turns out that Lie({Xt}t∈R) admits the infinite chain of linearly
independent vector fields {Zj}j∈R and so, in view of the abbreviated Lie Theorem, Abel
equations of the above type are not Lie systems.

There are many other relevant Lie systems associated with important systems of differ-
ential equations appearing in the physical and mathematical literature. A nonexhaustive
brief list of Lie systems includes:

1. Linear first-order systems and, more specifically, Euler systems [62, 98].
2. Riccati equations [47, 222, 234] and coupled Riccati equations of projective type [7].
3. Matrix Riccati equations [112, 141, 174, 188, 212, 234].
4. Bernoulli equations, several equations appearing in supermechanics [13], etc.
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Apart from the above instances, there are other important systems of differential
equations which can be studied through other Lie systems. Several of such Lie systems
will be detailed in the next sections.

Determination of the general solution of any Lie system reduces to deriving a partic-
ular solution of a particular type of a Lie system defined on a Lie group. Let us analyse
this in detail.

Consider a Lie system related to a t-dependent vector field (1.18) over Rn and associ-
ated, for simplicity, with a Vessiot–Guldberg Lie algebra V made up of complete vector
fields. This gives rise to a Lie group action Φ : G× Rn → Rn whose fundamental vector
fields are exactly those of V . Obviously, this implies that the Lie algebra g ' TeG is
isomorphic to V . Choose now a basis {a1, . . . , ar} of g such that Φ : G× Rn → Rn and

Φ(exp(−saα), x) = g(α)
s (x), α = 1, . . . , r, s ∈ R, (1.28)

where g(α) : (s, x) ∈ R×Rn 7→ g(α)(s, x) = g
(α)
s (x) ∈ Rn is the flow of the vector field Xα.

In this way, each vector field Xα becomes the fundamental vector field corresponding to
aα and the map φ : g → V such that φ(aα) = Xα for α = 1, . . . , r is a Lie algebra
isomorphism.

LetXR
α be the right-invariant vector field on G with (XR

α )e = aα, i.e. (XR
α )g = Rg∗eaα,

where Rg : g′ ∈ G 7→ g′g ∈ G is the right action of G on itself. Then the t-dependent
right-invariant vector field

XG(t, g) = −
r∑

α=1

bα(t)XR
α (g) (1.29)

defines a Lie system on G whose integral curves are the solutions of the system on G

given by
dg

dt
= −

r∑
α=1

bα(t)XR
α (g). (1.30)

Applying Rg−1∗g to both sides of the equation, we see that its general solution g(t)
satisfies

Rg−1(t)∗g(t)ġ(t) = −
r∑

α=1

bα(t)aα ∈ TeG. (1.31)

Note that right-invariance implies that the knowledge of one particular solution of the
above equation, e.g. g0(t) with g0(0) = g0, is enough to obtain the general solution
of (1.31). Indeed, consider g′(t) = Rḡg0(t) for a given ḡ ∈ G. This curve satisfies

dg′

dt
(t) = Rḡ∗g0(t)

(
dg0

dt
(t)
)
, i.e.

dg′

dt
(t) = Rḡ∗g0(t)

(
−

r∑
α=1

bα(t)XR
α (g0(t))

)
.

Taking into account that Rḡ∗g0XR
α (g0) = XR

α (g0ḡ), one has

dg′

dt
(t) = −

r∑
α=1

bα(t)XR
α (Rḡg0(t)) = −

r∑
α=1

bα(t)XR
α (g′(t))

and g′(t) is another particular solution of (1.29) with initial condition g′(0) = Rḡg0.
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Consequently, the general solution g(t) of (1.31) can be written as

g(t) = Rḡg0(t), ḡ ∈ G.

That is, system (1.29) admits a superposition rule and, according to the Lie Theorem, it
must be a Lie system. This is not surprising, as the vector fields XR

α span a Lie algebra
of vector fields isomorphic to V and system (1.30) describes the integral curves of a
t-dependent vector field taking values in a finite-dimensional Lie algebra of vector fields.

The relevance of the Lie system (1.31) relies on the fact that the integral curves
of the t-dependent vector field X(t, x) can be obtained from one particular solution of
equation (1.31). More explicitly, the general solution x(t) of the Lie system X(t, x) reads
x(t) = Φ(ge(t), x0), where x0 is the initial condition of the particular solution and ge(t)
is the particular solution of equation (1.31) with ge(0) = e.

Note that, in view of Ado’s Theorem [2], every finite-dimensional Lie algebra, e.g. the
above Vessiot–Guldberg Lie algebra V , admits an isomorphic matrix Lie algebra. Related
to this matrix Lie algebra, there exists a matrix Lie group Ḡ. In this way, the system
describing the t-dependent vector field (1.18) reduces to solving an equation of the form

Ȧ(t)A−1(t) = −
r∑

α=1

bα(t)Mα, so Ȧ = −
r∑

α=1

bα(t)MαA,

with A(t) being a curve taking values in the matrix Lie group Ḡ and M1, . . . ,Mr being
a basis with the same structure constants as X1, . . . , Xr. Obviously, the above equation
becomes a homogeneous linear differential equation in the coefficients of the matrix A.
Consequently, determining the general solution of a Lie system reduces to solving a linear
problem.

Although the above process was described for Lie systems associated with Vessiot–
Guldberg Lie algebras of complete vector fields, it can be proved that a similar process,
with almost identical final results, can be applied to any Lie system X(t, x). Indeed,
this can be done by taking the compactification of Rn in order to make all vector fields
complete (as in the case of the Riccati equation) or just by considering that the induced
action is only a local one.

A generalisation of the method [57] used by Wei and Norman for linear systems
[231, 232] is very useful for solving equations (1.31). Furthermore, there exist reduction
techniques that can also be used [40]. Such techniques show, for instance, that Lie systems
related to solvable Vessiot–Guldberg Lie algebras are integrable by quadratures ([40, Sec-
tion 8]). Finally, as right-invariant vector fields XR project onto the fundamental vector
fields in each homogeneous space for G, the solution of equation (1.31) enables us to find
the general solution for the corresponding Lie system in each homogeneous space. Con-
versely, the knowledge of particular solutions of the associated system in a homogeneous
space gives us a method for reducing the problem to the corresponding isotropy group [40].

1.4. Geometric approach to superposition rules. Let us now review the modern
geometrical approach to the theory of Lie systems introduced in [38]. Although we here
basically point out the results given in that work, several slight improvements have been
included in our presentation.
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A fundamental notion in the geometrical description of Lie systems is the so-called
diagonal prolongation of a t-dependent vector field. Its definition and most important
properties are described below.

Definition 1.11. Given a t-dependent vector field over Rn of the form

X(t, x(0)) =
n∑
i=1

Xi(t, x(0))
∂

∂xi(0)

,

its diagonal prolongation to Rn(m+1) is the t-dependent vector field over this last space
given by

X̂(t, x(0), . . . , x(m)) =
m∑
a=0

n∑
i=1

Xi(t, x(a))
∂

∂xi(a)

.

Recall that every vector field X over Rn can be regarded as a t-dependent vector field
in a natural way. Evidently, the above definition can also be applied to define diagonal
prolongations for vector fields over Rn. Obviously, such prolongations are vector fields
over Rn(m+1) as well.

Note that diagonal prolongations can be redefined in an intrinsic, and equivalent, way
as follows.

Definition 1.12. Given a t-dependent vector field X over Rn, its diagonal prolongation
to Rn(m+1) is the unique t-dependent vector field X̂ over Rn(m+1) such that:

• The t-dependent vector field X̂ is invariant under the action of the symmetry group
Sm+1 over Rn(m+1).

• The vector fields X̂t are projectable under the projection pr0 given by (1.4) and
pr0∗X̂t = Xt.

Lemma 1.13. For any vector fields X,Y ∈ X(Rn), we have [X̂, Ŷ ] = [̂X,Y ]. Therefore,
given a Lie algebra of vector fields V ⊂ X(Rn), the prolongations of its elements to
Rn(m+1) span an isomorphic Lie algebra of vector fields.

Proof. The proof is straightforward and left to the reader.

Lemma 1.14. Consider a family X1, . . . , Xr of vector fields over Rn whose diagonal pro-
longations to Rnm are linearly independent at a generic point. Given the diagonal pro-
longations X̂1, . . . , X̂r to Rn(m+1), the vector field

∑r
α=1 bαX̂α with bα ∈ C∞(Rn(m+1))

is also a diagonal prolongation if and only if the coefficients b1, . . . , br are constant.

Proof. Let us write in local coordinates

Xα =
n∑
i=1

Aiα(x)
∂

∂xi
, α = 1, . . . , r,

which implies that

X̂α =
n∑
i=1

m∑
a=0

Aiα(x(a))
∂

∂xi(a)

, α = 1, . . . , r.
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Then
r∑

α=1

bα(x(0), . . . , x(m))X̂α =
r∑

α=1

n∑
i=1

m∑
a=0

bα(x(0), . . . , x(m))Aiα(x(a))
∂

∂xi(a)

,

which is a diagonal prolongation if and only if there exist functions Bj : x ∈ Rn 7→
Bj(x) ∈ R, with j = 1, . . . , n, such that

r∑
α=1

bα(x(0), . . . , x(m))Aiα(t, x(a)) = Bi(x(a)), a = 0, . . . ,m, i = 1, . . . , n.

In particular, the functions bα(x(0), . . . , x(m)) with α = 1, . . . , r solve the subsystem of
linear equations in the variables u1, . . . , ur given by

r∑
α=1

uαA
i
α(x(a)) = Bi(x(a)), a = 1, . . . ,m, i = 1, . . . , n.

The coefficient matrix of the above system of m · n equations with r unknowns has rank
r ≤ m · n since the pr∗(X̂α) are linearly independent. Hence, the solutions u1, . . . , ur
are completely determined in terms of the functions Bi(x(a)) with a = 1, . . . ,m and
i = 1, . . . , n, and do not depend on x(0). But since the prolongations are invariant under
the action of the symmetry group Sm+1, the functions uα = bα(x(0), . . . , x(m)) with α =
1, . . . , r must satisfy this symmetry. Consequently, they cannot depend on the variables
x(1), . . . , x(m), and therefore must be constant.

Lemma 1.15. For every family of vector fields X1, . . . , Xr ∈ X(Rn) linearly indepen-
dent over R, there exists an integer m such that their prolongations to Rnm are linearly
independent at a generic point.

Proof. Denote by X̂q
α the diagonal prolongation of Xα to Rnq and define σ(q) to be the

maximum number of vector fields, among the X̂q
α, linearly independent at a generic point

of Rnq.
Assume towards a contradiction that each family X̂q

1 , . . . , X̂
q
r of diagonal prolonga-

tions are linearly dependent at a generic point of Rqn, in other words, 1 ≤ σ(q) < r

for every q. Then the function σ(q) must admit a maximum p < r for a certain in-
teger m̄, i.e. p = σ(m̄). We can assume, without loss of generality, that X̂m̄

1 , . . . , X̂
m̄
p

are linearly independent at a generic point of Rnm̄. Moreover, X̂m̄+1
1 , . . . , X̂m̄+1

p are
also linearly independent at a generic point of Rn(m̄+1) and, as σ(m̄) is maximal, we
must have σ(m̄ + 1) = σ(m̄). Consequently, there exist p uniquely defined functions
f̄1, . . . , f̄p ∈ C∞(Rn(m̄+1)) obeying the equation

f̄1X̂
m̄+1
1 + · · ·+ f̄pX̂

m̄+1
p = X̂m̄+1

p+1 . (1.32)

This forces the left-hand side to be a diagonal prolongation. Moreover, since X̂m̄
1 , . . . , X̂

m̄
p ,

are linearly independent at a generic point, Lemma 1.14 applies and it turns out that
f̄1, . . . , f̄p must be constant. Then, projecting the above expression by pr0, it follows that
X1, . . . , Xp+1 are linearly dependent over R. This violates our initial assumption and
thereby we conclude that our initial premise, i.e. σ(q) < r for every q, must be false and
there must exist an integer m such that the diagonal prolongations of X1 . . . , Xr to Rnm
become linearly independent at a generic point, which proves our lemma.
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The above lemma already contains the key point to prove the following result.

Lemma 1.16. If σ(q) < r, then σ(q) < σ(q + 1).

Proof. It is immediate that σ(q) ≤ σ(q+ 1). Now, if we assume p = σ(q) < r and σ(q) =
σ(q+1), one can pick, among the X̂q

α, a family of p vector fields linearly independent at a
generic point of Rnq. We can assume, with no loss of generality, that they are X̂q

1 , . . . , X̂
q
p .

Consequently, as in the above lemma, we can write

f̄1X̂
q+1
1 + · · ·+ f̄pX̂

q+1
p = X̂q+1

p+1 ,

for certain uniquely defined functions f̄1, . . . , f̄r ∈ C∞(Rn(m+1)). As in the proof of the
previous lemma, this implies that X1, . . . , Xp+1 are linearly dependent over R. This is in
contradiction with our initial assumption.

Taking into account the above two lemmas, it follows trivially that σ(q) grows mono-
tonically until it reaches the maximum r. This gives rise to the following proposition.

Proposition 1.17. For every family of vector fields X1, . . . , Xr ∈X(Rn) linearly inde-
pendent over R, there exists an integer m ≤ r such that their prolongations to Rnm are
linearly independent at a generic point.

The above proposition constitutes an explicit proof for vector fields over Rn of the
analogous result for vector fields over manifolds pointed out in [38]. Let us now turn to
a geometric interpretation of superposition rules.

Consider a t-dependent vector field (1.1) associated with the system

dxi

dt
= Xi(t, x), i = 1, . . . , n, (1.33)

describing its integral curves. Recall that the above system admits a superposition rule if
there exists a map Φ : Rn(m+1) → Rn of the form x = Φ(x(1), . . . , x(m); k1, . . . , kn) such
that its general solution x(t) can be written as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn),

with x(1)(t), . . . , x(m)(t) being a generic family of particular solutions and k1, . . . , kn a
set of constants associated with each particular solution.

The map Φ(x(1), . . . , x(m); ·) : Rn → Rn can be inverted, at least locally around points
of an open dense subset of Rnm, to give rise to a map Ψ : Rn(m+1) → Rn,

k = Ψ(x(0), . . . , x(m)),

where we write x(0) instead of x and k = (k1, . . . , kn) in order to simplify the notation.
Note that the map Ψ is defined so that

k = Ψ(Φ(x(1), . . . , x(m); k), x(1), . . . , x(m)).

Hence, Ψ defines an n-codimensional foliation on the manifold Rn(m+1).
As the fundamental property of the map Ψ states that

k = Ψ(x(0)(t), . . . , x(m)(t)) (1.34)

for any (m + 1)-tuple of generic particular solutions of system (1.33), the foliation de-
termined by Ψ is invariant under permutations of its (m+ 1) arguments, x(0), . . . , x(m).
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Moreover, differentiating expression (1.34) with respect to t, we get
m∑
a=0

n∑
j=1

Xj(t, x(a)(t))
∂Ψk

∂xj(a)

(p̄(t)) = X̂tΨk(p̄(t)) = 0, k = 1, . . . , n,

where (Ψ1, . . . ,Ψn) = Ψ and p̄(t) = (x(0)(t), . . . , x(m)(t)). Thus, the functions Ψ1, . . . ,Ψn

are first integrals for the vector fields {X̂t}t∈R defining an n-codimensional foliation F

over Rn(m+1) such that the vector fields {X̂t}t∈R are tangent to its leaves.
The foliation F has another important property. Given a leaf Fk corresponding to the

level set of Ψ determined by k = (k1, . . . , kn) ∈ Rn and a point (x(1), . . . , x(m)) ∈ Rmn,
there exists a unique point (x(0), x(1), . . . , x(m)) ∈ Fk, namely,

(Φ(x(1), . . . , x(m); k), x(1), . . . , x(m)) ∈ Fk.

Consequently, the projection onto the last m · n factors, i.e. the map pr given by (1.3),
induces diffeomorphisms between Rnm and each of the leaves Fk. In other words, the
foliation F is horizontal with respect to the projection pr.

The foliation F corresponds to a connection ∇ on the bundle pr : Rn(m+1) → Rnm
with zero curvature. Indeed, the restriction of the projection pr to a leaf gives a one-to-
one map that gives rise to a linear map from vector fields on Rnm to ‘horizontal’ vector
fields tangent to the leaf.

Note that the knowledge of this connection (foliation) gives us the superposition
rule without referring to the map Ψ. If we fix a point x(0)(0) and m particular solu-
tions, x(1)(t), . . . , x(m)(t), then x(0)(t) is the unique point in Rn such that the point
(x(0)(t), x(1)(t), . . . , x(m)(t)) belongs to the same leaf as (x(0)(0), x(1)(0), . . . , x(m)(0)).
Thus, it is only F that really matters when the superposition rule is concerned.

On the other hand, if we have a connection ∇ on the bundle

pr : Rn(m+1) → Rnm,

with zero curvature, i.e. a horizontal distribution ∇ on Rn(m+1) that it is involutive and
can be integrated to give a foliation on Rn(m+1) such that the vector fields X̂t belong
to ∇, then the procedure described above determines a superposition rule for system
(1.33). Indeed, let k ∈ Rn enumerate smoothly the leaves Fk of the foliation F; then we
can define Φ(x(1), . . . , x(m); k) ∈ Rn to be the unique point x(0) of Rn such that

(x(0), x(1), . . . , x(m)) ∈ Fk.

This gives rise to a superposition rule Φ : Rnm × Rn → Rn for the system of first-order
differential equations (1.33). To see this, let us observe the inverse relation

Ψ(x(0), . . . , x(m)) = k,

which is equivalent to (x(0), . . . , x(m)) ∈ Fk. If we fix k and take a generic family of
particular solutions x(1)(t), . . . , x(m)(t) of equation (1.33), then x(0)(t) defined by the
condition Ψ(x(0)(t), . . . , x(m)(t)) = k satisfies (1.33). In fact, let x′(0)(t) be the solution of
(1.33) with initial value x′(0) = x(0). Since the t-dependent vector fields X̂(t, x) are tangent
to F, the curve (x(0)(t), x(1)(t), . . . , x(m)(t)) lies entirely within a leaf of F, so in Fk. But
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a point of a leaf is entirely determined by its projection under pr, so x′(0)(t) = x(0)(t) and
x(0)(t) is a solution.

Proposition 1.18. Giving a superposition rule depending on m generic particular solu-
tions for a Lie system described by a t-dependent vector field X is equivalent to giving
a zero curvature connection ∇ on the bundle pr : R(m+1)n → Rnm for which the vector
fields {X̂t}t∈R are horizontal vector fields with respect to this connection.

Although we decided not to investigate in full detail the difference between global
superposition rules and superposition rules, we comment briefly on this theme here. Note
that a rigorous analysis shows that a global or ‘simple’ superposition rule gives rise to
a zero curvature connection. Nevertheless, on the contrary, a zero curvature connection
only ensures the existence of a superposition rule that need not be global. This is due
to the fact that the connection only guarantees the existence of a series of local first
integrals that give rise to a superposition rule. In order to ensure the existence of a
global superposition rule, some extra conditions on the connection must be imposed
(see [18]).

1.5. Geometric Lie Theorem. Let us now prove the classical Lie theorem [157, Theo-
rem 44] from a modern geometric perspective by using the previous results. The following
theorem is a restatement of the geometric version of the Lie Theorem given in [38, The-
orem 1]. Our aim is to include one of the main results of the theory of Lie systems and,
at the same time, to furnish a slightly more detailed proof.

Main Theorem 1.19 (Geometric Lie Theorem). A system (1.33) admits a superposition
rule depending on m generic particular solutions if and only if the t-dependent vector field
X can be written as

Xt =
r∑

α=1

bα(t)Xα, (1.35)

where the vector fields X1, . . . , Xr form a basis for an r-dimensional real Lie algebra.

Proof. Suppose that system (1.33) admits a superposition rule (1.14) and let F be its
associated foliation over Rn(m+1). As the vector fields {X̂t}t∈R are tangent to the leaves
of F, the vector fields in Lie({X̂t}t∈R) span a generalised involutive distribution

Dp = {Ŷ (t, p) | Y ∈ Lie({X̂t}t∈R)} ⊂ TpRn(m+1),

whose elements are also tangent to the leaves of F. Since the Lie bracket of two prolon-
gations is a prolongation, we can choose, among the elements of Lie({X̂t}t∈R), a finite
family X̂1, . . . , X̂r that gives rise to a local basis of diagonal prolongations for the distri-
bution D. As the map pr projects each leaf of the foliation F into Rnm diffeomorphically,
we find that the vector fields pr∗(X̂α) with α = 1, . . . , r are linearly independent at a
generic point of Rnm. These vector fields satisfy the commutation relations

[X̂α, X̂β ] =
r∑

γ=1

fαβγX̂γ , α, β = 1, . . . , r,

for certain functions fαβγ ∈ C∞(Rn(m+1)). In view of Lemma 1.14, these functions must
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be constant, say fαβγ = cαβγ , and, taking into account the properties of diagonal pro-
longations, one finds that X1, . . . , Xr are linearly independent vector fields obeying the
relations

[Xα, Xβ ] =
r∑

γ=1

cαβγXγ , α, β = 1, . . . , r.

Since each X̂t is spanned by the vector fields X̂1, . . . , X̂r, there are t-dependent functions
bα ∈ C∞(R× Rn(m+1)) with α = 1, . . . , r such that

X̂t =
r∑

α=1

bαX̂α.

But each X̂t is a diagonal prolongation, so, using Lemma 1.14, one sees that the functions
b1, . . . , br depend only on time and thus

X̂t =
r∑

α=1

bα(t)X̂α. (1.36)

Hence, it is immediate that (1.35) holds.
To prove the converse, assume that the t-dependent vector field X can be put in the

form (1.35), where the vector fields X1, . . . , Xr are linearly independent over R and span
an r-dimensional Lie algebra.

As X1, . . . , Xr are linearly independent over R, there exists, in view of Proposi-
tion 1.17, a minimal number m ≤ r such that their diagonal prolongations to Rnm
are linearly independent at a generic point (which yields r ≤ n ·m). Moreover, the diag-
onal prolongations X̂1, . . . , X̂r to Rn(m+1) are linearly independent and form a basis for
an involutive distribution D. This distribution leads to an (n(m+ 1)− r)-codimensional
foliation F0 on Rn(m+1). As the codimension of F0 is at least n, we can consider an n-
codimensional foliation F whose leaves include those of F0. The leaves of this foliation
project onto the lastm·n factors diffeomorphically and they are at least n-codimensional.
Hence, according to Proposition 1.18, the foliation F defines a superposition rule depend-
ing on m particular solutions.

Note that the converse part of the previous proof shows that all systems described
by t-dependent vector fields of the form (1.36) share a common superposition rule. More
specifically, all such t-dependent vector fields give rise to the same distribution D over
the same space Rn(m+1), and this ensures the existence of a common superposition rule
for all of them. This fact will be analysed more extensively in the second part of our
work, where certain families of systems of differential equations that admit a t-dependent
common superposition rule, referred to as Lie families, are investigated.

1.6. Determination of superposition rules. Note that the previous geometric demon-
stration of the Lie Theorem also contains information about the superposition rules as-
sociated with a Lie system. Let us analyse this more carefully.

Consider a Lie system in Rn associated with a t-dependent vector field X. In view of
the Lie Theorem, X can be written in the form
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X(t, x) =
n∑
i=1

r∑
α=1

bα(t)Xi
α(x)

∂

∂xi
,

where the vector fields Xα(x) =
∑n
i=1X

i
α(x)∂/∂xi span an r-dimensional Lie algebra of

vector fields. Now, the geometric proof of the Lie Theorem shows that the above decom-
position gives rise to a superposition rule depending on m generic particular solutions
with r ≤ m · n. More exactly, the number m coincides with the minimal integer that
makes the diagonal prolongations of X1, . . . , Xr to Rmn linearly independent at a generic
point. In other words, the only functions f1, . . . , fr ∈ C∞(Rnm) such that

r∑
α=1

fαX
i
α(x(a)) = 0, a = 1, . . . ,m, i = 1, . . . , n, (1.37)

at a generic point (x(1), . . . , x(k)) are f1 = · · · = fr = 0.
Let us illustrate the above comments by a simple example. Consider the Riccati

equation
ẋ = b1(t) + b2(t)x+ b3(t)x2,

which describes the integral curves of the t-dependent vector field

Xt = b1(t)
∂

∂x
+ b2(t)x

∂

∂x
+ b3(t)x2 ∂

∂x
.

Recall that the vector fields {Xt}t∈R take values in the three-dimensional Lie algebra V
spanned by the vector fields

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = x2 ∂

∂x
.

Consequently, we can determine the number of particular solutions for a superposition
rule for Riccati equations by considering the minimal m such that corresponding system
(1.37) admits only the trivial solution. For m = 2, this system reads

f1 + f2x(1) + f3x
2
(1) = 0, f1 + f2x(2) + f3x

2
(2) = 0,

and it has nontrivial solutions. Nevertheless, the system for the prolongations to R3, that
is,

f1 + f2x(1) + f3x
2
(1) = 0, f1 + f2x(2) + f3x

2
(2) = 0, f1 + f2x(3) + f3x

2
(3) = 0,

does not admit any nontrivial solution because the determinant of the coefficients, i.e.∣∣∣∣∣∣∣
1 x(1) x2

(1)

1 x(2) x2
(2)

1 x(3) x2
(3)

∣∣∣∣∣∣∣ = (x(2) − x(1))(x(2) − x(3))(x(1) − x(3)),

is different from zero when the three points x(1), x(2), and x(3) are different. Thus, we
see that m = 3 and the superposition rule for the Riccati equation depends on three
particular solutions. Obviously, the relations m ≤ dimV ≤ m · n are valid in this case.

Once the numberm of particular solutions has been determined, the superposition rule
can be worked out in terms of first integrals for the diagonal prolongations X̂1, . . . , X̂r

over Rn(m+1). Finally, it is worth noting that when the vector fields X̂1, . . . , X̂r over
Rn(m+1) admit more than n common first integrals, the system X admits more than one
superposition rule (see [38]).
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1.7. Mixed superposition rules and constants of motion. Roughly speaking, a
mixed superposition rule is a t-independent map describing the general solution of a sys-
tem of first-order differential equations in terms of a generic family of particular solutions
of various systems (generically different) of first-order differential equations and a set of
constants. Obviously, mixed superposition rules include, as particular instances, the stan-
dard superposition rules related to Lie systems.

Definition 1.20. A mixed superposition rule for a system of first-order differential equa-
tions determined by a t-dependent vector field X over Rn0 is a t-independent map
Φ : Rn1 × · · · × Rnm × Rn0 → Rn0 of the form

x = Φ(x(1), . . . , x(m); k1, . . . , kn0),

such that the general solution x(t) of the system X can be written as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn0),

with x(1)(t), . . . , x(m)(t) being a generic family of curves such that each x(a)(t) is a par-
ticular solution of the system determining the integral curves for a t-dependent vector
field X(a) over Rna with a = 1, . . . ,m.

As an example of a mixed superposition rule, consider the linear system of differential
equations

dxi

dt
=

n∑
j=1

Aij(t)x
j +Bi(t), i = 1, . . . , n, (1.38)

whose general solution x(t) can be written as

x(t) = y(1)(t) +
n∑
j=1

kjz(j)(t),

in terms of one particular solution y(1)(t) of (1.38), any family of n linearly independent
particular solutions z(1)(t), . . . , z(n)(t) of the homogeneous linear system

dzi

dt
=

n∑
j=1

Aij(t)z
j , i = 1, . . . , n,

and a set of n constants k1, . . . , kn.
We aim to give a method to obtain a particular type of mixed superposition rule for a

Lie system in terms of particular solutions of another Lie system. Additionally, we relate
our results to the commentary given in [38, Remark 5], where it was briefly discussed that
the solutions of a certain first-order differential equation on a manifold may be obtained
in terms of solutions of other first-order systems by constructing a certain foliation.

Consider the system on Rn0 given by

dxi

dt
=

r∑
α=1

bα(t)Xi
α(x), i = 1, . . . , n0, (1.39)

determining the integral curves of the t-dependent vector field

X(t, x) =
r∑

α=1

n0∑
i=1

bα(t)Xi
α(x)

∂

∂xi
, (1.40)
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where the vector fields Xα(x) =
∑n0
i=1X

i
α(x)∂/∂xi generate an r-dimensional Lie alge-

bra V , i.e. there exist r3 constants cαβγ such that

[Xα, Xβ ] =
r∑

γ=1

cαβγXγ , α, β = 1, . . . , r.

We aim to derive a particular type of mixed superposition rule of the form Φ : (Rn1)m ×
Rn0 → Rn0 for the above Lie system in such a way that its general solution x(t) can be
expressed as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn),

where x(1)(t), . . . , x(m)(t) are a generic family of particular solutions of a Lie system
determined by a t-dependent vector field X(1) on Rn1 . Let us assume that X(1) takes the
particular form

X
(1)
t =

r∑
α=1

bα(t)X(1)
α , (1.41)

where the vector fields X(1)
α ∈ X(Rn1) obey the same commutation relations as the vector

fields Xα, that is,

[X(1)
α , X

(1)
β ] =

r∑
γ=1

cαβγX
(1)
γ , α, β = 1, . . . r, (1.42)

It is important to clarify when such an X(1) exists. Let us prove its existence. On one
hand, Ado’s Theorem states that for every finite-dimensional Lie algebra V , e.g. the one
spanned by the vector fields Xα, there exists an isomorphic matrix Lie algebra VM of
n1 × n1 square matrices. Now, since the homogeneous linear system

ẏ = A(t)y,

where A(t) takes values in VM , is a Lie system associated with a Lie algebra of vector
fields isomorphic to VM (see [31]), it follows immediately that we can always determine
a family of linear vector fields on Rn1 obeying relations (1.42). In terms of this family,
we can build a t-dependent vector field of the form (1.41). Apart from the t-dependent
vector field X(1)

t constructed in the aforementioned way, there might exist others made
from finite-dimensional Lie algebras of vector fields admitting a basis whose elements
obey relations (1.42).

Proposition 1.17 ensures the existence of a minimal m such that the diagonal prolon-
gations of the X(1)

α to Rn1m are linearly independent at a generic point. Let us denote
such prolongations by

X̃α =
m∑
a=1

Xi(1)
α (x(a))

∂

∂xi(a)

, α = 1, . . . , r,

and define vector fields on Ñ = Rn0 × Rn1m by

Yα = Xα +
m∑
a=1

Xi(1)
α (x(a))

∂

∂xi(a)

, α = 1, . . . , r,
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where we have considered the vector fields Xα and X
(1)
α as vector fields on Ñ in the

natural way. From the above definition, one has

[Yα, Yβ ] =
r∑

γ=1

cαβγYγ , α, β = 1, . . . , r.

Consequently, the system of differential equations that determines the integral curves of
the t-dependent vector field

Yt =
r∑

α=1

bα(t)Yα

is a Lie system associated with a Vessiot–Guldberg Lie algebra isomorphic to V .
Define the involutive distribution Ṽ on Ñ by

Ṽx̃ = 〈(Y1)x̃, . . . , (Yr)x̃〉, x̃ ∈ Ñ ,

whose rank is r, around a generic point of Ñ . Additionally, as r ≤ m·n1, we may choose, at
least locally, n0 common first integrals of the vector fields Y1, . . . , Yr, giving rise to an n0-
codimensional local foliation F over Rn0 ×Rn1m, whose leaves project diffeomorphically
onto Rnm1 through the projection

p : (x, x(1), . . . , x(m)) ∈ Ñ 7→ (x(1), . . . , x(m)) ∈ Rn1m.

Additionally, the vector fields Yα are tangent to the leaves of this foliation.
On one hand, it is immediate that the above results lead to defining a flat connection

∇ on the bundle p : Ñ → Rn1m. On the other hand, as it happened in the case of
superposition rules (see Section 1.4), for every point (x(1), . . . , x(m)) ∈ Rn1m and a leaf
Fk, with k = (k1, . . . , kn0), of the foliation F , there exists a unique point x(0) in Rn0 such
that (x(0), x(1), . . . , x(m)) ∈ Fk. This gives rise to a map

x(0) = Φ(x(1), . . . , x(m); k1, . . . , kn0).

Mutatis mutandis, the same arguments at the end of Section 1.4 apply here, and it can
easily be proved that given a generic set of m particular solutions of system X(1), the
general solution of X can be written as

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn0),

which shows that Φ is a particular type of mixed superposition rule. In this way, we have
also shown that, as claimed in [38, Remark 5], a flat connection ∇ on a bundle of the
form N0 × N1 × · · · × Nm → N1 × · · · × Nm can be used to obtain the solutions of a
first-order system on N0 by means of particular solutions of other first-order systems on
N1, . . . , Nm.

1.8. Differential geometry on Hilbert spaces. In order to provide some basic know-
ledge to develop the main applications of the theory of Lie systems to quantum mechan-
ics, we report in this section some known concepts of differential geometry on infinite-
dimensional manifolds. For further details one can consult [51, 60, 138].

As far as quantum mechanics is concerned, the separable complex Hilbert space
of states H can be seen as an (infinite-dimensional) real manifold admitting a global
chart [23]. Infinite-dimensional manifolds do not enjoy the same geometric properties as



Lie systems: theory, generalisations, and applications 33

finite-dimensional ones, e.g. in the most general case, and given an open U ⊂ H, there
is not a one-to-one correspondence between derivations on C∞(U,R) and sections of the
tangent bundle TU . Therefore, some explanations must be given before dealing with such
manifolds.

On one hand, given a point φ ∈ H, a kinematic tangent vector with foot point φ is
a pair (φ, ψ) with ψ ∈ H. We denote by TφH the space of all kinematic tangent vectors
with foot point φ. It consists of all derivatives ċ(0) of smooth curves c : R → H with
c(0) = φ. This justifies the word ‘kinematic’.

From the concept of kinematic tangent vector we can provide the definition of smooth
kinematic vector fields as follows: A smooth kinematic vector field is an element X ∈
X(H) ≡ Γ(π), with TH the kinematic tangent bundle and π : TH → H the projection
of this bundle. We define a kinematic vector field X as a map X : H → TH such that
π ◦X = IdH. Given a ψ ∈ H, we will write from now on X(ψ) = (ψ,Xψ), with Xψ being
the value of X(ψ) in TψH.

As in the differential geometry on finite-dimensional manifolds, we say that a kine-
matic vector field X on H admits a local flow on an open subset U ⊂ H if there exists a
map FlX : R× U → H such that FlX(0, ψ) = ψ for all ψ ∈ U and

Xψ =
d

ds

∣∣∣∣
s=0

FlX(s, ψ) =
d

ds

∣∣∣∣
s=0

FlXs (ψ),

with FlXs (ψ) = FlX(s, x).
All these mathematical concepts are used to study quantum mechanics as a geometric

theory. Note that the Abelian translation group on H provides an identification of the
tangent space TφH at any point φ ∈ H with H itself. Furthermore, through such an
identification of H with TφH at any φ ∈ H, a continuous kinematic vector field is simply
a continuous map X : H → H.

Starting with a bounded C-linear operator A on H, we can define the kinematic vector
field XA by XA

ψ = Aψ ∈ H ' TψH. In other words, we have

XA : ψ ∈ H 7→ (ψ,Xψ) ∈ TH ' H⊕H.

Usually, operators in quantum mechanics are neither continuous nor defined on the whole
space H. The most relevant case happens when A is a skew-self-adjoint operator of the
form A = −iH. The reason is thatH can be endowed with a natural (strongly) symplectic
structure, and then such skew-self-adjoint operators are singled out as the linear vector
fields that are Hamiltonian. The integral curves of such a Hamiltonian vector field XA

are the solutions of the corresponding Schrödinger equation [23, 51]. Even when A is not
bounded, if A is skew-self-adjoint it must be densely defined and, by Stone’s Theorem,
its integral curves are strongly continuous and defined in all H.

Additionally, these kinematic vector fields related to skew-self-adjoint operators admit
local flows, i.e. any skew-self-adjoint operator A has a local flow

FlAs (ψ) = exp(sA)(ψ) as
d

ds
F lAs (ψ) = A exp(sA)(ψ) = A(FlAs (ψ)). (1.43)

We remark that given two constants λ, µ ∈ R and two skew-self-adjoint operators A
and B, we get XλA+µB = λXA+µXB . Moreover, skew-self-adjoint operators considered
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as vector fields are fundamental vector fields relative to the usual action of the unitary
group U(H) on the Hilbert space H.

Let us define the Lie bracket of two kinematic vector fieldsXA andXB associated with
two skew-self-adjoint operators A and B. To simplify notation, and as it shall be clear
from the context, we hereafter denote both the commutator of operators, i.e. [A,B] =
AB − BA, and the Lie bracket of vector fields [XA, XB ] in the same way. In view of
the previous remarks, we can declare the Lie bracket of vector fields related to skew-self-
adjoint operators to be

[XA, XB ] = X [B,A].

It is worth noting that the above formula is equivalent to the standard one

[X,Y ]ψ =
1
2
d2

ds2

∣∣∣∣
s=0

(FlY−s ◦ FlX−s ◦ FlYs ◦ FXs (ψ)) (1.44)

in finite-dimensional differential geometry when the right-hand side is properly defined.
Indeed, the above formula yields

[XA, XB ]ψ =
1
2
d2

ds2

∣∣∣∣
s=0

exp(−sB) exp(−sA) exp(sB) exp(sA)(ψ)

=
1
2
d2

ds2

∣∣∣∣
s=0

( ∞∑
n1=0

(−sB)n1

n1!

)( ∞∑
n2=0

(−sA)n2

n2!

)
( ∞∑
n3=0

(sB)n3

n3!

)( ∞∑
n4=0

(sA)n4

n4!

)
(ψ)

=
1
2
d2

ds2

∣∣∣∣
s=0

(−s2AB + s2BA)(ψ) =
1
2
d2

ds2

∣∣∣∣
s=0

(s2[B,A])(ψ) = [B,A](ψ),

when the above expressions are properly defined. Hence, we obtain again

[XA, XB ] = −X [A,B], (1.45)

just as we defined.

1.9. Quantum Lie systems. The theory of Lie systems can be applied to investigate
a particular class of t-dependent Hamiltonians satisfying a specific set of conditions, the
so-called quantum Lie systems. Let us now precisely define this notion and sketch some
of its properties.

We define a t-dependent Hamiltonian H(t) to be a t-parametric family of self-adjoint
operators Ht : H → H.

Definition 1.21. We say that the t-dependent Hamiltonian H(t) is a quantum Lie sys-
tem if it can be written as

H(t) =
r∑

α=1

bα(t)Hα, (1.46)

where the operators iHα are a family of skew-self-adjoint operators on H giving rise
to a basis of a real r-dimensional Lie algebra of operators V under the commutator of
operators, i.e.



Lie systems: theory, generalisations, and applications 35

[iHα, iHβ ] =
r∑

γ=1

cαβγ iHγ , α, β = 1, . . . , r, (1.47)

for certain r3 real structure constants cαβγ . We call V a quantum Vessiot–Guldberg Lie
algebra associated with H(t).

Each quantum Lie system H(t) leads to a Schrödinger equation
dψ

dt
= −iH(t)ψ = −

r∑
α=1

bα(t)iHαψ, (1.48)

describing the integral curves for the kinematic t-dependent vector field on H given by

Xt =
r∑

α=1

bα(t)Xα,

where Xα is the vector field associated with the operator −iHα. In view of the relation
(1.45) and the commutation relations (1.47), we obtain

[Xα, Xβ ] = −X [iHα,iHβ ] =
r∑

γ=1

cαβγXγ , α, β = 1, . . . , n. (1.49)

Consequently, the vector fields Xα span an r-dimensional Lie algebra of vector fields. In
addition, the structure constants for the basis {Xα | α = 1, . . . , r} coincide with those of
the quantum Vessiot–Guldberg Lie algebra for the basis {iHα | α = 1, . . . , r}.

Given the Lie algebra V , consider an isomorphic Lie algebra g corresponding to a
connected Lie group G. Choose a basis {aα |α = 1, . . . , r} of the Lie algebra TeG ' g

such that the Lie brackets of its elements, denoted by [·, ·], obey the relations

[aα, aβ ] =
r∑

γ=1

cαβγaγ , α, β = 1, . . . , r. (1.50)

It can be proved that there exists a unitary action Φ : G×H → H such that eachXα is the
fundamental vector field associated with the element aα, according to the relation (1.50).
Indeed, note that, for a fixed basis {aα | α = 1, . . . , r}, each element g in a sufficiently
small open U containing the neutral element of G can be written in a unique way as

g = exp(−µ1a1)× · · · × exp(−µrar).
Now, we define

Φ(exp(−µαaα), ψ) = exp(−iµαHα)ψ, α = 1, . . . , r.

As G is connected, every element can be written as a product of elements in U , which,
in view of the above relations, gives rise to an action Φ : G×H → H.

Similarly to the procedure carried out to show that solving a Lie system reduces to
working out a particular solution for an equation in a Lie group (see Section 1.3), it can
be proved that solving the Schrödinger equation for a quantum Lie system H(t) reduces
to determining the solution of the equation in G given by

Rg−1∗g ġ = −
r∑

α=1

bα(t)aα ≡ a(t), g(0) = e.

More specifically, the particular solution of the Schrödinger equation (1.48) with initial
condition ψ0 reads ψt = Φ(g(t), ψ0), where g(t) is the solution of the above equation.
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1.10. Superposition rules for second and higher-order differential equations.
Although the theory of Lie systems is mainly devoted to the study of first-order differential
equations, it can also be applied to investigate various systems of second-order differential
equations, e.g. the so-called SODE Lie systems. This allows us to derive t-dependent
and t-independent constants of motion, exact solutions, superposition rules or mixed
superposition rules for these equations, etc. Moreover, our methods can also be generalised
to study systems of higher-order differential equations.

Vessiot pioneered the analysis of systems of second-order differential equations by
means of the theory of Lie systems [225]. Additionally, this theme was also briefly ex-
amined by Winternitz, Chisholm and Common [77, 202]. Apart from these few works,
the analysis of systems of second-order differential equations through the theory of Lie
systems was not deeply analysed until the beginning of the XXI century, when the SODE
Lie systems were defined and employed to investigate various systems of second-order
differential equations [36, 44, 45, 48, 52, 53]. This allowed us to recover previous results
from a new clarifying perspective as well as to obtain some new achievements.

The description of the general solution of systems of second-order differential equations
in terms of certain families of particular solutions and sets of constants appears in the
study of some systems in physics and mathematics [115, 194]. Nevertheless, these results
are frequently obtained through ad hoc procedures that neither explain their theoretical
meaning nor the possibility of their generalisation. This section is concerned with the
application of the theory of Lie systems to SODE Lie systems to review, through a
geometrical unifying approach, some results previously obtained in the literature. Not
only does this provide a deeper theoretical understanding of those results, but it also
offers several new ones.

Recall that the theory of Lie systems initially aimed to study systems of first-order
differential equations with general solution admitting an expression in terms of certain
families of particular solutions and a set of constants. Nevertheless, this property is not
exclusive to systems of first-order differential equations. For instance, for each second-
order differential equation of the form ẍ = a(t)x, with a(t) being a real function, the
general solution x(t) can be cast in the form

x(t) = k1x(1)(t) + k2x(2)(t), (1.51)
with k1, k2 being constants and x(1)(t), x(2)(t) particular solutions whose initial conditions
(x(1)(0), ẋ(1)(0)) and (x(2)(0), ẋ(2)(0)) are linearly independent vectors of TR. Note also
that such a superposition rule leads to the existence of many other nonlinear superposition
rules for other systems of second-order differential equations. For instance, the change of
variables y = 1/x transforms the previous system into yÿ − 2ẏ2 = −a(t)y2 for which, in
view of the above linear superposition rule and the above change of variable, the general
solution can be written as

y(t) = (k1y
−1
1 (t) + k2y

−1
2 (t))−1 (1.52)

in terms of a pair y(1)(t), y(2)(t) of particular solutions and a pair of constants.
Consequently, in view of the previous examples and others that can be found, for

instance, in [34, 43], it is natural to define superposition rules for second-order differential
equations as follows.
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Definition 1.22. We say that a second-order differential equation

ẍi = F i(t, x, ẋ), i = 1, . . . , n, (1.53)

on Rn admits a global superposition rule if there exists a map Ψ : TRmn × R2n → Rn
such that its general solution x(t) can be written as

x(t) = Ψ(x(1)(t), . . . , x(m)(t), ẋ(1)(t), . . . , ẋ(m)(t); k1, . . . , k2n), (1.54)

in terms of a generic family x(1)(t), . . . , x(m)(t) of particular solutions, their derivatives,
and a set of 2n constants.

In order to understand the previous definition, it is necessary to establish the precise
meaning of ‘generic’ in the above statement. Formally, we say that expression (1.54) is
valid for a generic family of particular solutions when it holds for every family of particular
solutions x1(t), . . . , xm(t) such that (x1(0), ẋ1(0), . . . , xm(0), ẋm(0)) ∈ U , with U being
an open dense subset of (TRn)m.

There exists no characterisation for systems of SODEs of the form (1.53) admit-
ting a superposition rule. In spite of this, there exists a special class of such systems,
called SODE Lie systems [52], which have this property. Even though this fact has been
broadly used in the literature, it has been proved very recently [48]. We next furnish
the definition of a SODE Lie system along with a proof that every SODE Lie system
admits a superposition rule. In addition, some remarks on the properties of this notion
are given.

Definition 1.23. We say that the system (1.53) of second-order differential equations
is a SODE Lie system if the system of first-order differential equations{

ẋi = vi,

v̇i = F i(t, x, v),
i = 1, . . . , n, (1.55)

obtained from (1.53) by defining the new variables vi = ẋi with i = 1, . . . , n is a Lie
system.

Proposition 1.24. Every SODE Lie system (1.53) admits a superposition rule Ψ :
(TRn)m × R2n → Rn of the form Ψ = π ◦ Φ, where Φ : (TRn)m × R2n → TRn is
a superposition rule for the system (1.55) and π : TRn → Rn is the projection of the
tangent bundle TRn.

Proof. Each SODE Lie system (1.53) is associated with a first-order system of differential
equations (1.55) admitting a superposition rule Φ : (TRn)m×R2n → TRn. This allows us
to describe the general solution (x(t), v(t)) of (1.55) in terms of a generic set (xa(t), va(t)),
with a = 1, . . . ,m, of particular solutions and a set of 2n constants, i.e.

(x(t), v(t)) = Φ(x1(t), . . . , xm(t), v1(t), . . . , vm(t); k1, . . . , k2n). (1.56)

Each solution xp(t) of (1.53) corresponds to a unique solution (xp(t), vp(t)) of (1.55) and
vice versa. Furthermore, since (xp(t), vp(t)) = (xp(t), ẋp(t)), the general solution x(t) of
(1.53) can be written as

x(t) = π ◦ Φ(x1(t), . . . , xm(t), ẋ1(t), . . . , ẋm(t); k1, . . . , k2n), (1.57)
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in terms of a generic family xa(t), with a = 1, . . . , n, of particular solutions of (1.53).
That is, the map Ψ = π ◦ Φ is a superposition rule for (1.53).

Since every autonomous system is related to a one-dimensional Vessiot–Guldberg Lie
algebra [34], a corollary follows immediately.

Corollary 1.25. Every autonomous system of second-order differential equations of the
form ẍi = F i(x, ẋ) with i = 1, . . . , n admits a superposition rule.

The above result is, in practice, almost useless. Actually, the superposition rule en-
sured by Proposition 1.24 relies on the derivation of a superposition rule for an au-
tonomous first-order system of differential equations. Applying the method sketched in
Section 1.6, it is found that determining this superposition rule implies working out all
the integral curves of a vector field on (TRn)2. Although the solution of this problem
is known to exist, its explicit description can be as difficult as solving the initial system
(indeed, this is usually the case). Consequently, deriving explicitly a superposition rule
for the above autonomous system frequently depends on the search of an alternative
superposition rule for the associated first-order system.

Many superposition rules for second-order differential equations do not present an
explicit dependence on the derivatives of the particular solutions. Consider, for instance,
either the linear superposition rule (1.51) for the equation ẍ = a(t)x, or the affine one,

x(t) = k1(x1(t)− x2(t)) + k2(x2(t)− x3(t)) + x3(t),

for ẍ = a(t)x+b(t). Such superposition rules are called velocity free superposition rules or
even free superposition rules. To find conditions ensuring the existence of such superposi-
tion rules is an interesting open problem. Let us provide a brief analysis of the existence
of such superposition rules.

Proposition 1.26. Every system (1.53) of SODEs admitting a free superposition rule is
a SODE Lie system.

Proof. Suppose that (1.53) admits a superposition rule of the special form

xi = Φix(x1, . . . , xm; k1, . . . , k2n), i = 1, . . . , n. (1.58)

In that case, the general solution x(t) of the system can be expressed as

xi(t) = Φix(x1(t), . . . , xm(t); k1, . . . , k2n), i = 1, . . . , n. (1.59)

Define p(t) = (x1(t), . . . , xm(t), ẋ1(t), . . . , ẋm(t)) and vi = ẋi for i = 1, . . . , n. Take the
time derivative in the above expression. This yields

vi(t) = ẋi(t) =
m∑
a=1

n∑
j=1

(
vja(t)

∂Φix
∂xja

(p(t))
)
, i = 1, . . . , n, (1.60)

where we have used that ∂Φix/∂v
j
a = 0 for i, j = 1, . . . , n, and a = 1, . . . ,m. Consequently,

there exists a function

Φiv(x1, . . . , xm, v1, . . . , vm) =
m∑
a=1

n∑
j=1

(
vja
∂Φix
∂xja

)
, i = 1, . . . , n,
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such that{
xi(t) = Φix(x1(t), . . . , xm(t); k1, . . . , k2n),

vi(t) = Φiv(x1(t), . . . , xm(t), v1(t), . . . , vm(t); k1, . . . , k2n),
i = 1, . . . , n.

Therefore, system (2.13) admits a superposition rule and (1.53) becomes a SODE Lie
system.

Apart from SODE Lie systems, there exists another method to study certain second-
order differential equations admitting a regular Lagrangian, like Caldirola–Kanai oscilla-
tors or Milne–Pinney equations [52, 97]. Although this method cannot be used to study
all systems of second-order differential equations, it provides some additional information
that cannot be derived by means of SODE Lie systems, e.g. on the t-dependent constants
of motion of the system [97].

1.11. Superposition rules for PDEs. The geometrical formulation of the theory of
Lie systems enables us to extend the notion of Lie system to partial differential equations.
Here, we briefly analyse this generalisation and its properties [38, 185].

Consider the system of first-order PDEs of the form
∂xi

∂ta
= Xi

a(t, x), x ∈ Rn, t = (t1, . . . , ts) ∈ Rs, (1.61)

whose solutions are maps x(·) : Rs → Rn. When s = 1, the above system of PDEs
becomes the system of ordinary differential equations (1.33). The main difference between
these systems is that for s > 1 there exists, in general, no solution with a given initial
condition. For a better understanding of this problem, let us put (1.61) in a more general
and geometric framework.

Let P sRn be the trivial fibre bundle

P sRn = Rs × Rn → Rs.

A connection Ȳ on this bundle is a horizontal distribution over TP sRn , i.e. an s-dimensional
distribution transversal to the fibres. This distribution may be determined by the hori-
zontal lifts of the vector fields ∂/∂ta on Rs, i.e.

Xa(t, x) =
∂

∂ta
+Xa(t, x),

where

Xa(t, x) =
n∑
i=1

Xi
a(t, x)

∂

∂xi
.

The solutions of system (1.61) can be identified with integral submanifolds of the distri-
bution X,

(t,Xa(t, x)), t ∈ Rs, x ∈ Rn.

It is now clear that there is an (obviously unique) solution of (1.61) for every initial data
if and only if the distribution Y is integrable, i.e. the connection has zero curvature. This
means that

[Xa, Xb] =
r∑
c=1

fabcXc
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for some functions fabc in P sRn . But the commutators [Xa, Xb] are clearly vertical, while
Xc are linearly independent horizontal vector fields, so fabc = 0, which yields the in-
tegrability condition in the form of the system of equations [Xa, Xb] = 0, i.e. in local
coordinates,

∂Xi
b

∂ta
(t, x)− ∂Xi

a

∂tb
(t, x) +

n∑
j=1

(
Xj
a(t, x)

∂Xi
b

∂xj
(t, x)−Xj

b (t, x)
∂Xi

a

∂xj
(t, x)

)
= 0. (1.62)

Let us assume now that we analyse a system of first-order PDEs of the form (1.61)
that satisfies integrability conditions (1.62). Then, for a given initial value, there exists
a unique solution of system (1.61). Furthermore, it is immediate that the geometrical
interpretation for superposition rules for first-order systems described in Section 1.4 can
be directly generalised to the case of PDEs. Consequently, Proposition 1.18 now takes
the following form.

Proposition 1.27. Giving a superposition rule for system (1.61) obeying the integrability
condition (1.62) is equivalent to giving a connection on the bundle pr : Rn(m+1) → Rnm
with zero curvature such that the vector fields {(Xa)t | t ∈ Rs, a = 1, . . . , s} are horizon-
tal.

Also the proof of the Lie Theorem remains unchanged. Therefore, we get the following
analogue of the Lie Theorem for PDEs.

Theorem 1.28. The system (1.61) of PDEs defined on Rn and satisfying the integrability
condition (1.62) admits a superposition rule if and only if the vector fields {(Xa)t} on Rn
depending on the parameter t ∈ Rs can be written in the form

(Xa)t =
r∑

α=1

uαa (t)Xα, a = 1, . . . , s, (1.63)

where the vector fields Xα span a finite-dimensional real Lie algebra.

Note that the integrability condition for Ya(t, x) of the form (1.63) can be written as
r∑

α,β,γ=1

[(uγb )′(t)− (uγa)′(t) + uαa (t)uβb (t)cγαβ ]Xγ = 0.

We now illustrate the above results by an example. Consider the following system of
partial differential equations on R2 associated with the SL(2,R)-action on R̄:

ux = a(x, y)u2 + b(x, y)u+ c(x, y),

uy = d(x, y)u2 + e(x, y)u+ f(x, y).
(1.64)

This equation can be written in the form of a ‘total differential equation’

(a(x, y)u2 + b(x, y)u+ c(x, y))dx+ (d(x, y)u2 + e(x, y)u+ f(x, y))dy = du.

The integrability condition only states that the one-form

ω = (a(x, y)u2 + b(x, y)u+ c(x, y))dx+ (d(x, y)u2 + e(x, y)u+ f(x, y))dy

is closed for an arbitrary function u = u(x, y). If this is the case, there is a unique solution
with the initial condition u(x0, y0) = u0 and there is a superposition rule giving a general
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solution as a function of three independent solutions exactly as in the case of Riccati
equations:

u =
(u(1) − u(3))u(2)k + u(1)(u(3) − u(2))

(u(1) − u(3))k + (u(3) − u(2))
.

2. SODE Lie systems

We already pointed out that the theory of Lie systems is mainly dedicated to the analysis
of systems of first-order differential equations. In spite of this, the theory can also be
applied to studying a variety of systems of second-order differential equations. This can
be done in several ways that rely, as a last resort, on using some kind of transformation
to convert systems of second-order differential equations into first-order ones [52, 54,
77, 100, 202]. A class of systems that can be investigated by these techniques is the
SODE Lie systems, which were theoretically analysed in Section 1.10. In this chapter, we
focus on analysing several instances of SODE Lie systems in order to derive t-independent
constants of motion, exact solutions, superposition rules, and other properties. This allows
us not only to study the mathematical properties of such systems, but also to provide
tools to analyse diverse physical or control systems modelled through such equations.

Among the above applications to SODEs, one must be emphasised: the use of mixed
superposition rules. This recently described notion enables us to express the general solu-
tion of a SODE Lie system in terms of particular solutions of the same, or other, SODE
Lie systems. In this way, this new concept can be employed to analyse the properties
of the general solutions of certain SODEs appearing in the physical and mathematical
literature [115, 194]. As a consequence, new results can be obtained and other known
ones will be recovered, in a systematic way, which will enhance their understanding.

The following section is dedicated to the application of the theory of Lie systems to
SODE Lie systems in order to review, through a geometrical unifying approach, some
results previously obtained in the literature by means of ad hoc methods and to provide
new ones. The whole chapter can be divided into two parts: The first one is devoted
to the application of the geometric theory of Lie systems to derive superposition rules,
constants of motion and exact solutions for various SODE Lie systems. More specifically,
we study t-dependent harmonic oscillators, generalised Ermakov systems and Milne–
Pinney equations, providing a new superposition rule for the latter. The second part is
concerned with the study and application of mixed superposition rules.

2.1. The harmonic oscillator with t-dependent frequency. The one-dimensional
t-dependent frequency harmonic oscillator is perhaps the simplest SODE which allows us
to illustrate the application of SODE Lie systems. Let us make use of this fact to show
how this notion applies and to analyse thoroughly the properties of such a system.

The equation of motion for a one-dimensional harmonic oscillator with t-dependent
frequency ω(t) is ẍ = −ω2(t)x. In view of Definition 1.23, this equation is a SODE Lie
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system if and only if the system of first-order differential equations{
ẋ = v,

v̇ = −ω2(t)x,
(2.1)

is a Lie system. This feature depends on the properties of the t-dependent vector field
over TR given by

X(t, x, v) = v
∂

∂x
− ω2(t)x

∂

∂v
,

which describes the integral curves of system (2.1). It is immediate that

Xt = X1 + ω2(t)X3, (2.2)

where

X1 = v
∂

∂x
, X3 = −x ∂

∂v
.

These vector fields obey the commutation relations

[X1, X3] = 2X2, [X2, X3] = X3, [X1, X2] = X1, (2.3)

with

X2 =
1
2

(
x
∂

∂x
− v ∂

∂v

)
.

From (2.3) and (2.2), it follows that Xt defines a Lie system associated with a Vessiot–
Guldberg Lie algebra V = 〈X1, X2, X3〉. Hence, one-dimensional harmonic oscillators
with a t-dependent frequency are SODE Lie systems.

Determining the general solution of every SODE Lie system reduces to working out
the solution of an equation on a Lie group. Let us illustrate this in detail through the
example of harmonic oscillators.

Since (2.1) is a Lie system, its general solution can be worked out by solving an
equation on a certain Lie group (see Section 1.3). Recall that as the elements of V are
complete, there exists a Lie group action ΦL : G× TR→ TR whose fundamental vector
fields are exactly those corresponding to V . It is easy to check that this action can be
chosen to be ΦL : SL(2,R)× TR→ TR, with

ΦL

((
α β

γ δ

)
,

(
x

v

))
=
(
α β

γ δ

)(
x

v

)
=
(
αx+ βv

γx+ δv

)
.

Indeed, if we take the basis

a1 =
(

0 −1
0 0

)
, a2 =

1
2

(
−1 0
0 1

)
, a3 =

(
0 0
1 0

)
, (2.4)

of the Lie algebra of 2 × 2 traceless matrices (the usual representation of the Lie alge-
bra sl(2,R)), its elements satisfy the same commutation relations as the vector fields
X1, X2, X3. Furthermore, it can be easily verified that X1, X2 and X3 are the funda-
mental vector fields associated with the matrices a1, a2, a3, according to our convention
(1.28).
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Once the action ΦL is determined, it enables us to write the general solution (x(t), v(t))
of system (2.1) in the form(

x(t)
v(t)

)
= ΦL

(
g(t),

(
x0

v0

))
, with

(
x0

v0

)
∈ TR, (2.5)

where g(t) is the solution of the Cauchy problem

Rg−1∗ġ = −
3∑

α=1

bα(t)aα, g(0) = e,

on SL(2,R). This immediately gives us the general solution x(t) of the equation (2.1)
from expression (2.5). Moreover, this process is easily generalised to every SODE Lie
system.

Apart from the above Lie group approach, the SODE Lie system notion furnishes us
with a second approach to investigate one-dimensional t-dependent frequency harmonic
oscillators. This is based on determining a superposition rule for the Lie system (2.1).

Recall that a superposition rule for a Lie system can be worked out by means of a set
of first integrals for certain diagonal prolongations of the vector fields of an associated
Vessiot–Guldberg Lie algebra V . As discussed in Section 1.6, to obtain these first integrals
requires determining the minimal integer m such that the prolongations to Rnm of the
elements of a basis of the Lie algebra V become linearly independent at a generic point.
This yields dimV ≤ m ·n. Additionally, if we consider the diagonal prolongations of such
a basis to Rn(m+1), these elements are again linearly independent at a generic point and
a family of m · n− r first integrals appears. These first integrals allow us to determine a
superposition rule.

We next illustrate the above process by means of the study of harmonic oscillators. In
addition, we analyse in parallel the problem of finding t-independent constants of motion
for systems made of some copies of the initial system. This problem will be proved to be
related to the above process and, in addition, will permit us to show interesting properties
of harmonic oscillators.

Consider two copies of the same one-dimensional harmonic oscillator, i.e.{
ẍ1 = −ω2(t)x1,

ẍ2 = −ω2(t)x2.
(2.6)

This system of SODEs, which corresponds to a two-dimensional isotropic harmonic oscil-
lator with a t-dependent frequency ω(t), is related to the following system of first-order
differential equations: 

ẋ1 = v1,

ẋ2 = v2,

v̇1 = −ω2(t)x1,

v̇2 = −ω2(t)x2.

(2.7)

Its solutions are the integral curves of the t-dependent vector field

X2d
t = v1

∂

∂x1
+ v2

∂

∂x2
− ω2(t)x1

∂

∂v1
− ω2(t)x2

∂

∂v2
,
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which is a linear combination

X2d
t = X2d

1 + ω2(t)X2d
3 , (2.8)

with
X2d

1 = v1
∂

∂x1
+ v2

∂

∂x2
, X2d

3 = −x1
∂

∂v1
− x2

∂

∂v2

satisfying the commutation relations

[X2d
1 , X2d

3 ] = 2X2d
2 , [X2d

2 , X2d
3 ] = X2d

3 , [X2d
1 , X2d

2 ] = X2d
1 , (2.9)

where

X2d
2 =

1
2

(
x1

∂

∂x1
+ x2

∂

∂x2
− v1

∂

∂v1
− v2

∂

∂v2

)
.

The previous decomposition of the t-dependent vector field X2d has been obtained by
considering the new vector fields, X2d

1 , X2d
2 , X2d

3 , to be diagonal prolongations to TR2 of
the vector fields X1, X2, X3. In this way, the commutation relations (2.9) are the same
as (2.3) and, in view of decomposition (2.8), this t-dependent vector field defines a Lie
system related to a Lie algebra of vector fields isomorphic to sl(2,R).

The distribution associated with the Lie system X2d
t , i.e.

V2d
p = 〈(X2d

1 )p, (X2d
2 )p, (X2d

3 )p〉, p ∈ TR2,

has rank lower than or equal to the dimension of the Lie algebra V . More specifically,
it has rank three in an open dense subset of TR2. Hence, there exists a local nontrivial
first integral common to all the vector fields of the above distribution. Furthermore,
this first integral is a t-independent constant of motion of system (2.7). Let us analyse
this statement more carefully. Given a constant of motion F : (x1, v1, x2, v2) ∈ TR2 7→
F (x1, v1, x2, v2) ∈ R of system (2.7), it follows that

dF

dt
(p(t)) =

2∑
j=1

(
dxi

dt
(t)

∂F

∂xi
(p(t)) +

dvi

dt
(t)
∂F

∂vi
(p(t))

)
= X2d

t I(p(t)) = 0,

where p(t) = (x1(t), v1(t), x2(t), v2(t)). If F is a first integral for the system (2.7), what-
ever ω(t) is, then F must be a first integral of the vector fields of X2d

1 , X2d
3 and, therefore,

of X2d
2 .
Consequently, there exists, at least locally, a function F that is a constant of motion

for every system (2.7) and such that dF is incident to the distribution generated by the
X2d

1 , X2d
2 , X2d

3 , i.e. dF (X2d
1 ) = dF (X2d

2 ) = dF (X2d
3 ) = 0 in a certain dense open subset

U of TR2.
As X2d

3 F = 0, there is a function F̄ (ξ, x1, x2) such that F (x1, x2, v1, v2) = F̄ (ξ, x1, x2)
with ξ = x1v2 − x2v1. Next, in view of the condition X2d

1 F̄ = 0, we have

v1
∂F̄

∂x1
+ v2

∂F̄

∂x2
= 0

and there exists a function F̂ (ξ) such that F̄ (ξ, x1, x2)= F̂ (ξ). As 2X2d
2 =[X2d

1 , X2d
3 ], the

conditions X2d
1 F̂ =X2d

3 F̂ = 0 imply X2d
2 F̂ = 0 and hence F (x1, x2, v1, v2) = x1v2 − x2v1

is a first integral which physically corresponds to the angular momentum. Additionally,
this first integral allows us to solve the second-order differential equation ẍ = −ω2(t)x
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by means of a particular solution. Actually, if x1(t) is a nonvanishing solution of this equa-
tion, any other particular solution x2(t) gives rise to a particular solution (x1(t), v1(t),
x2(t), v2(t)) of system (2.7). As the first integral F is constant along this particular so-
lution, it follows that x2(t) obeys the equation

x1(t)
dx2

dt
= k + ẋ1(t)x2,

whose solution reads

x2(t) = k′x1(t) + k x1(t)
∫ t dζ

x2
1(ζ)

, (2.10)

which gives us the general solution to the t-dependent frequency harmonic oscillator in
terms of a particular solution.

In order to look for a superposition rule, we must consider a system made of some
copies of (2.1) and obtain at least as many t-independent constants of motion as the
dimension of the initial manifold. Also, it must be possible to obtain the dependent
variables of one of the copies of (2.1) in terms of the dependent variables describing the
remaining copies and such constants. Recall that the number m of particular solutions
to obtain a superposition rule is such that the diagonal prolongations of the vector fields
X1, X2 and X3 to Rnm are linearly independent at a generic point.

In the case of two copies of the t-dependent harmonic oscillator, the condition on the
prolongations of the vector fields X1, X2, X3, that is, f1X

2d
1 +f2X

2d
2 +f3X

2d
3 = 0, implies

that f1 = f2 = f3 = 0. Therefore, the one-dimensional oscillator admits a superposition
rule involving two particular solutions and, in view of our previous results, we need to
study three copies of the t-dependent harmonic oscillator (2.1) to obtain a superposition
rule. Consider therefore the system of first-order ordinary differential equations

ẋ1 = v1,

v̇1 = −ω2(t)x1,

ẋ2 = v2,

v̇2 = −ω2(t)x2,

ẋ = v,

v̇ = −ω2(t)x,

(2.11)

whose solutions are the integral curves for the t-dependent vector field

X3d
t = v1

∂

∂x1
+ v2

∂

∂x2
+ v

∂

∂x
− ω2(t)x1

∂

∂v1
− ω2(t)x2

∂

∂v2
− ω2(t)x

∂

∂v
,

which is a linear combination X3d
t = X3d

1 + ω2(t)X3d
3 with the vector fields

X3d
1 = v1

∂

∂x1
+ v2

∂

∂x2
+ v

∂

∂x
, X3d

3 = −x1
∂

∂v1
− x2

∂

∂v2
− x ∂

∂v

obeying the commutation relations

[X3d
1 , X3d

3 ] = 2X3d
2 , [X3d

2 , X3d
3 ] = X3d

3 , [X3d
1 , X3d

2 ] = X3d
1 ,

where

X3d
2 =

1
2

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x

∂

∂x
− v1

∂

∂v1
− v2

∂

∂v2
− v ∂

∂v

)
.
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We can determine the first integrals F for these three vector fields as solutions of the
system of PDEs X3d

1 F = X3d
3 F = 0, because 2X3d

2 = [X3d
1 , X3d

3 ] and the previous
relations automatically imply X3d

2 F = 0. This last condition implies that there ex-
ists a function F̄ : R5 → R2 such that F (x1, x2, x, v1, v2, v) = F̄ (ξ1, ξ2, x1, x2, x) with
ξ1(x1, x2, x, v1, v2, v) = xv1 − x1v and ξ2(x1, x2, x, v1, v2, v) = xv2 − x2v. Hence, the
condition X3d

1 F = 0 transforms into

v1
∂F̄

∂x1
+ v2

∂F̄

∂x2
+ v

∂F̄

∂x
= 0,

i.e. the functions ξ1 and ξ2 are first integrals (of course, ξ = x1v2 − x2v1 is also a first
integral). They produce a superposition rule, because from{

xv2 − x2v = k1,

x1v − v1x = k2,

we get the expected superposition rule for two solutions

x = c1x1 + c2x2, v = c1v1 + c2v2, ci =
ki
k
, k = x1v2 − x2v1.

2.2. Generalised Ermakov system. Let us now study the so-called generalised Er-
makov system 

ẍ =
1
x3
f(y/x)− ω2(t)x,

ÿ =
1
y3
g(y/x)− ω2(t)y,

(2.12)

which has been widely studied in [104, 191, 192, 193, 194, 205, 206]. Although this system
is, in general, more complex than the standard Ermakov system, which will be discussed
later, its analysis is easier from our point of view and it is therefore studied now. More
exactly, our aim is to recover by means of our methods its known constant of motion,
which is used next to study the Milne–Pinney equation and to obtain a superposition
rule.

For simplicity, let us consider the generalised Ermakov system on R2
+. This system

can be written as a system of first-order differential equations

ẋ = vx,

ẏ = vy,

v̇x = −ω2(t)x+
1
x3
f(y/x),

v̇y = −ω2(t)y +
1
y3
g(y/x),

(2.13)

in TR2
+ by introducing the new variables vx = ẋ and vy = ẏ. Therefore, we can study its

solutions as the integral curves for a t-dependent vector field Xt on TR2
+ of the form

Xt = vx
∂

∂x
+ vy

∂

∂y
+
(
−ω2(t)x+

1
x3
f(y/x)

)
∂

∂vx
+
(
−ω2(t)y +

1
y3
g(y/x)

)
∂

∂vy
,
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which can be written as a linear combination

Xt = N1 + ω2(t)N3,

where

N1 = vx
∂

∂x
+ vy

∂

∂y
+

1
x3
f(y/x)

∂

∂vx
+

1
y3
g(y/x)

∂

∂vy
, N3 = −x ∂

∂vx
− y ∂

∂vy
.

Note that these vector fields generate a three-dimensional real Lie algebra with the third
generator

N2 =
1
2

(
x
∂

∂x
+ y

∂

∂y
− vx

∂

∂vx
− vy

∂

∂vy

)
.

In fact, as
[N1, N3] = 2N2, [N1, N2] = N1, [N2, N3] = N3,

they generate a Lie algebra of vector fields isomorphic to sl(2,R) and thus the generalised
Ermakov system is a SODE Lie system.

As Lie system (2.13) is associated with an integrable distribution of rank three at a
generic point of a four-dimensional manifold, there exists, at least locally, a first integral
F : TR2

+ → R for any ω2(t). It satisfies NiF = 0 for i = 1, 2, 3, but as [N1, N3] = 2N2 it
is sufficient to impose N1F = N3F = 0 to get N2F = 0. Then, if N3F = 0 we have

x
∂F

∂vx
+ y

∂F

∂vy
= 0,

and the associated system of characteristics is

dx

0
=
dy

0
=
dvx
x

=
dvy
y
.

Hence, there exists a function F̄ : R3 → R such that F (x, y, vx, vy) = F̄ (x, y, ξ = xvy −
yvx) and so the condition N1F = 0 reads

vx
∂F̄

∂x
+ vy

∂F̄

∂y
+
(
− y

x3
f(y/x) +

x

y3
g(y/x)

)
∂F̄

∂ξ
= 0.

We can therefore consider the associated system of characteristics

dx

vx
=
dy

vy
=

dξ

− y
x3 f(y/x) + x

y3 g(y/x)
,

and using that
−y dx+ x dy

ξ
=
dx

vx
=
dy

vy
,

we arrive at
−y dx+ x dy

ξ
=

dξ

− y
x3 f( yx ) + x

y3 g( yx )
,

i.e.

−
y2d

(
x
y

)
ξ

=
dξ

− y
x3 f( yx ) + x

y3 g( yx )
.
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Integrating we obtain the first integral
1
2
ξ2 +

∫ u[
− 1
ζ3
f

(
1
ζ

)
+ ζ g

(
1
ζ

)]
dζ = C, (2.14)

with u = x/y. This first integral allows us to determine, by means of quadratures, a
solution of one subsystem in terms of a solution of another equation.

2.3. Milne–Pinney equation. The Milne–Pinney equation is the second-order ordi-
nary nonlinear differential equation [163, 182]

ẍ = −ω2(t)x+
k

x3
, (2.15)

where k is a nonzero constant. This equation describes the t-evolution of an isotonic oscil-
lator [28, 181] (also called pseudo-oscillator), i.e. an oscillator with an inverse quadratic
potential [204]. This oscillator shares with the harmonic one the property of having a
period independent of the energy [68], i.e. they are isochronous systems and, in the quan-
tum case, they have an equispaced spectrum [10]. The equation (2.15) appears in the
study of certain Friedmann–Lemaître–Robertson–Walker spaces [85], certain scalar field
cosmologies [115], and in many other works in physics and mathematics (see [147] and
references therein).

The Milne–Pinney equation is defined on R∗ ≡ R − {0} and it is invariant under
parity, i.e. if x(t) is a solution, then so is −x(t). That means that it is sufficient to restrict
ourselves to analysing this equation in R+.

As usual, we can relate the Milne–Pinney equation to a system of first-order differential
equations on TR+  ẋ = v,

v̇ = −ω2(t)x+
k

x3
,

by introducing a new auxiliary variable v ≡ ẋ. Then the t-dependent vector field on TR+

describing its integral curves reads

Xt = v
∂

∂x
+
(
−ω2(t)x+

k

x3

)
∂

∂v
.

This is a Lie system because Xt can be written as Xt = L1 + ω2(t)L3, where the vector
fields L1 and L3 are given by

L1 = v
∂

∂x
+

k

x3

∂

∂v
, L3 = −x ∂

∂v

and satisfy
[L1, L3] = 2L2, [L1, L2] = L1, [L2, L3] = L3

with

L2 =
1
2

(
x
∂

∂x
− v ∂

∂v

)
,

i.e. they span a 3-dimensional real Lie algebra of vector fields isomorphic to sl(2,R).
Let us choose the basis (2.4) for sl(2,R), which satisfies the same commutation rela-

tions as the vector fields L1, L2, L3. Actually, it is possible to show that each Lα is the
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fundamental vector field corresponding to aα with respect to the action Φ : (A, (x, v)) ∈
SL(2,R)× TR+ 7→ (x̄, v̄) ∈ TR+ given by

x̄ =

√
k +

[
(βv + αx)(δv + γx) + k(δβ/x2)

]2
(δv + γx)2 + k(δ/x)2

,

v̄ = κ

√
(δv + γx)2 +

kδ2

x2

(
1− x2

δ2x̄2

)
,

with A ≡
(
α β

γ δ

)
,

where κ is ±1 or 0, depending on the initial point (x, v) and the element of the group
SL(2,R) that acts on it. In order to obtain an explicit expression for κ in terms of A and
(x, v), we can use the following decomposition for every element of the group SL(2,R):

A = exp(−α1a1) exp(α3a3) exp(−α2a2) =
(

1 α1

0 1

)(
1 0
α3 1

)(
eα2/2 0

0 e−α2/2

)
,

from which we find that α3 = γδ and α1 = β/δ. As we know that

Φ(exp(−α2a2), (x, v))

is the integral curve of the vector field L2 starting from the point (x, v) parametrised by
α2, it is straightforward to check that

(x1, v1) ≡ Φ(exp(−α2a2), (x, v)) = (exp(α2/2)x, exp(−α2/2)v),

and in a similar way

(x2, v2) ≡ Φ(exp(α3a3), (x1, v1)) = (x1, α3x1 + v1).

Finally, we want to obtain (x̄, v̄) = Φ(exp(−α1a1), (x2, v2)), and taking into account
that the integral curves of L1 satisfy

x3dv

k
=
dx

v
= dα1, (2.16)

it turns out that when k > 0 we have v̄2 + k/x̄2 = v2
2 + k/x2

2 ≡ λ with λ > 0. Using this
fact and (2.16) we obtain

k1/2dv

(λ− v2)3/2
= dα1,

and integrating in v between v2 and v̄ yields
v̄

(λ− v̄2)1/2
= α1

λ

k1/2
+

v2

(λ− v2
2)1/2

=
1

k1/2
(α1λ+ v2|x2|).

As κ = sign[v̄], we see that κ is given by

κ = sign[α1λ+ v2|x2|] = sign
[
β

δ
(xγ + vδ)2 +

kδβ

x2
+
|x|
δ

(vδ + xγ)
]
.

System (2.15) has no nontrivial first integrals independent of ω(t), i.e. there is no
function I : U ⊂ TR+ → R such that XtI = 0 for X determined by any function
ω(t). This is equivalent to dI(Lα) = 0 on an open U , with α = 1, 2, 3. Thus, the first
integrals we are looking for are such that dIp is incident to the involutive distribution
Vp ' 〈(L1)p, (L2)p, (L3)p〉 generated by the fundamental vector fields Lα in U . At almost
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every point we obtain Vp = TpTR+. Then, as dIp = 0 at a generic point p ∈ U ⊂ TR+,
the only possibility is dI = 0 and therefore I is a constant first integral.

2.4. A new superposition rule for the Milne–Pinney equation. Our aim now is
to show that there exists a superposition rule for the Milne–Pinney equation (2.15) for
the case k > 0 [53, 163, 182] in terms of a pair of its particular solutions [44]. The case
k < 0 is analogous.

In fact, one sees from the first integral (2.14) that in the particular case of f = g = k,
if a particular solution x1 is known, there is a t-dependent constant of motion for the
Milne–Pinney equation given by (see e.g. [53])

I1 = (x1ẋ− ẋ1x)2 + k

[(
x

x1

)2

+
(
x1

x

)2]
. (2.17)

If another particular solution x2 of the equation (2.15) is given, then we have another
t-dependent constant of motion

I2 = (x2ẋ− ẋ2x)2 + k

[(
x

x2

)2

+
(
x2

x

)2]
. (2.18)

Moreover, the two solutions x1 and x2 provide a function of t which is a constant of
motion and generalises the Wronskian W of two solutions of (2.15),

I3 = (x1ẋ2 − x2ẋ1)2 + k

[(
x2

x1

)2

+
(
x1

x2

)2]
. (2.19)

Remark that for any real number α the inequality (α− 1/α)2 ≥ 0 implies

α2 +
1
α2
≥ 2,

with
α2 +

1
α2

= 2 ⇔ |α| = 1.

Therefore, as we have assumed k > 0, we see that Ii ≥ 2k for i = 1, 2, 3. Moreover, as
x1(t) and x2(t) are different solutions of the Milne–Pinney equation, it turns out that
I3 > 2k.

The knowledge of the two first integrals I1 and I2, together with the constant value
of I3 for a pair of solutions of (2.15), can be used to obtain a superposition rule for the
Milne–Pinney equation. In fact, given two particular solutions x1 and x2, the first integral
(2.18) allows us to write an explicit expression for ẋ in terms of x, x2 and I2,

ẋ = ẋ2
x

x2
±

√
−kx

2

x4
2

+ I2
1
x2

2

− k 1
x2
,

and using such an expression with the first integral (2.17), we see, after a careful compu-
tation, that x satisfies the fourth degree equation

(I2
2 − 4k2)x4

1 − 2(I1I2 − 2I3k)x2
1x

2
2 + (I2

1 − 4k2)x4
2

− 2((I2I3 − 2I1k)x2
1 + (I1I3 − 2I2k)x2

2)x2 + (I2
3 − 4k2)x4 = 0, (2.20)
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where we have used that I3 is constant along pairs of solutions x1(t), x2(t) of the Milne–
Pinney equation.

Hence, we can obtain from (2.20) the expression for the square of the solutions of the
Milne–Pinney equation in terms of any pair of its particular positive solutions by means
of the superposition rule

x2 = k1x
2
1 + k2x

2
2 ± 2

√
λ12[−k(x4

1 + x4
2) + I3x2

1x
2
2], (2.21)

where the constants k1 and k2 are given by

k1 =
I2I3 − 2I1k
I2
3 − 4k2

, k2 =
I1I3 − 2I2k
I2
3 − 4k2

,

and λ12 is the constant

λ12 = λ12(k1, k2; I3, k) =
k1k2I3 + k(−1 + k2

1 + k2
2)

I2
3 − 4k2

= ϕ(I1, I2; I3, k),

where the function ϕ is given by

ϕ(I1, I2; I3, k) =
I1I2I3 − (I2

1 + I2
2 + I2

3 )k + 4k3

(I2
3 − 4k2)2

.

It is important to remark that if k1 < 0 then k2 > 0. Indeed if k1 < 0 then I2I3 < 2I1k,
and thus I2 < 2kI1/I3. Therefore, λ2(I2

3 − 4k2) = I1I3 − 2kI2 > I1I3 − 4k2I1/I3 =
I1(I2

3 − 4k2) > 0, and thus, as I3 > 2k, k2 > 0. Similarly k2 < 0 implies k1 > 0.
The parity invariance of (2.15) is displayed by (2.21), which gives us the solutions

x2 = k1x
2
1 + k2x

2
2 ± 2

√
λ12[−k(x4

1 + x4
2) + I3x2

1x
2
2]. (2.22)

In order to ensure that the right-hand term of the above formula is positive, which
gives rise to a real solution of the Milne–Pinney equation, the constants k1 and k2 in the
preceding expression should satisfy some additional restrictions. In particular, they must
obey

λ12[−k(x4
1(0) + x4

2(0)) + I3x
2
1(0)x2

2(0)] ≥ 0

and
k1x

2
1(0) + k2x

2
2(0)± 2

√
λ12[−k(x4

1(0) + x4
2(0)) + I3x2

1(0)x2
2(0)] > 0.

If these conditions are satisfied, then, differentiating expression (2.22) at t = 0 for x1 =
x1(t) and x2 = x2(t) solutions of the Milne–Pinney equation (2.15), it can be checked
that ẋ(0) is also a real constant. As x(t) is a solution with real initial conditions, x(t)
given by (2.22) is real in an interval of t and thus all the conditions obtained are valid in
an interval of t.

If we take into account that we have considered x2 > 0, we can simplify the study of
such restrictions by writing (2.22) in terms of the variables x2 and z = (x1/x2)2 as

x2 = x2
2(k1z + k2 ± 2

√
λ12[−k(z2 + 1) + I3z]),

and the preceding conditions turn out to be λ12[−k(z2 + 1) + I3z] ≥ 0 and k1z + k2 ±
2
√
λ12[−k(z2 + 1) + I3z] > 0.
Next, in order to get λ12[−k(z2 + 1) + I3z] ≥ 0, we first notice that this expression is

not definite because its discriminant is λ2
12(I2

3 − 4k2) ≥ 0, and this restricts the possible
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values of k1 and k2 for a given z. To see this we define the polynomial

P (z) = −k(z2 + 1) + I3z,

with roots

z = z± =
I3 ±

√
I2
3 − 4k2

2k
,

which can be written in terms of the variable α3 = I3/2k as

z± = α3 ±
√
α2

3 − 1.

As α3 > 1, we have α3 >
√
α2

3 − 1 > 0 and thus z± > 0. The sign of the polynomial
P (z) is displayed in Fig. 1.

t ≡ x1 =
√

α3x2

r ≡ x1 =
√

z−x2

s ≡ x1 =
√

z+x2
x1

x2

A(−)
B(+)

B(+)

A(−)

Fig. 1. Sign of the polynomial P (x1, x2).

The region R+ × R+ splits into three regions,

A = {(x1, x2) ∈ R+ × R+ | x1 >
√
z+x2} ∪ {(x1, x2) ∈ R+ × R+ | x1 <

√
z−x2},

B = {(x1, x2) ∈ R+ × R+ |
√
z−x2 < x1 <

√
z+x2}

separated by the union

C = {(x1, x2) ∈ R+ × R+ | x1 =
√
z+x2} ∪ {(x1, x2) ∈ R+ × R+ | x1 =

√
z−x2}

of the straight lines x1 = √z+x2 and x1 = √z−x2. To make λ12P (z) nonnegative in
region A, where the polynomial P takes negative values, we have to choose k1 and k2

so that λ12(k1, k2, I3, k) ≤ 0. Similarly, as P is positive in region B we have to choose
k1 and k2 such that λ12(k1, k2, I3, k) ≥ 0. Finally, as P vanishes in region C, there is no
restriction on the coefficients k1 and k2.

Once we have stated the conditions for λ12P (z) to be nonnegative we still have to
impose the condition

k1z + k2 ± 2
√
λ12[−k(z2 + 1) + I3z] > 0. (2.23)
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In order to study these conditions, we study the sign of the polynomial

PI3,k(z, k1, k2) = (k1z + k2)2 − 4λ12[−k(z2 + 1) + I3z] =
4P (z)I3
I2
3 − 4k2

+ (ak1 + bk2)2,

where

a =

√
− 4P (z)k
I2
3 − 4k2

+ z2, b =

√
1− 4P (z)k

I2
3 − 4k2

.

As we remarked before, the constants k1, k2 cannot be both negative. Let K denote
the set

K = R2 − {(k1, k2) ∈ R2 | k1 < 0, k2 < 0}

and consider three cases:

1. If (x1, x2) ∈ A, then as P (z) ≤ 0, we must have λ12 ≤ 0 in order to satisfy λ12P (z) ≥ 0.
In this case, set

K1 =
{

(k1, k2) ∈ K
∣∣∣∣
√
− 4P (z)I3
I2
3 − 4k2

> |ak1 + bk2|
}
,

K2 =
{

(k1, k2) ∈ K
∣∣∣∣
√
− 4P (z)I3
I2
3 − 4k2

< |ak1 + bk2|
}
.

We find the following particular cases:

(a) If (k1, k2) ∈ K1, then PI3,k(z, k1, k2) > 0.
(b) If (k1, k2) ∈ K2, then PI3,k(z, k1, k2) < 0.

They can be summarised by means of Figure 2.

λ1

λ2

K1

K1

K1

K2

K2

K2

Fig. 2. Sign of the polynomial PI3,k(z, k1, k2) in K.

2. If (x1, x2) ∈ B, as P (z) is positive, then λ12 must also be positive, λ12 ≥ 0. Thus for
(k1, k2) ∈ K1 ∪K2, PI3,k(z, k1, k2) > 0.

3. If (x1, x2) ∈ C, then for (k1, k2) ∈ K1 ∪K2, PI3,k(z, k1, k2) > 0.



54 J. F. Cariñena and J. de Lucas

In those cases in which PI3,k(z, k1, k2) > 0, we can assert that

|k1z + k2| > 2
√
λ12[−k(z2 + 1) + I3z]

but we still have to impose that λ1z + λ2 > 0 for (2.23) to be positive. Nevertheless,
this is very simple, because if the pair (k1, k2) does not satisfy k1z + k2 > 0, the pair of
opposite elements (−k1,−k2) does it, while the other conditions are invariant under the
change ki → −ki with i = 1, 2.

In those cases in which PI3,k(z, k1, k2) < 0 we can assert that

|k1z + k2| < 2
√
λ12[−k(x4

1 + x4
2) + I3x2

1x
2
2]

and in this case the unique valid superposition rule is

x = |x2|
(
k1z + k2 + 2

√
λ12[−k(z2 + 1) + I3z]

)1/2
,

which is equivalent to

x =
(
k1x

2
1 + k2x

2
2 + 2

√
λ12[−k(x4

1 + x4
2) + I3x2

2x
2
1]
)1/2

.

Note that if we had considered no restriction on k1, k2, we would have obtained real
and imaginary solutions of the Milne–Pinney equation.

Expression (2.22) provides us with a superposition rule for the positive solutions
of the Pinney equation (2.15) in terms of two of its independent particular positive
solutions. Therefore, once two particular solutions of the equation (2.15) are known, we
can write its general solution. Note also that, because of the parity symmetry of (2.15),
the superposition (2.22) can be used with both positive and negative solutions. In all
these ways we obtain nonvanishing solutions of (2.15) when k > 0. Mutatis mutandis, the
above procedure can also be applied to analyse Milne–Pinney equations when k < 0.

A similar superposition rule works for negative solutions of Milne–Pinney equation
(2.15):

x = −
(
k1x

2
1 + k2x

2
2 ± 2

√
λ12(−k(x4

1 + x4
2) + I3x2

1x
2
2)
)1/2

, (2.24)

where once again x1 and x2 are arbitrary solutions.

2.5. Painlevé–Ince equations and other SODE Lie systems. In this section we
show a new relevant instance of SODE Lie systems including, as particular instances,
some Painlevé–Ince equations [93]. In the process of analysing that this particular case of
Painlevé–Ince is a SODE Lie system, we find a much larger family of SODE Lie systems
which frequently occur in the mathematical and physical literature.

Consider the family of differential equations

ẍ+ 3xẋ+ x3 = f(t), (2.25)

with f(t) being any t-dependent function. The interest in these equations is motivated
by their frequent appearance in physics and mathematics [66, 71, 134]. The properties
of these equations have been deeply analysed since their first analysis by Vessiot and
Wallenberg [224, 229] as a particular case of second-order Riccati equations. For instance,
these equations appear in [106] in the study of the Riccati chain. There, it is stated that
such equations can be used to derive solutions for certain PDEs. In addition, equation
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(2.25) also appears in the book by Davis [86], and the particular case with f(t) = 0 has
recently been treated through geometric methods in [41, 66].

The results described in previous sections can be used to study differential equations
(2.25). Let us first show that the above differential equations are SODE Lie systems and,
in view of Proposition 1.24, they admit a superposition rule that is derived. According
to Definition 1.23, equation (2.25) is a SODE Lie system if and only if the system{

ẋ = v,

v̇ = −3xv − x3 + f(t),
(2.26)

determining the integral curves of the t-dependent vector field

XPI(t, x, v) = X1(x, v) + f(t)X2(x, v), (2.27)

with

X1 = v
∂

∂x
− (3xv + x3)

∂

∂v
, X2 =

∂

∂v
,

is a Lie system.
In view of the decomposition (2.27), all equations (2.25) are SODE Lie systems if the

vector fields X1 and X2 are included in a finite-dimensional real Lie algebra V of vector
fields. This happens if and only if Lie({X1, X2}) is a finite-dimensional linear space. We
consider the family of vector fields on TR given by

X1 = v
∂

∂x
− (3xv + x3)

∂

∂v
, X2 =

∂

∂v
,

X3 = − ∂

∂x
+ 3x

∂

∂v
, X4 = x

∂

∂x
− 2x2 ∂

∂v
,

X5 = (v + 2x2)
∂

∂x
− x(v + 3x2)

∂

∂v
, X6 = 2x(v + x2)

∂

∂x
+ 2(v2 − x4)

∂

∂v
,

X7 =
∂

∂x
− x ∂

∂v
, X8 = 2x

∂

∂x
+ 4v

∂

∂v
.

(2.28)

where X3 = [X1, X2], −3X4 = [X1, X3], X5 = [X1, X4], X6 = [X1, X5], X7 = [X2, X5],
X8 = [X2, X6]. The vector fields X1, . . . , X8 are linearly independent over R. Their com-
mutation relations read

[X1, X2] = X3, [X1, X3] = −3X4, [X1, X4] = X5, [X1, X5] = X6,

[X1, X6] = 0, [X1, X7] =
1
2
X8, [X1, X8] = −2X1, [X2, X3] = 0,

[X2, X4] = 0, [X2, X5] = X7, [X2, X6] = X8, [X2, X7] = 0,

[X2, X8] = 4X2, [X3, X4] = −X7, [X3, X5] = −1
2
X8, [X3, X6] = −2X1,

[X3, X7] = −2X2, [X3, X8] = 2X3, [X4, X5] = −X1, [X4, X6] = 0,

[X4, X7] = X3, [X4, X8] = 0, [X5, X6] = 0, [X5, X7] = −3X4,

[X5, X8] = −2X5, [X6, X7] = −2X5, [X6, X8] = −4X6, [X7, X8] = 2X7.

(2.29)

In other words, the vector fields X1, . . . , X8 span an eight-dimensional Lie algebra V of
vector fields containing X1 and X2. Therefore, equation (2.25) is a SODE Lie system.



56 J. F. Cariñena and J. de Lucas

Moreover, the traceless real 3× 3 matrices

M1 =

0 −1 0
0 0 −1
0 0 0.

 , M2 =

 0 0 0
0 0 0
−1 0 0.

 ,

M3 =

0 0 0
1 0 0
0 −1 0.

 , M4 = −1
3

−1 0 0
0 2 0
0 0 −1.

 ,

M5 =

0 1 0
0 0 −1
0 0 0.

 , M6 =

0 0 2
0 0 0
0 0 0.

 ,

M7 =

 0 0 0
−1 0 0
0 −1 0.

 , M8 =

2 0 0
0 0 0
0 0 −2.


obey the same commutation relations as X1, . . . , X8, i.e. the linear map ρ : sl(3,R)→ V

such that ρ(Mα) = Xα with α = 1, . . . , 8 is a Lie algebra isomorphism. Consequently, the
systems of differential equations describing the integral curves for the t-dependent vector
fields

X(t, x, v) =
8∑

α=1

bα(t)Xα(x, v), (2.30)

are Lie systems related to a Vessiot–Guldberg Lie algebra isomorphic to sl(3,R).
Many instances of the family of Lie systems (2.30) are associated with interesting

SODE Lie systems with applications in physics or related to remarkable mathematical
problems. In all these cases, the theory of Lie systems can be applied to investigate these
second-order differential equations, recover some of their known properties, and, possibly,
provide new results. Let us illustrate this by means of a few examples.

Another equation appearing in the physics literature [71, 72, 218] which can be anal-
ysed by means of our methods is

ẍ+ 3xẋ+ x3 + λ1x = 0, (2.31)

which is a special kind of the Liénard equation ẍ + f(x)ẋ + g(x) = 0, with f(x) = 3x
and g(x) = x3 + λ1x. The above equation can also be related to a generalised form of an
Emden equation occurring in the thermodynamical study of equilibrium configurations
of spherical clouds of gas acting under the mutual attraction of their molecules [88].

As in the study of (2.25), by considering the new variable v = ẋ, equation (2.31)
becomes the system {

ẋ = v,

v̇ = −3xv − x3 − λ1x,
(2.32)

describing the integral curves of the vector field X = X1 − λ1/2(X7 + X3) included in
the family (6.14).

Finally, we can also treat the equation

ẍ+ 3xẋ+ x3 + f(t)(ẋ+ x2) + g(t)x+ h(t) = 0, (2.33)
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embracing, as particular cases, all the previous examples [134]. The system of first-order
differential equations associated with this equation reads{

ẋ = v,

v̇ = −3xv − x3 − f(t)(v + x2)− g(t)x− h(t).
(2.34)

Hence, this system describes the integral curves of the t-dependent vector field

Xt = X1 − h(t)X2 −
1
4
f(t)(X8 − 2X4)− 1

2
g(t)(X7 +X3).

Therefore, equation (2.33) is a SODE Lie system and the theory of Lie systems can be
used to analyse its properties.

Some particular cases of system (2.33) were pointed out in [72, 134]. Additionally,
the case of f(t) = 0, g(t) = ω2(t) and h(t) = 0 was studied in [71] and it is related
to harmonic oscillators. The case of g(t) = 0 and h(t) = 0 appears in the catalogue
of equations possessing the Painlevé property [126]. Additionally, our result generalises
Vessiot’s contribution [225] describing the existence of an expression determining the
general solution of a system like (2.33) (but with constant coefficients) in terms of four
of their particular solutions, their derivatives and two constants.

Finally, it is worth noting that the second-order differential equation (2.33) is a par-
ticular case of second-order Riccati equations [66, 106]. Such equations were analysed
through Lie systems in [77]. The approach carried out in that paper is based on the use
of certain ad hoc changes of variables which transform second-order Riccati equations
into some Lie systems. The advantage of our approach here is that it allows us to study
equations (2.33) without using such transformations. In addition, our presentation along
with the theory of quasi-Lie schemes can be used to perform a quite complete study of
second-order Riccati equations in a systematic way [48].

2.6. Mixed superposition rules and Ermakov systems. Let us now show how the
theory developed in Section 1.7 for mixed superposition rules works. By adding some,
probably different, Lie systems to an initial one, we get new Lie systems that admit
constants of motion which do not depend on the t-dependent coefficients of these systems
and relate different solutions of the constitutive Lie systems. Moreover, if we add enough
copies, these constants of motion can be used to construct a mixed superposition rule.

We here investigate Ermakov systems. These systems are formed by a second-order
homogeneous linear differential equation and a Milne–Pinney equation, i.e. ẍ = −ω2(t)x+

k

x3
,

ÿ = −ω2(t)y,
(x, y) ∈ R2

+.

These systems have been widely studied in physics and mathematics since their introduc-
tion until the present day. In physics they appear in the study of Bose–Einstein conden-
sates and cosmological models [109, 115, 152] and in the solution of t-dependent harmonic
or anharmonic oscillators [87, 96, 101, 150, 192, 204]. A lot of works have also been devoted
to the usage of Hamiltonian or Lagrangian structures in the study of such systems (see
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e.g. [194]). Here we recover a constant of motion, the so-called Lewis–Ermakov invariant
[150], which appears naturally.

In order to use the theory of Lie systems to analyse Ermakov systems, consider the
system of ordinary first-order differential equations [87, 146]

ẋ = vx,

ẏ = vy,

v̇x = −ω2(t)x+
k

x3
,

v̇y = −ω2(t)y,

(2.35)

defined over TR2
+ and built by adding the new variables ẋ = vx and vy = ẏ to the

Ermakov systems and satisfying the conditions explained in Section 1.7. Its solutions are
the integral curves for the t-dependent vector field

Xt = vx
∂

∂x
+ vy

∂

∂y
+
(
−ω2(t)x+

k

x3

)
∂

∂vx
− ω2(t)y

∂

∂vy
,

which is a linear combination with t-dependent coefficients, Xt = X1 + ω2(t)X3, of

X1 = vx
∂

∂x
+ vy

∂

∂y
+

k

x3

∂

∂vx
, X3 = −x ∂

∂vx
− y ∂

∂vy
.

Taking into account the vector field

X2 =
1
2

(
x
∂

∂x
+ y

∂

∂y
− vx

∂

∂vx
− vy

∂

∂vy

)
,

the vector fields X1, X2 and X3 span a three-dimensional Lie algebra isomorphic to
sl(2,R). In this way, this system is a SODE Lie system related to a Lie algebra of vector
fields isomorphic to sl(2,R).

The vector fields L1, L2, L3 associated with the Milne–Pinney equation (see Section
2.3) span a distribution of rank two on TR+. Consequently, there is no local first integral
I such that (L1 + ω(t)2(t)L2)I = 0 for any given ω(t). In other words, Milne–Pinney
equations do not admit a common t-independent constant of motion.

By adding the other sl(2,R) linear Lie system appearing in the Ermakov system,
i.e. the harmonic oscillator with t-dependent angular frequency ω(t), the distribution
spanned by X1, X2 and X3 has rank three over a dense open subset of TR2

+. Therefore,
there is a local first integral. It can be obtained from X1F = X3F = 0. But X3F = 0
implies that there exists a function F̄ : R3 → R such that F (x, y, vx, vy) = F̄ (x, y, ξ) with
ξ = yvx − xvy, and then X1F = 0 is written

vx
∂F̄

∂x
+ vy

∂F̄

∂y
+ k

y

x3

∂F̄

∂ξ

and we obtain the associated system of characteristics

k
y dx− x dy

ξ
=
x3 dξ

y
⇒ d(y/x)

ξ
+
x dξ

ky
= 0.
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Hence, the following first integral is found [150]:

ψ(x, y, vx, vy) = k

(
y

x

)2

+ ξ2 = k

(
y

x

)2

+ (yvx − xvy)2,

which is the well-known Ermakov–Lewis invariant [87, 146, 192].
Once we have obtained a first integral, we can obtain new constants by adding new

copies of any of the systems we have already used. For instance, consider the system of
first-order differential equations 

ẋ = vx,

ẏ = vy,

ż = vz,

v̇x = −ω2(t)x+
k

x3
,

v̇y = −ω2(t)y,

v̇z = −ω2(t)z,

(2.36)

which corresponds to the vector field

Xt = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+

k

x3

∂

∂vx
− ω2(t)

(
x
∂

∂vx
+ y

∂

∂vy
+ z

∂

∂vz

)
.

The t-dependent vector field Xt can be expressed as Xt = N1 + ω2(t)N3 where

N1 = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+

k

x3

∂

∂vx
, N3 = −x ∂

∂vx
− y ∂

∂vy
− z ∂

∂vz
.

These vector fields generate a three-dimensional real Lie algebra together with the vector
field

N2 =
1
2

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− vx

∂

∂vx
− vy

∂

∂vy
− vz

∂

∂vz

)
.

In fact, they span a Lie algebra isomorphic to sl(2,R) because

[N1, N3] = 2N2, [N1, N2] = N1, [N2, N3] = N3.

The distribution spanned by these fundamental vector fields has rank three in an
open dense subset of TR3

+. Thus, there exist three local first integrals for all the vector
fields of the latter distribution. In other words, system (2.36) admits three t-independent
constants of motion which turn out to be the Ermakov invariant I1 of the subsystem
involving the variables x and y, the Ermakov invariant I2 of the subsystem involving x
and z, i.e.

I1 =
1
2

(
(yvx − xvy)2 + k

(
y

x

)2)
, I2 =

1
2

(
(xvz − zvx)2 + k

(
z

x

)2)
,

and the Wronskian W = yvz − zvy of the subsystem involving y and z. They define a
foliation with three-dimensional leaves. We can use this foliation to obtain a superposition
rule. To do this we describe x in terms of y, z and the integrals I1, I2,W , i.e.

x =
√

2
|W |

(I2y2 + I1z
2 ±

√
4I1I2 − kW 2yz)1/2. (2.37)
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This can be interpreted, as pointed out by Pinney [182], as saying that there is a super-
position rule allowing us to express the general solution of the Milne–Pinney equation
in terms of two independent solutions of the corresponding harmonic oscillator with the
same t-dependent angular frequency.

2.7. Relations between the new and the known superposition rule. We can now
compare the known superposition rule for the Milne–Pinney equation

x(t) =
√

2
|W |

(I2y2
1(t) + I1y

2
2(t)±

√
4I1I2 − kW 2 y1(t)y2(t))1/2, (2.38)

where y1(t) and y2(t) are two independent solutions of

ÿ = −ω2(t)y, (2.39)

and (2.22) and check that actually the latter reduces to the former when x1 and x2 are
obtained from solutions y1 and y2 of the associated harmonic oscillator equation.

Let y1 and y2 be two solutions of (2.39) and W their Wronskian. Consider the two
particular positive solutions of the Milne–Pinney equation given by

x1(t) =
√

2
|W |

√
C1y2

1(t) + C2y2
2(t), x2(t) =

√
2

|W |

√
C2y2

1(t) + C1y2
2(t), (2.40)

where C1 < C2 and we additionally impose

4C1C2 = kW 2. (2.41)

The t-dependent constant of motion I3 given by (2.19) for the two particular solutions
of the Milne–Pinney equation can then be expressed as a function of the solutions y1

and y2 of the t-dependent harmonic oscillator and their Wronskian W . After a long
computation I3 turns out to be

I3 =
4(C2

1 + C2
2 )

W 2
, (2.42)

and then using the explicit form (2.40) of the particular solutions and taking into account
the constant (2.42) in (2.22) we obtain

k1x
2
1 + k2x

2
2 ± 2

√
λ12(−k(x4

1 + x4
2) + I3x2

1x
2
2) =

2
W 2

(C1k1 + C2k2)y2
1

+ (C1k2 + C2k1)y2
2)± 2

W 2

√
4(C1k1 + C2k2)(C1k2 + C2k1)− kW 2y1y2. (2.43)

Consequently, from the superposition rule (2.22), we recover expression (2.37):

x =
√

2
|W |

√
µ1y2

1 + µ2y2
2 ±

√
4µ1µ2 − kW 2y1y2, (2.44)

where {
µ1 = C1k1 + C2k2,

µ2 = C1k2 + C2k1.

Once we have stated the superposition rule, we still have to analyse the possible values
of λ1 and λ2 that we can use in this case. If we use the expression (2.42) we obtain after
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a short calculation the following values z±:

z+ =
4C2

2

kW 2
, z− =

4C2
1

kW 2
. (2.45)

Now if we write y2
1 and y2

2 in terms of x2
1, x

2
2 and W from the system (2.40) we obtain

1
C2

1 − C2
2

(
C1 −C2

−C2 C1

)(
x2

1

x2
2

)
=
(
y2

1

y2
2

)
. (2.46)

Therefore, as C2 > C1 the condition of y2
1 and y2

2 being positive is{
C1x

2
1 ≤ C2x

2
2,

C2x
2
1 ≥ C1x

2
2,

(2.47)

and it is satisfied if x2
1/x

2
2 ≤ C2/C1 = 4C2

2/kW
2 = z+ and x2

1/x
2
2 ≥ C1/C2 = 4C2

1/kW
2 =

z−, because of (2.41). Thus, (x1, x2) ∈ B and therefore the only restrictions for k1, k2

are λ12 ≥ 0 and k1x
2
1 + k2x

2
2 ≥ 0. Obviously, by the change of variables (2.40) this last

expression is equivalent to µ1y
2
1 +µ2y

2
2 ≥ 0 and thus µ1 and µ2 cannot be simultaneously

negative. Furthermore, λ12(I2
3 −4k2) = 4µ1µ2−kW 2. As λ12 ≥ 0 we have 4µ1µ2 ≥ kW 2,

i.e. µ1µ2 is positive and thus, µ1 and µ2 are positive. In this way we recover the usual
constants of the known superposition rule of the Milne–Pinney equation in terms of
solutions of a harmonic oscillator.

2.8. A new mixed superposition rule for the Pinney equation. In this section
we derive a mixed superposition rule for the Milne–Pinney equation in terms of a Riccati
equation. Consider again the t-dependent Riccati equation

dx

dt
= b1(t) + b2(t)x+ b3(t)x2 (2.48)

which has been studied in [50, 63] from the perspective of the theory of Lie systems.
We have already mentioned that it can be considered as the differential equation deter-
mining the integral curves for the t-dependent vector field (1.25). This vector field is a
linear combination with t-dependent coefficients of the vector fields X1, X2, X3 given by
(1.26), which generate a three-dimensional real Lie algebra with defining relations (1.27).
Consequently, this Lie algebra is isomorphic to sl(2,R). Note also that the commutation
relations (1.27) are the same as (2.3).

Take now the following particular case of the Riccati equation:

dx

dt
= 1 + ω2(t)x2.

This is the equation of the integral curves of the t-dependent vector field Xt = X1 +
ω2(t)X3. Thus, we can apply the procedure of Section 1.7 and consider the following
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differential equation in R3 × TR+:

ẋ1 = 1 + ω2(t)x2
1,

ẋ2 = 1 + ω2(t)x2
2,

ẋ3 = 1 + ω2(t)x2
3,

ẋ = v,

v̇ = −ω2(t)x+
k

x3
,

where (x1, x2, x3) ∈ R3, x ∈ R+ and (x, v) ∈ TxR+. According to our general recipe,
consider the vector fields

M1 =
∂

∂x1
+

∂

∂x2
+

∂

∂x3
+ v

∂

∂x
+

k

x3

∂

∂v
,

M2 = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+

1
2

(
x
∂

∂x
− v ∂

∂v

)
,

M3 = x2
1

∂

∂x1
+ x2

2

∂

∂x2
+ x3

3

∂

∂x3
− x ∂

∂v
,

which, by construction, satisfy the same commutation relations as before, i.e.

[M1,M3] = 2M2, [M1,M2] = M1, [M2,M3] = M3,

and the full system of differential equations can be viewed as the system of differential
equations for the determination of the integral curves of the t-dependent vector field
M(t) = M1 + ω2(t)M3. The distribution associated with this Lie system has rank three
at almost every point and so there exist locally two first integrals. As 2M2 = [M1,M3],
it is enough to find a common first integral for M1 and M3, i.e. a function F : R5 → R
such that M1F = M3F = 0.

We first look for first integrals independent of x3, i.e. we suppose that F depends just
on x1, x2, x and v. Using the method of characteristics, the condition M3F = 0 implies
that the characteristics system is

dx1

x2
1

=
dx2

x2
2

=
dv

−x
=
dx

0
,

That means that for a first integral for M3 which depends on x1, x2, x and v, there is a
function F̄ : R3 → R such that F (x1, x2, x, v) = F̄ (I1, I2, I3), with I1, I2 and I3 given by

I1 =
1
x1
− 1
x2
, I2 =

1
x1
− v

x
, I3 = x.

Now, in terms of F̄ , the condition M1F = M1F̄ = 0 implies

v

(
−2I1
I3

∂F̄

∂I1
− 2I2

I3

∂F̄

∂I2
+
∂F̄

∂I3

)
+ (I1 − 2I2)I1

∂F̄

∂I1
−
(
I2
2 +

k

I4
3

)
∂F̄

∂I2
= 0. (2.49)

Thus the linear term in v and the other one must vanish independently. The method of
characteristics applied to the first term implies that there exists a map F̂ : R2 → R such
that F̄ (I1, I2, I3) = F̂ (K1,K2) where

K1 =
I1
I2
, K2 = I2I

2
3 .
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Finally, taking into account the last result in M1F̂ = 0, we get(
−K2

1 −K1 +
kK1

K2
2

)
∂F̂

∂K1
−
(
K2 +

k

K2

)
∂F̂

∂K2
= 0,

and by the method of characteristics expression (2.49) yields

dK1

dK2
=
K2

1 +K1 − kK1
K2

2

K2 + k
K2

,

which gives the first integral

C1 = K2 +
k +K2

2

K1K2
,

which in the initial variables reads

C1 =
(
x2 −

v

x

)
x2 +

k + (x2 − v
x )2x4

(x1 − x2)x2
.

If we repeat this procedure with the assumption that the integral does not depend on x2

we obtain the first integral

C2 =
(
x3 −

v

x

)
x2 +

k + (x3 − v
x )2x4

(x1 − x3)x2
.

It is a long but easy calculation to check that both are first integrals of M1,M2 and
M3. We can now obtain the general solution x of the Milne–Pinney equation in terms of
x1, x2, x3, C1, C2, as

x =

√
(C1(x1 − x2)− C2(x1 − x3))2 + k(x2 − x3)2

(C2 − C1)(x2 − x3)(x2 − x1)(x1 − x3)
,

where C1 and C2 are constants such that, once x1(t), x2(t) and x3(t) have been fixed,
they make x(0) given by the latter expression real.

Thus we have obtained a new mixed superposition rule which enables us to express the
general solution of the Pinney equation in terms of three solutions of Riccati equations
and, of course, two constants related to initial conditions which determine each particular
solution.

3. Applications of quantum Lie systems

In Sections 1.9 and 1.8, it is proved that we can make use of the geometric theory of Lie
systems to treat a certain kind of Schrödinger equations, those related to the so-called
quantum Lie systems. In this section we use this point of view to investigate quantum
mechanics.

First, we develop the geometric theory of reduction for quantum Lie systems. Reduc-
tion techniques have already been put into practice to study Lie systems [40, 47, 50, 63].
In these works, a variety of reduction methods and other closely related topics are anal-
ysed. Most of these methods are based on the properties of a special type of Lie system
in a Lie group associated with the Lie system under study. As quantum Lie systems can
also be related to such Lie systems, we can apply most of the methods developed in the
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aforementioned works to analyse quantum Lie systems. This is the main purpose of the
present section.

In detail, we start by analysing the reduction technique for quantum Lie systems
and we complete some previous classic achievements. We next show that the interaction
picture can be explained from this geometrical point of view in terms of this reduction
technique. Furthermore, the method of unitary transformations is analysed from our
perspective to exemplify that quantum Lie systems associated with solvable Lie algebras
of linear operators, similarly to the classical case, can be exactly solved. On the other
hand, systems related to nonsolvable Lie algebras can be solved in particular cases. Both
cases can be analysed to reproduce some results on the method of unitary transformations
in particular cases found in the literature.

3.1. The reduction method in quantum mechanics. We here review the reduction
techniques explained, for example, in [40, 51, 63]. While in some previous works certain
sufficient conditions to perform a reduction process were explained [40, 63], here we show
that these conditions are also necessary [51]. Additionally, we use the geometric reduction
technique to explain the interaction picture used in quantum mechanics and we review,
from a geometric point of view, the method of unitary transformations.

In Section 1.3 it was shown that the study of Lie systems can be reduced to that of
finding the solution of the equation

Rg−1∗g ġ = −
r∑

α=1

bα(t)aα ≡ a(t) ∈ TeG (3.1)

with g(0) = e.
The reduction method developed in [40] shows that given a solution x̃(t) of a Lie

system on a homogeneous space G/H, the solution of the Lie system in the group G, and
therefore the general solution in the given homogeneous space, can be reduced to that
of a Lie system in the subgroup H. More specifically, if the curve g̃(t) in G is such that
x̃(t) = Φ(g̃(t), x̃(0)), with Φ being the given action of G in the homogeneous space, then
g(t) = g̃(t)g′(t), where g′(t) turns out to be a curve in H which is a solution of a Lie
system in H. Actually, once the curve g̃(t) in G has been fixed, the curve g′(t), which
takes values in H, satisfies the equation [40]

Rg′−1∗g′ ġ′ = −Ad(g̃−1)
( r∑
α=1

bα(t)aα +Rg̃−1∗g̃ ˙̃g
)
≡ a′(t) ∈ TeH. (3.2)

This transformation law can be understood in the language of the theory of connec-
tions. It has been shown in [40, 60] that Lie systems can be related to connections in
a bundle and that the group of curves in G, which is the group of automorphisms of
the principal bundle G × R [60], acts on the left on the set of Lie systems on G, and
defines an induced action on the set of Lie systems in each homogeneous space for G.
More specifically, if x(t) is a solution of a Lie system in a homogeneous space N defined
by the curve a(t) in g, then for each curve ḡ(t) in G such that ḡ(0) = e we see that
x′(t) = Φ(ḡ(t), x(t)) is a solution of the Lie system defined by the curve

a′(t) = Rḡ−1∗ḡ ˙̄g + Ad(ḡ)a(t), (3.3)
which is the transformation law for a connection.
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In conclusion, the aim of the reduction method is to find an automorphism ḡ(t) such
that the right-hand side in (3.3) belongs to TeH ≡ h for a certain Lie subgroup H of G.
The papers [40, 60] gave a sufficient condition for obtaining this result. In this section
we study the above geometrical development in quantum mechanics and we determine a
necessary condition for the right-hand side in (3.3) to belong to h.

Quantum Lie systems are those t-dependent self-adjoint Hamiltonians such that

H(t) =
r∑

α=1

bα(t)Hα, (3.4)

with the iHα spanning (under the commutator of operators) an r-dimensional real Lie
algebra V of skew-self-adjoint operators. Therefore, by regarding these operators as fun-
damental vector fields of a unitary action of a connected Lie group G with Lie algebra g

isomorphic to V , we can relate the Schrödinger equation to a differential equation in G
determined by curves in TeG given by a(t) = −

∑r
α=1 bα(t)aα by considering −iHα as

fundamental vector fields of the basis of g given by {aα | α = 1, . . . , r}.
Now, the preceding methods enable us to transform the problem into a new one in the

same group G, for each choice of the curve ḡ(t) but with a new curve a′(t). The action
of G on H is given by a unitary representation U , and therefore the t-dependent vector
field determined by the original t-dependent Hamiltonian H(t) becomes a new one with
t-dependent Hamiltonian H ′(t). Its integral curves are the solutions of the equation

dψ′

dt
= −iH ′(t)ψ′,

where
−iH ′(t) = −iU(ḡ(t))H(t)U†(ḡ(t)) + U̇(ḡ(t))U†(ḡ(t)).

That is, from a geometric point of view, we have related a Lie system on the Lie group
G to a certain curve a(t) in TeG and the corresponding system in H determined by a
unitary representation of G to another one with a different curve a′(t) in TeG and its
associated one in H.

Let us choose a basis of TeG given by {cα | α = 1, . . . , r} with r = dim g such that
{cα | α = 1, . . . , s} is a basis of TeH, where s = dim h, and denote by {cα | α = 1, . . . , r}
the dual basis of {cα | α = 1, . . . , r}. In order to find ḡ such that the right-hand term of
(3.3) belongs to TeH for all t, the condition on ḡ is

cα(Ad(ḡ)a(t) +Rḡ−1∗ḡ ˙̄g) = 0, α = s+ 1, . . . , r.

Now, if θα is the left invariant 1-form on G induced by cα, the previous equation implies

θαḡ−1

(
Rḡ−1∗ea(t)− dḡ−1

dt

)
= 0, α = s+ 1, . . . , r.

Let g̃ = ḡ−1. The above expression implies that Rg̃∗ea(t) − ˙̃g is generated by left
invariant vector fields on G from elements of h. Then, given πL : G→ G/H, the kernel of
πL∗ is spanned by the left invariant vector fields on G generated by elements of h. Then
it follows that

πL∗g̃(Rg̃∗ea(t)− ˙̃g) = 0. (3.5)
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Therefore, if we use that πL∗ ◦XR
α = −XL

α ◦ πL, where XL
α denotes the fundamental

vector field of the action of G in G/H and XR
α denotes the right-invariant vector field in

G whose value at e is aα, we can prove that πL(g̃) is a solution on G/H of the equation

dπL(g̃)
dt

=
r∑

α=1

bα(t)XL
α (πL(g̃)). (3.6)

Thus, given a certain solution g′(t) in h related to the initial g(t) by means of g̃(t)
according to g(t) = g̃(t)g′(t), the projection to G/H of g̃(t), i.e. πL(g̃(t)), is a solution of
(3.6). This shows that whenever g′(t) is a curve in H, then g̃(t) satisfies equation (3.6).
Moreover, as shown in [40], if g̃(t) satisfies (3.6), then g′(t) is a curve in H satisfying
(3.2). The previous result shows that the condition for (3.2) to hold is not only sufficient
but also necessary. Thus, we provide a new result which completes the one found in [40].

Finally, it is worth noting that even though this last proof has been developed for
quantum mechanics, it can also be applied to ordinary differential equations, because it
appears as a consequence of the group structure of Lie systems which is the same for
both quantum and ordinary Lie systems.

3.2. Interaction picture and Lie systems. As a first application of the reduction
method for Lie systems, we analyse here how this theory can be applied to explain the
interaction picture used in quantum mechanics. This picture has been proved to be very
effective in the development of perturbation methods. It plays a rôle when the t-dependent
Hamiltonian can be written as a linear combination with t-dependent coefficients of a
simpler Hamiltonian H1 and a perturbation V (t). In the framework of Lie systems, we
can analyse what happens when the t-dependent Hamiltonian is

H(t) = H1 + V (t) = H1 +
r∑

α=2

bα(t)Hα =
r∑

α=1

bα(t)Hα, b1(t) = 1,

where the set of skew-self-adjoint operators {−iHα |α = 1, . . . , r} is closed under commu-
tation and generates a finite-dimensional real Lie algebra. The situation is very similar
to the case of control systems with a drift term (here H1) that are linear in the control
functions. The functions bα(t) correspond to the control functions.

According to the theory of Lie systems, take a basis {aα |α = 1, . . . , r} of the Lie
algebra with corresponding associated fundamental vector fields −iHα. The equation to
be studied in TeG is (3.1) and if we define g′(t) = ḡ(t)g(t), where ḡ(t) is a previously
chosen curve, it obeys a similar equation to g′(t) given by (3.3).

If, in particular, we choose ḡ(t) = exp(a1t), we find the new equation in TeG

Rg′−1∗g′ ġ
′ = −Ad(exp(a1t))

( r∑
α=2

bα(t)aα
)

= − exp(ad(a1)t)
( r∑
α=2

bα(t)aα
)
. (3.7)

Correspondingly, the action of G on H by a unitary representation defines a transfor-
mation on H in which the state ψt transforms into ψ′t = exp(iH1t)ψt and its dynamical
evolution is given by the vector field corresponding to the right-hand side of (3.7). In
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particular, if {a2, . . . , ar} span an ideal of the Lie algebra g, the problem reduces to the
corresponding normal subgroup in G.

3.3. The method of unitary transformations. A second application of the theory
of Lie systems in quantum mechanics and, in particular, of the reduction method is to
obtain information about how to proceed to solve a quantum Lie Hamiltonian. Let us
discuss here a relevant general procedure to accomplish this task.

Every Schrödinger equation of Lie type is determined by a Lie algebra g, a unitary
representation of its connected and simply connected Lie group G on H, and a curve a(t)
in TeG. Depending on g, there are two cases. If g is solvable, we can use the reduction
method in quantum mechanics to obtain the general solution. If g is not solvable, it is not
known how to integrate the problem in terms of quadratures in the most general case.
Nevertheless, it is possible to solve the problem completely for some specific curves as
for instance it happens for the Caldirola–Kanai Hamiltonian [118]. A way of dealing with
such systems is to try to transform the curve a(t) into another one a′(t), easier to handle,
as has been done in the previous section for the interaction picture. In a more general
case, although any two curves a(t) and a′(t) are always connected by an automorphism,
the equation determining the transformation can be as difficult to solve as the initial
problem. Because of this, it is of interest to find a curve that:

1. determines an easily solvable equation;
2. can be transformed through an explicitly known transformation into the curve asso-

ciated with our initial problem.

This is the topic of the next three sections, where conditions for such Schrödinger equa-
tions are analysed. In any case, we can always express the solution of the initial problem
in terms of a solution of the equation determining the transformation. In certain cases,
for an appropriate choice of the curve ḡ(t) the new curve a′(t) belongs to TeH for all t,
where H is a solvable Lie subgroup of G. In this case we can reduce the problem from g

to a certain solvable Lie subalgebra h of g. Of course, in order to do this, a solution of the
equation of reduction is needed, but once this is known we can solve the problem com-
pletely. Other methods have also been used in the literature, like the Lewis–Riesenfeld
(LR) method. However, this method seems to offer a complete solution only if g is solv-
able. If g is not solvable, the LR method offers a solution which depends on a solution of
a system of differential equations, as in the method of reduction.

To sum up, given a Lie system associated with a Lie algebra g, whose Lie group G

acts, by unitary operators, on H, and determined by a curve a(t) in TeG, the systematic
procedure to be used is the following:

• If g is solvable, we can solve the problem easily by quadratures as in [94, 107].
• If g is not solvable, we can try to solve the problem for a given curve as for the

Caldirola–Kanai Hamiltonian in [118], by choosing a curve ḡ(t) transforming the curve
a(t) into another one easier to solve, as in the interaction picture. If this does not
work we can try to reduce the problem to an integrable case as for the t-dependent
mass and frequency harmonic oscillator or quadratic one-dimensional Hamiltonian in
[52, 96, 211, 238].
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3.4. t-dependent operators for quantum Lie systems. In this section we apply our
methods to obtain the t-dependent evolution operators of several problems found in the
physics literature in an algorithmic way.

We first provide a simple example to illustrate the main points of our theory. Next, we
analyse t-dependent quadratic Hamiltonians. These Hamiltonians describe a very large
class of physical models. Sometimes, one of these physical models is described by a certain
family of quadratic Hamiltonians associated with a Lie subalgebra of the Lie algebra of
operators related to general quadratic Hamiltonians. If this Lie subalgebra is solvable,
the differential equations related to it through the Wei–Norman methods are solvable too
and the t-evolution operator can be explicitly obtained. In these cases, we can find the
explicit solution of these problems in the literature using different methods for each case.
We also describe some approaches to study these quantum Lie systems in the nonsolvable
cases.

3.5. Initial examples. We start our investigation by studying the motion of a particle
with a t-dependent mass under the action of a t-dependent linear potential term. The
Hamiltonian describing this physical case is

H(t) =
P 2

2m(t)
+ S(t)X.

The Lie algebra associated with this example is a central extension of the Heisenberg
Lie algebra. A basis for the Lie algebra of vector fields related to this physical model is

Z1 = i
P 2

2
, Z2 = iP, Z3 = iX, Z4 = iI,

which generates a Lie algebra with the commutation relations

[Z1, Z2] = 0, [Z1, Z3] = 2Z2, [Z1, Z4] = 0,

[Z2, Z3] = Z4, [Z2, Z4] = 0,

[Z3, Z4] = 0.

This Lie algebra is solvable, and so the related equations obtained through the Wei–
Norman method can be solved by quadratures for any pair of t-dependent coefficients
m(t) and S(t). The solution of the associated Wei–Norman system allows us to obtain
the t-evolution operator and the wave function solution of the t-dependent Schrödinger
equation.

This t-dependent Hamiltonian has been studied in [221] for some particular cases using
ad hoc methods and in general in [94]. Here, we investigate it through the Wei–Norman
method. Its equation in the group G with TeG ' V is

Rg−1∗g ġ = − 1
m(t)

a1 − S(t)a3 ≡ aMS(t),

where the a1, . . . , a4 are a basis of g with the same commutation relations as the operators
Z1, . . . , Z4. The factorisation

g(t) = exp(v2(t)a2) exp(−v3(t)a3) exp(−v4(t)a4) exp(−v1(t)a1)
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allows us to solve the equation in G by the Wei–Norman method to get

v̇1 =
1

m(t)
,

v̇2 =
v3

m(t)
,

v̇3 = S(t),

v̇4 = −S(t)v2 −
v2

3

2m(t)
,

with initial conditions v1(0) = v2(0) = v3(0) = v4(0) = 0. The solution of this system
can be expressed using quadratures because the related group is solvable:

v1(t) =
∫ t

0

du

m(u)
,

v2(t) =
∫ t

0

du

m(u)

(∫ u

0

S(v) dv
)
,

v3(t) =
∫ t

0

S(u) du,

v4(t) = −
∫ t

0

S(u)
(∫ u

0

dv

m(v)

(∫ v

0

S(w) dw
))

du−
∫ t

0

du

2m(u)

(∫ u

0

S(v) dv
)2

,

(3.8)

and the t-evolution operator is

U(g(t)) = exp(v2(t)Z2) exp(−v3(t)Z3) exp(−v4(t)Z4) exp(−v1(t)Z1)

= exp(iv2(t)P ) exp(−iv3(t)X) exp(−iv4(t)I) exp
(
−iv1(t)

P 2

2

)
.

3.6. Quadratic Hamiltonians. After dealing with the above easy example, we can
now proceed to the t-dependent quadratic Hamiltonian given by [237] (see [59])

H(t) = α(t)
P 2

2
+ β(t)

XP + PX

4
+ γ(t)

X2

2
+ δ(t)P + ε(t)X + φ(t)I, (3.9)

where X and P are the position and momentum operators satisfying the commutation
relation

[X,P ] = iI.

It is important to solve this quantum quadratic Hamiltonian because it frequently appears
in quantum mechanics.

In order to prove that (3.9) is a quantum Lie system, we must check that this t-
dependent Hamiltonian can be written as a sum with t-dependent coefficients of some
self-adjoint Hamiltonians generating a real finite-dimensional Lie algebra of operators.

As we can write

H(t) = α(t)H1 + β(t)H2 + γ(t)H3 − δ(t)H4 + ε(t)H5 + φ(t)H6

with the Hamiltonians

H1 =
P 2

2
, H2 =

1
4

(XP + PX), H3 =
X2

2
, H4 = −P, H5 = X, H6 = I,
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satisfying the commutation relations
[iH1, iH2] = iH1, [iH2, iH3] = iH3, [iH3, iH4] = iH5, [iH4, iH5] = −iH6,

[iH1, iH3] = 2iH2, [iH2, iH4] = − i
2
H4, [iH3, iH5] = 0,

[iH1, iH4] = 0, [iH2, iH5] =
i

2
H5,

[iH1, iH5] = −iH4,

and [iHα, iH6] = 0, α = 1, . . . , 5, we see that H(t) is a quantum Lie system.
This means that the skew-self-adjoint operators iHα generate a six-dimensional real

Lie algebra V of operators. Now, we can relate them to the basis {a1, . . . , a6} for an
abstract real Lie algebra isomorphic to the one spanned by the −iHα. This basis is
chosen in such a way that

[a1, a2] = a1, [a2, a3] = a3, [a3, a4] = a5, [a4, a5] = −a6, [a5, a6] = 0,

[a1, a3] = 2a2, [a2, a4] = −1
2

a4, [a3, a5] = 0, [a4, a6] = 0,

[a1, a4] = 0, [a2, a5] =
1
2

a5, [a3, a6] = 0,

[a1, a5] = −a4, [a2, a6] = 0,

[a1, a6] = 0.

This six-dimensional real Lie algebra is a semidirect sum of the Lie algebra sl(2,R)
spanned by {a1, a2, a3} and the Heisenberg–Weyl Lie algebra generated by {a4, a5, a6},
which is an ideal.

In order to find the t-evolution provided by the t-dependent Hamiltonian (3.9) we
should find the curve g(t) in G, with TeG ' V , such that

Rg−1∗g ġ = −
6∑

α=1

bα(t)aα, g(0) = e,

with

b1(t) = α(t), b2(t) = β(t), b3(t) = γ(t), b4(t) = −δ(t), b5(t) = ε(t), b6(t) = φ(t).

This can be carried out by using the generalised Wei–Norman method, i.e. by writing
the curve g(t) in G in terms of a set of second class canonical coordinates. For instance,

g(t) = exp(−v4(t)a4) exp(−v5(t)a5) exp(−v6(t)a6)

× exp(−v1(t)a1) exp(−v2(t)a2) exp(−v3(t)a3), (3.10)

and a straightforward application of the above mentioned Wei–Norman method technique
leads to the system

v̇1 = b1 + b2v1 + b3v
2
1 , v̇4 = b4 +

1
2
b2v4 + b1v5,

v̇2 = b2 + 2b3v1, v̇5 = b5 − b3v4 −
1
2
b2v5,

v̇3 = ev2b3, v̇6 = b6 − b5v4 +
1
2
b3v

2
4 −

1
2
b1v

2
5 ,

(3.11)

with v1(0) = v2(0) = v3(0) = v4(0) = v5(0) = v6(0) = 0.
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If we consider the vector fields

X1 =
∂

∂v1
+ v5

∂

∂v4
− 1

2
v2

5

∂

∂v6
,

X2 = v1
∂

∂v1
+

∂

∂v2
+

1
2
v4

∂

∂v4
− 1

2
v5

∂

∂v5
,

X3 = v2
1

∂

∂v1
+ 2v1

∂

∂v2
+ ev2

∂

∂v3
− v4

∂

∂v5
+

1
2
v2

4

∂

∂v6
,

X4 =
∂

∂v4
,

X5 =
∂

∂v5
− v4

∂

∂v6
,

X6 =
∂

∂v6
,

(3.12)

we can check that these vector fields satisfy the same commutation relations as the
corresponding {aα |α = 1, . . . , 6} and thus, system (3.11) is a Lie system related to a
Vessiot–Guldberg Lie algebra isomorphic to the Lie algebra (of operators) associated
with the t-dependent Hamiltonian (3.9) and to the Vessiot–Guldberg Lie algebra related
to its corresponding equation on a Lie group.

Now, once the functions vα(t), with α = 1, . . . , 6, have been determined, the t-
evolution of any state is given by

ψt = exp(−v4(t)iH4) exp(−v5(t)iH5) exp(−v6(t)iH6)

× exp(−v1(t)iH1) exp(−v2(t)iH2) exp(−v3(t)iH3)ψ0,

and thus

ψt = exp(v4(t)iP ) exp(−v5(t)iX) exp(−v6(t)iI)

× exp
(
−v1(t)i

P 2

2

)
exp
(
−v2(t)i

PX +XP

4

)
exp
(
−v3(t)i

X2

2

)
ψ0. (3.13)

3.7. Particular cases. t-dependent quadratic Hamiltonians describe a very large class
of physical models. Sometimes, one of these models is described by a family of quadratic
Hamiltonians that can be regarded as a quantum Lie system related to a Lie subalgebra
of the one given for general quadratic Hamiltonians. If they are associated with a Lie
solvable subalgebra, then the system of differential equations related to it through the
Wei–Norman method is solvable too and the t-evolution operator can be explicitly ob-
tained. In this section we treat some instances of this case through a unified approach. In
these instances, we can also find the explicit solutions of these problems in the literature,
but obtained by different ad hoc methods.

Once we have obtained the solution for a generic quadratic Hamiltonian H(t), we can
study the solution for a system with constant mass and linear potential given by

H(t) =
P 2

2m
+ S(t)X, (3.14)
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to obtain, in view of equations (3.11),

v1(t) =
t

m
, v2(t) = 0, v3(t) = 0,

v4(t) =
1
m

∫ t

0

(∫ u

0

S(v) dv
)
du, v5(t) =

∫ t

0

S(u) du,

v6(t) = − 1
m

∫ t

0

(
S(u)

∫ u

0

(∫ v

0

S(w) dw
)
dv

)
du− 1

2m

∫ t

0

(∫ u

0

S(v) dv
)2

du,

which give the t-evolution operator if we substitute them into the t-evolution operator
(3.13).

Now we can consider particular instances of this t-dependent Hamiltonian. For exam-
ple, for the curves with constant mass m and S(t) = qε0 + qε cos(ωt), studied in [107], we
obtain

v1(t) =
t

m
, v2(t) = 0, v3(t) = 0,

v4(t) =
q

2mω2
(2ε+ ε0ω

2t2 − 2ε cos(ωt)), v5(t) =
q

ω
(ε0ωt+ ε sin(ωt)),

and

v6(t) =
−q2

12mω3

(
4ε20ω

3t3 − 3ε(ε− 4ε0)ωt+ 3ε(4ε+ 2ε0(ω2t2 − 2)− 3ε cos(ωt)) sin(ωt)
)
.

The procedure to obtain a solution with arbitrary nonconstant mass and S(t) =
qε0 + qε cos(ωt) was pointed out in [107] and solved in [94]. From our point of view,
the most general solution comes directly from expression (3.8), because all cases in the
literature are particular instances of our approach with general functions m(t) and S(t).

Now, we can obtain the wave function solution of this system. We know that the wave
function solution ψt with initial condition ψ0 is

ψt(x) = U(g(t))ψ(x, 0)

= exp(iv6(t)) exp(−v4(t)iP ) exp(−v5(t)iX) exp
(
−v1(t)i

P 2

2

)
ψ0(x).

However, if we express the initial wave function ψ0(x) in the momentum space as φ0(p),
the solution will take a similar form as before but with U(g(t)) in the momentum repre-
sentation. In this case the solution with initial condition φ0(p) is

φt(p) = U(g(t))φ0(p)

= exp(−iv6(t)) exp(v4(t)iP ) exp(−v5(t)iX) exp
(
−iv1(t)

P 2

2

)
φ0(p)

= exp(−iv6(t)) exp(v4(t)iP ) exp(−v5(t)iX) exp
(
−iv1(t)

p2

2

)
φ0(p)

= exp(−iv6(t)) exp(v4(t)iP ) exp
(
−iv1(t)

(p+ v5(t))2

2

)
φ0(p+ v5(t))

= exp
(
−iv6(t) + iv4(t)p− iv1(t)

(p+ v5(t))2

2

)
φ0(p+ v5(t)).
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3.8. Nonsolvable Hamiltonians and particular instances. In the preceding section
the differential equations associated with the t-dependent quantum Hamiltonians were
Lie systems related to a solvable Lie algebra. Thus, it was proved that the differential
equations obtained were integrable by quadratures through the Wei–Norman method.
If this does not happen, it is not easy to obtain a general solution. Now, we describe
some examples of ‘nonsolvable’ t-dependent quadratic Hamiltonians. In general we do
not obtain a general solution in terms of t-dependent functions of quadratic Hamiltoni-
ans. Nevertheless, we show that for some instances, with coefficients satisfying certain
integrability conditions [52, 54], the differential equations can be integrated.

As a first case, consider the Hamiltonian for a forced harmonic oscillator with t-
dependent mass and frequency given by

H(t) =
P 2

2m(t)
+

1
2
m(t)ω2(t)X2 + f(t)X.

This case, either with or without t-dependent frequency, has been studied in [78, 107, 238].
The equations describing the solutions of this Lie system by the method of Wei–Norman
are

v̇1 =
1

m(t)
+m(t)ω2(t)v2

1 ,

v̇2 = 2m(t)ω2(t)v1,

v̇3 = ev2m(t)ω2(t),

v̇4 =
1

m(t)
v5,

v̇5 = f(t)−m(t)ω2(t)v4,

v̇6 =
1
2
m(t)ω2(t)v2

4 − f(t)v4 −
1

2m(t)
v2

5 ,

with initial conditions v1(0) = v2(0) = v3(0) = v4(0) = v5(0) = v6(0) = 0, where
the factorisation (3.10) has been used. The solution of this system cannot be obtained
by quadratures in the general case because the associated Lie algebra is not solvable.
Nevertheless, we can consider a particular instance of this kind of Hamiltonian, the so-
called Caldirola–Kanai Hamiltonian [118]. In this case, for m(t) = e−rtm0, ω(t) = ω0 and
f(t) = 0 the Hamiltonian reads

H(t) =
P 2

2m0
ert +

1
2
m0e

−rtω2
0X

2.

The corresponding solution is completely known and is given by

v1(t) =
2ert

m0

(
r + ω̄0 coth

(
t
2 ω̄0

)) ,
v2(t) = rt+ 2 log ω̄0 − 2 log

(
r sinh

(
t

2
ω̄0

)
+ ω̄0 cosh

(
t

2
ω̄0

))
,

v3(t) =
2m0ω

2
0

r + ω̄0 coth
(
t
2 ω̄0

) , v4(t) = 0, v5(t) = 0, v6(t) = 0,



74 J. F. Cariñena and J. de Lucas

where ω̄0 =
√
r2 − 4ω2

0 . This example shows that the problem can also be exactly solved
for particular instances of curves in g of Lie systems with nonsolvable Lie algebras. An-
other example is

H(t) =
P 2

2m
+

mω2
0

2(t+ k)2
X2,

for which the solution of the Wei–Norman system reads

v1(t) =
2(k + t)((k + t)ω̄0 − kω̄0)

m(kω̄0(ω̄0 − 1) + (k + t)ω̄0(ω̄0 + 1))
,

v2(t) = (1 + ω̄0) log(k + t)− (1 + ω̄0) log k + 2 log(2kω̄0 ω̄0)

− 2 log(kω̄0(ω̄0 − 1) + (k + t)ω̄0(ω̄0 + 1)),

v3(t) =
2mω2

0

k

(k + t)ω̄0 − kω̄0

kω̄0(ω̄0 − 1) + (k + t)ω̄0(ω̄0 + 1)
,

v4(t) = 0, v5(t) = 0, v6(t) = 0,

where now ω̄0 =
√

1− 4ω2
0 .

Other examples of Hamiltonians which can be studied by our method can be found
in [118]. We just mention two examples which can be completely solved:

H1(t) =
P 2

2m0
+

1
2
m0(U + V cos(ω0t))X2,

H2(t) =
P 2

2m0
ert +

1
2
m0e

−rtω2
0X

2 + f(t)X.

The first one corresponds to a Paul trap which has been studied in [95] and admits a
solution in terms of Mathieu’s functions. The second one is a damped Caldirola–Kanai
Hamiltonian analysed in [221].

3.9. Reduction in quantum mechanics. Quite often, when a quantum Lie system is
related to a nonsolvable Lie algebra, it is interesting to solve it in terms of (unknown)
solutions of differential equations. Next, we study some examples of how to use the method
of reduction in this way. We find that the reduction method can be applied not only to
analyse systems of differential equations but also to solve certain quantum problems in
an algorithmic way.

Consider a harmonic oscillator with t-dependent frequency whose Hamiltonian is given
by

H(t) =
P 2

2
+

1
2

Ω2(t)X2.

As a particular case of the Hamiltonian described in Section 1.8, this example is related
to an equation in the connected Lie group associated with the semidirect sum of sl(2,R),
spanned by the elements {a1, a2, a3}, with the Heisenberg Lie algebra generated by the
ideal {a4, a5, a6}:

Rg−1∗g ġ = −a1 − Ω2(t)a3, g(0) = e. (3.15)

Since the solution of this equation starts from the identity and {a1, a2, a3} generate an
sl(2,R) Lie algebra, the t-dependent Hamiltonian H(t) is related to the group SL(2,R).
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As a particular application of the reduction technique we will perform the reduction
from G = SL(2,R) to the Lie group related to the Lie subalgebra h = 〈a1〉. We have
shown in Section 3.1 that to obtain such a reduction, we have to solve an equation in
G/H, namely

dπL(g̃)
dt

=
3∑

α=1

bα(t)XL
α (πL(g̃)) (3.16)

where XL
α are the fundamental vector fields of the action λ of G on G/H. Now, we are

going to describe this equation in a set of local coordinates. First, we can write any
element of an open neighbourhood U of e ∈ G in a unique way as

g = exp(−c3a3) exp(−c2a2) exp(−c1a1), (3.17)

where the matrices aα, with α = 1, 2, 3, are given by (2.4).
This decomposition allows us to establish a local diffeomorphism between an open

neighbourhood V ⊂ G/H and the set of matrices given by exp(−c3a3) exp(−c2a2). Now,
the decomposition (3.17) reads in matrix terms as(

α β

γ δ

)
=
(

1 0
−c3 1

)(
ec2/2 0

0 e−c2/2

)(
1 c1
0 1

)
=
(

ec2/2 0
−c3ec2/2 e−c2/2

)(
1 c1
0 1

)
.

If we express c1, c2, c3 in terms of α, β, γ and δ, we obtain c3 = −γ/α, c2 = logα2, and
c1 = β/α. Consequently, we get(

α β

γ δ

)
=
(

1 0
γ/α 1

)(
α 0
0 α−1

)(
1 β/α

0 1

)
=
(
α 0
γ α−1

)(
1 β/α

0 1

)
.

Thus, we can define the projection πL : U ⊂ G→ G/H by

πL
(
α β

γ δ

)
=
(
α 0
γ α−1

)
H, (3.18)

which allows us to represent elements of G/H, locally, as 2× 2 lower triangular matrices
with determinant one. Now, given λg : g′H ∈ G/H 7→ gg′H ∈ G/H, as λg ◦ πL =
πL ◦ Lg, the fundamental vector fields defined in G/H by a1 and a3 through the action
λ : (g, g′H) ∈ G×G/H 7→ λg(g′H) ∈ G/H are given by

XL
1 (πL(g)) =

d

dt

∣∣∣∣
t=0

πL
(

exp(−ta1)
(
α β

γ δ

))
=
(
γ 0
0 −γ/α2

)
,

XL
3 (πL(g)) =

d

dt

∣∣∣∣
t=0

πL
(

exp(−ta3)
(
α β

γ δ

))
=
(

0 0
−α 0

)
,

and the equation on V ⊂ G/H is described by(
α̇ 0
γ̇ −α̇α−2

)
=
(

γ 0
−Ω2(t)α −γα−2

)
.
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Therefore, we need to obtain a solution of the system{
α̈ = −Ω2(t)α,

γ = α̇.
(3.19)

Taking into account (3.18), if α1 is a solution of (3.19), the curve g̃(t) that satisfies
g(t) = g̃(t)h(t), where h(t) is a solution of an equation defined on the Lie group with Lie
algebra h = 〈a1〉, reads

g̃(t) =
(
α1 0
α̇1 α−1

1

)
=
(

ec2/2 0
−c3ec2/2 e−c2/2

)
= exp

(
α̇1

α1
a3

)
exp(−2 logα1a2),

and the curve which acts on the initial equation in SL(2,R) to transform it into one in
the above mentioned Lie subalgebra is given by ḡ(t) = g̃−1(t),

ḡ(t) = exp(2 logα1 a2) exp
(
− α̇1

α1
a3

)
.

This curve transforms the initial equation in the group given by (3.15) into the new one
given by (3.3), i.e.

a′(t) = − a1

α2
1(t)

,

which corresponds to the t-dependent Hamiltonian H ′(t) = P 2/(2α2
1(t)). The induced

transformation in the Hilbert space H that transforms H(t) into H ′(t) is

exp
(
i
logα1

2
(PX +XP )

)
exp
(
−i α̇1

2α1
X2

)
.

Both results can be found in [96].
There are other possibilities of choosing different Lie subalgebras of g in order to per-

form the reduction, but the results are always given in terms of a solution of a differential
equation.

4. Integrability conditions for Lie systems

The main aim of this chapter is to describe the main aspects of the integrability theory
for Lie systems detailed in [47] and based on the geometrical understanding of Riccati
equations.

The Riccati equation can be considered as the simplest nonlinear differential equation
[40, 50]. It is, basically, the only first-order ordinary differential equation admitting a
nonlinear superposition rule [157, 234]. In spite of its apparent simplicity, its general
solution cannot be described by means of quadratures except in some very particular
cases [63, 132, 169, 183, 214, 239].

The relevance of the Riccati equation becomes evident when we take into account its
frequent appearance in many fields of mathematics and physics [57, 159, 176, 184, 203,
207, 216, 234]. This also implies the necessity of a theory of integrability providing all
those integrable cases that might lead to solvable physical models.
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4.1. Integrability of Riccati equations. In order to provide a first insight into inte-
grability conditions for Riccati equations, we review here some very well-known results.

Recall that Riccati equations are first-order differential equations of the form
dx

dt
= b1(t) + b2(t)x+ b3(t)x2. (4.1)

A first particular example of Riccati equation integrable by quadratures is the one with
b3 = 0. In fact, in that case, the Riccati equation reduces to an inhomogeneous linear
equation, which can be explicitly integrated by means of two quadratures.

Additionally, the change of variable w = −1/x transforms the above Riccati equation
into

dw

dt
= b1(t)w2 − b2(t)w + b3(t).

Consequently, if we suppose that b1 = 0 in equation (4.1), that is, if we consider a
Bernoulli equation, the above change of variable leads to an integrable linear equation.

Another known property is that given a particular solution x1(t) of (4.1), the change
x = x1(t) + z transform the equation into a new one for which the coefficient of the term
independent of z is zero, i.e.

dz

dt
= (2b3(t)x1(t) + b2(t))z + b3(t)z2,

and, as we pointed out previously, this reduces to an inhomogeneous linear equation with
the change of variables z = −1/u. Consequently, the knowledge of a particular solution
of a Riccati equation allows us to find its general solution by means of two quadratures.
It is worth recalling that this property can be more generally understood by means of
the theory of Lie systems. Indeed, this theory states that the knowledge of a particular
solution of a Lie system enables us to reduce the initial equation into a ‘simpler’ one; see
Section 1.2 or [40].

If we know two particular solutions, x1(t) and x2(t), of equation (4.1), its general
solution can be determined with one quadrature. Indeed, the change of variable z =
(x−x1(t))/(x−x2(t)) transforms the original equation into a homogeneous linear differ-
ential equation, and hence the general solution can be immediately found.

Finally, giving three particular solutions, x1(t), x2(t), x3(t), the general solution can be
written, without making use of any quadrature, in terms of the superposition rule (1.11).

The simplest case of Riccati equation, i.e. the one with b1, b2 and b3 being constant,
has been fully studied and it is integrable by quadratures (see for example [64]). This
can be viewed as a consequence of the existence of a constant (maybe complex) solution,
permitting us to reduce the equation to an inhomogeneous linear one. Note also that, in
a similar way, separable Riccati equations of the form

dx

dt
= ϕ(t)(c1 + c2x+ c3x

2),

with ϕ(t) being a nonvanishing function, are integrable, because they admit a constant
solution again, which enables us to transform the equation into a linear inhomogeneous
one. On the other hand, the integrability of the above equation can also be related to the
existence of a t-reparametrisation, reducing the problem to an autonomous one.
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4.2. Transformation laws of Riccati equations. We here describe an important
property of Lie systems, in the particular case of Riccati equations, playing a relevant
rôle in establishing integrability criteria: The group G of curves in a Lie group G associated
with a Lie system acts on the set of related Lie systems.

More explicitly, consider a family X1, X2, X3 of vector fields on R, e.g. the set given in
(1.26), spanning the Vessiot–Guldberg Lie algebra of vector fields associated with Riccati
equations and isomorphic to sl(2,R). In terms of this family, each Riccati equation (4.1)
is related to a t-dependent vector field Xt = b1(t)X1 + b2(t)X2 + b3(t)X3, which can be
considered as a curve (b1(t), b2(t), b3(t)) in R3. Each element Ā of the group of smooth
curves in SL(2,R), i.e. Ā ∈ G ≡ Map(R, SL(2,R)), transforms every curve x(t) in R into
a new one x′(t) = Φ(Ā(t), x(t)) by means of the action Φ : (A, x) ∈ SL(2,R) × R 7→
Φ(A, x) ∈ R̄ of the form

Φ(A, x) =



αx+ β

γx+ δ
x 6= − δ

γ
, x 6=∞,

α/γ x =∞,

∞ x = − δ
γ
,

where A =
(
α β

γ δ

)
. (4.2)

Moreover, the above t-dependent change of variables transforms the Riccati equation
(4.1) into a new one with t-dependent coefficients b′1, b′2, b′3 given by

b′3 = δ2b3 − δγb2 + γ2b1 + γδ̇ − δγ̇,

b′2 = −2βδb3 + (αδ + βγ)b2 − 2αγb1 + δα̇− αδ̇ + βγ̇ − γβ̇,

b′1 = β2b3 − αβb2 + α2b1 + αβ̇ − βα̇.

(4.3)

Indeed, the above expressions define an affine action of the group G on the set of Riccati
equations. In other words, given A1, A2 ∈ G, transforming the coefficients of a general
Riccati equation by means of two successive transformations of the above type, e.g. first
by A1 and then by A2, gives exactly the same result as doing only one transformation
with A2 ·A1 ∈ G (see [63, 151]).

The group G also acts on the set of equations of the form (1.31) on SL(2,R). In order
to show this, note first that G acts on the left on the set of curves in SL(2,R) by left
translations, i.e. given two curves Ā(t), A(t) ⊂ SL(2,R), the curve Ā(t) transforms the
curve A(t) into a new one A′(t) = Ā(t)A(t). Moreover, if A(t) is a solution of (1.31),
then A′(t) satisfies a new equation like (1.31) but with a different right hand side a′(t).
Differentiating the relation A′(t) = Ā(t)A(t) and taking into account the form of (1.31),
we see that, in the basis (2.4), the relation between the curves a(t) and a′(t) in sl(2,R) is

a′(t) = Ā(t)a(t)Ā−1(t) + ˙̄A(t)Ā−1(t) = −
3∑

α=1

b′α(t)aα, (4.4)

which yields the expressions (4.3). Conversely, if A′(t) = Ā(t)A(t) is the solution for the
equation corresponding to the curve a′(t) given by the transformation rule (4.4), then
A(t) is the solution of the equation (1.31) determined by the curve a(t).
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Summarising, we have shown that it is possible to associate to each Riccati equation
an equation on the Lie group SL(2,R) and to define an infinite-dimensional group of
transformations acting on the set of Riccati equations. Additionally, this process can be
easily derived in a similar way for any Lie system (see [47]).

4.3. Lie structure of an equation describing transformations of Lie systems.
Let us construct a Lie system describing the curves in SL(2,R) which transform the
Riccati equation associated with an equation on SL(2,R) characterised by a curve a(t) ⊂
sl(2,R) into the Riccati equation associated with the curve a′(t) ⊂ sl(2,R). By means of
this Lie system, we later explain the results derived in [47] in order to describe, from a
unified point of view, the developments of [40, 50].

Multiply equation (4.4) on the right by Ā(t) to get

˙̄A(t) = a′(t)Ā(t)− Ā(t)a(t). (4.5)

If we consider the above equation as a system of first-order differential equations for the
coefficients of the curve Ā(t) in SL(2,R), with

Ā(t) =
(
α(t) β(t)
γ(t) δ(t)

)
, α(t)δ(t)− β(t)γ(t) = 1,

then system (4.5) reads
α̇

β̇

γ̇

δ̇

 =


b′2−b2

2 b3 b′1 0
−b1 b′2+b2

2 0 b′1
−b′3 0 − b

′
2+b2

2 b3

0 −b′3 −b1 − b
′
2−b2

2



α

β

γ

δ

 . (4.6)

The solutions y(t) = (α(t), β(t), γ(t), δ(t)) of the above system relating two given Riccati
equations are associated with curves in SL(2,R), i.e. they are such that, at any time,
αδ − βγ = 1. Nevertheless, we can drop such a restriction for the time being as it can
be implemented by a restraint on the initial conditions for the solutions, and hence we
can treat the variables α, β, γ, δ in the system (4.6) as being independent. In this case,
this linear system can be regarded as a Lie system linked to a Lie algebra of vector fields
isomorphic to gl(4,R). Nevertheless, it may also be understood as a Lie system related to
a Lie algebra of vector fields isomorphic to a Lie subalgebra of gl(4,R). Indeed, consider
the vector fields

N1 = −α ∂

∂β
− γ ∂

∂δ
, N ′1 = γ

∂

∂α
+ δ

∂

∂β
,

N2 =
1
2

(
β
∂

∂β
+ δ

∂

∂δ
− α ∂

∂α
− γ ∂

∂γ

)
, N ′2 =

1
2

(
α
∂

∂α
+ β

∂

∂β
− γ ∂

∂γ
− δ ∂

∂δ

)
,

N3 = β
∂

∂α
+ δ

∂

∂γ
, N ′3 = −α ∂

∂γ
− β ∂

∂δ
,

spanning a Vessiot–Guldberg Lie algebra of vector fields isomorphic to g ≡ sl(2,R) ⊕
sl(2,R) ⊂ gl(4,R). Consequently, the linear system of differential equation (4.6) is a Lie
system on R4 associated with a Lie algebra of vector fields isomorphic to g (see [47]).
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If we denote y ≡ (α, β, γ, δ) ∈ R4, system (4.6) is a differential equation on R4 of the
form

dy

dt
= N(t, y), (4.7)

with N being the t-dependent vector field

Nt =
3∑

α=1

(bα(t)Nα + b′α(t)N ′α).

The vector fields {N1, N2, N3, N
′
1, N

′
2, N

′
3} span a regular distribution D with rank

three at almost every point of R4 and thus there exists, at least locally, a first integral
for all the vector fields in the distribution D. The method of characteristics allows us to
determine that this first integral can be

I : y = (α, β, γ, δ) ∈ R4 7→ det y ≡ αδ − βγ ∈ R.

Moreover, this first integral is related to the determinant of a matrix Ā ∈ SL(2,R) with
coefficients given by the components of y = (α, β, γ, δ). Therefore, if we have a solution of
the system (4.6) with initial condition such that det y(0) = α(0)δ(0)−β(0)γ(0) = 1, then
det y(t) = 1 at any time t and the solution can be understood as a curve in SL(2,R).
Summarising, we have proved the following theorem.

Theorem 4.1. The curves in SL(2,R) transforming equation (1.31) into a new equation
of the same form characterised by a curve a′(t) = −

∑3
α=1 b

′
α(t)aα are described through

the solutions of the Lie system

dy

dt
= N(t, y) =

3∑
α=1

bα(t)Nα(y) +
3∑

α=1

b′α(t)N ′α(y). (4.8)

such that det y(0) = 1. Furthermore, the above Lie system is related to a nonsolvable
Vessiot–Guldberg Lie algebra isomorphic to sl(2,R)⊕ sl(2,R).

A consequence of the above theorem is the following corollary, whose proof is left to
the reader.

Corollary 4.2. Given two Riccati equations associated with curves a′(t) and a(t) in
sl(2,R), there always exists a curve Ā(t) in SL(2,R) transforming the Riccati equation
related to a(t) into one associated with a′(t). Furthermore, if Ā(0) = I, this curve is
uniquely defined.

Even if we know that given two equations on the Lie group SL(2,R) there always
exists a transformation relating them, in order to obtain such a curve we need to solve the
differential equation (4.7) which, unfortunately, is a Lie system related to a nonsolvable
Vessiot–Guldberg. Consequently, it is not easy to find its solutions in general, because,
for instance, it is not integrable by quadratures.

Nevertheless, many known and new integrability conditions for Riccati equations can
be determined by means of Theorem 4.1. Furthermore, the procedure to obtain the Lie
system (4.7) can be generalised to deal with any Lie system related to a Lie group G

with Lie algebra g (cf. [47]).
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4.4. Description of some known integrability conditions. Note that Lie systems
on G of the form (1.31) determined by a constant curve, a = −

∑3
α=1cαaα, are integrable,

and therefore the same happens for curves of the form a(t) = −D(
∑3
α=1 cαaα), where

D = D(t) is a nonvanishing function, as a t-reparametrisation reduces the problem to
the previous one.

Our aim now is to determine the curves Ā(t) in SL(2,R) transforming the equation
on SL(2,R) characterised by a curve a(t) into the equation on SL(2,R) characterised by
a′(t) = −D(c1a1 + c2a2 + c3a3), with D = D(t) a nonvanishing function and c1c3 6= 0.
As the final equation is associated with a solvable one-dimensional Vessiot–Guldberg Lie
algebra, such a transformation allows us to find by quadratures the solution of the initial
equation, and therefore the solution for its associated Riccati equation. In order to get the
transformation between the Riccati equations linked to the above equations on SL(2,R),
we look for particular curves Ā(t) in SL(2,R) satisfying certain conditions in order to
get an integrable equation (4.6). Nevertheless, under the assumed restrictions, we may
obtain a system of differential equations which does not admit any solution. In such a
case, the conditions ensuring the existence of solutions will be integrability conditions.
As an application we show that many known results on integrability of Riccati equations
can be recovered and explained in this way.

We have already shown that Riccati equations (4.1), with b1b3 ≡ 0, are reducible to
linear differential equations and therefore they are always integrable [57]. Hence, they
are not interesting in the study of integrability conditions and we can focus on reducing
Riccati equations with b1b3 6= 0 into integrable ones by means of the action of a curve in
SL(2,R). To this end, consider the family of curves with β = 0 and γ = 0, i.e. curves in
SL(2,R) of the form

A(t) =
(
α(t) 0

0 δ(t)

)
⊂ SL(2,R), α(t)δ(t) = 1.

The curve Ā(t) in SL(2,R) determines a t-dependent change of variables in R given
by x′(t) = Φ(Ā(t), x). In view of the action (4.2), and as αδ = 1, the previous change of
variables reads

x′ = α2(t)x = G(t)x, G(t) ≡ α(t)
δ(t)

> 0. (4.9)

In view of relations (4.3), the initial Riccati equation is transformed, by means of the
curve Ā(t), into the new Riccati equation with t-dependent coefficients

b′1 = α2b1, b′2 = αδb2 + α̇δ − αδ̇, b′3 = δ2b3.

Moreover, the functions α(t) and δ(t) are solutions of (4.7), which in this case reduces to
α̇

0
0
δ̇

 =


b′2−b2

2 b3 b′1 0
−b1 b′2+b2

2 0 b′1
−b′3 0 − b

′
2+b2

2 b3

0 −b′3 −b1 − b
′
2−b2

2



α

0
0
δ

 . (4.10)

The existence of solutions for the above system that are related to elements of SL(2,R)
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determines the integrability of the Riccati equation. Thus, let us analyse the existence of
such solutions.

From the above system, we get
−b1α+ b′1δ = 0, −b′3α+ b3δ = 0.

As α(t) = 1, these relations imply that b′1b′3 = b1b3 and

α2 =
b′1
b1

=
b3
b′3
≡ G > 0.

Hence, the transformation formulas (4.3) reduce to

b′3 = α−2b3, b′2 = b2 + 2
α̇

α
, b′1 = α2b1. (4.11)

Then, in order to get a t-dependent function D and two real constants c1 and c3, with
c1c3 6= 0, such that b′3 = Dc3 and b′1 = Dc1, the function D must be given by

D2c1c3 = b1b3 so D = ±
√
b1b3
c1c3

,

where we have used that b′1b′3 = b1b3. On the other hand, as b′1/b1 = α2 > 0, we have
to fix the sign κ of the function D in order to satisfy this relation, i.e. sg(c1D) = sg(b1).
Therefore,

κ = sg(D) = sg(b1/c1).

Also, as b1b3 = b′1b
′
3, we get sg(b1b3) = sg(c1c3). Furthermore, in view of (4.11), α is

determined, up to sign, by

α =
√
Dc1
b1

=
(
c1
c3

b3
b1

)1/4

. (4.12)

and therefore the change of variables (4.9) reads

x′ =
D(t)c1
b1(t)

x. (4.13)

Finally, as a consequence of (4.11), in order for b′2 to be the product b′2 = c2D, we see
that

b2 + 2
α̇

α
= κc2

√
b1b3
c1c3

. (4.14)

Using (4.12) and the above equality, we see that the integrability condition is√
c1c3
b1b3

[
b2 +

1
2

(
ḃ3
b3
− ḃ1
b1

)]
= κc2.

Conversely, if the above integrability condition is valid and D2c1c3 = b1b3, the change
of variables (4.13) transforms the Riccati equation (4.1) into dx′/dt = D(t)(c1 + c2y

′ +
c3y
′2), with c1c3 6= 0. To sum up, we have proved the following theorem.

Theorem 4.3. Necessary and sufficient conditions for the existence of a transformation

x′ = G(t)x, G(t) > 0,

relating the Riccati equation
dx

dt
= b1(t) + b2(t)x+ b3(t)x2, b1b3 6= 0,
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to an integrable one given by
dx′

dt
= D(t)(c1 + c2x

′ + c3x
′2), c1c3 6= 0, D(t) 6= 0, (4.15)

where c1, c2, c3 are real numbers and D(t) is a nonvanishing function, are

D2c1c3 = b1b3,

(
b2 +

1
2

(
ḃ3
b3
− ḃ1
b1

))√
c1c3
b1b3

= κc2, (4.16)

where κ = sg(D) = sg(b1/c1). The transformation is then uniquely defined by

x′ =

√
b3(t)c1
b1(t)c3

x.

From previous results, the following corollary follows.

Corollary 4.4. A Riccati equation (4.15) with b1b3 6= 0 can be transformed into a
Riccati equation of the form (4.15) by a t-dependent change of variables y′ = G(t)y, with
g(t) > 0, if and only if

1√
|b1b3|

(
b2 +

1
2

(
ḃ3
b3
− ḃ1
b1

))
= K, (4.17)

for some real constant K. In that case, the Riccati equation (4.1) is integrable by quadra-
tures.

In view of Theorem 4.3, if we start with the integrable Riccati equation (4.15), we
can obtain the set of all Riccati equations that can be reached from it by means of a
transformation of the form (4.9).

Corollary 4.5. Given an integrable Riccati equation
dx

dt
= D(t)(c1 + c2x+ c3x

2), c1c3 6= 0, D(t) 6= 0,

with D(t) a nonvanishing function, the set of Riccati equations which can be obtained by
a transformation x′ = G(t)x, with G(t) > 0, are those of the form

dx′

dt
= b1(t) +

(
ḃ1(t)
b1(t)

− Ḋ(t)
D(t)

+ c2D(t)
)
x′ +

D2(t)c1c3
b1(t)

x′2,

and the function G is then given by

G =
Dc1√
b1
.

Therefore, starting with an integrable equation, we can generate a family of solvable
Riccati equations whose coefficients are parametrised by a nonvanishing function b1.
Moreover, the integrability condition for a Riccati equation to belong to this family can
be easily verified.

The previous results can now be used for a better comprehension of some integrability
conditions found in the literature. Let us illustrate this claim by reviewing some well-
known integrability conditions through our methods.

The case of Allen and Stein. The main results of [4] can be recovered through our more
general approach. In that work, a Riccati equation (4.1), with b1b3 > 0 and b0, b2 being
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differentiable functions satisfying the condition

b2 + 1
2

(
ḃ3
b3
− ḃ1

b1

)
√
b1b3

= C, (4.18)

where C is a real constant, was transformed into the integrable one
dx′

dt
=
√
b1(t)b3(t)(1 + Cx′ + x′2), (4.19)

through a t-dependent linear transformation of the form

x′ =

√
b3(t)
b1(t)

x.

If a Riccati equation obeys the integrability condition (4.18), it also satisfies the as-
sumptions of Corollary 4.4, and therefore, the integrability condition given in Theorem 4.3
with

c1 = c3 = 1, c2 = C, D =
√
b1b3.

Consequently, the t-dependent change of variables described by Theorem 4.3 reads

x′ =

√
b3(t)
b1(t)

x,

showing that the transformation in [4] is a particular case of our results. This is not
surprising, as Theorem 4.3 shows that if such a t-dependent change of variables is used
to transform a Riccati equation (4.1) into one of the form (4.15), this change of variables
must be of the form (4.13) and the initial Riccati equation must satisfy the integrability
conditions (4.16).

The case of Rao and Ukidave. Rao and Ukidave stated [190] that a Riccati equation
(4.1), with b1b3 > 0, can be transformed into an integrable one

dx′

dt
=
√
cb1b3

(
1 + kx′ +

1
c
x′

2
)
,

through a t-dependent linear transformation

x′ =
1
v(t)

x,

if there exist two real constants c and k such that the following integrability condition is
satisfied:

b3 =
b1
cv2

, (4.20)

with v(t) being a solution of the differential equation
dv

dt
= kb1(t) + b2(t)v. (4.21)

Note that, in view of (4.20), necessarily c > 0 and if (4.20) and (4.21) hold with
constants c and k and a negative solution v(t), the same conditions are valid for the
constants c, −k and a positive solution −v(t). Consequently, we can restrict ourselves to
studying the conditions (4.20) and (4.21) for positive solutions v(t) > 0. In such a case,
the above method uses a t-dependent linear change of coordinates of the form (4.9) and
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the final Riccati equations are of the type described in (4.15). Therefore, the integrability
conditions derived by Rao and Ukidave are a particular instance of the integrable cases
described by Theorem 4.3.

Writing the value of v(t) in terms of the constant c and the functions b1 and b3
obtained with the aid of (4.20) and (4.21), we get

1√
|b1b3|

(
b2 +

1
2

(
ḃ3
b3
− ḃ1
b1

))
= −ksg(b0)

√
c.

Hence, the Riccati equations satisfying (4.20) and (4.21) obey the integrability conditions
of Corollary 4.5. Moreover, if we choose

D2 = cb1b3, c1 = 1, c2 = −k, c3 = c−1,

then D =
√
cb1b3 and the only possible transformation (4.9) given by Theorem 4.3 reads

x′ = α2(t)x =

√
cb3(t)
b1(t)

x,

and thus
1
v

=
√
cb3
b1
.

In this way, we recover one of the results derived by Rao and Ukidave [190].
In short, many integrability conditions found in the literature can be described by

our more general methods.

4.5. Integrability and reduction. Now we develop a similar procedure to the one
above, but now we assume the solutions of system (4.6) to be included in a two-parameter
subset of SL(2,R). As a result, we recover some known integrability conditions and
review, from a more general point of view, the integrability method described in [40].

As previously, let us try to relate the Riccati equation (4.1) to an integrable one
associated, as a Lie system, with a curve a′(t) = −D(t)(c1a1 + c2a2 + c3a3) with c3 6= 0
and a nonvanishing function D = D(t). We consider solutions of system (4.7) with γ = 0,
α > 0, and related to a curve in SL(2,R), i.e. we analyse transformations

x′ =
α(t)
δ(t)

x+
β(t)
δ(t)

= α2(t)x+
β(t)
δ(t)

.

In this case, using the expression of system (4.8) in coordinates (4.6), we get
α̇

β̇

0
δ̇

 =


b′2−b2

2 b3 b′1 0
−b1 b′2+b2

2 0 b′1
−b′3 0 − b

′
2+b2

2 b3

0 −b′3 −b1 − b
′
2−b2

2



α

β

0
δ

 , (4.22)

where b′j = Dcj and cj ∈ R for j = 1, 2, 3. As we suppose b′3 6= 0, the third equation of
the above system yields

α

δ
=
b3
b′3

=
b3
Dc3

.
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Since αδ = 1 so that the solution of (4.8) is related to an element of SL(2,R), and
b′3 = Dc3, the above expression implies

α2 =
b3
Dc3

. (4.23)

Therefore, α is determined by the values of b3(t),D and c3. Additionally, the first equation
of (4.22) determines β in terms of α and the coefficients of the initial and final Riccati
equations, i.e.

β =
1
b3

(
α̇− b′2 − b2

2
α

)
.

Taking into account (4.23) and as αδ = 1, we can define M = β/α and rewrite the above
expression as

dD

dt
=
(
b2(t) +

ḃ3(t)
b3(t)

)
D − c2D2 − 2b3(t)MD.

Considering the differential equation on β̇ in terms of M , we get the equation
dM

dt
= −b1(t) +

c1c3
b3(t)

D2 + b2(t)M − b3(t)M2.

Finally, as δα = 1 is a first integral of (4.8), if the system for the variablesM andD and all
the above mentioned conditions are satisfied, the value δ = α−1 obeys the corresponding
differential equations of the system (4.22). Summarising, we have the following theorem.

Theorem 4.6. Given a Riccati equation (4.1) there exists a transformation

x′ = G(t)x+H(t), G(t) > 0,

relating it to an integrable equation

dx′

dt
= D(t)(c1 + c2x

′ + c3x
′2) (4.24)

with c3 6= 0 and D a nonvanishing function if and only if there exist functions D and M
satisfying the system

dD

dt
=
(
b2(t) +

ḃ3(t)
b3(t)

)
D − c2D2 − 2b3(t)MD,

dM

dt
= −b1(t) +

c1c3
b3(t)

D2(t) + b2(t)M − b3(t)M2.

The transformation is then given by

x′ =
b3(t)
D(t)c3

(x+M(t)). (4.25)

If we consider c1 = 0 in equation (4.24), the system determining the curve in SL(2,R)
which performs the transformation of Theorem 4.6 reads

dD

dt
=
(
b2(t) +

ḃ3(t)
b3(t)

)
D − c2D2(t)− 2b3(t)MD,

dM

dt
= −b1(t) + b2(t)M − b3(t)M2.

(4.26)
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Note that this system does not involve any integrability condition, since there always
exists a solution for every initial condition. Nevertheless, finding such solutions can be
as difficult as solving the initial Riccati equation. Therefore, we need to assume some
simplification in order to find a particular solution. Let us put, for instance, M = b1/b2.
In this case, the first differential equation of the above system does not depend on M

and reduces to
dD

dt
=
(
−b2(t) +

ḃ3(t)
b3(t)

)
D − c2D2

whose solutions read

D(t) =
exp(

∫ t
0
A(t′) dt′)

C + c2
∫ t

0
exp(

∫ t′′
0
A(t′) dt′) dt′′

, A(t) = −b2(t) +
ḃ3(t)
b3(t)

.

Meanwhile, as M = b2/b3 must satisfy the second equation in (4.26), we obtain

d

dt

(
b2
b3

)
= −b1,

which gives rise to an integrability condition, considered in [189].
Let us recover, from our point of view, the result that establishes that the knowledge

of a particular solution of the Riccati equation allows us to obtain its general solution.
In fact, under the change of variables M = −x, the system (4.26) becomes

dD

dt
=
(
b2(t) +

ḃ3(t)
b3(t)

)
D − c2D2 + 2b3(t)xD,

dx

dt
= b1(t) + b2(t)x+ b3(t)x2.

(4.27)

Each particular solution of (4.27) takes the form (Dp(t), xp(t)), with xp(t) being a par-
ticular solution of the Riccati equation (4.1). Therefore, given such a particular solution
xp(t), the function Dp = Dp(t) satisfies the equation

dDp

dt
=
(
b2(t) +

ḃ3(t)
b3(t)

+ 2b3(t)xp(t)
)
Dp − c2D2

p, (4.28)

which is a Bernoulli equation, and therefore is integrable by quadratures. Consequently,
the knowledge of a particular solution xp(t) of the Riccati equation (4.1) allows us to
determine a particular solution (Dp(t), xp(t)) of (4.27) and, in view of the change of vari-
ables x = −M , a particular solution (Dp(t),Mp(t)) = (Dp(t),−xp(t)) of (4.26). Finally,
the functions Mp(t) and D(t) lead to the change of variables (4.25) described in Theo-
rem 4.6 which transforms the initial Riccati equation (4.1) into another one related to a
solvable Lie algebra of vector fields.

The above process describes a reduction process similar to the one derived in [40],
but our method allows us to obtain a direct reduction to an integrable Riccati equation
(4.24) through a particular solution.

There exist many ways to impose conditions on the coefficients of the second equation
in (4.27) to obtain a particular solution easily. For instance, if there exists a real constant
c such that for the t-dependent functions b1, b2 and b3 we have b1 + b2c+ b3c

2 = 0, then
c is a particular solution, for example:
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1. b1 + b2 + b3 = 0 implies that c = 1 is a particular solution.
2. k2

2b1 + k2k3b2 + k2
3b3 = 0 means that c = k3/k2 is a particular solution.

This corresponds to some cases found in [40, 214].
As a first application of the above method, we can integrate the Riccati equation

dx

dt
= −n

t
+
(

1 +
n

t

)
x− x2, (4.29)

related to Hovy’s equation [200]. This Riccati equation admits the particular constant
solution xp(t) = 1. Using it in (4.28) and taking, for instance, c1 = 0 and c2 = 0, we
obtain a particular solution for (4.28), Dp(t) = tne−t. Hence, (tne−t, 1) is a particular
solution of (4.27) related to equation (4.29) and (tne−t,−1) is a solution of (4.26). In this
way, Theorem 4.6 states that the transformation (4.25), determined by Dp(t) = tne−t

and Mp(t) = −1, of the form

x′ = −t−netc−1
3 (x− 1), (4.30)

relates the solutions of (4.29) to those of the integrable equation

dx′

dt
= e−ttnc3x

′2.

If we fix c3 = 1, the solution of the above equation reads

x′(t) =
1

K − Γ(1 + n, t)
,

where K is an integration constant and Γ(a, b) is the incomplete Euler’s Gamma function

Γ(a, t) =
∫ ∞
t

t′a−1e−t
′
dt′.

In view of the change of variables (4.30), the solutions x(t) of (4.29) and x′(t) are related
through the expression x′(t) = −t−netc−1

3 (x(t)−1). Therefore, if we substitute the general
solution x′(t) in this expression, we can derive the general solution for the Riccati equation
(4.29), that is,

x(t) = 1− e−ttn

Γ(n+ 1, t) +K
.

4.6. Linearisation of Riccati equations. To finish this chapter, we shall analyse the
problem of linearisation of Riccati equations through fractional linear transformations
(4.9). As a main result, we establish various integrability conditions ensuring that a
Riccati equation can be transformed into a linear one by means of a diffeomorphism on
R associated with a fractional linear transformation of a certain class.

As a first insight, notice that Corollary 4.2 states that there exists a curve in SL(2,R),
and therefore a t-dependent fractional linear transformation on R, transforming each
given Riccati equation into any other one (and, in particular, into a linear one). This
clearly implies that Riccati equations are always linearisable by this class of transfor-
mations. However, as the Lie system (4.7) describing such transformations is related to
a nonsolvable Lie algebra of vector fields, determining such a transformation can be as
difficult as solving the Riccati equation to be linearised.
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Let us try to transform a given Riccati equation into a linear differential equation
by means of a fractional linear transformation (4.2) determined by a constant vector
(α, β, γ, δ) ∈ R4 with αδ − βγ = 1. In this case, determining the conditions ensuring the
existence of solutions of system (4.7) performing such a transformation is an easy task.
Moreover, as solving (4.7) also becomes straightforward, we can determine some linearis-
ability conditions and, when these conditions hold, specify the corresponding change of
variables.

Note that as (α, β, γ, δ) is a constant, we have α̇ = β̇ = γ̇ = δ̇ = 0 and, in view of
(4.6), the diffeomorphism on R performing the transformation is related to a vector in
the kernel of the matrix

B =


b′2−b2

2 b3 b′1 0
−b1 b′2+b2

2 0 b′1
0 0 − b

′
2+b2

2 b3

0 0 −b1 − b
′
2−b2

2

 , (4.31)

where we assume b1 6= 0, b3 6= 0. We omit the study of the case b1(t)b3(t) = 0 in an open
interval because, as shown in Section 4.1, this case is integrable.

A necessary and sufficient condition for kerB to be nontrivial is detB = 0. Therefore,
a short calculation shows that dim kerB > 0 if and only if −b22 + b′23 (t) + 4b1b3 = 0. Thus,
b′3 = ±

√
b22 − 4b1b3 and b′3 is fixed, up to sign, by the values of b1, b2 and b3. Let us study

the kernel of the matrix B in the positive and negative cases for b′2.

Positive case. The kernel of matrix (4.31) is given by the vectors(
δ
b′1
b1

+ β
b2 +

√
b22 − 4b1b3
2b1

, β,−δ−b2 +
√
b22 − 4b1b3

2b1
, δ

)
, δ, β ∈ R.

Recall that we are only considering the constant elements of kerB, therefore there should
be two real constants K1 and K2 such that

K1 = δ
b′1
b1

+ β
b2 +

√
b22 − 4b1b3
2b1

,

K2 =
−b2 +

√
b22 − 4b1b3

2b1
.

(4.32)

Moreover, in order to relate these vectors to elements in SL(2,R), we have to impose the
condition det(K1, β,−δK2, δ) = δ(K1 + βK2) = 1.

The second condition in (4.32) imposes a restriction on the coefficients of the initial
Riccati equation to be linearisable by a constant fractional linear transformation (4.2). If
this is satisfied, we can choose β, γ,K1 and b′2 to satisfy the other conditions. Thus, the
only linearisation condition is the second one in (4.32).

Negative case. In this case, kerB reads(
δb′1
b1

+ β
b2 −

√
b22 − 4b1b3
2b1

, β,−δ−b2 −
√
b22 − 4b1b3

2b1
, δ

)
, δ, β ∈ R,

and now the new conditions reduce to the existence of two real constants K1 and K2
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such that

K1 =
δb′1
b1

+ β
b2 −

√
b22 − 4b1b3
2b1

, K2 =
−b2 −

√
b22 − 4b1b3

2b1
,

with δ(K1 + βK2) = 1. If the second expression of the above conditions is satisfied, we
can proceed in a similar fashion as for the positive case to obtain the transformation that
performs the linearisation of the initial Riccati equation.

Summarising:

Theorem 4.7. A necessary and sufficient condition for the existence of a fractional
linear diffeomorphism of R̄ associated with a transformation on SL(2,R) transforming
the Riccati equation (4.1) into a linear differential equation is the existence of a real
constant K such that

K =
−b2 ±

√
b22 − 4b1b3

2b1
. (4.33)

As a Riccati equation (4.1) satisfies the above condition if and only if K is a constant
particular solution, we get the following corollary:

Corollary 4.8. A Riccati equation can be linearised by means of a diffeomorphism on
R of the form (4.2) if and only if it admits a constant particular solution.

Ibragimov showed that a Riccati equation (4.1) is linearisable by means of a change
of variables z = z(x) if and only if the equation admits a constant solution [123]. We have
proved that in that case, the change of variables can be effected by a transformation of
the type (4.2).

5. Lie integrability in classical physics

In spite of their apparent simplicity, the methods developed in the previous chapter
reduce the analysis of certain integrability conditions for Riccati equations to studying
integrability conditions for an equation on SL(2,R). Moreover, these methods can also be
applied to any other Lie system related to the same equation on SL(2,R). For instance,
we use the results on integrability of Riccati equations to study t-dependent (frequency
and/or mass) harmonic oscillators (TDHOs), which are associated with the same kind
of equations on SL(2,R) as Riccati equations. As a particular application of our results,
we supply t-dependent constants of motion for certain one-dimensional TDHOs and the
solutions for a two-dimensional TDHO. Also, our approach provides a unifying framework
which allows us to apply our developments to all Lie systems associated with equations
in SL(2,R) and to generalise our methods to study any Lie system.

5.1. TDHO as a SODE Lie system. Let us prove that every TDHO is a SODE Lie
system (see [37, 43, 52]). Each TDHO is described by a t-dependent Hamiltonian of the
form

H(t) =
p2

2m(t)
+

1
2
F (t)ω2x2,
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whose Hamilton equations read
ẋ =

∂H

∂p
=

p

m(t)
,

ṗ = −∂H
∂x

= −F (t)ω2x.

(5.1)

The solutions of the above system are integral curves for the t-dependent vector field

Xt = p
∂

∂x
− F (t)ω2x

∂

∂p
,

over T∗R. Let XHO
1 , XHO

2 and XHO
3 be the vector fields

XHO
1 = p

∂

∂x
, XHO

2 =
1
2

(
x
∂

∂x
− p ∂

∂p

)
, XHO

3 = −x ∂
∂p
, (5.2)

which satisfy the commutation relations

[XHO
1 , XHO

3 ] = 2XHO
2 , [XHO

1 , XHO
2 ] = XHO

1 , [XHO
2 , XHO

3 ] = XHO
3 ,

and therefore span a Lie algebra of vector fields V HO isomorphic to sl(2,R). The
t-dependent vector field XHO associated with system (5.1) can be written as

XHO(t) = F (t)ω2XHO
3 +

1
m(t)

XHO
1 , (5.3)

i.e. it is a linear combination with t-dependent coefficients

XHO(t) =
3∑

α=1

bα(t)XHO
α , (5.4)

with b1(t) = 1/m(t), b2(t) = 0 and b3(t) = F (t)ω2. Hence, TDHOs are SODE Lie systems.
Consider the basis {a1, a2, a3} for sl(2,R) given in (2.4). Its elements satisfy the same

commutation relations as the vector fieldsXHO
α . Denote by ΦHO : SL(2,R)×T∗R→ T∗R

the action that associates to each aα the fundamental vector field XHO
α , i.e. each one-

parameter subgroup exp(−taα) acts on T∗R with infinitesimal generator XHO
α . It can be

verified that this action reads

ΦHO
((

α β

γ δ

)
,

(
x

p

))
=
(
α β

γ δ

)(
x

p

)
.

Obviously, the linear map ρHO : sl(2,R) → V HO that maps each aα to Xα is a Lie
algebra isomorphism.

The action ΦHO allows us to relate (5.1) to an equation on SL(2,R) given by

RA−1∗AȦ = −
3∑

α=1

bα(t)aα, A(0) = I. (5.5)

Thus, if A(t) is the solution of (5.5) and we denote ξ = (x, p) ∈ T∗R, then the solution
starting from ξ(0) is ξ(t) = ΦHO(A(t), ξ(0)) (see e.g. [40]). In summary, system (5.1)
is a Lie system on T∗R related to an equation on SL(2,R) and the solution of (5.5)
allows us to obtain the solutions of (5.1) in terms of the initial condition by means of the
action ΦHO.
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5.2. Transformation laws of Lie equations on SL(2,R). Each t-dependent harmonic
oscillator (5.1) can be considered as a curve in R3 of the form (b1(t), b2(t), b3(t)) through
the decomposition (5.4). Then, we can transform each curve ξ(t) in T∗R by an element
Ā(t) of G as follows:

Ā(t) =
(
ᾱ(t) β̄(t)
γ̄(t) δ̄(t)

)
∈ G ⇒ Θ(Ā, ξ)(t) =

(
ᾱ(t)x(t) + β̄(t)p(t)

γ̄(t)x(t) + δ̄(t)p(t)

)
. (5.6)

The above change of variables transforms the TDHO (5.1) into an analogous TDHO with
new coefficients b′1, b′2, b′3 given by

b′3 =δ̄2b3 − δ̄γ̄b2 + γ̄2b1 + γ̄ ˙̄δ − δ̄ ˙̄γ,

b′2 =− 2β̄δ̄ b3 + (ᾱδ̄ + β̄γ̄)b2 − 2ᾱγ̄b1 + δ ˙̄α− ᾱ ˙̄δ + β̄ ˙̄γ − γ̄ ˙̄β,

b′1 =β̄2b3 − ᾱβ̄b2 + ᾱ2b1 + ᾱ ˙̄β − β̄ ˙̄α.

The solutions of the transformed TDHO are of the form Θ(Ā(t), ξ(t)), with ξ(t) being a
solution of the initial TDHO. Additionally, the above expressions define an affine action
(see e.g. [151] for the general definition) of the group G on the set of TDHOs [63]. This
means that in order to transform the coefficients of a TDHO by means of two transforma-
tions of the above type, first A1 and then A2, it suffices to do the transformation induced
by the product A2A1.

The result of this action of G can also be studied from the point of view of equations in
SL(2,R). First, G acts on the left on the set of curves in SL(2,R) by left translations, i.e. a
curve Ā(t) transforms the curve A(t) into A′(t) = Ā(t)A(t). Therefore, if A(t) is a solution
of (5.5), characterised by a curve a(t) ∈ sl(2,R), then the new curve satisfies a new
equation like (5.5) but with a different right-hand side, a′(t), and thus it corresponds to
a new equation on SL(2,R) associated with a new TDHO. Of course, A′(0) = Ā(0)A(0),
and if we want A′(0) = Id, we have to impose the additional condition Ā(0) = Id. In
this way G acts on the set of curves in TISL(2,R) ' sl(2,R). It can be shown that the
relation between the curves a(t) and a′(t) in sl(2,R) is given by [40]

a′(t) = −
3∑

α=1

b′α(t)aα = Ā(t)a(t)Ā−1(t) + ˙̄A(t)Ā−1(t). (5.7)

Summarising, it has been shown that it is possible to associate to any TDHO, in a
one-to-one way, an equation in the Lie group SL(2,R) and to define a group G of trans-
formations on the set of such TDHOs induced by the natural linear action of SL(2,R).

Recall that, in view of Theorem 4.1, system (5.7) can be regarded as a system of
first-order ordinary differential equations in the coefficients of the curve in SL(2,R) of
the form

Ā(t) =
(
α(t) β(t)
γ(t) δ(t)

)
.

Moreover, we can state the following results, which are a straightforward application
to TDHOs of Theorem 4.1 and Corollary 4.2 formulated for the analysis of certain Lie
systems on SL(2,R) related to Riccati equations.
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Theorem 5.1. The curves in SL(2,R) transforming a TDHO related to an equation on
this Lie group determined by a curve a(t) into a new TDHO associated with an equation
on SL(2,R) determined by the curve a′(t), with

a′(t) = −
3∑

α=1

b′α(t)aα, a(t) = −
3∑

α=1

bα(t)aα,

are given by the integral curves of the t-dependent vector field

N(t) =
3∑

α=1

(bα(t)Nα + b′α(t)N ′α), (5.8)

such that det Ā(0) = 1. This system is a Lie system associated with a nonsolvable Lie
algebra of vector fields isomorphic to sl(2,R)⊕sl(2,R). Moreover, such curves also trans-
form the TDHO related to the curve a(t) into the new one linked to a′(t).

Corollary 5.2. Given two TDHOs associated with the curves a(t) and a′(t) in sl(2,R),
there always exists a curve in SL(2,R) transforming one TDHO into the other.

We must remark that even if we know that given two equations in the Lie group
SL(2,R) there always exists a transformation relating them, in order to find such a curve
we need to solve the system of differential equations providing the integral curves of (5.8).
This is the solution of a system of differential equations that is a Lie system related to a
nonsolvable Lie algebra in general. Hence, it is not easy to find its solutions, i.e. it may
not be integrable by quadratures.

The result of Theorem 5.1, i.e. that the system of differential equations describing the
transformations of Lie systems on SL(2,R) is a matrix Riccati equation associated, as
a Lie system, with a Lie algebra isomorphic to sl(2,R) ⊕ sl(2,R), suggests a method of
finding sufficiency conditions for integrability of TDHOs to be explained next.

5.3. Description of some known integrability conditions. We now study some
cases when it is possible to find curves Ā(t) in SL(2,R) transforming a given TDHO
related to an equation on SL(2,R) characterised by a curve a(t) into a new TDHO
associated with an equation on SL(2,R) characterised by a curve of the type a′(t) =
−D(t)(c1a1 + c2a2 + c3a3). This is possible if the system determined by (5.8) can be
easily solved. Such a transformation allows us to find the solution of the given equation
by quadratures. We first restrict ourselves to cases in which the curve Ā(t) lies in a
one-parameter subset of SL(2,R). The results we give next are a direct translation of
Theorem 4.1 to the framework of TDHO (see also [50]).

Theorem 5.3. Necessary and sufficient conditions for the existence of a transformation

ξ′ = ΦHO(Ā0(t), ξ), ξ =
(
x

p

)
,

with

Ā0(t) =
(
α(t) 0

0 α−1(t)

)
, α(t) > 0, (5.9)
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relating the TDHO associated with the t-dependent vector field

Xt = b1(t)X1 + b2(t)X2 + b3(t)X3, (5.10)

where b1(t)b3(t) has a constant sign, i.e. b1(t)b3(t) 6= 0, to another integrable one given
by

X ′(t) = D(t)(c1X1 + c2X2 + c3X3), (5.11)

with c1, c2, c3 being real numbers such that c1c3 6= 0, are

D2(t)c1c3 = b1(t)b3(t), b2(t) +
1
2

(
ḃ3(t)
b3(t)

− ḃ1(t)
b1(t)

)
= c2

√
b1(t)b3(t)
c1c3

.

In that case the transformation is uniquely defined by

Ā0(t) =

(( b3(t)c1
b1(t)c3

)1/4 0

0
( b3(t)c1
b1(t)c3

)−1/4

)
.

Note that one coefficient, either c1 or c3, can be reabsorbed by redefining D. As a
straightforward application of the preceding theorem, which can be found in a similar
way to those in [50], we obtain the following corollaries:

Corollary 5.4. A TDHO (5.1) with b1(t)b3(t) 6= 0 is integrable by a t-dependent change
of variables

ξ′ = ΦHO(Ā0(t), ξ),

with Ā0 given by (5.9), if and only if√
c1c3

b1(t)b3(t)

[
b2(t) +

1
2

(
ḃ3(t)
b3(t)

− ḃ1(t)
b1(t)

)]
= c2 (5.12)

for certain real constants c1, c2, and c3. In this case

D(t) =

√
b1(t)b3(t)
c1c3

,

and the new system is
dξ′

dt
= D(t)

(
c2/2 c1
−c3 −c2/2

)
ξ′. (5.13)

Corollary 5.5. Given an integrable TDHO characterised by a t-dependent vector field
(5.11), the set of TDHOs which can be obtained through a t-dependent transformation

ξ′ = ΦHO(Ā0(t), ξ),

with Ā0 given by (5.9), are those of the form

Xt = b1(t)X1 +
(
ḃ1(t)
b1(t)

− Ḋ(t)
D(t)

+ c2D(t)
)
X2 +

D2(t)c1c3
b1(t)

X3. (5.14)

Thus, Ā0(t) reads

Ā0(t) =

(( b3(t)c1
b1(t)c3

)1/4 0

0
( b3(t)c1
b1(t)c3

)−1/4

)
.
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Therefore, starting from an integrable system we can find a family of t-dependent
vector fields (5.14) describing solvable TDHO systems whose coefficients are parametrised
by b1(t). Given a TDHO, it is easy to check whether it belongs to such a family and can
be easily integrated.

The integrability conditions we have described here arise as requirements on the initial
t-dependent functions bα that allow us to solve the initial TDHO exactly by a t-dependent
transformation of the form

ξ′ = ΦHO(exp(Ψ(t)v), ξ),

with some v ∈ sl(2,R) and Ψ(t), in such a way that the initial TDHO system (5.1)
in the variable ξ is transformed into another one in the variable ξ′ associated, as a Lie
system, with a Vessiot–Guldberg Lie algebra isomorphic to an appropriate Lie subalgebra
of sl(2,R) in such a way that the equation in ξ′ can be integrated by quadratures, and
so the equation in ξ is solvable too.

5.4. Some applications of integrability conditions to TDHOs. As a first appli-
cation, we show that the usual approach to the solution of the classical Caldirola–Kanai
Hamiltonian [27, 133] can be explained through our method (the solution of the quan-
tum case can be obtained in a similar way). Next, we will also apply our approach to get
integrable TDHOs.

The Hamiltonian of a t-dependent harmonic oscillator is

H(t) =
1
2

p2

m(t)
+

1
2
m(t)ω2(t)x2. (5.15)

For instance, a harmonic oscillator with a damping term [27, 133] with equation of motion

d

dt
(m0ẋ) +m0µẋ+ kx = 0, k = m0ω

2,

admits a Hamiltonian description, with a t-dependent Hamiltonian

H(t) =
p2

2m0
exp(−µt) +

1
2
m0 exp(µt)ω2x2,

i.e. m(t) in (5.15) corresponds to m(t) = m0 exp(µt). In this case equations (5.1) are
ẋ =

∂H

∂p
=

1
m0

exp(−µt)p,

ṗ = −∂H
∂x

= −m0 exp(µt)x,
(5.16)

and the t-dependent coefficients of the associated Lie system read

b1(t) =
1
m0

exp(−µt), b2(t) = 0, b3(t) = m0ω
2 exp(µt).

Therefore, as b1(t)b3(t) = ω2, b2 = 0 and

ḃ3
b3
− ḃ1
b1

= 2µ,

we see that (5.12) holds if we set c1 = c3 = 1, c2 = µ/ω and the function D is a constant,
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D = ω. Hence, this example reduces to the system

d

dt

(
x′

p′

)
=
(
µ/2 ω

−ω −µ/2

)(
x′

p′

)
,

which can be easily integrated. If we put ω̄2 = µ2/4− ω2, we get(
x′(t)
p′(t)

)
=

cosh(ω̄t) +
µ

2ω̄
sinh(ω̄t)

ω

ω̄
sinh(ω̄t)

−ω
ω̄

sinh(ω̄t) cosh(ω̄t)− µ

2ω̄
sinh(ω̄t)

(x′(0)
p′(0)

)
and, in terms of the initial variables, we obtain

x(t) =
e−µt/2
√
m0ω

((
cosh(ω̄t) +

µ

2ω̄
sinh(ω̄t)

)
√
m0ωx0 +

ω

ω̄
sinh(ω̄t)

p0√
m0ω

)
.

We can also study a TDHO described by the t-dependent Hamiltonian

H(t) =
1
2
p2 +

1
2
F (t)ω2x2, F (t) > 0,

where we assume, for simplicity, m = 1. The t-dependent vector field X is

Xt = p
∂

∂x
− F (t)ω2x

∂

∂p
,

which is a linear combination

Xt = F (t)ω2XHO
3 +XHO

1 ,

i.e. the t-dependent coefficients in (5.10) are

b1(t) = 1, b2(t) = 0, b3(t) = F (t)ω2,

and the condition for F to satisfy (5.12) is

1
2
Ḟ

F
= c2ω

√
F .

Therefore, F must be of the form

F (t) =
1

(L− c2ωt)2

and the Hamiltonian, which can be exactly integrated, is

H(t) =
p2

2
+

1
2

ω2

(L− c2ωt)2
x2.

The corresponding Hamilton equations are
ẋ = p,

ṗ = − ω2

(L− c2ωt)2
x,

and the t-dependent change of variables to perform is
x′ =

√
ω

L− c2ωt
x,

p′ =

√
L− c2ωt

ω
p.
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Consequently, 
dx′

dt
=

ω

L− c2ωt

(
c2
2
x′ + p′

)
,

dp′

dt
=

ω

L− c2ωt

(
−x′ − c2

2
p′
)
,

(5.17)

and, under the t-reparametrisation

τ(t) =
∫ t

0

ω dt′

L− c2ωt′
=

1
c2

ln
(

K ′

L− c2ωt

)
,

the system (5.17) becomes 
dx′

dτ
=
c2
2
x′ + p′,

dp′

dτ
= −x′ − c2

2
p′,

which is equivalent to a transformed Caldirola–Kanai differential equation through the
change τ 7→ ωt and c2 7→ µ/ω. In any case, the solution is

x′(τ) =
(

cosh(ω̃τ) +
c2
2ω̃

sinh(ω̃τ)
)
x′(0) +

1
ω̃

sinh(ω̃τ)p′(0),

where ω̃ =
√
c22/4− 1. Finally,

x(τ(t)) =

√
L− c2ωt

ω

[(
cosh(ω̃τ(t)) +

c2
2ω̃

sinh(ω̃τ(t))
)
x′(0) +

1
ω̃

sinh(ω̃τ(t))p′(0)
]
.

Let us analyse another integrability condition that, as the preceding one, arises as a
compatibility condition for a restricted case of the system describing the integral curves of
(5.8). Nevertheless, this time, the solution is restricted to a one-parameter set of matrices
of SL(2,R) that is not a group in general.

We deal with a family of transformations

Ā0(t) =

(
1

V (t) 0
−u1 V (t)

)
, V (t) > 0, (5.18)

where u1 is a constant, i.e. we want to relate the t-dependent vector field

Xt = XHO
1 + F (t)ω2XHO

3 ,

characterised by the coefficients in (5.10)

b1 = 1, b2 = 0, b3 = F (t)ω2,

to an integrable one characterised by b′1, b′2 and b′3, or more explicitly, to the t-dependent
vector field

Xt = D(t)(c1X1 + c3X3),

i.e. b′1 = Dc1, b′2 = 0, and b′3 = Dc3. Moreover, if c1 6= 0, we can absorb its value
redefining D and assuming c1 = 1.
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Under the action of (5.18), the original system transforms into
b′3 = V 2b3 + u1V b2 + u2

1b1 − u1V̇ ,

b′2 = b2 + 2
u1

V
b1 − 2

V̇

V
,

b′1 =
1
V 2

b1.

As b2 = b′2 = 0 and b1 = 1, the second equation yields V̇ = u1, i.e. V (t) = u1t + u0

with u0 ∈ R. Moreover, using this condition in the first equation together with b1 = 1,
we get b′3 = V 2b3. Then, as the third equation gives D = b′1 = 1/V 2, we see that
b′3 = Dc3 = V 2F (t)ω2. Therefore, F has to be proportional to (u1t+ u0)−4,

F (t) =
k

(u1t+ u0)4
, k =

c3
ω2
.

Assume k = 1, and thus c3 = ω2. Then the t-dependent transformation Ā0(t) performing
this reduction is x′ =

x

V (t)
,

p′ = −u1x+ V (t)p.

Under this transformation, the initial system becomes
dx′

dt
=

p′

V 2(t)
,

dp′

dt
= − ω2x′

V 2(t)
.

Using the t-reparametrisation

τ(t) =
∫ t

0

dt′

V 2(t′)
=

1
u1

(
1
u0
− 1
V (t)

)
,

we get the autonomous linear system
dx′

dτ
= p′,

dp′

dτ
= −ω2x′,

whose solution is (
x′(τ)
p′(τ)

)
=

(
cos(ωτ) sin(ωτ)

ω

−ω sin(ωτ) cos(ωτ)

)(
x′(0)
p′(0)

)
.

Thus, we obtain

x(t) = V (t)
(

cos(ωτ(t))
x0

u0
+

1
ω

sin(ωτ(t))(−u1x0 + u0p0)
)
.

5.5. Integrable TDHOs and t-dependent constants of motion. The autonomi-
sations of the transformed integrable systems obtained above enable us to construct
t-dependent constants of motion. Indeed, in previous cases, a TDHO was transformed
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into a Lie system related to an equation on SL(2,R)

RA−1∗AȦ = −D(t)(c1M0 + c2a1 + c3a1),

associated with a TDHO determined by the t-dependent vector field

Xt = D(t)(c1X1 + c2X2 + c3X3).

Each t-dependent first integral I(t) of this differential equation satisfies
dI

dt
=
∂I

∂t
+XtI = 0.

Thus, I is a first integral of the vector field on R× T∗R

Xt = c1X1(t) + c2X2(t) + c3X3(t) +
1

D(t)
∂

∂t
.

As R×T∗R is a three-dimensional manifold and the differential equation we are studying
is determined by a distribution of dimension one, there exist (at least locally) two in-
dependent first integrals. Next, we analyse some integrable cases and the corresponding
constants of motion.

Case F (t) = (u1t+u0)−2. In this case, according to Theorem 5.3, the t-dependent vector
field of the initial TDHO is transformed into

Xt =
ω

u1t+ u0

(
XHO

1 − u1

ω
XHO

2 +XHO
3

)
and thus, using the method of characteristics, we obtain the following constants of motion
for this TDFHO:

I1 = −u1

ω
p′ x′ + x′2 + p′2, I2 =

(u1 + u0t)ω/u1

((u1
ω x
′ − 2p′) + 2ω̄x′)1/ω̄

,

with ω̄ = ±
√
u2

1/(4ω2)− 1.

Case F (t) = (u1t+ u0)−4. In this case the t-dependent vector field of the initial TDHO
is transformed into

Xt =
1

V 2(t)
(XHO

1 + ω2XHO
3 ),

and thus, using the method of characteristics, we get the following t-dependent constants
of motion for the initial TDHO:

I1 =
(
xω

V (t)

)2

+ (V (t)p− u1x)2,

I2 = arcsin
(

xω

V (t)
√
I1

)
+

ω

u1V (t)
.

(5.19)

As we have two t-dependent constants of motion over R×T∗R and the solutions in this
space are of the form (t, x(t), p(t)), we can obtain the solutions for our initial system.

5.6. Applications to two-dimensional TDHOs. In this section we apply our previ-
ous geometrical methods to analyse the two-dimensional t-dependent harmonic oscillator

H(t, x1, x2, p1, p2) =
p2

1

2
+
p2

2

2
+
ω2

1x
2
1 + ω2

2x
2
2

2V 4(t)
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with ω1 and ω2 constant and V (t) = u1t+u0. Nevertheless, our approach is also valid for
the corresponding generalisation to n-dimensional TDHOs. This Hamiltonian is related
to an uncoupled pair of TDHOs and therefore the developments of the last section apply
again. In this way, we find that its Hamilton equations read

ẋi = pi,

ṗi = − ω2
i

V 4(t)
xi,

i = 1, 2,

and can be transformed into
dx′i
dt

=
1

V 2(t)
p′i,

dp′i
dt

= − ω2
i

V 2(t)
x′i,

i = 1, 2,

by means of the t-dependent change of variablesx′i =
xi
V (t)

,

p′i = −u1xi + V (t)pi,
i = 1, 2.

The solutions of the last system are integral curves of a t-dependent vector field in the
distribution generated by the vector field

X = −ω2
1x
′
1

∂

∂p′1
+ p′1

∂

∂x′1
− ω2

2x
′
2

∂

∂p′2
+ p′2

∂

∂x′2
.

If we consider the problem as a differential equation in T∗R2, the constants of motion are
first integrals for the vector field X+∂/∂t over R×T∗R2. Then, as we have a distribution
of rank one over a five-dimensional manifold, there exist, at least locally, four functionally
independent first integrals. Additionally, three of them can be chosen to be t-independent
(in terms of the variables x′1, x′2, p′1, p′2). The constants of motion for the initial TDHO
corresponding to some of such first integrals read

Ii =
(
ωixi
V (t)

)2

+ (V (t)pi − u1xi)2, i = 1, 2,

and

I12 =
1
ω1

arcsin
(

x1ω1

V (t)
√
I1

)
− 1
ω2

arcsin
(

x2ω2√
V (t)I2

)
.

This first integral is constant along the solutions. Nevertheless, in order for the function
to be correctly defined, ω1/ω2 has to be rational. Finally, with the aid of (5.19), we can
obtain two t-dependent constants of motion of the form

Īi =
ωi

V (t)u1
+ arcsin

(
x′iωi√
Ii

)
, i = 1, 2.

As a consequence, we can explicitly obtain the t-evolution of the system. Indeed, either
from Ī1 or Ī2, we reach the following solutions:

xi(t) =
V (t)
√
Ii

ωi
sin
(
Īi −

ωi
V (t)u1

)
, i = 1, 2.
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Their properties become clearer when we write them as

xi(t) =
V (t)
√
Ii

ωi
sin
(
Īi −

ωi
u1(u1t+ u0)

)
, i = 1, 2,

and we realise that the quotient x1(t)/x2(t) is a t-independent constant of motion if
ω1/ω2 is rational.

These two equations can be viewed as a parametric representation of a curve on the
configuration space Q = R2. In the general case x1 and x2 evolve in an independent way
and the behaviour of the curve becomes blurred. In the rational case, the evolutions of
x1 and x2 are correlated in such a way that the t-dependent coupling function I12 is pre-
served. The particular form of this curve will depend on the relation between u1 and u0.
If u1 = 0 it will be a Lissajous curve. If u1 6= 0 it can be considered as a curve obtained
by the addition of growing amplitudes to the oscillations of the corresponding Lissajous
curve. We can refer to them as ‘t-dependent Lissajous’ figures. Nevertheless, it is not
totally clear whether this term is appropriate, since these new curves are ‘not closed’.

6. Integrability in quantum mechanics

Some papers have recently been devoted to applying the theory of Lie systems [38, 157,
234] to quantum mechanics [51, 60]. As a result, it has been proved that the theory of Lie
systems can be used to treat some types of Schrödinger equations, the so-called quantum
Lie systems, to obtain exact solutions, t-evolution operators, etc. One of the fundamental
properties found is that quantum Lie systems can be investigated by means of equations
in a Lie group. Through such an equation we can analyse the properties of the associated
Schrödinger equation, e.g. the type of Lie group allows us to know if the Schrödinger
equation can be integrated [51].

Lately, a lot of attention has also been dedicated to integrability of Lie systems and, in
particular, of Riccati equations [40, 47, 50]. In these papers, as in previous sections, it has
been shown that integrability conditions for Lie systems, in the case of Riccati equations,
are related to some transformation properties of the associated equations in SL(2,R).
Nevertheless, as we have pointed out and as was shown in [47], the same procedure used
to investigate Riccati equations can be applied to deal with any Lie system.

Therefore, in the case of a quantum Lie system, there exists an equation on a Lie
group associated with it [51]. The transformation properties investigated in the theory
of integrability of Lie systems can be used to study integrability conditions for quantum
Lie systems. All results obtained in Chapter 4 can be generalised to the quantum case
and some nontrivial integral models can be obtained. The aim of this chapter is to show
how to apply the theory of integrability of Lie systems to quantum Lie systems. All our
results are illustrated by the analysis of several types of spin Hamiltonians.

We stress the practical importance of this method: It enables us to obtain nontrivial
exactly solvable t-dependent Schrödinger equations. This allows us to investigate physical
models by means of nontrivial exact solutions. It also provides a procedure to avoid using
numerical methods for studying Schrödinger equations in many cases.
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6.1. Spin Hamiltonians. In this section we investigate a quantum mechanical system
whose dynamics is given by the Schrödinger–Pauli equation [39]. We first prove that this
Hamiltonian corresponds to a quantum Lie system and we next apply the theory of inte-
grability of Lie systems to recover some exact known solutions and find some new ones.

The system under study is described by the t-dependent Hamiltonian

H(t) = Bx(t)Sx +By(t)Sy +Bz(t)Sz,

with Sx, Sy and Sz being the spin operators. Let us denote S1 = Sx, S2 = Sy and
S3 = Sz. Then the t-dependent Hamiltonian H(t) is a quantum Lie system, because the
spin operators are such that

[iSj , iSk] = −
3∑
l=1

εjkl iSl, j, k = 1, 2, 3, (6.1)

with εjkl being the components of the fully skew-symmetric Levi-Civita tensor and where
we have assumed ~ = 1. The Schrödinger equation corresponding to this t-dependent
Hamiltonian is

dψ

dt
= −iBx(t)Sx(ψ)− iBy(t)Sy(ψ)− iBz(t)Sz(ψ), (6.2)

which can be seen as a differential equation determining the integral curves of the t-
dependent vector field in a (maybe infinite-dimensional) Hilbert space H given by

Xt = Bx(t)XSH
1 +By(t)XSH

2 +Bz(t)XSH
3 ,

with
(XSH

1 )ψ = −iSx(ψ), (XSH
2 )ψ = −iSy(ψ), (XSH

3 )ψ = −iSz(ψ).

The t-dependent vector field X can be written as a linear combination

Xt =
3∑
k=1

bk(t)XSH
k

of the vector fields XSH
k , with b1(t) = Bx(t), b2(t) = By(t) and b3(t) = Bz(t), and

therefore our Schrödinger equation is a Lie system related to a quantum Vessiot–Guldberg
Lie algebra isomorphic to su(2).

Take the basis for su(2) given by the skew-self-adjoint 2× 2 matrices

v1 ≡
1
2

(
0 i

i 0

)
,

v2 ≡
1
2

(
0 1
−1 0

)
,

v3 ≡
1
2

(
i 0
0 −i

)
.

These matrices satisfy the commutation relations

[vj , vk] = −
3∑
l=1

εjklvl, j, k = 1, 2, 3,
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which are similar to (6.1). Hence, we can define an action ΦSH : SU(2)×H→H such that

ΦSH(exp(ckvk), ψ) = exp(ckiHk)(ψ), k = 1, 2, 3,

for any real constants c1, c2 and c3. Moreover,

d

dt

∣∣∣∣
t=0

ΦSH(exp(−itvk, ψ) =
d

dt

∣∣∣∣
t=0

exp(−itHk)(Φ) = −iHk(ψ) = (XSH
k )ψ,

showing that each XSH
k is the fundamental vector field associated with vk. Thus, the

equation on SU(2) related, by means of ΦSH , to the Schrödinger equation (6.2) is

Rg−1∗g ġ = −
3∑
k=1

bk(t)vk ≡ a(t) ∈ su(2), g(0) = e. (6.3)

It was shown in [51], and previously in our work, that the group G of curves in the
group of a Lie system, in this case G = Map(R, SU(2)), acts on the set of Lie systems
associated with an equation in the Lie group G in such a way that, in a similar way to
what happened in [40], a curve ḡ ∈ G transforms the initial equation (6.3) into the new
one characterised by the curve

a′(t) ≡ −Ad(ḡ)
( 3∑
k=1

bk(t)vk
)

+Rḡ−1∗ḡ
dḡ

dt
= −

3∑
k=1

b′k(t)vk. (6.4)

Once again, this new equation is related to a new Schrödinger equation in H determined
by a new Hamiltonian

H ′(t) =
3∑
k=1

b′k(t)Sk.

Additionally, the curve ḡ(t) in SU(2) induces a t-dependent unitary transformation
Ū(t) on H transforming the initial t-dependent Hamiltonian H(t) into H ′(t).

Summarising, the theory of Lie systems reduces the problem of determining the so-
lution of Schrödinger equations related to spin Hamiltonians H(t) to solving certain
equations in the Lie group SU(2). Then, the transformation properties of the equations
in SU(2) describe the transformation properties of H(t) by means of certain t-dependent
unitary transformations described by curves in SU(2).

Note that the theory here developed for spin Hamiltonians can be directly employed
to analyse any quantum Lie system. In this case, our procedure remains essentially the
same. It is only necessary to replace SU(2) by the Lie group G associated with the
quantum Lie system under study.

6.2. Lie structure of an equation describing transformations of Lie systems.
Our aim now is to prove that the curves in SU(2) relating the equations defined by two
curves a(t) and a′(t) in TISU(2), respectively, can be found as solutions of a Lie system
of differential equations.

Recall that the matrices in SU(2) are of the form

ḡ =
(

a b

−b∗ a∗

)
, a, b ∈ C, (6.5)
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with |a|2 + |b|2 = 1 and that the elements of su(2) are traceless skew-Hermitian matrices,
namely, real linear combinations of the matrices {vk | k = 1, 2, 3}. Then, the equation
(6.4) becomes a matrix equation that can be written

dḡ

dt
ḡ−1 = −

3∑
k=1

b′k(t)vk +
3∑
k=1

bk(t)ḡvkḡ−1. (6.6)

Multiplying both sides of this equation by ḡ on the right, we get

dḡ

dt
= −

3∑
k=1

b′k(t)vkḡ +
3∑
k=1

bk(t)ḡvk. (6.7)

If we consider a reparametrisation of the t-dependent coefficients of ḡ,

a(t) = x1(t) + iy1(t),

b(t) = x2(t) + iy2(t),

for real functions xj and yj , with j = 1, 2, a straightforward computation shows that
(6.7) is a linear system of differential equations in the new variables x1, x2, y1 and y2:

ẋ1

ẋ2

ẏ1

ẏ2

 =
1
2


0 b′2 − b2 −b3 + b′3 −b1 + b′1

b2 − b′2 0 −b1 − b′1 b3 + b′3
b3 − b′3 b′1 + b1 0 −b2 − b′2
b1 − b′1 −b3 − b′3 b2 + b′2 0



x1

x2

y1

y2

 . (6.8)

Only the solutions of the above system with x2
1 + x2

2 + y2
1 + y2

2 = 1 describe curves
in SU(2) and, consequently, are related to solutions of (6.7). Nevertheless, we can forget
this restriction for the time being, because it can be automatically implemented later in
a more suitable way. Therefore, we can deal with the four variables in (6.8) as if they
were independent. This linear system of differential equations is a Lie system associated
with a Lie algebra of vector fields gl(4,R), but the solutions with initial condition related
to a matrix in the subgroup SU(2) always remain in that subgroup. In fact, consider the
set of vector fields

N1 =
1
2

(
−y2

∂

∂x1
− y1

∂

∂x2
+ x2

∂

∂y1
+ x1

∂

∂y2

)
,

N2 =
1
2

(
−x2

∂

∂x1
+ x1

∂

∂x2
− y2

∂

∂y1
+ y1

∂

∂y2

)
,

N3 =
1
2

(
−y1

∂

∂x1
+ y2

∂

∂x2
+ x1

∂

∂y1
− x2

∂

∂y2

)
,

N ′1 =
1
2

(
y2

∂

∂x1
− y1

∂

∂x2
+ x2

∂

∂y1
− x1

∂

∂y2

)
,

N ′2 =
1
2

(
−x2

∂

∂x1
+ x1

∂

∂x2
− y2

∂

∂y1
+ y1

∂

∂y2

)
,

N ′3 =
1
2

(
y1

∂

∂x1
+ y2

∂

∂x2
− x1

∂

∂y1
− x2

∂

∂y2

)
,

(6.9)
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for which the nonzero commutation relations are
[N1, N2] = −N3, [N2, N3]= −N1, [N3, N1]= −N2,

[N ′1, N
′
2] = −N ′3, [N ′2, N

′
3]= −N ′1, [N ′3, N

′
1]= −N ′2.

Note that [Nj , N ′k] = 0, for j, k = 1, 2, 3, and therefore (6.8) is a Lie system on R4

associated with a Lie algebra of vector fields isomorphic to g ≡ su(2)⊕ su(2), i.e. the Lie
algebra decomposes into a direct sum of two Lie algebras isomorphic to su(2,R), the first
one generated by {N1, N2, N3} and the second one by {N ′1, N ′2, N ′3}.

If we denote y ≡ (x1, x2, y1, y2) ∈ R4, the system (6.8) can be written as a system of
differential equations in R4:

dy

dt
= N(t, y), (6.10)

with Nt being the t-dependent vector field given by

N(t, y) =
3∑
k=1

(bk(t)Nk(y) + b′k(t)N ′k(y)).

The vector fields {N1, N2, N3, N
′
1, N

′
2, N

′
3} span a distribution of rank three at almost

every point of R4 and consequently there exists, at least locally, a first integral for all the
vector fields (6.9). It can be verified that such a first integral is globally defined and reads
I(y) = x2

1 + x2
2 + y2

1 + y2
2 . Hence, given a solution y(t) of (6.10) with an initial condition

I(y(0)) = x2
1 + x2

2 + y2
1 + y2

2 = 1, we have I(y(t)) = 1 at any time t and this solution de-
scribes a curve in SU(2). Therefore, we have found that the curves in SU(2) relating two
different equations on SU(2) associated with two Schrödinger equations of the form (6.2)
can be described by means of the solutions y(t) of (6.10) with I(y(0)) = 1, and vice versa:

Theorem 6.1. The curves in SU(2) relating two equations on the group SU(2) charac-
terised by the curves in su(2) of the form

a′(t) = −
3∑
k=1

b′k(t)vk, a(t) = −
3∑
k=1

bk(t)vk

are the solutions y(t) of the system
dy

dt
= N(t, y)

with

N(t, y) =
3∑
k=1

(bk(t)Nk(y) + b′k(t)N ′k(y))

and I(y(0)) = 1. This is a Lie system related to a Lie algebra of vector fields isomorphic
to su(2)⊕ su(2).

Corollary 6.2. Given two Schrödinger equations corresponding to two spin Hamiltoni-
ans, there always exists a curve in SU(2) transforming one of them into the other.

Although the above corollary ensures the existence of a t-dependent unitary transfor-
mation mapping a given spin Hamiltonian into any other one, obtaining such a transfor-
mation involves solving system (6.10) explicitly. This Lie system is related to a nonsolvable
Lie algebra and so it is not easy to find its solutions in general. In view of this, it becomes
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interesting to determine integrability conditions which allow us to solve this system and
obtain the corresponding transformation. This illustrates the interest of the integrability
conditions derived in the next sections, which will be used to derive exact solutions for
some physical problems involving spin Hamiltonians.

6.3. Integrability conditions for SU(2) Schrödinger equations. Let ḡ(t) be a curve
in SU(2) transforming the equation on SU(2) defined by the curve a(t) into another
characterised by a′(t) according to the rule (6.6). If g′(t) is the solution of the equation
in SU(2) characterised by a′(t), then g(t) = ḡ−1(t)g′(t) is a solution for the equation in
SU(2) characterised by a(t).

If a′(t) lies in a solvable Lie subalgebra of su(2), we can derive g′(t) in many ways [40]
and, once g′(t) is obtained, the knowledge of the curve ḡ(t) transforming a(t) into a′(t)
provides the curve g(t) solving the equation on SU(2) determined by a(t).

Therefore, starting from a curve a′(t) in a solvable Lie subalgebra of su(2) and using
(6.10), with curves in a restricted family of curves in SU(2), we can relate a′(t) to other
possible curves a(t), finding, in this way a family of equations on SU(2), and thus spin
Schrödinger equations on H, that can be exactly solved.

Let us assume some restrictions on the family of solution curves of the system (6.10),
e.g. we choose b = 0. Consequently, there are instances of this system which do not admit
a solution under these restrictions, i.e. it is not possible to connect the curves a(t) and
a′(t) by a curve satisfying the assumed restrictions. This gives rise to some compatibility
conditions for the existence of one of these special solutions, algebraic and/or differential
ones, between the t-dependent coefficients of a′(t) and a(t) satisfied by explicitly solv-
able models found in the literature. Therefore, our approach is useful to provide exactly
integrable models found in the literature and, as we will see next, to derive new ones.

The two main ingredients to be taken into account in the following sections are:

1. The equations which are characterised by a curve a′(t) for which the solution can be ob-
tained. We here consider that a′(t) is associated with a one-dimensional Lie subalgebra
of su(2).

2. The restriction on the set of curves considered as solutions of the equation (6.10). We
next look for solutions of (6.10) related to curves in a one-parameter subset of SU(2).

Consider the following example: suppose that we want to connect a given a(t) with a
final family of curves of the form a′(t) = −D(t)(c1v1 + c2v2 + c3v3), with c1, c2, c3 being
real numbers. In this case, system (6.10), which describes the curves ḡ(t) ⊂ SU(2) that
transform the equation described by a(t) into the equation determined by a′(t), reads

dy

dt
=

3∑
k=1

bk(t)Nk(y) +D(t)
3∑
k=1

ckN
′
k(y) = N(t, y). (6.11)

Note that the vector field

N ′ =
3∑
k=1

ckN
′
k
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satisfies

[Nk, N ′] = 0, k = 1, 2, 3.

Hence, the Lie system (6.11) is related to a Lie algebra of vector fields isomorphic to
su(2) ⊕ R. As this Lie system is associated with a nonsolvable Vessiot–Guldberg Lie
algebra, it is not integrable by quadratures and the solution cannot be easily found in
the general case. Nevertheless, it is worth noting that (6.11) always has a solution.

In this way, we can consider some instances of (6.11) for which the resulting system of
differential equations can be integrated by quadratures. We can assume that x is related
to a one-parameter family of elements of SU(2). Such a restriction implies that (6.11)
not always has a solution, because sometimes it is not possible to connect a(t) and a′(t)
by means of the chosen one-parameter family. This fact imposes differential and algebraic
restrictions on the initial t-dependent functions bk, with k = 1, 2, 3. These restrictions
will describe known integrability conditions and other new ones. So, we can develop the
ideas of [50, 55] in the framework of quantum mechanics. Moreover, from this point of
view, we can find new integrability conditions that can be used to obtain exact solutions.

6.4. Application of integrability conditions in a SU(2) Schrödinger equation.
In this section we restrict ourselves to the case a′(t) = −D(t)v3, i.e.

b′1(t) = 0, b′2(t) = 0, b′3(t) = D(t). (6.12)

Hence, the system of differential equations (6.8) describing the curves ḡ relating a Schrö-
dinger equation to H ′(t) = D(t)Sz is

ẋ1

ẋ2

ẏ1

ẏ2

 =
1
2


0 −b2 −b3 +D −b1
b2 0 −b1 b3 +D

b3 −D b1 0 −b2
b1 −b3 −D b2 0



x1

x2

y1

y2

 . (6.13)

We see that, according to the result of Theorem 6.1, the t-dependent vector field corre-
sponding to such a system of differential equations can be written as a linear combination
with t-dependent coefficients of the vector fields N1, N2, N3 and N ′3:

N(t, y) =
3∑
k=1

bk(t)Nk(y) +D(t)N ′3(y).

Thus, system (6.13) is associated with a Lie algebra of vector fields isomorphic to u(1)⊕
su(2). This Lie algebra is smaller than the initial one (6.8), but it is not solvable and
the system is as difficult to solve as the initial Schrödinger equation. Therefore, in order
to get exact solvable cases, we need to perform some kind of simplification once again,
e.g. by imposing some extra assumptions on the variables. This may result in a system
of differential equations whose solutions are incompatible with our additional conditions.
Necessary and sufficient conditions on the t-dependent functions b1, b2, b3, b′1, b′2 and b′3
ensuring the existence of a solution compatible with the assumed restrictions on the
variables give rise to integrability conditions for spin Hamiltonians.
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For instance, suppose that we require the solutions to be in the one-parameter subset
Aγ ⊂ SU(2) given by

Aγ =
{(

cos γ2 −e−bi sin γ
2

ebi sin γ
2 cos γ2

) ∣∣∣∣ b ∈ [0, 2π)
}

(6.14)

where γ is a fixed real constant such that γ 6= 2πn, with n ∈ Z, because in such a case
Aγ = ±Id. In view of the definition of the sets Aγ and in terms of the parametrisation
(6.5), we have

x1 = cos
γ

2
, y1 = 0, x2 = − sin

γ

2
cos b, y2 = sin

γ

2
sin b. (6.15)

The elements of Aγ are matrices in SU(2) and we obtain the system of differential equa-
tions 

0
ẋ2

0
ẏ2

 =
1
2


0 −b2 −b3 +D −b1
b2 0 −b1 b3 +D

b3 −D b1 0 −b2
b1 −b3 −D b2 0



x1

x2

0
y2

 . (6.16)

We get two integrability conditions for the system (6.16):

0 = −b2x2 − b1y2, 0 = (b3 −D)x1 + b1x2 − b2y2. (6.17)

We can write the components (Bx(t), By(t), Bz(t)) of the magnetic field in polar coordi-
nates,

Bx(t) = B(t) sin θ(t) cosφ(t),

By(t) = B(t) sin θ(t) sinφ(t),

Bz(t) = B(t) cos θ(t),

with θ ∈ [0, π) and φ ∈ [0, 2π).
The first algebraic integrability condition reads, in polar coordinates,

B(t) sin θ(t) sin
γ

2
(cosφ(t) sin b(t)− sinφ(t) cos b(t)) = 0

and thus,
B(t) sin θ(t) sin

γ

2
sin(b(t)− φ(t)) = 0,

so b(t) = φ(t). In such a case, the second algebraic integrability condition in (6.17) reduces
to

(Bz −D) cos
γ

2
−B sin

γ

2
sin θ = 0

and then the t-dependent coefficient D is

D =
B

cos γ2
cos
(γ

2
+ θ
)
. (6.18)

Finally, we have to take into account the differential integrability condition

ẋ2 =
1
2

(
b2 cos

γ

2
+ (b3 +D) sin

γ

2
sin b

)
,

which after some algebraic manipulation leads to

φ̇ =
B

2

(
sin(θ + γ

2 )
sin γ

2

+
cos(γ2 + θ)

cos γ2

)
,
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and then
φ̇(t) = B(t)

sin(θ(t) + γ)
sin γ

, (6.19)

which is a far larger set of integrable Hamiltonians than the exactly solvable Hamiltonians
of this type found in the literature. As a particular example, when θ and B are constant,
we find

φ̇ = B
sin(θ + γ)

sin γ
≡ ω (6.20)

and consequently,
φ = ωt+ φ0.

Thus, the t-dependent spin Hamiltonian H(t) determined by the magnetic vector field

B(t) = B(sin θ cos(ωt), sin θ sin(ωt), cos θ)

is integrable.
Another interesting integrable case is that given by θ = π/2, that is, the magnetic

field moves in the XZ plane (see [20, 139, 140]). In such a case, in view of the integrability
conditions (6.20), the angular frequency φ̇ is

φ̇ = B cotan γ = ω.

The last one of the most known integrable cases of spin Hamiltonian is given by a
magnetic field in a fixed direction, i.e. B(t) = B(t)(sin θ cosφ, sin θ sinφ, cos θ). Obviously,
this case satisfies the integrability condition (6.20) for γ = −θ.

Apart from the previous cases, the integrability condition (6.19) describes other in-
tegrable cases. For instance, consider the case with θ fixed and B nonconstant. In this
case, the corresponding H(t) is integrable if

φ̇

B(t)
=

sin(θ + γ)
sin γ

,

that is, if we fix γ = π/2 we have

ω = φ̇ = B(t) cos θ, so φ(t) = cos θ
∫ t

B(t′)dt′.

Furthermore, we can consider θ(t) = t and B constant. In this case, the t-dependent
Hamiltonian H(t) is integrable if φ(t) satisfies the condition

φ̇ = B cos t, so φ(t) = B sin t.

Indeed, note that in this case the integrability condition (6.19) trivially follows for γ =
−1/2.

To sum up, we have shown that there exists a large family of t-dependent integrable
spin Hamiltonians that includes, as particular cases, many known integrable cases. Ad-
ditionally, it is easy to check whether a t-dependent spin Hamiltonian satisfies the inte-
grability condition (4.33) and can be integrated.

6.5. Applications to physics. Let us apply the above results to a t-dependent spin
Hamiltonian

H(t) = B(t) · S,
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which often appears in physics: the one characterised by a magnetic field

B(t) = B(sin θ cos(ωt), sin θ sin(ωt), cos θ), (6.21)

that is, a magnetic field with a constant modulus rotating along the z-axis with a con-
stant angular velocity ω. Such Hamiltonians have been applied, for instance, to analyse
spin precession in a transverse t-dependent magnetic field [208], investigate adiabatic ap-
proximation and the unitary of the t-evolution operator through such an approximation
[160, 178], etc.

In the previous section we showed that this t-dependent Hamiltonian is integrable.
Indeed, the integrability condition (6.20) can be written as

tan γ =
sin θ

φ̇/B − cos θ
, (6.22)

where we recall that γ has to be a real constant. In the case of our particular magnetic
field (6.21) the angular frequency, ω = φ̇, the angle θ and the modulus B are constants.
Therefore γ is a properly defined constant, the integrability condition (6.20) holds and
the value of γ is given by equation (6.22) in terms of the parameters B, θ and ω, which
characterise the magnetic vector field (6.21).

We have already shown that if B(t) satisfies (6.20), then H(t) is integrable, because
it can be transformed by means of a t-dependent change of variables determined by a
curve g(t) in the set Aγ into a directly integrable Schrödinger equation determined by a
t-dependent Hamiltonian H ′(t) = D(t)Sz. For simplicity, let us parametrise the elements
of Aγ in a new way. Consider σ = (σ1, σ2, σ3) and n ∈ R3, where the matrices σi are the
Pauli matrices, σx, σy, σz. We have

eiσ·nφ = Id cosφ+ iσ · n sinφ.

So, for n = (α1, α2, 0)/
√
α2

1 + α2
2 with real constants α1, α2 and taking into account that

v1 = iσx/2, v2 = iσy/2 and v3 = iσz/2, we get

exp(α1v1 + α2v2) = exp
(
i
δ

2
σ · n

)
=
(

cos δ2 −e−iϕ sin δ
2

eiϕ sin δ
2 cos δ2

)
(6.23)

with δ =
√
α2

1 + α2
2 and −e−iϕ = (iα1 +α2)/

√
α2

1 + α2
2. In terms of δ and ϕ the variables

α1 and α2 can be written α1 = δ sinϕ and α2 = −δ cosϕ. Hence, in view of (6.23), we
can describe the elements of Aγ as(

cos γ2 −e−bi sin γ
2

ebi sin γ
2 cos γ2

)
= exp(γ sin b v1 − γ cos b v2), (6.24)

where b and γ are real constants. For magnetic vector fields (6.21), the t-dependent change
of variables transforming the initial H(t) into an integrable H ′(t) = D(t)Sz is determined
by a curve in Aγ with γ determined by equation (6.20) and b(t) = φ(t). Thus, such a
curve in Aγ takes the form

t 7→ exp(γ sin(ωt)v1 − γ cos(ωt)v2). (6.25)

We emphasise that the above t-dependent change of variables in SU(2) transforms the
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equation in SU(2) determined by the initial curve

a(t) = −Bx(t)v1 −By(t)v2 −Bz(t)v3

into a new equation in SU(2) determined by a curve a′(t) = −D(t)v3. Such a t-dependent
transformation in SU(2) induces a t-dependent unitary change of variables in H trans-
forming the initial Schrödinger equation determined by the t-dependent Hamiltonian
H(t), i.e.

∂ψ

∂t
= −iH(t)(ψ),

into the new Schrödinger equation
∂ψ′

∂t
= −iH ′(t)(ψ′) = −iD(t)Sz(ψ′). (6.26)

The relation between ψ and ψ′ is given by the corresponding t-dependent change of
variables in H induced by curve (6.25), i.e.

ψ′ = exp(γ sin(ωt) iSx − γ cos(ωt) iSy)ψ. (6.27)

In view of (6.18), we see that

D = B

(
cos θ − tan

γ

2
sin θ

)
,

and from (6.22) and the relations

tan γ =
2 tan γ

2

1− tan2 γ
2

, so tan
γ

2
=
−1±

√
1 + tan2 γ

tan γ
,

we obtain

tan
γ

2
=

1
sin θ

(
− ω
B

+ cos θ ±
√
ω2

B2
− 2

ω

B
cos θ + 1

)
.

If we substitute the above expression in the expression for D, it turns out that

D = ω ±
√
ω2 − 2ωB cos θ +B2.

That is, D becomes a constant. Thus, the general solution ψ′t for the Schrödinger equation
(6.26) with initial condition ψ′0 is

ψ′(t) = exp(−itDSz)ψ′0,

and the solution for the initial Schrödinger equation with initial condition ψ0 can be
obtained by undoing the t-dependent change of variables (6.27) to get

ψt = exp(−iγ sinωtSx + iγ cosωtSy) exp(−iDtSz)ψ0.

7. The theory of quasi-Lie schemes and Lie families

7.1. Introduction. Several important systems of first-order ordinary differential equa-
tions can be studied through the theory of Lie systems. Moreover, this theory was recently
applied to study SODE Lie systems, quantum Lie systems, some partial differential equa-
tions, etc. These last successes allow us to recover, from a unifying point of view, several
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results disseminated throughout the literature and to prove multiple new properties of
systems of differential equations appearing in physics and mathematics. Apart from these
successes, there are still some reasons to go further in the generalisation of the theory of
Lie systems:

• Lie systems are important but rather exceptional. The theory of Lie systems investigates
very interesting equations with many applications, e.g. t-dependent frequency harmonic
oscillators, Milne–Pinney equations, Riccati equations, etc. Nevertheless, it fails to
study many other (nonautonomous) interesting systems, like nonlinear oscillators, Abel
equations, or Emden equations.
• The theory of Lie systems does not allow us to investigate superposition rules involving
an explicit t-dependence which appears in various interesting systems, e.g. dissipative
Milne–Pinney equation, Emden–Fowler equations [42], second-order Riccati equations
[48, 126], whose properties are worth analysing.
• Lie systems have an associated group of t-dependent changes of variables enabling us to

transform each particular Lie system into a new one of the same class, e.g. the group of
curves in SL(2,R) transforms a Riccati equation into a new Riccati equation. A similar
property frequently applies to integrate differential equations, like Abel equations [74].
A natural question arises: Is there any kind of systems of differential equations more
general than Lie systems admitting an analogous property?

The theory of quasi-Lie schemes [34] and the Generalised Lie Theorem [35], which
gives rise to the Lie family notion, provide an answer to these problems. More specifically,
quasi-Lie schemes, quasi-Lie systems and Lie families are interesting because:

• The theory of quasi-Lie schemes and the Generalised Lie Theorem permit us to in-
vestigate a very large family of differential equations including Lie systems. More
specifically, this family includes, for instance, the following non-Lie systems: Emden–
Fowler equations [34, 42], nonlinear oscillators [34], dissipative Milne–Pinney equations
[34, 45], second-order Riccati equations [48], Abel equations [35], etc. Moreover, quasi-
Lie schemes and Lie families can be applied to investigate not only systems of first-order
ordinary differential equations, but also second-order differential equations [42, 45].
• The theory of quasi-Lie schemes and the Generalised Lie Theorem treat, in a natural
way, systems admitting a t-dependent superposition rule. These theories show that
many differential equations admit a t-dependent superposition rule, e.g. Abel equations
[35], dissipative Milne–Pinney equations [34], Emden–Fowler equations [42], second-
order Riccati equations [48], etc.
• The quasi-Lie scheme concept permits us to transform a differential equation within a
fixed family, e.g. a first-order Abel equation, into a new one with different t-dependent
coefficients. This feature generalises the transformation properties of Lie systems and
enables us to derive integrability conditions for differential equations from a unified
point of view.

Consequently, the theory of quasi-Lie schemes and the Generalised Lie Theorem rep-
resent powerful methods to study first- and higher-order differential equations.
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7.2. Generalised flows and t-dependent vector fields. Recall that a nonautonomous
system of first-order ordinary differential equations on Rn is represented in modern dif-
ferential geometric terms by a t-dependent vector field X = X(t, x) on such a space. On
a noncompact manifold, the vector field Xt(x) = X(t, x), for a fixed t, is generally not
defined globally, but it is well defined on a neighbourhood of every point x0 ∈ Rn for
sufficiently small t. It is convenient to add the variable t to the manifold and to consider
the autonomisation of our system, i.e. the vector field

X(t, x) =
∂

∂t
+X(t, x),

defined on a neighbourhood UX of {0}×Rn in R×Rn. The vector field Xt is then defined
on the open set of Rn,

UXt = {x0 ∈ Rn | (t, x0) ∈ UX},

for all t ∈ R. If UXt = Rn for all t ∈ R, we speak about a global t-dependent vector field.
The system of differential equations associated with the t-dependent vector field X(t, x)
is written in local coordinates

dxi

dt
= Xi(t, x), i = 1, . . . , n,

where X(t, x) =
∑n
i=1X

i(t, x)∂/∂xi is locally defined on the manifold for sufficiently
small t.

A solution of this system is represented by a curve s 7→ γ(s) in Rn (integral curve)
whose tangent vector γ̇ at t, so at the point γ(t) of the manifold, equals X(t, γ(t)). In
other words,

γ̇(t) = X(t, γ(t)). (7.1)

It is well-known that, at least for smooth X we work with, for each x0 there is a unique
maximal solution γx0

X (t) of system (7.1) with initial value x0, i.e. satisfying γx0
X (0) = x0.

This solution is defined at least for t’s from a neighbourhood of 0. In case γx0
X (t) is defined

for all t ∈ R, we speak about a global t-solution.
The collection of all maximal solutions of the system (7.1) gives rise to a (local)

generalised flow gX on Rn. By a generalised flow g on Rn we understand a smooth t-
dependent family gt of local diffeomorphisms on Rn, gt(x) = g(t, x), such that g0 = idRn .
More precisely, g is a smooth map from a neighbourhood Ug of {0}×Rn in R×Rn into Rn,
such that gt maps diffeomorphically the open submanifold Ugt = {x0 ∈ Rn | (t, x0) ∈ Ug}
onto its image, and g0 = idRn . Again, for each x0 ∈ Rn there is a neighbourhood Ux0

of x0 in Rn and ε > 0 such that gt is defined on Ux0 for t ∈ (−ε, ε) and maps Ux0

diffeomorphically onto gt(Ux0).
If Ugt = Rn for all t ∈ R, we speak about a global generalised flow. In this case

g : t ∈ R 7→ gt ∈ Diff(Rn) may be viewed as a smooth curve in the diffeomorphism group
Diff(Rn) with g0 = idRn .

Here it is also convenient to autonomise the generalised flow g extending it to a single
local diffeomorphism

g(t, x) = (t, g(t, x)) (7.2)
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defined on a neighbourhood Ug of {0} ×Rn in R×Rn. The generalised flow gX induced
by the t-dependent vector field X is defined by

gX(t, x0) = γx0
X (t). (7.3)

Note that, for g = gX , equation (7.3) can be rewritten in the form

Xt = X(t, x) = ġt ◦ g−1
t . (7.4)

In the above formula, we understand Xt and ġt as maps from Rn into TRn, where ġt(x) is
the vector tangent to the curve s 7→ g(s, x) at g(t, x). Of course, the composition ġt ◦g−1

t ,
called sometimes the right-logarithmic derivative of t 7→ gt, is only defined for those points
x0 ∈ Rn for which it makes sense. But this is always the case for sufficiently small t, at
least locally.

Let us observe that equation (7.4) defines, in fact, a one-to-one correspondence be-
tween generalised flows and t-dependent vector fields modulo the observation that the
domains of ġt ◦ g−1

t and Xt need not coincide. In any case, however, ġt ◦ g−1
t and Xt

coincide in a neighbourhood of any point for sufficiently small t. One can simply say that
the germs of X and ġt ◦ g−1

t coincide, where the germ in our context is understood as the
class of corresponding objects that coincide on a neighbourhood of {0} × Rn in R× Rn.

Indeed, for a given g, the corresponding t-dependent vector field is defined by (7.4).
Conversely, for a given X, the equation (7.4) determines the germ of the generalised flow
g(t, x) uniquely, as for each x = x0 and for small t equation (7.4) implies that t 7→ g(t, x0)
is the solution of the system defined by X with initial value x0. In this way we get the
following.

Theorem 7.1. Equation (7.4) defines a one-to-one correspondence between the germs of
generalised flows and the germs of t-dependent vector fields on Rn.

Any two generalised flows g and h can be composed: by definition (g ◦ h)t = gt ◦ ht,
where, as usual, we view gt ◦ ht as a local diffeomorphism defined for points for which
the composition is defined. It is important to emphasise that in a neighbourhood of any
point it really makes sense for sufficiently small t. As generalised flows correspond to t-
dependent vector fields, this gives rise to an action of a generalised flow h on a t-dependent
vector field X, giving rise to h?X, defined by the equation

gh?X = h ◦ gX . (7.5)

To obtain a more explicit form of this action, let us observe that

(h?X)t =
d(h ◦ gX)t

dt
◦ (h ◦ gX)−1

t = (ḣt ◦ gXt +Dht(ġXt )) ◦ (gX)−1
t ◦ h−1

t ,

and therefore
(h?X)t = ḣt ◦ h−1

t +Dht(ġXt ◦ (gX)−1
t ) ◦ h−1

t ,

i.e.
(h?X)t = ḣt ◦ h−1

t + (ht)∗(Xt), (7.6)

where (ht)∗ is the standard action of diffeomorphisms on vector fields. In a slightly dif-
ferent form, this can be written as an action of t-dependent vector fields on t-dependent
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vector fields:
(gY? X)t = Yt + (gYt )∗(Xt). (7.7)

For global t-dependent vector fields on compact manifolds, this defines a group structure
in global t-dependent vector fields. This is an infinite-dimensional analogue of a group
structure on paths in a finite-dimensional Lie algebra, which has been used as a source
for a nice construction of the corresponding Lie group in [90]. Since every generalised
flow has an inverse, (g−1)t = (gt)−1, the generalised flows, or rather the corresponding
germs, form a group and the formula (7.7) allows us to compute the t-dependent vector
field (right-logarithmic derivative) X−1

t associated with the inverse. It is the t-dependent
vector field

X−1
t = −(gXt )−1

∗ (Xt). (7.8)

For t-independent vector fields, Xt = X0 for all t, we have (gXt )∗X = X and also we get
the well-known formula

X−1 = −X.

Note that, by definition, the integral curves of h?X are of the form ht(γ(t)), where γ(t)
are integral curves of X. We can summarise our observation as follows.

Theorem 7.2. The equation (7.6) defines a natural action of generalised flows on t-
dependent vector fields. This action is a group action in the sense that

(g ◦ h)?X = g?(h?X).

The integral curves of h?X are of the form ht(γ(t)), for γ(t) being an arbitrary integral
curve for X.

The above action of generalised flows on t-dependent vector fields can also be defined
in an elegant way by means of the corresponding autonomisations. Namely it is easy to
check the following.

Theorem 7.3. For any generalised flow h and any t-dependent vector field X on a man-
ifold Rn, the standard action h∗X of the diffeomorphism h (the autonomisation of h) on
the vector field X (the autonomisation of X) is the autonomisation of the t-dependent
vector field h?X:

h∗X = h?X.

7.3. Quasi-Lie systems and schemes. By a quasi-Lie system we understand a pair
(X, g) consisting of a t-dependent vector field X on a manifold Rn (the system) and a
generalised flow g on Rn (the control) such that g?X is a Lie system.

Since for the Lie system g?X we are able to obtain the general solution from a number
of known particular solutions, the knowledge of the control makes it possible to apply a
similar procedure for our initial system. Indeed, let Φ = Φ(x1, . . . , xm; k1, . . . , kn) be a su-
perposition function for the Lie system g?X, so that, knowing m solutions x̄(1), . . . , x̄(m),

of g?X, we can derive the general solution of the form

x̄(0) = Φ(x̄(1), . . . , x̄(m); k1, . . . , kn).
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If we now know m independent solutions, x(1), . . . , x(m), of X, then, according to Theo-
rem 7.3, x̄a(t) = gt(xa(t)) are solutions of g?X, producing a general solution of g?X in
the form Φ(x̄(1), . . . , x̄(m); k1, . . . , kn). It is now clear that

x(0)(t) = g−1
t ◦ Φ(gt(x(1)(t)), . . . , gt(x(m)(t)); k1, . . . , kn) (7.9)

is a general solution of X. In this way we have obtained a t-dependent superposition rule
for the system X. We can summarise the above considerations as follows.

Theorem 7.4. Any quasi-Lie system (X, g) admits a t-dependent superposition rule of
the form (7.9), where Φ is a superposition function for the Lie system g?X.

Of course, the above t-dependent superposition rule is practically useless for finding
the general solution of a system X unless the generalised flow g is explicitly known.
An alternative abstract definition of a quasi-Lie system as a t-dependent vector field
X for which there exists a generalised flow g such that g?X is a Lie system does not
make much sense, as every X would be a quasi-Lie system in this context. For instance,
given a t-dependent vector field X, the pair (X, (gX)−1) is a quasi-Lie system because
(gX)−1

t ◦ gXt = idRn , thus (gX)−1
? X = 0, which is a Lie system trivially. On the other

hand, finding (gX)−1 is nothing but solving our system X completely, so we just reduce
to our original problem. In practice, it is therefore crucial that the control g comes from
a system which can be effectively integrated. There are, however, many cases when our
procedure works and provides a geometrical interpretation of many ad hoc methods of
integration. Consider, for instance, the following scheme that can lead to ‘nice’ quasi-Lie
systems.

Take a finite-dimensional real vector space V of vector fields on Rn and consider the
family V (R) of all t-dependent vector fields X on Rn such that Xt belongs to V on its
domain, i.e. Xt ∈ V|UXt or, for short, X ∈ V (R). We will say that these t-dependent
vector fields take values in V . The t-dependent vector fields of V (R) depend on a finite
family of control functions. For example, take a basis {X1, . . . , Xr} of V and consider a
general t-dependent system with values in V determined by b = b(t) = (b1(t), . . . , br(t))
as

(Xb)t =
r∑

α=1

bα(t)Xα.

On the other hand, the nonautonomous systems of differential equations associated with
X ∈ V |UXt are not Lie systems in general, if V is not a Lie algebra itself. If we additionally
have a finitely parametrised family of local diffeomorphisms, say g = g(a1, . . . , ak), then
any curve a = a(t) = (a1(t), . . . , ak(t)) in the control parameters, defined for small t,
gives rise to a generalised flow gat = g(a(t)). Let us additionally assume that there is a
Lie algebra V0 of vector fields contained in V . We can look for control functions a(t) such
that for certain b(t), ga?Xb has values in V0 for each t. We then write

ga?X
b ∈ V0(R). (7.10)

Consequently, each pair (Xb, ga) becomes a quasi-Lie system and we can get a t-dependent
superposition rule for the corresponding system Xb.
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Let us observe that in the case when all the generalised flows ga preserve V , i.e.
for each t-dependent vector field Xb ∈ V (R) also ga?X

b ∈ V (R), the inclusion (7.10)
becomes a differential equation for the control functions a(t) in terms of the functions
b(t). This situation is not as rare as it may seem at first sight. Suppose, for instance,
that we find a Lie algebra W ⊂ V such that [W,V ] ⊂ V and that the t-dependent vector
fields with values in W can be effectively integrated to generalised flows. In this case, any
t-dependent vector field Y a with values in W gives rise to a generalised flow ga which,
in view of the transformation rule (7.7), preserves the set of t-dependent vector fields
with values in V . For each b = b(t) the inclusion (7.10) becomes therefore a differential
equation for the control function a = a(t) which can often be effectively solved.

Definition 7.5. LetW,V be finite-dimensional real vector spaces of vector fields on Rn.
We say that they form a quasi-Lie scheme S(W,V ) if the following conditions are satisfied:

1. W is a vector subspace of V .
2. W is a Lie algebra of vector fields, i.e. [W,W ] ⊂W .
3. W normalises V , i.e. [W,V ] ⊂ V .

If V is a Lie algebra of vector fields, we simply call the quasi-Lie scheme S(V, V ) a Lie
scheme S(V ).

Note 7.6. Although the normaliser of V in V is the largest Lie algebra of vector fields
that we can use as W , for practical purposes it is sometimes useful to consider smaller
Lie subalgebras.

Definition 7.7. We define the group of the scheme S(W,V ) to be the group G(W ) of
generalised flows corresponding to the t-dependent vector fields with values in W .

Main Theorem 7.8 (Main property of a scheme). Given a quasi-Lie scheme S(W,V ),
we have g?X ∈ V (R) for every t-dependent vector field X ∈ V (R) and each generalised
flow g ∈ G(W ).

This is obvious and follows directly from the fact that if gY is the generalised flow of
a t-dependent vector field Y ∈ W (R) and X takes values in V , then, according to the
formula (7.7), gY? X takes values in V as well, as [W,V ] ⊂ V and V is finite-dimensional.

In some applications, it turns out to be interesting to use a more general class of
transformations than those described by G(W ). Nevertheless, such transformations keep
the main property of the generalised flows G(W ), namely, for a given scheme S(W,V )
they transform elements of V (R) into elements of this space.

Recall that given a Lie algebra of vector fields W ⊂ X(Rn), there always exists, at
least locally in Rn, a group action Φ : G×U → U , with G a Lie group with Lie algebra g,
whose fundamental vector fields are those of W (cf. [144] and Section 1.2). For simplicity,
we shall suppose, as usual, that this action is globally defined on Rn, and we will write
Φ : G × Rn → Rn and define the restriction map Φg : x ∈ Rn 7→ Φg(x) = Φ(g, x) ∈ Rn
for every g ∈ G.

Lemma 7.9. Given a scheme S(W,V ), an element g ∈ exp(g), and a vector field X ∈
V (R), we have Φg∗X ∈ V (R).



118 J. F. Cariñena and J. de Lucas

Proof. As g ∈ exp(g), there exists an element a ∈ g such that g = exp(a). Consider the
curve h : s ∈ [0, 1] 7→ exp(sa) ∈ G. By means of the action Φ : G × Rn → Rn, whose
fundamental vector fields are the Lie algebra W of vector fields, the curve h(s) induces
the generalised flow hYs : x ∈ Rn 7→ Φ(exp(s a), x) ∈ Rn of the vector field

Y (x) =
∂

∂s

∣∣∣∣
s=0

hYs (x) =
∂

∂s

∣∣∣∣
s=0

Φ(exp(sa), x)

and, obviously, Y ∈W . Taking into account the relation [1, p. 91]

∂

∂s
hY−s∗X = hY−s∗[Y,X],

we define, for each s, the vector field Z(0)
−s = hY−s∗X to get

(hY−s∗X)x = Xx +
∫ s

0

∂

∂s′
Z

(0)
−s′(x) ds′ = Xx +

∫ s

0

(hY−s′∗[Y,X])x ds′.

If we set Z(1)
−s = hY−s∗([Y,X]) and apply the above expression to [Y,X], we get

(hY−s∗[Y,X])x = [Y,X]x +
∫ s

0

∂

∂s′
Z

(1)
−s′(x) ds′ = [Y,X]x +

∫ s

0

(hY−s′∗[Y, [Y,X]])x ds′.

Defining Z(k)
−s in an analogous way and applying all these results to the initial formula

for hY−s∗X we obtain

(hY−s∗X)x = Xx + [Y,X]xs+
1
2!

[Y, [Y,X]]xs2 +
1
3!

[Y, [Y, [Y,X]]]xs3 + · · · .

From the properties of the scheme, we see that each term belongs to V (R), i.e.

[Y, [Y, . . . , [Y,X] . . .]] ∈ V (R),

and therefore
Φg∗X = hY1∗X ∈ V (R).

Note that every curve g(t) in G determines a diffeomorphism on R× Rn of the form
Φg(t) : (t, x) ∈ R×Rn 7→ (t,Φg(t)x) ∈ R×Rn. Therefore, given a t-dependent vector field
X ∈ Xt(Rn) and a curve g(t), this curve transforms X into a new vector field X ′ such
that X ′ = Φg(t)X. For simplicity, we denote X ′ = g?X and gt : x ∈ Rn 7→ Φg(t)x ∈ Rn.
Obviously, as in (7.6), we have (g?X)t = ġt ◦ g−1

t + gt∗(X) and the set of curves in G is
an infinite-dimensional group acting on Xt(Rn).

Proposition 7.10. Given a scheme S(W,V ), a curve g(t) in G, and a t-dependent vector
field X ∈ V (R), we have g?X ∈ V (R).

Proof. As formula (7.6) remains valid for the action of curves g(t) included in exp(g),
proving that g?X belongs to V (R) can be reduced to checking that the corresponding
terms ġt ◦ g−1

t and gt∗X are in V (R). On one hand, ġt ◦ g−1
t ∈ W (R) ⊂ V (R) and,

by Lemma 7.9, gt∗X ∈ V (R) for each t. Consequently, g?X ∈ V (R). Since every curve
g(t) ⊂ G decomposes as a product g = g1 · . . . · gp of curves gj ⊂ exp(g) with j = 1, . . . , p,
it follows that g?X ∈ V (R) for every curve g(t) ⊂ G.
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Definition 7.11. Given a scheme S(W,V ), we define the symmetry group of the scheme,
Sym(W ), to be the set of t-dependent transformations Φg(t) induced by the curves g(t)
in G and an action Φ associated with the Lie algebra W of vector fields.

In order to simplify the notation, we denote the t-dependent transformation Φg(t) just
by g.

Definition 7.12. Given a quasi-Lie scheme S(W,V ) and a t-dependent vector field
X∈V (R), we say that X is a quasi-Lie system with respect to S(W,V ) if there exists a t-
dependent transformation g∈Sym(W ) and a Lie algebra of vector fields V0 ⊂ V such that

g?X ∈ V0(R).

We emphasise that if X is a quasi-Lie system with respect to the scheme S(W,V ), it
automatically admits a t-dependent superposition rule (7.9).

7.4. t-dependent superposition rules. Minor modifications in the geometric approach
to Lie systems detailed in Section 1.5 allow us to derive a new theory, based on the Lie
family concept, in order to treat a much larger family of systems of differential equations
including Lie and quasi-Lie systems. Roughly speaking, Lie families are sets of systems
of differential equations admitting a common superposition rule with t-dependence. This
theory clearly generalises the superposition rule notion and provides a characterisation,
described by the Generalised Lie Theorem, of families of systems admitting such a prop-
erty. Next, we provide a brief description of this theory and summarise its main results.
For further details, see [35].

Consider the family of nonautonomous systems of first-order ordinary differential
equations on Rn, parametrised by the elements d of a set Λ, of the form

dxi

dt
= Y id (t, x), i = 1, . . . , n, d ∈ Λ. (7.11)

describing the integral curves of the family of t-dependent vector fields {Yd}d∈Λ given by

Yd(t, x) =
n∑
i=1

Y id (t, x)
∂

∂xi
.

Let us state the fundamental concept to be studied along this section:

Definition 7.13. We say that the family of nonautonomous systems (7.11) admits a
common t-dependent superposition rule if there exists a map Φ : R×Rn(m+1) → Rn, i.e.

x = Φ(t, x(1), . . . , x(m); k1, . . . , kn), (7.12)

such that the general solution, x(t), of any system Yd of the family (7.11) can be written,
at least for sufficiently small t, as

x(t) = Φ(t, x(1)(t), . . . , x(m)(t); k1, . . . , kn),

with {x(a)(t) | a = 1, . . . ,m} being any generic family of particular solutions of Yd and
the set {k1, . . . , kn} being n arbitrary constants associated with each particular solution.
A family of systems (7.11) admitting a common t-dependent superposition is called a Lie
family.
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Definition 7.14. Given a t-dependent vector field Y =
∑n
i=1 Y

i(t, x)∂/∂xi on Rn, we
define its prolongation to R× Rn(m+1) as the vector field on R× Rn(m+1) given by

Y ∧(t, x(0), . . . , x(m)) =
m∑
a=0

n∑
i=1

Y i(t, x(a))
∂

∂xi(a)

,

and its autonomisation, Ỹ , as the vector field on R× Rn(m+1) of the form

Ỹ (t, x(0), . . . , x(m)) =
∂

∂t
+

m∑
a=0

n∑
i=1

Y i(t, x(a))
∂

∂xi(a)

.

The Implicit Function Theorem states that, given a common t-dependent superposi-
tion rule Φ : R× Rn(m+1) → Rn of a Lie family {Yd}d∈Λ, the map Φ(t, x(1), . . . , x(m); ) :
Rn → Rn, given by x(0) = Φ(t, x(1), . . . , x(m); k), can be inverted to give rise to a map
Ψ : R× Rn(m+1) → Rn given by

k = Ψ(t, x(0), . . . , x(m)),

with k = (k1, . . . , kn) being the only point in Rn such that

x(0) = Φ(t, x(1), . . . , x(m); k).

As the fundamental property of the map Ψ says that Ψ(t, x(0)(t), . . . , x(m)(t)) is constant
for any (m + 1)-tuple of particular solutions of any system of the family (7.11), the
foliation determined by Ψ is invariant under the permutation of its m + 1 arguments
{x(a) | a = 0, . . . ,m} and differentiating the preceding expression we get

∂Ψj

∂t
+

m∑
a=0

n∑
i=1

Y id (t, x(a)(t))
∂Ψj

∂xi(a)

= 0, j = 1, . . . , n, d ∈ Λ, (7.13)

with Ψ = (Ψ1, . . . ,Ψn).
The relation (7.13) shows that the functions of the set {Ψi | i = 1, . . . , n} are first

integrals for the vector fields Ỹd, that is, ỸdΨi = 0 for i = 1, . . . , n. Therefore, they
generically define an n-codimensional foliation F on R × Rn(m+1) such that the vector
fields Ỹd are tangent to the leaves Fk of this foliation for k ∈ Rn.

The foliation F has another important property. Given the level set Fk of the map Ψ
corresponding to k = (k1, . . . , kn) ∈ Rn and a generic point (t, x(1), . . . , x(m)) of R×Rmn,
there is only one point x(0) ∈ Rn such that (t, x(0), x(1), . . . , x(m)) ∈ Fk. Then, the
projection onto the last m · n coordinates and the time,

π : (t, x(0), . . . , x(m)) ∈ R× Rn(m+1) 7→ (t, x(1), . . . , x(m)) ∈ R× Rnm,

induces local diffeomorphisms on the leaves Fk of F into R× Rnm.
This property can also be seen as the fact that the foliation F corresponds to a zero

curvature connection ∇ on the bundle π : R×Rn(m+1) → R×Rnm. Indeed, the restriction
of the projection π to a leaf gives a one-to-one map. In this way, we get a linear map
from vector fields on R× Rnm to ‘horizontal’ vector fields tangent to a leaf.

Note that the knowledge of this connection (foliation) gives us the common t-depen-
dent superposition rule without referring to the map Ψ. If we fix the point x(0)(0) and
m particular solutions x(1)(t), . . . , x(m)(t) for a system of the family, then x(0)(t) is the
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unique curve in Rn such that

(t, x(0)(t), x(1)(t), . . . , x(m)(t)) ∈ R× Rnm

belongs to the same leaf as the point (0, x(0)(0), x(1)(0), . . . , x(m)(0)). Thus, it is only
the foliation F that really matters when the common t-dependent superposition rule is
concerned.

On the other hand, if we have a zero curvature connection ∇ on the bundle

π : R× Rn(m+1) → R× Rnm,

i.e. if we have an involutive horizontal distribution ∇ on R × Rn(m+1) that can be inte-
grated to give a foliation F on R×Rn(m+1) and such that the vector fields Ỹd are tangent
to the leaves of the foliation, then the procedure described above determines a common
t-dependent superposition rule for the family of nonautonomous systems of first-order
differential equations (7.11).

Indeed, let k ∈ Rn enumerate smoothly the leaves Fk of F, i.e. there exists a smooth
map ι : Rn → R× Rn(m+1) such that ι(Rn) intersects every Fk in a unique point. Then,
if x(0) ∈ Rn is the unique point such that

(t, x(0), x(1), . . . , x(m)) ∈ Fk,

this fact gives rise to a t-dependent superposition rule

x(0) = Φ(t, x(1), . . . , x(m); k)

for the family of nonautonomous systems of first-order ordinary differential equations
(7.11). To see this, let us observe that the Implicit Function Theorem shows that there
exists a function Ψ : R× Rn(m+1) → R such that

Ψ(t, x(0), . . . , x(m)) = k,

which is equivalent to saying that (t, x(0), . . . , x(m)) ∈ Fk. If we fix a k ∈ Rn and take
solutions x(1)(t), . . . , x(m)(t) of a particular instance of (7.11), then x(0)(t) defined by the
condition Ψ(t, x(0)(t), . . . , x(m)(t)) = k also satisfies that instance. Indeed, let x′(0)(t) be
the solution with initial value x′(0)(0) = x(0). Since the vector fields Ỹd are tangent to F,
the curve

t 7→ (t, x(0)(t), x(1)(t), . . . , x(m)(t))

lies entirely in a leaf of F, so in Fk. But the point of one leaf is entirely determined by its
projection π, so x′(0)(t) = x(0)(t) and x(0)(t) is a solution.

Proposition 7.15. Giving a t-dependent superposition rule (7.12) for a family of systems
of differential equations (7.11) is equivalent to giving a zero curvature connection on the
bundle π : R× R(m+1)n → R× Rnm for which the Ỹd are ‘horizontal’ vector fields.

In general it is difficult to determine whether a family of differential equations admits a
common t-dependent superposition rule by means of the above proposition. It is therefore
of interest to find a characterisation of Lie families by a more convenient criterion, e.g.
through an easily verifiable condition based on the properties of the t-dependent vector
fields {Ya}a∈Λ. Finding such a criterion is the main result of the theory of Lie families. It
is formulated as the Generalised Lie Theorem and based on the lemmas given below. The
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first two are straightforward, and a complete detailed proof for the third can be found
in [35].

Lemma 7.16. Given two t-dependent vector fields X and Y on Rn, the commutator [X̃, Ỹ ]
on R× Rn(m+1) is the prolongation of a t-dependent vector field Z on Rn, [X̃, Ỹ ] = Z∧.

Lemma 7.17. Given a family of t-dependent vector fields X1, . . . , Xr on Rn, their au-
tonomisations satisfy the relations

[X̄j , X̄k](t, x) =
r∑
l=1

fjkl(t)X̄l(t, x), j, k = 1, . . . , r,

for some t-dependent functions fjkl : R → R, if and only if their t-prolongations to
R× Rn(m+1), X̃1, . . . , X̃r, obey analogous relations

[X̃j , X̃k](t, x) =
r∑
l=1

fjkl(t)X̃l(t, x), j, k = 1, . . . , r.

Moreover,
∑r
l=1 fjkl(t) = 0 for all j, k = 1, . . . , r.

Lemma 7.18. Consider a family of t-dependent vector fields Y1, . . . , Yr with t-prolonga-
tions Ỹ1, . . . , Ỹr to R×Rn(m+1) such that their projections π∗(Ỹj) are linearly independent
at a generic point in R× Rnm. Then

∑r
j=1 bj Ỹj with bj ∈ C∞(R× Rnm) is of the form

Y ∧ (resp. Ỹ ) for a t-dependent vector field Y on Rn if and only if the functions bj only
depend on the variable t, that is, bj = bj(t), and

∑r
j=1 bj = 0 (resp.,

∑r
j=1 bj = 1).

Main Theorem 7.19 (Generalised Lie Theorem). The family of systems (7.11) admits
a common t-dependent superposition rule if and only if the vector fields {Y d}d∈Λ can be
written in the form

Y d(t, x) =
r∑

α=1

bdα(t)Xα(t, x), d ∈ Λ,

where bdα are functions of the single variable t such that
∑r
α=1 bdα = 1 and X1, . . . , Xr

are t-dependent vector fields satisfying

[Xα, Xβ ](t, x) =
r∑

γ=1

fαβγ(t)Xγ(t, x), α, β = 1, . . . , r, (7.14)

for certain functions fαβγ : R→ R.

The name of the above theorem comes from the following proposition, which shows
that each Lie system can be embedded into a Lie family. In order to formulate this result,
let us denote by Sg(W,V ;V0) the set of quasi-Lie systems of the scheme S(W,V ) such
that there exists a g satisfying that g?X ∈ V0(R) with V0 a Lie algebra of vector fields
included in V . Again, a complete proof of this proposition can be found in [35].

Proposition 7.20. The family Sg(W,V ;V0) of quasi-Lie systems is a Lie family admit-
ting the common t-dependent superposition rule of the form

Φ̄g(t, x(1), . . . , x(m), k) = g−1
t ◦ Φ(gt(x(1), . . . , gt)x(m), k)

for any t-independent superposition rule Φ associated with the Lie algebra of vector fields
V0 by the Lie Theorem.
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8. Applications of quasi-Lie schemes and Lie families

The theory of quasi-Lie schemes and quasi-Lie systems [34] and the theory of Lie fam-
ilies [35] can be used to investigate a very large set of differential equations, including
nonlinear oscillators [34], dissipative Milne–Pinney equations [34, 35, 45], second-order
Riccati equations [48], Abel equations [35], Emden equations [34, 42], etc. As we showed
in the previous section, these theories enable us to obtain t-dependent superposition rules,
constants of motion, exact solutions, integrability conditions, etc. The main aim in this
chapter is to show that the possibilities of application of these methods are very wide
and we can obtain a large set of results from a unified point of view.

More exactly, in previous sections it was proved that Milne–Pinney could be studied
by means of the theory of Lie systems (see also [43]). Nevertheless, there exist dissipative
Milne–Pinney equations that cannot be studied directly through this theory. In this
section, we provide a quasi-Lie scheme to treat these dissipative Milne–Pinney equations.
We use this quasi-Lie scheme to relate these equations to usual Milne–Pinney equations.
By means of this relation, we obtain a t-dependent superposition rule for dissipative
Milne–Pinney equations.

Apart from dissipative Milne–Pinney equations, we also investigate nonautonomous
nonlinear oscillators. We show that some of them can be transformed into autonomous
nonlinear oscillators. This result was already derived by Perelomov [180], but here we
recover it from a more general point of view. More specifically, we show that the nonau-
tonomous nonlinear oscillators analysed by Perelomov can be seen as differential equations
obeying an integrability condition derived by means of a quasi-Lie scheme.

As a last application of quasi-Lie schemes, we extensively analyse Emden equations.
We provide a quasi-Lie scheme to obtain t-dependent constants of motion by means of
particular solutions that obey an integrability condition. The method developed also
enables us to obtain Emden equations with a fixed t-dependent constant of motion.
Kummer–Liouville transformations are also obtained by means of our scheme and many
other properties are recovered.

Finally, in the last two sections of this chapter, we apply common t-dependent su-
perposition rules to study some first- and second-order differential equations. In this
way, we can analyse equations which cannot be studied by means of the usual theory
of Lie systems. Additionally, some new results on Abel and Milne–Pinney equations are
provided.

8.1. Dissipative Milne–Pinney equations. In this section, we study the so-called
dissipative Milne–Pinney equations. We show that the first-order ordinary differential
equations associated with these second-order equations in the usual way, i.e. by consid-
ering velocities as new variables, are not Lie systems. However, the theory of quasi-Lie
schemes can be used to deal with such first-order systems. Here we provide a scheme which
enables us to transform a certain kind of dissipative Milne–Pinney equations, considered
as first-order systems, into some first-order Milne–Pinney equations already studied by
means of the theory of Lie systems [53]. As a result we get a t-dependent superposition
rule for some of these dissipative Milne–Pinney equations.
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Consider the family of dissipative Milne–Pinney equations of the form

ẍ = a(t)ẋ+ b(t)x+ c(t)
1
x3
. (8.1)

We are mainly interested in the case c(t) 6= 0, so we assume that c(t) has a constant
sign for the set of values of t that we analyse.

Usually, we associate to such a second-order differential equation a system of first-
order differential equations with a new variable v, ẋ = v,

v̇ = a(t)v + b(t)x+ c(t)
1
x3
.

(8.2)

Let us search for a quasi-Lie scheme to handle the above system. Remember that we
need to find linear spaces WDisM and VDisM of vector fields such that

1. WDisM ⊂ VDisM.
2. [WDisM,WDisM] ⊂WDisM.
3. [WDisM, VDisM] ⊂ VDisM.

Also, in order to treat system (8.2) through this scheme, we have to ensure that the
t-dependent vector field

Xt = v
∂

∂x
+
(
a(t)v + b(t)x+

c(t)
x3

)
∂

∂v
,

whose integral curves are solutions for (8.2), is such that Xt ∈ VDisM for every t in an
open interval of R.

Consider the vector space VDisM spanned by the vector fields

X1 = v
∂

∂v
, X2 = x

∂

∂v
, X3 =

1
x3

∂

∂v
, X4 = v

∂

∂x
, X5 = x

∂

∂x

and the two-dimensional vector subspace WDisM ⊂ VDisM generated by

Y1 = X1 = v
∂

∂v
, Y2 = X2 = x

∂

∂v
.

It can be seen that WDisM is a Lie algebra,

[Y1, Y2] = −Y2,

and, additionally, as

[Y1, X3] = −X3, [Y1, X4] = X4, [Y1, X5] = 0,

[Y2, X3] = 0, [Y2, X4] = X5 −X1, [Y2, X5] = −X2,

the linear space VDisM is invariant under the action of the Lie algebra WDisM on VDisM,
i.e. [WDisM, VDisM] ⊂ VDisM. Thus, the vector spaces

VDisM = 〈X1, . . . , X5〉 and WDisM = 〈Y1, Y2〉

of vector fields form a quasi-Lie scheme S(WDisM, VDisM). Let us observe that

Xt = a(t)X1 + b(t)X2 + c(t)X3 +X4

and thus X ∈ VDisM(R).
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We stress that the vector space VDisM is not a Lie algebra, because the commutator
[X3, X4] does not belong to VDisM. Moreover, V ′′ = 〈X1, . . . , X4〉 is not a Lie algebra for
a similar reason: [X3, X4] /∈ V ′′. Additionally, there exists no finite-dimensional real Lie
algebra V ′ containing V ′′. Thus, (8.2) is not a Lie system, but we can use the quasi-Lie
scheme S(WDisM, VDisM) to investigate it.

The key tool provided by the scheme S(WDisM, VDisM) is the infinite-dimensional
group G(WDisM) of generalised flows for the t-dependent vector fields with values in W ,
i.e. α1(t)Y1 + α2(t)Y2, which leads to the group of t-dependent changes of variables

G(WDisM) =
{
g(α(t), β(t)) =

{
x = x′

v = α(t)v′ + β(t)x′

∣∣∣∣α(t) > 0, β(0) = 0, α(0) = 1
}
.

According to the general theory of quasi-Lie schemes, these t-dependent changes of vari-
ables enable us to transform system (8.2) into a new one taking values in VDisM,

X ′t = a′(t)X1 + b′(t)X2 + c′(t)X3 + d′(t)X4 + e′(t)X5. (8.3)

The new coefficients are

a′(t) = a(t)− β(t)− α̇(t)
α(t)

,

b′(t) =
b(t)
α(t)

+ a(t)
β(t)
α(t)

− β2(t)
α(t)

− β̇(t)
α(t)

,

c′(t) =
c(t)
α(t)

,

d′(t) = α(t),

e′(t) = β(t).

The integral curves for the t-dependent vector field (8.3) are solutions of the system

dx′

dt
= β(t)x′ + α(t)v′,

dv′

dt
=
(
b(t)
α(t)

+ a(t)
β(t)
α(t)

− β2(t)
α(t)

− β̇(t)
α(t)

)
x′

+
(
a(t)− β(t)− α̇(t)

α(t)

)
v′ +

c(t)
α(t)

1
x′3

.

(8.4)

As mentioned in Section 7.3, we use schemes to transform the corresponding systems
of first-order differential equations into Lie ones. So, in this case, we must find a Lie
algebra V0 ⊂ VDisM and a generalised flow g ∈ G(WDisM) such that g?X ∈ V0(R). This
leads to a system of ordinary differential equations for the functions α(t), β(t) and some
integrability conditions on the initial functions a(t), b(t) and c(t) for such a t-dependent
change of variables to exist.

In order to find a proper Lie algebra V0 ⊂ V , note that Milne–Pinney equations
studied in [53] are Lie systems in the family of differential equations defined by systems
(8.2) and therefore it is natural to look for conditions needed to transform a given system
of (8.2), described by the t-dependent vector field Xt, into a system of first-order Milne–
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Pinney equations of the form 
ẋ = f(t)v,

v̇ = −ω(t)x+ f(t)
k

x3
,

(8.5)

where k is a constant, i.e. a system describing the integral curves for a t-dependent vector
field with values in the Lie algebra [53]

V0 =
〈
X4 + kX3, X2,

1
2

(X5 −X1)
〉
.

As a result, we get β = 0, α = f and, furthermore, the functions α, a and c must satisfy

kα2 = c, α̇− aα = 0, (8.6)

so c and k have the same sign. The second condition is a differential equation for α and
the first one determines c in terms of α. Therefore, both conditions lead to a relation
between c and a providing the integrability condition

c(t) = k exp
(

2
∫
a(t) dt

)
(8.7)

and showing, in view of (8.4)–(8.6), that

α(t) = exp
(∫

a(t) dt
)

and ω(t) = −b(t) exp
(
−
∫
a(t) dt

)
,

where we choose the constants of integration to get α(0) = 1 as required.
Summarising the preceding results, under the integrability condition (8.7), the first-

order Milne–Pinney equation ẋ = v,

v̇ = a(t)v + b(t)x+ c(t)
1
x3
,

can be transformed into the system
dx′

dt
= exp

(∫
a(t) dt

)
v′,

dv′

dt
= b(t) exp

(
−
∫
a(t) dt

)
x′ + exp

(∫
a(t) dt

)
k

x′3
,

by means of the t-dependent change of variables

g

(
exp
(∫

a(t) dt
)
, 0
)

=

x′ = x,

v′ = exp
(∫

a(t) dt
)
v.

We stress that this change of variables is a particular instance of the so-called Liouville
transformation [164].

The final Milne–Pinney equation can be rewritten through the t-reparametrisation

τ(t) =
∫

exp
(∫

a(t) dt
)
dt,
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as 
dx′

dτ
= v′,

dv′

dτ
= exp

(
−2
∫
a(t) dt

)
b(t(τ))x′ +

k

x′3
.

These systems were analysed in [50], where it was shown through the theory of Lie systems
that they admit the constant of motion

I = (x̄v′ − v̄x′)2 + k

(
x̄

x′

)2

,

where (x̄, v̄) is a solution of the system
dx̄

dτ
= v̄,

dv̄

dτ
= exp

(
−2
∫
a(t) dt

)
b(t)x̄,

which can be written as a second-order differential equation

d2x̄

dτ2
= exp

(
−2
∫
a(t) dt

)
b(t)x̄.

If we invert the t-reparametrisation, we obtain the equation

¨̄x− a(t) ˙̄x− b(t)x̄ = 0, (8.8)

which is the linear differential equation associated with the initial Milne–Pinney equation.
As shown in [53], we can obtain, by means of the theory of Lie systems, the following

superposition rule:

x′ =
√

2
|x̄1v̄2 − v̄1x̄2|

(I2x̄2
1 + I1x̄

2
2 ±

√
4I1I2 − k(x̄1v̄2 − v̄1v̄2)2 x̄1x̄2)1/2,

and as the t-dependent transformation performed does not change the variable x, we get
the t-dependent superposition rule

x =
√

2α(t)
|x̄1 ˙̄x2 − ˙̄x1x̄2|

(
I2x̄

2
1 + I1x̄

2
2 ±

√
4I1I2 −

k

α2(t)
(x̄1 ˙̄x2 − ˙̄x1x̄2)2 x̄1x̄2

)1/2

,

in terms of a set of solutions of the second-order linear system (8.8).
Summing up, application of our scheme to the family of dissipative Milne–Pinney

equations

ẍ = a(t)ẋ+ b(t)x+ exp
(

2
∫
a(t) dt

)
k

x3

shows that this family admits a t-dependent superposition rule

x =
√

2α(t)
|y1ẏ2 − y2ẏ1|

(
I2y

2
1 + I1y

2
2 ±

√
4I1I2 −

k

α2(t)
(y1ẏ2 − y2ẏ1)2 y1y2

)1/2

,

in terms of two independent solutions y1, y2 of the differential equation

ÿ − a(t)ẏ − b(t)y = 0.
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So, we have fully detailed a particular application of the theory of quasi-Lie schemes to
dissipative Milne–Pinney equations. As a result, we provide a t-dependent superposition
rule for a family of such systems. Another paper with such an approach to dissipative
Milne–Pinney equations and explaining some of their properties is [45].

8.2. Nonlinear oscillators. As a second application of our theory, we use quasi-Lie
schemes to deal with a certain kind of nonlinear oscillators. The main objective of this
section is to explain several properties of a family of t-dependent nonlinear oscillators
studied by Perelomov in [180]. We also furnish a new, as far as we know, constant of
motion for these systems.

Consider the following subset of the family of nonlinear oscillators investigated in
[180]:

ẍ = b(t)x+ c(t)xn, n 6= 0, 1.

The cases n = 0, 1 are omitted because they can be handled with the usual theory of
Lie systems. As in the section above, we link the above second-order ordinary differential
equation to the first-order system{

ẋ = v,

v̇ = b(t)x+ c(t)xn.
(8.9)

Let us provide a quasi-Lie scheme to deal with systems (8.9). Consider the vector
space VNO spanned by the linear combinations of the vector fields

X1 = x
∂

∂v
, X2 = xn

∂

∂v
, X3 = v

∂

∂x
, X4 = v

∂

∂v
, X5 = x

∂

∂x

on TR and take the vector subspace WNO ⊂ VNO generated by

Y1 = X4 = v
∂

∂v
, Y2 = X1 = x

∂

∂v
, Y3 = X5 = x

∂

∂x
.

Therefore, WNO is a solvable Lie algebra of vector fields,

[Y1, Y2] = −Y2, [Y1, Y3] = 0, [Y2, Y3] = −Y2,

and taking into account that

[Y1, X2] = −X2, [Y1, X3] = X3, [Y2, X2] = 0,

[Y2, X3] = X5 −X4, [Y3, X2] = nX2, [Y3, X3] = −X3,

we see that VNO is invariant under the action of WNO, i.e. [WNO, VNO] ⊂ VNO. In this
way we get the quasi-Lie scheme S(WNO, VNO).

Now, we have to check whether the solutions of system (8.9) are integral curves for a
t-dependent vector field X ∈ VNO(R). For this, note that the system (8.9) describes the
integral curves for the t-dependent vector field

Xt = v
∂

∂x
+ (b(t)x+ c(t)xn)

∂

∂v
,

which can be written as
Xt = b(t)X1 + c(t)X2 +X3. (8.10)
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Note also that [X2, X3] /∈ VNO and V ′′ = 〈X1, X2, X3〉 is not only a Lie algebra of
vector fields, but also there is no finite-dimensional Lie algebra V ′ including V ′′. Thus,
X cannot be considered as a Lie system and we conclude that the first-order nonlinear
oscillator {

ẋ = v,

v̇ = b(t)x+ c(t)xn,

describing integral curves of the t-dependent vector field (8.10) (which is not a Lie system)
can be described by means of the quasi-Lie scheme S(WNO, VNO).

Now, the group G(WNO) of generalised flows associated with S(WNO, VNO) is formed
by the t-dependent transformations

g(α(t), β(t), γ(t)) =

{
x = γ(t)x′,

v = β(t)v′ + α(t)x′,
β(t), γ(t) > 0, β(0) = γ(0) = 1, α(0) = 0.

Let us restrict ourselves to the case α(t) = γ̇(t) and β(t) = 1/γ(t) and apply these
transformations to the system (8.9). The theory of quasi-Lie systems tells us that

g(α(t), β(t), γ(t))?X ∈ VNO(R).

Indeed, these t-dependent transformations lead to the systems
dx′

dt
=

1
γ2(t)

v′,

dv′

dt
= (γ2(t)b(t)− γ̈(t)γ(t))x′ + c(t)γn+1(t)x′n,

(8.11)

which are related to the second-order differential equations

γ2(t)ẍ′ = −2γ(t)γ̇(t)ẋ′ + (γ2(t)b(t)− γ̈(t)γ(t))x′ + c(t)γn+1(t)x′n.

But the theory of quasi-Lie schemes is based on the search of a generalised flow g ∈
G(WNO) such that g?X becomes a Lie system, i.e. there exists a Lie algebra of vector
fields V0 ⊂ VNO such that g?X ∈ V0(R). For instance, we can try to transform a particular
instance of the systems (8.11) into a first-order differential equation associated with a
nonlinear oscillator with a zero t-dependent angular frequency, for example, into the
first-order system 

dx′

dt
= f(t)v′,

dv′

dt
= f(t)c0x′n,

(8.12)

related to the nonlinear oscillator
d2x′

dτ2
= c0x

′n,

with dτ/dt = f(t).
The conditions ensuring such a transformation are

γ(t)b(t)− γ̈(t) = 0, c(t) = c0γ
−(n+3)(t), (8.13)

with f(t) = γ−2
1 (t), where γ1 is a nonvanishing particular solution for γ(t)b(t)− γ̈(t) = 0.

We must emphasise that only particular solutions with γ1(0) = 1 and γ̇1(0) = 0 are
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related to generalised flows in G(WNO). Nevertheless, any other particular solution can
also be used to transform a nonlinear oscillator into a Lie system as we stated. The Lie
system (8.12) is the system associated with the t-dependent vector field

Xt =
1

γ2
1(t)

(
v′

∂

∂x′
+ c0x

′n ∂

∂v′

)
.

By standard methods in the theory of Lie systems [52], we join two copies of the above
system in order to get the first integrals

Ii =
1
2
v′2i −

c0
n+ 1

x′n+1
i , i = 1, 2,

and

I3 =
x′1√
I1

Hyp
(

1
n+ 1

,
1
2
, 1 +

1
n+ 1

,− c0x
′n+1
1

I1(n+ 1)

)
− x′2√

I2
Hyp

(
1

n+ 1
,

1
2
, 1 +

1
n+ 1

,− c0x
′n+1
2

I2(n+ 1)

)
,

where Hyp(a, b, c, d) denotes the corresponding hypergeometric functions. In terms of the
initial variables these first integrals for g?X read

Ii =
1
2

(γ1(t)ẋi − γ̇1(t)xi)2 − c0

γn+1
1 (t)(n+ 1)

xn+1
i , i = 1, 2, (8.14)

and

I3 =
1

γ1(t)

(
x1√
I1

Hyp
(

1
n+ 1

,
1
2
, 1 +

1
n+ 1

,− c0x
n+1
1

γn+1
1 (t)I1(n+ 1)

)
− x2√

I2
Hyp

(
1

n+ 1
,

1
2
, 1 +

1
n+ 1

,− c0x
n+1
2

γn+1
1 (t)I2(n+ 1)

))
. (8.15)

As a particular application of conditions (8.13), we can consider the following example
of [180], where the t-dependent Hamiltonian

H(t) =
1
2
p2 +

ω2(t)
2

x2 + c2γ
−(s+2)
1 (t)xs

with γ1 such that γ̈1(t)+ω2(t)γ1(t) = 0 is studied. The corresponding Hamilton equations
are {

ẋ = p,

ṗ = −sc2γ−(s+2)
1 (t)xs−1 − ω2(t)x,

(8.16)

which are associated with the second-order differential equation for the variable x given
by

ẍ = −sc2γ−(s+2)
1 (t)xs−1 − ω2(t)x. (8.17)

Note that here the variable p plays the same rôle as v in our theoretical development and
the last differential equation is a particular case of our Emden equations with

b(t) = −ω2(t), c(t) = −sc2γ−(s+2)
1 (t), n = s− 1. (8.18)

Let us prove that the above coefficients satisfy the conditions (8.13):

1. By assumption, ω2(t)γ1(t) + γ̈1(t) = 0. As ω2(t) = −b(t), then γ1(t)b(t)− γ̈1(t) = 0.
2. If we fix c0 = −sc2, in view of conditions (8.18), we obtain c(t) = c0γ

−(n+3)
1 (t).
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Therefore, the t-dependent frequency nonlinear oscillator (8.17) can be transformed into
a new one with zero frequency, i.e.

d2x′

dτ2
= −sc2x′s−1,

with

τ =
∫

dt

γ2
1(t)

,

recovering the result of Perelomov [180]. The choice of the t-dependent frequencies is such
that it is possible to transform the initial t-dependent nonlinear oscillator into the final
autonomous nonlinear oscillator. Thus, we recover here such frequencies as a result of an
integrability condition. Moreover, in view of the expressions (8.14), (8.15) and (8.18), we
get a new t-dependent constant of motion for these nonlinear oscillators.

8.3. Dissipative Mathews–Lakshmanan oscillators. In this section we provide a
simple application of the theory of quasi-Lie schemes to the t-dependent dissipative
Mathews–Lakshmanan oscillator

(1 + λx2)ẍ− F (t)(1 + λx2)ẋ− (λx)ẋ2 + ω(t)x = 0, λ > 0. (8.19)

More specifically, we supply some integrability conditions to relate the above dissipative
oscillator to the Mathews–Lakshmanan oscillator [65, 67, 142, 161]

(1 + λx2)ẍ− (λx)ẋ2 + kx = 0, λ > 0, (8.20)

and by means of such a relation we get a new t-dependent constant of motion.
Consider the system of first-order differential equation related to equation (8.19) in

the usual way, i.e. 
ẋ = v,

v̇ = F (t)v +
λxv2

1 + λx2
− ω(t)

x

1 + λx2
,

(8.21)

and determining the integral curves for the t-dependent vector field

Xt =
(
F (t)v +

λxv2

1 + λx2
− ω(t)

x

1 + λx2

)
∂

∂v
+ v

∂

∂x
.

Let us provide a scheme to handle the system (8.21). Consider the vector space V spanned
by the vector fields

X1 = v
∂

∂x
+

λxv2

1 + λx2

∂

∂v
, X2 =

x

1 + λx2

∂

∂v
, X3 = v

∂

∂v
, (8.22)

and the linear space W = 〈X3〉. The commutation relations

[X3, X1] = X1, [X3, X2] = −X2

imply that the linear spaces W,V make up a quasi-Lie scheme S(W,V ). As the t-
dependent vector field Xt reads in terms of the basis (8.22)

Xt = F (t)X3 − ω(t)X2 +X1,

we see that Xt ∈ V (R).
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Integration of X3 shows that

G(W ) =
{
g(α(t)) =

{
x = x′

v = α(t)v′

∣∣∣∣α(t) > 0, α(0) = 1
}
,

and the t-dependent changes of variables related to the controls of G(W ) transform the
system (8.21) into

ẋ′ = α(t)v′,

v̇′ =
(
F (t)− α̇(t)

α(t)

)
v′ − ω(t)

α(t)
x′

1 + λx′2
+ α(t)

λx′v′2

1 + λx′2
.

Suppose that we fix α̇− F (t)α = 0. Then the above becomes
ẋ′ = α(t)v′,

v̇′ = −ω(t)
α(t)

x′

1 + λx′2
+ α(t)

λx′v′2

1 + λx′2
.

Let us try to search conditions ensuring that the above system determines the integral
curves for a t-dependent vector field of the form X(t, x) = f(t)X̄(x) with X̄ ∈ V , e.g.

ẋ′ = f(t)v′,

v̇′ = f(t)
(

x′

1 + λx′2
+

λx′v′2

1 + λx′2

)
.

In such a case, α(t) = f(t), ω(t) = −α2(t) and therefore ω(t) = − exp(2
∫
F (t) dt). The

t-reparametrisation dτ = f(t) dt transforms the previous system into the autonomous one
dx′

dτ
= v′,

dv′

dτ
=

x′

1 + λx′2
+

λx′v′2

1 + λx′2
,

determining the integral curves for the vector field X = X1 + X2 and related to a
Mathews–Lakshmanan oscillator (8.20) with k = 1. The method of characteristics shows,
after brief calculation, that this system has a first integral

I(x′, v′) =
1 + λx′2

1 + λv′2
,

which reads in terms of the initial variables and the variable t as a new t-dependent
constant of motion

I(t, x, v) =
α2(t) + λα2(t)x2

α2(t) + λv2

for the t-dependent dissipative Mathews–Lakshmanan oscillator (8.19).

8.4. The Emden equation. In this and the following sections we analyse, from the
perspective of the theory of quasi-Lie schemes, the so-called Emden equations of the
form

ẍ = a(t)ẋ+ b(t)xn, n 6= 1. (8.23)



Lie systems: theory, generalisations, and applications 133

These equations can be associated with the system of first-order differential equations{
ẋ = v,

v̇ = a(t)v + b(t)xn.
(8.24)

This system was already studied in [34, 42] by means of quasi-Lie schemes. We
summarise some of the results of those papers, which concern the determination of t-
dependent constants of motion by means of particular solutions, reducible particular
cases of Emden equations, etc.

Consider the real vector space VEmd spanned by the vector fields

X1 = x
∂

∂v
, X2 = xn

∂

∂v
, X3 = v

∂

∂x
, X4 = v

∂

∂v
, X5 = x

∂

∂x
.

The t-dependent vector field determining the dynamics of system (8.24) can be written
as a linear combination

Xt = a(t)X4 +X3 + b(t)X2.

Moreover, the linear space WEmd ⊂ VEmd spanned by the complete vector fields

Y1 = X4 = v
∂

∂v
, Y2 = X1 = x

∂

∂v
, Y3 = X5 = x

∂

∂x

is a three-dimensional real Lie algebra of vector fields with respect to the ordinary Lie
bracket:

[Y1, Y2]LB = −Y2, [Y1, Y3]LB = 0, [Y2, Y3]LB = −Y2.

Also [WEmd, VEmd]LB ⊂ VEmd because

[Y1, X2]LB = −X2, [Y1, X3]LB = X3, [Y2, X2]LB = 0,

[Y2, X3]LB = X5 −X4, [Y3, X2]LB = nX2, [Y3, X3]LB = −X3.

So we get a quasi-Lie scheme S(WEmd, VEmd) which can be used to treat the Emden
equations (8.24). This suggests that if we perform the t-dependent change of variables
associated with this quasi-Lie scheme, namely,{

x = γ(t)x′,

v = β(t)v′ + α(t)x′,
γ(t)β(t) > 0, ∀t, (8.25)

the original system transforms into

dx′

dt
=
(
α(t)
γ(t)

− γ̇(t)
γ(t)

)
x′ +

β(t)
γ(t)

v′,

dv′

dt
=
(
a(t)− α(t)

γ(t)
− β̇(t)
β(t)

)
v′ +

α(t)
β(t)

(
a(t)− α(t)

γ(t)
− α̇(t)
α(t)

+
γ̇(t)
γ(t)

)
x′

+
b(t)γn(t)
β(t)

x′n.

(8.26)

The key point of our method is to choose functions α, β and γ in such a way that
(8.26) becomes a Lie system. A possible way to do so is to choose α, β and γ so that the
above system becomes determined by a t-dependent vector field Xt = f(t)X̄, where X̄ is
a true vector field and f(t) is a nonvanishing function (on the interval of t under study).
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As shown in the next section, this cannot always be done and some conditions must be
imposed on α, β and γ. These restrictions lead to integrability conditions.

Suppose, for the time being, that this is the case. Therefore, system (8.26) is
dx′

dt
= f(t)(c11x

′ + c12v
′),

dv′

dt
= f(t)(c22x

′n + cxx
′ + c21v

′)
(8.27)

and it is determined by the t-dependent vector field

Xt = f(t)X̄

with
X̄ = (c11x

′ + c12v
′)
∂

∂x′
+ (c22x

′n + cxx
′ + c21v

′)
∂

∂v′
.

Under the t-reparametrisation

τ =
∫ t

f(t′) dt′,

system (8.27) is autonomous. It is determined by the vector field X̄ on TR and therefore
there exists a first integral. It can be obtained by the method of characteristics, which
provides the characteristic curves where the first integrals for such a vector field X̄ are
constant. These characteristic curves are determined by

dx′

c11x′ + c12v′
=

dv′

c21v′ + cxx′ + c22x′n
,

which can be written as

(c21v
′ + cxx

′ + c22x
′n) dx′ − (c11x

′ + c12v
′) dv′ = 0. (8.28)

This expression can be directly integrated if
∂

∂v′
(c21v

′ + cxx
′ + c22x

′n) = − ∂

∂x′
(c11x

′ + c12v
′), so c21 = −c11. (8.29)

Under this condition we obtain a constant of motion for (8.28), namely

I = −c12
v′2

2
+ cx

x′2

2
+ c21v

′x′ + c22
x′n+1

n+ 1
. (8.30)

Finally, if we write the latter expression in terms of the initial variables x, v and t, we
get a constant of motion for the initial differential equation.

If we do not wish to impose condition (8.29), we can alternatively integrate equation
(8.28) by means of an integrating factor, i.e. we look for a function µ(x′, v′) such that

∂

∂v′
(µ(c21v

′ + cxx
′ + c22x

′n)) =
∂

∂x′
(−µ(c11x

′ + c12v
′)).

Thus the integrating factor satisfies the partial differential equation
∂µ

∂v′
(c21v

′ + cxx
′ + c22x

′n) +
∂µ

∂x′
(c11x

′ + c12v
′) = −µ(c11 + c21).

If c11 + c21 = 0, the integral factor can be chosen to be µ = 1 and we get the first integral
(8.30). On the other hand, if c11 + c21 6= 0, we can still look for a solution to the partial
differential equation for µ and obtain a new first integral.
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8.5. t-dependent constants of motion and particular solutions for Emden equa-
tions. The main purpose of this section is to show that the knowledge of a particular
solution of the Emden equation allows us to transform it into a Lie system and to derive
a t-dependent constant of motion.

If we restrict ourselves to the case α(t) = 0, system (8.26) reduces to
dx′

dt
= − γ̇(t)

γ(t)
x′ +

β(t)
γ(t)

v′,

dv′

dt
=
(
a(t)− β̇(t)

β(t)

)
v′ +

b(t)γn(t)
β(t)

x′n.

(8.31)

In order to transform the original Emden–Fowler differential equation into a Lie sys-
tem by means of our quasi-Lie scheme, we try to write the transformed differential equa-
tion in the form 

dx′

dt
= f(t)(c11x

′ + c12v
′),

dv′

dt
= f(t)(c22x

′n + c21v
′),

(8.32)

where the cij are constants. This system can be reduced to an autonomous one, since
under the t-dependent change of variables

τ =
∫ t

f(t′) dt′,

it becomes 
dx′

dτ
= c11x

′ + c12v
′,

dv′

dτ
= c22x

′n + c21v
′.

(8.33)

In order for system (8.31) to be similar to (8.32), we look for α, β and γ satisfying
f(t)c11 = − γ̇(t)

γ(t)
, f(t)c12 =

β(t)
γ(t)

,

f(t)c22 = b(t)
γn(t)
β(t)

, f(t)c21 = a(t)− β̇(t)
β(t)

.

(8.34)

The conditions in the first line lead to

β(t) = −c12

c11
γ̇(t), (8.35)

and using this equation in the last relation we obtain

f(t) =
a(t)
c21
− 1
c21

γ̈(t)
γ̇(t)

. (8.36)

On the other hand from the three first relations in (8.34) we get

f(t) = −b(t)c11

c22c12

γn(t)
γ̇(t)

. (8.37)

The equality of the right-hand sides of (8.36) and (8.37) leads to

γ̈ = a(t)γ̇ +
c11c21

c22c12
b(t)γn.
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Suppose that we make the choice, with c21 = −c11 as indicated in (8.29),

c22 = −1, c11 = 1, c21 = −1, c12 = 1 (8.38)

and thus (c11c22)/(c21c12) = 1. Therefore we find that γ must be a solution of the initial
equation (8.23). In other words, if we suppose that a particular solution xp(t) of the
Emden equation is known, we can choose γ(t) = xp(t). Then, according to (8.35) and our
choice (8.38), the corresponding function β turns out to be

β(t) = −ẋp(t).

Finally, in view of conditions (8.34), we get

−γ̇(t)
c11γ(t)

= b(t)
γn(t)
c22β(t)

and taking into account (8.38) and γ(t) = xp(t), we obtain the condition satisfied by the
particular solution:

xn+1
p (t) = ẋ2

p(t). (8.39)

The system of differential equations (8.32) for such a choice (8.38) of the constants
{cij | i, j = 1, 2} is the equation for the integral curves of the t-dependent vector field

Xt = f(t)
(

(x′ + v′)
∂

∂x′
− (v′ + x′

n)
∂

∂v′

)
.

The method of characteristics can be used to find the following first integral for this
vector field, in view of (8.30):

I(x′, v′) =


1

n+ 1
x′n+1 +

1
2
v′2 + x′v′, n /∈ {−1, 1},

log x′ +
1
2
v′2 + x′v′, n = −1.

If we express this first integral in terms of the initial variables and t, we obtain a new
t-dependent constant of motion for the initial Emden equation

I(t, x, v) =


xn+1

(n+ 1)xn+1
p (t)

+
v2

2ẋ2
p(t)
− xv

xp(t)ẋp(t)
, n /∈ {−1, 1},

log
(

x

xp(t)

)
+

v2

2ẋ2
p(t)
− xv

xp(t)ẋp(t)
, n = −1.

(8.40)

So, the knowledge of a particular solution for the Emden equation enables us first to obtain
a constant of motion and then to reduce the initial Emden equation to a Lie system. Thus,
all Emden equations are quasi-Lie systems with respect to the above mentioned scheme.

8.6. Applications of particular solutions to study Emden equations. This sec-
tion is devoted to illustrating the usefulness of the previous theory about Emden equa-
tions. More specifically, we detail several Emden equations for which one is able to find a
particular solution satisfying an integrability condition, and we make use of such a solu-
tion to derive t-dependent constants of motion. In this way we recover several results ap-
pearing in the literature about Emden–Fowler equations from a unified point of view [42].
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We start with a particular case of the Lane–Emden equation

ẍ = −2
t
ẋ− x5. (8.41)

The more general Lane–Emden equation is generally written as

ẍ = −2
t
ẋ+ f(x)

and the example here considered corresponds to f(x) = −xn, n 6= 1, which is one of the
most interesting cases, together with that of f(x) = −e−βx. Equation (8.41) appears in
the study of the thermal behaviour of a spherical cloud of gas [135] and also in astrophys-
ical applications. A particular solution for (8.41) satisfying (8.39) is xp(t) = (2t)−1/2.
If we substitute this expression for xp(t) and the corresponding one for ẋp(t) into the
t-dependent constant of motion (8.40), we find that

I ′(t, x, v) =
4t3x6

3
+ 4t3v2 + 4t2xv

is a t-dependent constant of motion proportional to (8.40) and also proportional to the
t-dependent constants of motion found in [11, 34, 158].

We study from this new perspective other Emden equations investigated in [145].
Consider

ẍ = − 5
t+K

ẋ− x2.

A particular solution for this Emden equation satisfying (8.39) is

xp(t) =
4

(t+K)2
.

In this case a t-dependent constant of motion is

I ′(t, x, v) =
1
3
x3(t+K)6 +

1
2
v2(t+K)6 + 2x v(t+K)5,

which is proportional to the one found by Leach in [145].
Another Emden equation found in [145],

ẍ = − 3
2(t+K)

ẋ− x9,

admits the particular solution

xp(t) =
1√

2(t+K)1/4
,

which satisfies (8.39). The corresponding t-dependent constant of motion is given by

I ′(t, x, v) = (K + t)3/2(10(K + t)v2 + 5vx+ 2(K + t)x10)

which is proportional to that given in [145].
Let us turn now to the Emden equation

ẍ = − 5
3(t+K)

ẋ− x7,

which admits the particular solution

xp(t) =
1

31/3(t+K)1/3
,
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which obeys (8.39) and leads to the t-dependent constant of motion

I ′(t, x, v) = (K + t)5/3(12(K + t)v2 + 8vx+ 3x8(K + t)).

Finally we apply our development to obtain a t-dependent constant of motion for the
Emden equation

ẍ = − 1
K1 +K3t

ẋ− xn (8.42)

with

K3 =
n− 1
n+ 3

.

We can find a particular solution of the form

xp(t) =
K2

(K1 +K3t)ν
, ν 6= 0.

In order for xp(t) to be a particular solution we must have the relation

(ν + 1)νK2K
2
3

(K1 +K3t)ν+2
=

νK2K3

(K1 +K3t)ν+2
− Kn

2

(K1 +K3t)nν

and thus
ν + 2 = nν and ν(ν + 1)K2

3K2 = νK2K3 −Kn
2 .

From these equations we get

ν =
2

n− 1
, Kn−1

2 =
22

(n+ 3)2
.

Under these conditions it can be easily verified that ẋ2
p(t) = xn+1

p (t). Thus, a t-dependent
constant of motion is

I ′(t, x, v) = (K1 +K3t)2(n+1)/(n−1)

(
xn+1

n+ 1
+
v2

2

)
+ (K1 +K3t)(n+3)/(n−1) 2vx

n+ 3
, (8.43)

which can also be found in [145].
Another advantage of our method is that it allows us to obtain Emden equations

admitting a preassigned t-dependent constant of motion.
Suppose that we want to construct an Emden equation admitting a given particular

solution xp(t) satisfying ẋ2
p(t) = xn+1

p (t) for certain n ∈ Z − {1,−1}. We can integrate
this equation to get all possible particular solutions which can be used by means of our
method, i.e.

xp(t) =
(
K +

1− n
2

t

)−2/(n−1)

.

We consider functions a(t) and b(t) such that

ẍp = a(t)ẋp + b(t)xnp .

For simplicity, we can assume that b(t) = −1. Then we get

a(t) =
ẍp + xnp
ẋp

.
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If we substitute the chosen particular solution in the above expression, we obtain

a(t) =
3 + n

2(K + 1−n
2 t)

,

which leads to an Emden equation equivalent to (8.42) and the t-dependent constant of
motion for this equation is again (8.43). In this way we recover the cases studied in this
section.

8.7. The Kummer–Liouville transformation for a general Emden–Fowler equa-
tion. As far as we know, the most general form of the Emden–Fowler equation considered
nowadays is

ẍ+ p(t)ẋ+ q(t)x = r(t)xn. (8.44)

This generalisation arises naturally as a consequence of our scheme. Indeed, the above
second-order differential equation is associated with the system of first-order differential
equations {

ẋ = v,

v̇ = −p(t)v − q(t)x+ r(t)xn,
(8.45)

which determines the integral curves for the t-dependent vector field

Xt = −p(t)X4 − q(t)X1 + r(t)X2 +X3.

This vector field is a generalisation of one studied in a previous section. Under the set of
transformations (8.25), the initial system (8.45) becomes

dx′

dt
=
(
α(t)
γ(t)

− γ̇(t)
γ(t)

)
x′ +

β(t)
γ(t)

v′,

dv′

dt
=
(
−p(t)− α(t)

γ(t)
− β̇(t)
β(t)

)
v′ +

α(t)
β(t)

(
−p(t)− α(t)

γ(t)
− α̇(t)
α(t)

+
γ̇(t)
γ(t)

− q(t)γ(t)
α(t)

)
x′

+
r(t)γn(t)
β(t)

x′n.

If we choose α = γ̇, the system reduces to
dx′

dt
=
β(t)
γ(t)

v′,

dv′

dt
=
(
−p(t)− γ̇(t)

γ(t)
− β̇(t)
β(t)

)
v′ +

γ̇(t)
β(t)

(
−p(t)− γ̈(t)

γ̇(t)
− q(t)γ(t)

γ̇(t)

)
x′ +

r(t)γn(t)
β(t)

x′n.

When the function γ(t) is chosen in such a way that γ̈ = −q(t)γ−p(t)γ̇, i.e. γ is a solution
of the associated linear equation, we obtain

dx′

dt
=
β(t)
γ(t)

v′,

dv′

dt
=
(
−p(t)− γ̇(t)

γ(t)
− β̇(t)
β(t)

)
v′ +

r(t)γn(t)
β(t)

x′n.

(8.46)

Finally, if the function β(t) is such that

−p(t)− γ̇(t)
γ(t)

− β̇(t)
β(t)

= 0,
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we obtain 
dx′

dt
=
β(t)
γ(t)

v′,

dv′

dt
=
r(t)γn(t)
β(t)

x′n,

(8.47)

which is related to the second-order differential equation

d2x′

dτ2
= r(t)

γn+1(t)
β2(t)

x′n,

with

τ(t) =
∫ t β(t′)

γ(t′)
dt′.

The new form of the differential equation is called the canonical form of the generalised
Emden–Fowler equation.

This fact is obtained by means of an appropriate Kummer–Liouville transformation in
the literature, but we obtain it here as a straightforward application of the transformation
properties of quasi-Lie schemes, thereby providing a theoretical explanation of such a
Kummer–Liouville transformation.

8.8. Constants of motion for sets of Emden–Fowler equations. In this section
we show that under certain assumptions on the t-dependent coefficients a(t) and b(t) the
original Emden equation can be reduced to a Lie system and then we can obtain a first
integral which provides us with a t-dependent constant of motion for the original system.

In fact consider the system of first-order differential equations
dx′

dt
=
(
α(t)
γ(t)

− γ̇(t)
γ(t)

)
x′ +

β(t)
γ(t)

v′,

dv′

dt
=
(
a(t)− α(t)

γ(t)
− β̇(t)
β(t)

)
v′ +

α(t)
β(t)

(
a(t)− α(t)

γ(t)
− α̇(t)
α(t)

+
γ̇(t)
γ(t)

)
x′ +

b(t)γn(t)
β(t)

x′n.

This system embraces all the systems of differential equations that can be obtained by
means t-dependent transformations we get through the scheme S(WEmd, VEmd). We recall
that the t-dependent change of variable which we use to relate the Emden equation (8.24)
to the last system of differential equations is{

x = γ(t)x′,

v = β(t)v′ + α(t)x′.

As in previous papers on this topic, we try to relate this system of differential equations
to a Lie system determined by a t-dependent vector field of the form X ′(t, x) = f(t)X̄(x)
and we suppose that f(t) does not vanish in the interval under study. So the system of
differential equations determining the integral curves for this t-dependent vector field is
a Lie system and we can use the theory of Lie systems to analyse its properties.
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As a first example, we just use the set of transformations with γ(t) = 1 and α(t) = 0.
In this case system (8.25) is

dx′

dt
= β(t)v′,

dv′

dt
=
(
a(t)− β̇(t)

β(t)

)
v′ +

b(t)
β(t)

x′n.

We fix β(t) such that

a(t)− β̇(t)
β(t)

= 0,

i.e. β(t) is (proportional to)

β(t) = exp
(∫ t

a(t′) dt′
)
.

Therefore we get 
dx′

dt
= exp

(∫ t

a(t′) dt′
)
v′,

dv′

dt
= b(t) exp

(
−
∫ t

a(t′) dt′
)
x′n.

For this system of differential equations to describe the integral curves for a t-dependent
vector field X ′(t, x) = f(t)X̄(x) for a given function a(t), a necessary and sufficient
condition is

b(t) exp
(
−2
∫ t

a(t′) dt′
)

= K,

with K being a real constant. Under this assumption the last system becomes
dx′

dt
= exp

(∫ t

a(t′) dt′
)
v′,

dv′

dt
= exp

(∫ t

a(t′) dt′
)
Kx′n.

We introduce the t-reparametrisation

τ(t) =
∫ t

exp
(∫ t′

a(t′′) dt′′
)
dt′

and the system becomes 
dx′

dτ
= v′,

dv′

dτ
= Kx′n,

which admits a constant of motion

I =
1
2
v′2 −Kx′n+1

n+ 1
.

In terms of the initial variables, the corresponding t-dependent constant of motion is

I = exp
(
−2
∫ t

a(t′) dt′
)(

1
2
ẏ2 − b(t) x

n+1

n+ 1

)
,

which is similar to that found in [16].
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Suppose that we restrict the transformations (8.25) to the case α(t) = 0. In this case
system (8.26) becomes 

dx′

dt
= − γ̇(t)

γ(t)
x′ +

β(t)
γ(t)

v′,

dv′

dt
=
(
a(t)− β̇(t)

β(t)

)
v′ +

b(t)γn(t)
β(t)

x′n.

For this system to determine the integral curves of a t-dependent vector field of the form
X ′(t, x) = f(t)X̄(x) we need that

c11f(t) = − γ̇(t)
γ(t)

, c12f(t) =
β(t)
γ(t)

,

c21f(t) = a(t)− β̇(t)
β(t)

, c22f(t) =
b(t)γn(t)
β(t)

.

(8.48)

From these relations, or more exactly from those of the first row, we get

f(t) = − 1
c11

γ̇(t)
γ(t)

=
1
c12

β(t)
γ(t)

and therefore
γ̇(t) = −c11

c12
β(t).

We choose c11 = −1 and c12 = 1 so that

β(t) = γ̇(t). (8.49)

In view of this and using the third and second relations from (8.48) we get

c21

c12

β(t)
γ(t)

= a(t)− β̇(t)
β(t)

and thus, as a consequence of (8.49), the last differential equation becomes

c21

c12

γ̇(t)
γ(t)

= a(t)− γ̈(t)
γ̇(t)

and, as c12 = 1 and fixing c21 = 1, we obtain
d

dt
log(γ̇γ) = a(t),

which can be rewritten as
1
2
d

dt
γ2(t) = exp

(∫ t

a(t′) dt′
)
.

Hence we have

γ(t) =

√
2
∫ t

exp
(∫ t′

a(t′′) dt′′
)
dt′

and in view of (8.49),

β(t) =
1√

2
∫ t exp(

∫ t′
a(t′′) dt′′) dt′

exp
(∫ t

a(t′) dt′
)
.
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So far we have only used three of the four relations we found. The fourth and second
relations lead to an integrability condition: there exists a constant c22 = K such that

K
β(t)
γ(t)

=
b(t)γn(t)
β(t)

.

Therefore, using the above expressions for γ(t) and β(t), we get

b(t) exp
(
−2
∫ t

a(t) dt′
)(

2
∫ t

exp
(∫ t′

a(t′′) dt′′
))(n+3)/2

= K. (8.50)

So under this assumption we have connected the initial Emden equation with the Lie
system 

dx′

dt
= f(t)(−x′ + v′),

dv′

dt
= f(t)(v′ +Kx′n),

and then the method of characteristics shows that it admits the first integral

I ′ = −1
2
v′2 +

K

n+ 1
x′n+1 + v′x′.

In terms of the initial variables the corresponding constant of motion is

I =
(

1
2
ẋ2 − b(t)

n+ 1
xn+1

)
exp
(
−2
∫ t

a(t′) dt′
)∫ t

exp
(∫ t′

a(t′′) dt′′
)
dt′

− 1
2
xẋ exp

(
−
∫ t

a(t′) dt′
)

(8.51)

and in this way we recover the result found in [16]. If we now consider the particular case
n = −3 we see that the integrability condition (8.50) implies that there is a constant K
such that

b(t) exp
(
−2
∫ t

a(t) dt′
)

= K,

and the corresponding t-dependent constant of motion is

I =
(

1
2
ẋ2 +

b(t)
2
x−2

)
exp
(
−2
∫ t

a(t′) dt′
)∫ t

exp
(∫ t′

a(t′′) dt′′
)
dt′

− 1
2
xẋ exp

(
−
∫ t

a(t′) dt′
)
,

which is equivalent to the one found in [16].

8.9. A t-dependent superposition rule for Abel equations. Let us now illustrate
the results of our theory of Lie families by deriving a common t-dependent superposition
rule for a Lie family of Abel equations, whose elements do not admit a standard super-
position rule except for a few particular instances. In this way, we show that our theory
provides new tools for investigating solutions of nonautonomous systems of differential
equations that cannot be investigated by means of the theory of Lie systems.

We analyse the so-called Abel equations of the first type [24, 74],
dx

dt
= a0(t) + a1(t)x+ a2(t)x2 + a3(t)x3, (8.52)
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with a3(t) 6= 0. Abel equations appear in the analysis of several cosmological models
[73, 111, 148] and other fields in physics [70, 84, 91, 92, 177, 240]. Additionally, the study
of integrability conditions for Abel equations is of current interest in mathematics and
the properties of their solutions have been thoughly investigated [5, 69, 74, 75, 215].

Note that, apart from its inherent mathematical interest, the knowledge of particular
solutions of Abel equations allows us to study the properties of those physical systems
that such equations describe. Thus, expressions enabling us to easily obtain new solutions
of Abel equations from several particular ones, like common t-dependent superposition
rules, are of interest.

Unfortunately, all the expressions describing the general solution of Abel equations
presently known can only be applied to study autonomous instances and, moreover, they
depend on families of particular conditions satisfying certain extra conditions (see [75,
215]). Taking this into account, common t-dependent superposition rules represent an
improvement, as they enable us to treat nonautonomous Abel equations and they do not
require the usage of particular solutions obeying additional conditions.

Recall that, according to Theorem 7.19, the existence of a common t-dependent su-
perposition rule for a family of t-dependent vector fields {Yd}d∈Λ requires the existence
of a system of generators, i.e. a set of t-dependent vector fields X1, . . . , Xr satisfying
relations (7.14). Conversely, given such a set, the family of t-dependent vector fields Y
whose autonomisations can be written in the form

Ȳc(t, x) =
r∑
j=1

bcj(t)X̄j(t, x),
r∑
j=1

bcj(t) = 1,

admits a common t-dependent superposition rule and becomes a Lie family.
Consequently, a Lie family of Abel equations can be determined, for instance, by

finding two t-dependent vector fields of the form

X1(t, x) = (b0(t) + b1(t)x+ b2(t)x2 + b3(t)x3)
∂

∂x
,

X2(t, x) = (b′0(t) + b′1(t)x+ b′2(t)x2 + b′3(t)x3)
∂

∂x
, b′3(t) 6= 0,

(8.53)

such that
[X̄1, X̄2] = 2(X̄2 − X̄1). (8.54)

Let us analyse the existence of such X1 and X2. In coordinates, the Lie bracket
[X̄1, X̄2] reads

[(b′3b2 − b′2b3)x4 + (2(b′3b1 − b3b′1)− ḃ3 + ḃ′3)x3 + (−3(b′0b3 − b0b′3) + (b′2b1 − b2b′1)

− ḃ2 + ḃ′2)x2 + (−2b′0b2 + 2b0b′2 − ḃ1 + ḃ′1)x− b′0b1 + b0b
′
1 − ḃ0 + ḃ′0]

∂

∂x
.

Hence, to have condition (8.54), we must have b′3b2−b′2b3 = 0, e.g. we may fix b2 = b3 = 0.
Additionally, for simplicity, we assume b′3 = 1. In this case, the previous expression takes
the form

[2b1x3 + (3b0 + b′2b1 + ḃ′2)x2 + (2b0b′2 − ḃ1 + ḃ′1)x− b′0b1 + b0b
′
1 − ḃ0 + ḃ′0]

∂

∂x
,
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and, taking into account the values chosen for b2, b3 and b′3, assumption (8.54) yields
b1 = 1 and 

b′2 = 3b0 + ḃ′2,

2(b′1 − 1) = 2b0b′2 + ḃ′1,

2(b′0 − b0) = −b′0 + b0b
′
1 − ḃ0 + ḃ′0.

As this system has more variables than equations, we can try to fix some values of the
variables in order to simplify it and obtain a particular solution. For b0(t) = t, the above
system reads 

ḃ′2 = b′2 − 3t,

ḃ′1 = 2(b′1 − 1)− 2tb′2,

ḃ′0 = 2(b′0 − t) + b′0 − tb′1 + 1.

This system is integrable by quadratures and one can check that it admits the particular
solution

b′2(t) = 3(1 + t), b′1(t) = 3(1 + t)2 + 1, b′0(t) = (1 + t)3 + t.

Summing up, we have proved that the t-dependent vector fields
X1(t, x) = (t+ x)

∂

∂x
,

X2(t, x) = ((1 + t)3 + t+ (3(1 + t)2 + 1)x+ 3(1 + t)x2 + x3)
∂

∂x
,

(8.55)

satisfy (8.54), and therefore the family of t-dependent vector fields

Yb(t)(t, x) = (1− b(t))X1(x) + b(t)X2(x)

is a Lie family. The corresponding family of Abel equations is

dx

dt
= (t+ x) + b(t)(1 + t+ x)3. (8.56)

According to the results of Section 1.5, to determine a common t-dependent superposition
rule for the above Lie family, we have to determine a first integral for the vector fields of
the distribution D spanned by the t-prolongations X̃1 and X̃2 on R×Rn(m+1) for a certain
m so that the t-prolongations of X1 and X2 to R × Rnm are linearly independent at a
generic point. Taking into account (8.55), the prolongations of X1 and X2 to R×R2 are
linearly independent at a generic point and, in view of (8.54), the t-prolongations X̃1 and
X̃2 to R× R3 span an involutive generalised distribution D with two-dimensional leaves
in a dense subset of R×R3. Finally, a first integral for the vector fields in the distribution
D will provide us a common t-dependent superposition rule for the Lie family (8.56).

Since, in view of (8.54), the vector fields X̃1 and X̃2 span the distribution D, a function
G : R× R2 → R is a first integral of the vector fields of the distribution D if and only if
G is a first integral of X̃1 and X̃1 − X̃2, i.e. X̃1G = (X̃2 − X̃1)G = 0.

The condition X̃1G = 0 reads
∂G

∂t
+ (t+ x0)

∂G

∂x0
+ (t+ x1)

∂G

∂x1
= 0,
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and, using the method of characteristics [129], we find that the characteristics are solutions
of the system

dt =
dx0

t+ x0
=

dx1

t+ x1
, so

dxi
dt

= t+ xi, i = 0, 1,

which read xi(t) = ξie
t− t− 1, with i = 0, 1 and ξ0, ξ1 ∈ R. Furthermore, these solutions

are determined by the implicit equations ξ0 = e−t(x0 + t+ 1) and ξ1 = e−t(x1 + t+ 1).
Therefore, there exists a function G2 : R2 → R such that G(t, x0, x1) = G2(ξ0, ξ1). In
other words, each first integral G of X̃1 depends only on ξ0 and ξ1.

Now, we look for simultaneous first integrals of the vector fields X̃2−X̃1 and X̃1, that
is, for solutions of the equation (X̃2 − X̃1)G = 0 with G depending on ξ0 and ξ1. Using
the expression of X̃2 − X̃1 in the coordinates {t, ξ0, ξ1}, we get

(X̃2 − X̃1)G = ξ3
0

∂G2

∂ξ0
+ ξ3

1

∂G2

∂ξ1
= 0,

and, applying again the method of characteristics, we find that there exists a function
G3 : R→ R such that G(t, x0, x1) = G2(ξ0, ξ1) = G3(∆), where ∆ = e2t((x0 + t+ 1)−2−
(x1 + t + 1)−2). Finally, using this first integral, we see that the common t-dependent
superposition rule for the Lie family (8.56) reads

k = e2t((x0 + t+ 1)−2 − (x1 + t+ 1)−2),

with k being a real constant. Therefore, given any particular solution x1(t) of a particular
instance of the family of first-order Abel equations (8.58), the general solution x(t) of
this instance is

x(t) = ((x1(t) + t+ 1)−2 + ke−2t)−1/2 − t− 1.

Note that our procedure can be directly generalised to derive common t-dependent
superposition rules for generalised Abel equations [166] of the form

dx

dt
= a0(t) + a1(t)x+ a2(t)x2 + · · ·+ an(t)xn, n ≥ 3.

Actually, their study can be approached by analysing the existence of vector fields

Y1(t, x) = (b0(t) + b1(t)x+ · · ·+ bn(t)xn)
∂

∂x
,

Y2(t, x) = (b′0(t) + b′1(t)x+ · · ·+ b′n(t)xn)
∂

∂x
, b′n(t) 6= 0,

obeying [Ȳ1, Ȳ2] = 2(Ȳ2 − Ȳ1), and by following a procedure similar to the one above.

8.10. Lie families and second-order differential equations. Common t-dependent
superposition rules describe solutions of nonautonomous systems of first-order differential
equations. Nevertheless, we shall now illustrate how this new kind of superposition rule
can also be applied to analyse families of second-order differential equations. More specif-
ically, we shall derive a common t-dependent superposition rule in order to express the
general solution of any instance of a family of Milne–Pinney equations [30, 75, 196, 195]
in terms of each generic pair of particular solutions, two constants, and the variable t, i.e.
time. In this way, we provide a generalization to the setting of dissipative Milne–Pinney
equations of the expression derived in [44].
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Consider the family of dissipative Milne–Pinney equations [89, 196, 195, 217] of the
form

ẍ = −Ḟ ẋ+ ω2x+ e−2Fx−3, (8.57)

with a fixed t-dependent function F =F (t), and parametrised by an arbitrary t-dependent
function ω = ω(t). The physical motivation for the study of dissipative Milne–Pinney
equations comes from its appearance in dissipative quantum mechanics [3, 113, 171, 213],
where, for instance, their solutions are used to obtain Gaussian solutions of nonconserva-
tive t-dependent quantum oscillators [171]. Moreover, the mathematical properties of the
solutions of dissipative Milne–Pinney equations have been studied from different points
of view [34, 44, 45, 83, 110, 196, 195, 230]. The works [45, 196] outline the state-of-the-art
of the investigation of dissipative and nondissipative Milne–Pinney equations. One of the
main achievements in this topic (see [196, Corollary 5]) is an expression describing the
general solution of a particular class of these equations in terms of a pair of generic partic-
ular solutions of a second-order linear differential equation and two constants. Recently,
the theory of quasi-Lie schemes and the theory of Lie systems have enabled us to recover
this last result and others from a geometric point of view [34, 52].

Note that introducing a new variable v ≡ ẋ, we transform the family (8.57) of second-
order differential equations into a family of first-order ones,{

ẋ = v,

v̇ = −Ḟ v + ω2x+ e−2Fx−3,
(8.58)

whose dynamics is described by the family of t-dependent vector fields on TR parametrised
by ω of the form

Yω = (−Ḟ v + e−2Fx−3 + ω2x)
∂

∂v
+ v

∂

∂x
, ω ∈ Λ = C∞(t).

Let us show that it is a Lie family whose common superposition rule can be used to
analyse the solutions of (8.57).

In view of Theorem 7.19, if the family of systems related to the above family of
t-dependent vector fields is a Lie family, that is, it admits a common t-dependent su-
perposition rule in terms of m particular solutions, then the family of vector fields on
R × Rn(m+1) given by Lie({Yω}ω∈Λ) spans an involutive generalised distribution with
leaves of rank r ≤ n ·m+ 1.

Note that the distribution spanned by all Ỹω is generated by the vector fields Ỹ1 and
Ỹ2 with

Y1 = (−Ḟ v + e−2Fx−3 + x)
∂

∂v
+ v

∂

∂x
, Y2 = (−Ḟ v + e−2Fx−3)

∂

∂v
+ v

∂

∂x
,

since Ỹω = (1 − ω2)Ỹ2 + ω2Ỹ1. The prolongation [Ỹ1, Ỹ2] is not spanned by Ỹ1 and Ỹ2,
and so we have to include the prolongation Y ∧3 = [Ỹ1, Ỹ2], where

Y3 = x
∂

∂x
− (v + xḞ )

∂

∂v
.

In the case m = 0, the distribution spanned by the vector fields Ỹ1, Ỹ2, Y
∧
3 does not admit

a nontrivial first integral. In the case m > 0, the vector fields Ỹ1, Ỹ2, Y
∧
3 do not span the
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linear space Lie({Ỹω}ω∈Λ) and we need to add a new prolongation Y ∧4 = [Ỹ1, [Ỹ1, Ỹ2]] to
the previous set, with

Y4 = (2v + xḞ )
∂

∂x
+ (2e−2Fx−3 − 2x− Ḟ (v + xḞ )− xF̈ )

∂

∂v
.

The vector fields Ỹ1, Ỹ2, Y
∧
3 , Y

∧
4 satisfy the commutation relations

[Ỹ1, Ỹ2] = Y ∧3 ,

[Ỹ1, Y
∧
3 ] = Y ∧4 ,

[Ỹ1, Y
∧
4 ] = (4 + Ḟ 2 + 2F̈ )Y ∧3 − (Ḟ F̈ +

...
F )(Ỹ1 − Ỹ2),

[Ỹ2, Y
∧
3 ] = 2(Ỹ1 − Ỹ2) + Y ∧4 ,

[Ỹ2, Y
∧
4 ] = (2 + Ḟ 2 + 2F̈ )Y ∧3 − (Ḟ F̈ +

...
F )(Ỹ1 − Ỹ2),

[Y ∧3 , Y
∧
4 ] = −2Y ∧4 − 2(Ỹ1 − Ỹ2)(4 + Ḟ 2 + 2F̈ ).

Consequently, the vector fields Ỹ1, Ỹ2, Y
∧
3 , Y

∧
4 span the linear space Lie({Ỹω}ω∈Λ). Adding

Ỹ1 to each prolongation of the previous set, that is, considering the vector fields X̃1 = Ỹ1,
X̃2 = Ỹ2, X̃3 = Ỹ1 + Y ∧3 , and X̃4 = Ỹ1 + Y ∧4 , we get a family of t-prolongations
X̃1, X̃2, X̃3, X̃4 which spans the vector fields of the family Lie({Ỹω}ω∈Λ). The commuta-
tion relations among them are

[X̃1, X̃2] = X̃3 − X̃1,

[X̃1, X̃3] = X̃4 − X̃1,

[X̃1, X̃4] = −(Ḟ F̈ +
...
F + 4 + Ḟ 2 + 2F̈ )X̃1 + (Ḟ F̈ +

...
F )X̃2 + (4 + Ḟ 2 + 2F̈ )X̃3,

[X̃2, X̃3] = 2X̃1 − 2X̃2 − X̃3 + X̃4,

[X̃2, X̃4] = −(1 + Ḟ 2 + 2F̈ + Ḟ F̈ +
...
F )X̃1 + (Ḟ F̈ +

...
F )X̃2 + (1 + Ḟ 2 + 2F̈ )X̃3,

[X̃3, X̃4] = −3X̃4 + (4 + Ḟ 2 + 2F̈ )X̃3 + (8 +
...
F + Ḟ F̈ + 2Ḟ 2 + 4F̈ )X̃2

+ (−9− 3Ḟ 2 − 6F̈ − Ḟ F̈ −
...
F )X̃1.

As a consequence of Lemma 7.17, the vector fields X̄1, X̄2 X̄3 and X̄4 satisfy the same
commutation relations as X̃1, X̃2, X̃3, X̃4. Hence, in view of Theorem 7.19, the family
(8.58) is a Lie family and the knowledge of nontrivial first integrals of the vector fields of
the distribution D spanned by X̃1, X̃2, X̃3, X̃4 provides us with a common t-dependent
superposition rule.

Let us now determine this superposition rule. As the vector fields X̃1, X̃1 − X̃2 and
their successive Lie brackets span the whole distribution D, a function G : R×TR3 → R
is a first integral for the vector fields of D if and only if it is a first integral for X̃1 and
X̃2 − X̃1. Therefore, we can reduce the problem to finding common first integrals G for
X̃1 and X̃1 − X̃2.

Let us analyse the implications of G being a first integral of the vector field

X̃1 − X̃2 =
2∑
i=0

xi
∂

∂vi
.
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The characteristics of the above vector field are solutions of the system

dv0

x0
=
dv1

x1
=
dv2

x2
, dx0 = 0, dx1 = 0, dx2 = 0, dt = 0,

that is, the solutions are curves in R×TR3 of the form s 7→(t, x0, x1, x2, v0(s), v1(s), v2(s)),
with ξ02 = x0v2(s)− x2v0(s) and ξ12 = x1v2(s)− x2v1(s) for two real constants ξ02 and
ξ12. Thus, there exists a function G2 : R6 → R such that G(p) = G2(t, x0, x1, x2, ξ02, ξ12),
with p ∈ R × TR3, ξ02 = x0v2 − x2v0, and ξ12 = x1v2 − v1x2. In other words, G is a
function of t, x0, x1, x2, ξ02, ξ12.

The function G also satisfies the condition X̃1G = 0, which, in terms of the coordinate
system {t, x0, x1, x2, ξ02ξ12, v2}, reads

X̃1G =
∂G

∂t
+
x0v2 − ξ02

x2

∂G

∂x0
+
x1v2 − ξ12

x2

∂G

∂x1
+ v2

∂G

∂x2

−
[
Ḟ ξ12 + e−2F

(
x2

x3
1

− x1

x3
2

)]
∂G

∂ξ12
−
[
Ḟ ξ02 + e−2F

(
x2

x3
0

− x0

x3
2

)]
∂G

∂ξ02
= 0.

That is, if we define the vector fields

Ξ1 =
∂

∂t
− ξ12

x2

∂

∂x1
− ξ02

x2

∂

∂x0
+
[
−Ḟ ξ12 − e−2F

(
x2

x3
1

− x1

x3
2

)]
∂

∂ξ12

+
[
−Ḟ ξ02 − e−2F

(
x2

x3
0

− x0

x3
2

)]
∂

∂ξ02
,

Ξ2 =
x0

x2

∂

∂x0
+
x1

x2

∂

∂x1
+

∂

∂x2
,

the condition X̃1G = 0 implies that Ξ1G2 + v2Ξ2G2 = 0, and as G2 does not depend on
v2, the function G must simultaneously be a first integral for Ξ1 and Ξ2, i.e. Ξ1G = 0
and Ξ2G = 0.

Applying the method of characteristics to the vector field Ξ2, we see that F can just de-
pend on the variables t, ξ02, ξ12,∆02 = x0/x2 and ∆12 = x1/x2. In other words, there ex-
ists a function G3 : R5 → R such that G(t, x0, x1, x2, v0, v1, v2) = G2(t, x0, x1, x2, ξ02, ξ12)
= G3(t, ξ02, ξ12,∆02,∆12).

It remains to check the implications of the equation Ξ1G = 0. With the aid of the
coordinate system {t, ξ02, ξ12,∆02,∆12, v2, x2}, this equation can be recast in the form
Ξ1G = 1

x2
2
Υ1G3 + Υ2G3 = 0, where

Υ1 =
1∑
i=0

(
−ξi2

∂

∂∆i2
− e−2F (∆−3

i2 −∆i2)
∂

∂ξi2

)
,

Υ2 = −Ḟ ξ12
∂

∂ξ12
− Ḟ ξ02

∂

∂ξ02
+
∂

∂t
.

As G3 only depends on t,∆02,∆12, ξ12, ξ02, we have Υ1G = 0 and Υ2G = 0. Repeating
mutatis mutandis the previous procedure in order to determine the implications of being
a first integral of Υ1 and Υ2, we finally deduce that the first integrals of the distribution
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D are functions of I1, I2 and I, with

Ii = e2F (x0vi − xiv0)2 +
[(

x0

xi

)2

+
(
xi
x0

)2]
, i = 1, 2,

I = e2F (x1v2 − x2v1)2 +
[(

x1

x2

)2

+
(
x2

x1

)2]
.

Defining v̄2 = eF v2, v̄1 = eF v1 and v̄0 = eF v0, the above first integrals read

Ii = (x0v̄i − xiv̄0)2 +
[(

x0

xi

)2

+
(
xi
x0

)2]
, i = 1, 2,

I = (x1v̄2 − x2v̄1)2 +
[(

x1

x2

)2

+
(
x2

x1

)2]
.

Note that these first integrals have the same form as the ones considered in [52] for k = 1.
Therefore, we can apply the procedure there to obtain

x0 =

√
k1x2

1 + k2x2
2 + 2

√
λ12[−(x4

1 + x4
2) + I x2

1x
2
2], (8.59)

with λ12 being a function of the form

λ12(k1, k2, I) =
k1k2I + (−1 + k2

1 + k2
2)

I2 − 4
,

and where the constants k1 and k2 satisfy special conditions to ensure that x0 is real [44].
Expression (8.59) permits us to determine the general solution x(t) of any instance of

family (8.57) in the form

x(t) =

√
k1x2

1(t) + k2x2
2(t) + 2

√
λ12[−(x4

1(t) + x4
2(t)) + Ix2

1(t)x2
2(t)], (8.60)

with

I = e2F (t)(x1(t)ẋ2(t)− x2(t)ẋ1(t))2 +
[(

x1(t)
x2(t)

)2

+
(
x2(t)
x1(t)

)2]
,

in terms of two of its particular solutions x1(t), x2(t), their derivatives, the constants k1

and k2, and the variable t (included in the constant of motion I).
Note that the rôle of the constant I in (8.60) differs from the rôles played by k1

and k2. Indeed, the value of I is fixed by the particular solutions x1(t), x2(t) and their
derivatives, while, for every pair of generic solutions x1(t) and x2(t), the values of k1 and
k2 range within certain intervals ensuring that x(t) is real.

It is clear that the method illustrated here can also be applied to analyse solutions of
any other family of second-order differential equations related to a Lie family by introduc-
ing the new variable v = ẋ. Additionally, it is worth noting that in the case F (t) = 0 the
family of dissipative Milne–Pinney equations (8.57) reduces to a family of Milne–Pinney
equations often appearing in the literature (see [147] and references therein), and the
expression (8.60) takes the form of the expression obtained in [44] for these equations.
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9. Conclusions and outlook

Apart from providing a quite self-contained introduction to the theory of Lie systems,
this essay describes most of the results concerning this theory and its generalisations
developed by the authors and other collaborators in recent years. In this way, our work
presents the state-of-the-art of the subject and establishes the foundations for our present
research activity. Let us here discuss some of the topics which we aim to analyse in the
near future and their relations to the contents of this essay.

The theory of superposition rules for second- and higher-order differential equations
has just been initiated [48, 49, 52, 77, 202, 225] and many questions have to be clarified.
As an example, we point out that there exist several approaches to study systems of
second-order differential equations by means of the theory of Lie systems. For instance,
one can use SODE Lie systems [52], which allows one to study a particular type of
systems of second-order differential equations. In addition, if an equation admits a regular
Lagrangian, the corresponding Hamiltonian formulation can lead to a system of first-order
differential equations which can also be a Lie system [54]. Analysing the relations between
the results obtained through both approaches is still an open problem.

As a consequence, it has become of interest to study a class of Lie systems describing
the Hamilton equations of certain t-dependent Hamiltonians on symplectic manifolds.
This structure provides us with new tools, which can be employed to study the integra-
bility and super-integrability of these Lie systems. We hope to analyse such relations in
depth in the future.

After analysing Lie systems defined on symplectic manifolds, a natural question arises:
What are the properties of Lie systems describing the solutions of a system on a Poisson
manifold (N, {·, ·}) of the form

dx

dt
= {x, ht}, x ∈ N,

where, for every t ∈ R, the function ht : N → R belongs to a finite-dimensional Lie algebra
of functions (with respect to the Poisson bracket). This challenging question leads to the
analysis of the properties of such Lie systems by means of the Poisson structure of the
manifold.

In [12, 13] Winternitz et al. proposed a new type of superposition rule, referred to
as super-superposition rules, that describe the general solution of a particular family of
systems of first-order differential equations on supermanifolds. These articles gave rise
to many interesting questions. Although it seems that the geometric theory developed in
[38] could easily be generalised to describe the properties of super-superposition rules,
multiple nontrivial technical problems arise. We hope to solve such problems in the future
and to develop a geometric theory of Lie systems on graded manifolds.

In [38, Remark 5], it was proposed to study Bäcklund transformations through a slight
modification of the methods carried out to analyse superposition rules geometrically, i.e.,
by means of a certain type of flat connection. This topic deserves a further analysis.

Since their first appearance in [34], quasi-Lie schemes have been employed to in-
vestigate multiple systems of differential equations: nonlinear oscillators [34], Mathews–
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Lakshmanan oscillators [34], Emden equations [42], Abel equations [56], dissipative Milne–
Pinney equations [45], etc. There are still many other applications to be performed, e.g.
we expect to apply this theory to study Abel equations in depth. In addition, it would
be interesting to continue the analysis of the theory of quasi-Lie schemes and, for in-
stance, to develop new generalisations of this theory. Indeed, we are already investigating
a generalisation for the analysis of certain quantum systems, e.g. the quantum Calogero–
Moser system. In addition, it would be interesting to study generalisations of this theory
to analyse stochastic Lie–Scheffers systems [144] or control Lie systems [79].

As we pointed out at the beginning of this essay, being a Lie system is an exception
rather than a rule. In addition, just a few, but relevant, Lie systems are known to have
applications in physics, mathematics and other branches of science. Consequently, one
of our main purposes remains to find new instances of Lie systems with remarkable
applications.

To finish, we hope to have succeeded in showing that the theory of Lie systems, after
more than a century of existence, is still an active and interesting field of research.
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