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Abstract

The paper is centered around a new proof of the infinitesimal rigidity of smooth closed surfaces
with everywhere positive Gauss curvature. We use a reformulation that replaces deformation of
an embedding by deformation of the metric inside the body bounded by the surface. The proof
is obtained by studying derivatives of the Hilbert–Einstein functional with boundary term.

This approach is in a sense dual to proving Gauss infinitesimal rigidity, that is, rigidity with
respect to the Gauss curvature parametrized by the Gauss map, by studying derivatives of the
volume bounded by the surface. We recall that Blaschke’s classical proof of infinitesimal rigidity
is also related to Gauss infinitesimal rigidity, but in a different way: while Blaschke uses the Gauss
rigidity of the same surface, we use the Gauss rigidity of the polar dual. The two connections
between metric and Gauss deformations generate the Darboux wreath of 12 surfaces.

The duality between the Hilbert–Einstein functional and the volume, as well as between both
kinds of rigidity, becomes perfect in the spherical and in the hyperbolic-de Sitter space.
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1. Introduction

1.1. Infinitesimal rigidity of strictly convex smooth surfaces. Let M ⊂ R3 be

a smooth closed surface. An infinitesimal deformation of M is a vector field along M ,

which can be viewed as a map ξ : M → R3. An infinitesimal deformation produces a

family of embeddings (for small t),

ϕt : M → R3, x 7→ x+ tξ.

Denote by gt the metric induced on M by ϕt. A deformation ξ is called isometric if
d
dt

∣∣
t=0

gt = 0. Every surface has trivial isometric infinitesimal deformations, which are

restrictions to M of Killing vector fields in R3.

We call a surface with everywhere positive Gauss curvature strictly convex.

Every strictly convex smooth closed surface M is infinitesimally rigid, that is,

every isometric infinitesimal deformation of M is trivial.

This theorem was proved by Liebmann [40] for analytic deformations of analytic surfaces

and by Blaschke [9, 10] and Weyl [60] for C3-deformations of C3-surfaces. For references

to other proofs, see [31, §4.1].

In this paper we present still another proof. We also describe the general framework,

historical perspective, and possible further developments.

1.2. The approach. The infinitesimal rigidity theorem stated above deals with a de-

formation ϕt of an embedding M ⊂ R3. However, it is possible to reformulate it in terms

of deformations of the metric inside the body P ⊂ R3 bounded by M .

View P as an abstract Riemannian manifold equipped with a flat metric G induced

from R3. An infinitesimal deformation of G is a field Ġ of symmetric bilinear forms on

P . An infinitesimal deformation is called curvature preserving if the Riemannian metric

Gt = G + tĠ is flat in the first order of t. If Ġ is curvature preserving and vanishes on

vectors tangent to the boundary, then it induces an isometric infinitesimal deformation ξ

of the embedding M ⊂ R3; cf. [16, Proposition 3] for a local statement. An infinitesimal

deformation Ġ is trivial if it pulls back the metric G by an infinitesimal diffeomorphism

that restricts to the identity on the boundary: Ġ = LηG for some vector field η on P

such that η|∂P = 0.

A surface M ⊂ R3 is infinitesimally rigid ⇔ every curvature preserving de-

formation Ġ such that Ġ|TM = 0 is trivial.

The space Gtriv of trivial infinitesimal deformations is very large. Therefore it is con-

venient to consider only Ġ from a subspace G0 ⊂ G in the space of all infinitesimal

[6]



Rigidity of smooth surfaces and the Hilbert–Einstein functional 7

deformations such that Gtriv + G0 = G and such that the intersection Gtriv ∩G0 is reason-

ably small. We take as G0 the tangent space to the space of warped product metrics of

the following form:

g̃r = dρ2 + ρ2
(
g − dr ⊗ dr

r2

)
.

Here g is the Riemannian metric on M ⊂ R3, and r : M → R+ is a smooth function, so

that g̃r is a Riemannian metric on R+×M ∼= R3 \{0}. The metric g̃r is flat if r measures

the distance from 0 ∈ R3 (assumed to lie within P ). For every r, the restriction of g̃r to

the surface ρ = r(x) is g.

The problem of isometric infinitesimal deformations can now be reformulated as de-

scribing those variations ṙ of the function r that leave the metric g̃r flat to first order.

The trivial variations ṙ arise from moving the coordinate origin and hence form a space

of dimension 3. Note that the origin may be a singular point of the metric g̃r, so that our

space G0 is not really a subspace of G.

The curvature of a warped product metric g̃r can be described by a single function

sec : S2 → R (the sectional curvature in the planes tangent to M). Therefore the infinites-

imal rigidity of M is equivalent to

If sec· = 0, then ṙ is trivial.

1.3. Infinitesimal rigidity of Einstein manifolds. In [34], Koiso proved the infinites-

imal rigidity of compact closed Einstein manifolds under certain restrictions on curvature.

His method can be described as the Bochner technique applied to the second derivative

of the Hilbert–Einstein functional. Our proof of the infinitesimal rigidity of strictly con-

vex closed surfaces emulates Koiso’s argument in a certain sense. Note that in our case

the manifold is homeomorhic to a ball, and the deformation of the metric is required to

vanish on the boundary. This raises the question whether Einstein manifolds with con-

vex boundary are infinitesimally rigid, probably again under certain restrictions on the

curvature tensor.

1.4. New proof of the infinitesimal rigidity of strictly convex surfaces. The

Hilbert–Einstein functional on the space of Riemannian metrics on a 3-dimensional com-

pact manifold P with boundary is defined as

HE(g̃) =
1

2

∫
P

scal dvol + 2

∫
∂P

H darea,

where scal is the scalar curvature of the metric g̃, and H is the mean curvature (half of

the trace of the shape operator; cf. [24, 22, 7]). In our situation P is a ball, and the metric

g̃ = g̃r is a warped product metric (see Subsection 1.2). This allows to express HE as an

integral over the boundary M = ∂P (see Theorem 4.3.3).

We prove the following formula for the derivative of HE in the direction ṙ:

HE· =

∫
M

ṙ
sec

cosα
darea,
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where α is a certain function on M determined by r and g (compare this with the well-

known formula for HE· for an arbitrary variation of a metric g̃ on a compact closed

manifold).

It follows that the second derivative of HE in the direction ṙ equals

HE·· =

∫
M

ṙ

(
sec

cosα

)·
darea.

If the variation ṙ is curvature-preserving, then we have sec· = 0. As the initial metric g̃r
is flat, we also have sec = 0. Hence HE·· vanishes. On the other hand, an integration by

parts yields

HE·· =

∫
M

2hdet Ḃ darea,

where h is the support function of M (i.e. distance from 0 to tangent planes) and B is the

shape operator. A simple algebraic lemma shows that det Ḃ ≤ 0 and that det Ḃ vanishes

only if Ḃ vanishes. As h > 0, it follows that the integral in the last equation vanishes

only if Ḃ = 0. Finally, Ḃ = 0 implies that ṙ is a trivial variation.

1.5. Blaschke’s proof of the infinitesimal rigidity of strictly convex surfaces.

In [10], Blaschke gave a short, elegant, and somewhat mysterious proof of the infinitesimal

rigidity of smooth convex surfaces.

Every isometric infinitesimal deformation ξ of a surface M ⊂ R3 has an associated

rotation vector field η : M → R3. A deformation is trivial if and only if its rotation field

is constant. One can show that the differential dη maps TM to itself (similarly to the

differential of the field of unit normals). Performing an integration by parts, Blaschke

proves the equation ∫
M

2hdet dη darea = 0, (1.5.1)

where h is the support function of M . An ingenious argument shows that det dη is non-

positive, and vanishes only if dη does. As without loss of generality h is positive, equa-

tion (1.5.1) implies dη = 0. Hence η is constant, and the infinitesimal deformation ξ is

trivial.

Blaschke’s proof can be demystified a little by observing that dη = JḂ, where J :

TM → TM is rotation by 90◦. This explains the above properties of det dη in a more

conceptual way. Moreover, this relates Blaschke’s proof to the proof sketched in Subsec-

tion 1.4. However, this relation is not quite straightforward, as we will see in Subsec-

tion 1.8.

1.6. Gauss infinitesimal rigidity and the origin of Blaschke’s proof. Instead of

deformations preserving the intrinsic metric of the surface, let us consider those preserving

the Gauss curvature as the function of the normal.

Let M ⊂ R3 be a strictly convex smooth closed surface, and let η : M → R3 be

an infinitesimal deformation of M . Assume that the embeddings ψt : M → R3, ψt(x) =

x + tη(x) preserve the Gauss map: dψt(TxM) ‖TxM . Clearly, this is equivalent to
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dη(TM) ⊂ TM . Denote by Kt : M → R the Gauss curvature of the embedding ψt,

and by K̇ the derivative of Kt at t = 0. We call an infinitesimal deformation η isogauss

if dη(TM) ⊂ TM and K̇ = 0. If η is constant, that is, ψt parallel translates M , then η

is called a trivial isogauss infinitesimal deformation.

Every strictly convex smooth closed surface M is Gauss infinitesimally rigid,

that is, every isogauss infinitesimal deformation of M is trivial.

This theorem is implicitly contained in Hilbert’s treatment [27] of Minkowski’s theory of

mixed volumes.

Blaschke [9] observed that certain equations in Hilbert’s work coincide with equa-

tions of the theory of isometric infinitesimal deformations. Weyl [60] concretized this

observation as follows:

The rotation vector field of an isometric infinitesimal deformation of M is an

isogauss infinitesimal deformation of M .

Thus infinitesimal rigidity under isometric deformations can be proved by applying the

Minkowski–Hilbert argument to the rotation vector field of the deformation. This is

exactly what Blaschke did in [10].

1.7. Gauss infinitesimal rigidity through the second derivative of the volume.

Mixed volumes theory deals basically with the derivatives of the volume bounded by M

with respect to infinitesimal deformations that preserve the Gauss map. In the proof of

the Gauss infinitesimal rigidity that can be extracted from [27], one computes the second

derivative Vol·· under an isogauss deformation in two different ways. One computation

yields zero, while the other one yields

Vol·· =

∫
M

2hdet dη darea,

the right hand side of which coincides with the left hand side of (1.5.1). The operator

dη : TM → TM turns out to be related to the derivative of B−1 under the deformation η,

which accounts for the properties det dη ≤ 0 and det dη = 0⇔ dη = 0.

1.8. Darboux’s wreath of 12 surfaces. The arguments in all three Subsections 1.4, 1.5,

and 1.7 end by considering the same equation (1.5.1). As just explained, the last two

arguments are identical. However, the argument sketched in Subsection 1.4 arrives at

(1.5.1) in a different way. It makes use of another relation between Gauss and metric

infinitesimal rigidities.

The translation vector field of an isometric infinitesimal deformation of M is

an isogauss infinitesimal deformation of M∗.

Here M∗ is the polar dual of the surface M , and the translation vector field τ is another

vector field canonically associated with every isometric infinitesimal deformation ξ. The

above correspondence together with that at the end of Subsection 1.6 forms a part of
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the Darboux wreath (see Subsection 5.3 for more details). In fact, the correspondences

are local, so that M may be an open disk embedded in R3 with non-vanishing Gauss

curvature.

In order to compute HE·· under the deformation ξ of M , one performs the same

integration by parts as when Vol·· under the deformation τ of M∗ is computed. Moreover,

the deformation τ of M∗ is in some sense polar dual to the deformation ξ of M . This

suggests that there is a subtle relation between the Hilbert–Einstein functional of P and

the volume of P ∗.

1.9. Polar duality between the volume and the Hilbert–Einstein functional.

In spherical and hyperbolic geometries there is a straightforward relation between the

Hilbert–Einstein functional and the volume of the dual (see Subsections 6.4 and 6.6).

On the other hand, an analog in S3 and H3 of Gauss infinitesimal rigidity in R3 is

infinitesimal rigidity with respect to the third fundamental form of the boundary. Since

the third fundamental form equals the first fundamental form of the polar dual, metric

rigidity is directly related to the Gauss rigidity of the polar dual. As a result, variational

approaches through HE and Vol to the respective kinds of rigidity are equivalent. For

details, see Subsection 6.5.

Note that the polar dual to a surface M ⊂ H3 is a surface in the de Sitter space (see

Subsection 6.6).

1.10. Minkowski and Weyl problems. Gauss and metric infinitesimal rigidity can

be interpreted as “infinitesimal” uniqueness in the Minkowski and Weyl problems. More-

over, the Minkowski problem for polyhedra and for general convex surfaces can be solved

by maximizing the functional Vol over some linear subspace in the space of all surfaces.

A similar variational approach to the Weyl problem was suggested by Blaschke and Her-

glotz [11]: every solution corresponds to a critical point of the Hilbert–Einstein functional

on the space of all extensions of the given metric g on the sphere to a metric g̃ on the

ball (cf. Subsections 1.2 and 1.4). This approach has not been realized, as the functional

is neither concave nor convex, and there is no immediate reduction in the spirit of Vol

and Minkowski problems above.

As a modification of the Blaschke–Herglotz approach, we suggest considering only

extensions of the form g̃r described in Subsection 1.2. Further details can be found in

Subsection 7.4.

1.11. Rigidity of irregular convex surfaces and the pleating lamination con-

jecture. The Hilbert–Einstein functional has a discrete analog, and most of the con-

structions presented here carry over to polyhedral surfaces (see [32]). A generalization to

arbitrary convex surfaces suggests itself. In particular, one can try to find a similar proof

of the infinitesimal rigidity of convex surfaces without flat pieces, a notoriously difficult

theorem of Pogorelov [45, Chapter IV].

Another possible development is to extend our method to Einstein manifolds with

boundary (cf. Subsection 1.3), in particular to hyperbolic manifolds with smooth convex

boundary [50]. An extension to the case of non-regular boundary could lead to a proof
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of the infinitesimal rigidity of convex cores of hyperbolic manifolds, which should result

in a solution of the pleating lamination conjecture. See Section 8.

2. Gauss rigidity of smooth convex surfaces

2.1. Definitions and statement of the theorem. Let M ⊂ R3 be a smooth surface.

Definition 2.1.1. An infinitesimal deformation of a smooth surface M ⊂ R3 is a smooth

vector field along M , i.e. a smooth section of the vector bundle TR3|M →M .

By using the natural trivialization of the bundle TR3|M , we can view an infinitesimal

deformation of M as a map

η : M → R3. (2.1.1)

The geodesic flow along an infinitesimal deformation η produces a family of smooth maps

ϕt : M → R3, ϕt = exp(tη).

Equivalently, if η is viewed as the map (2.1.1), then we have

ϕt(x) = x+ tη(x). (2.1.2)

We restrict our attention to t ∈ (−ε, ε) for some small positive ε, so that all ϕt are smooth

embeddings. Put

Mt := ϕt(M).

Let Kt : Mt → R be the Gauss curvature of Mt. Denote by K̇ : M → R its derivative at

t = 0:

K̇ := lim
t→0

Kt ◦ ϕt −K
t

. (2.1.3)

Definition 2.1.2. An infinitesimal deformation η is called isogauss if the following two

conditions are fulfilled:

(a) TxM is parallel to Tϕt(x)Mt for all x ∈M and for all t ∈ (−ε, ε);
(b) K̇(x) = 0 for all x ∈M .

In other words, the flow of an isogauss infinitesimal deformation preserves the Gauss

map and preserves the Gauss curvature in the first order of t.

Definition 2.1.3. An infinitesimal deformation η of is called trivial if

η(x) = a for all x ∈M,

for some a ∈ R3.

If η is trivial, then the map ϕt is a parallel translation. Hence every trivial infinitesimal

deformation is isogauss. If a surface has no isogauss infinitesimal deformations other than

trivial ones, then we call it Gauss infinitesimally rigid.

Theorem 2.1.4. Let M ⊂ R3 be a convex closed surface with everywhere positive Gauss

curvature. Then M is Gauss infinitesimally rigid.
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We have been unable to find a reference for Theorem 2.1.4, but its statement and proof

are implicitly contained in Hilbert’s treatment [27] of Minkowski’s mixed volumes theory

(see also [15] and [29, Section 2.3]). For the connection with the Minkowski problem see

discussion in Subsection 7.2.

Theorem 2.1.4 holds for hypersurfaces in Rd as well, with K interpreted as the deter-

minant of the shape operator.

2.2. Variation of the Gauss curvature. Let ν be a local unit normal field to M , and

let p be the position vector field on M . Similarly to η, these two vector fields can be

viewed as smooth maps

ν : M → R3, p : M → R3.

From this point of view, p is the inclusion map p(x) = x.

Consider the differential

dν : TM → R3.

The map dν is obviously related to the covariant derivative

∇̃ν : TM → T |MR3,

namely, dν(X) is the image of ∇̃Xν under the map TR3 → R3 which translates the

starting point of a vector to the origin. We define the shape operator B : TM → TM as

B(X) = ∇̃Xν and write by abuse of notation

dν = B : TM → TM.

Similarly, the differential dp interpreted as the covariant derivative is a map from TM to

T |MR3. It is easy to see that

dp = id: TM → TM.

Finally, condition (a) from Definition 2.1.2 is clearly equivalent to dη(X) ‖TM for all X,

so that we have yet another operator

dη : TM → TM.

Lemma 2.2.1. Let η be an infinitesimal deformation of a surface M such that condition

(a) from Definition 2.1.2 is satisfied. Then

K̇ = −K tr(dη). (2.2.1)

Proof. Consider the surface Mt (see (2.1.2)). Let νt be the unit normal field to Mt (in-

ducing the same co-orientation as ν on M), and ηt be the position vector field. Condition

(a) implies νt ◦ ϕt = ν. It follows that

dνt ◦ dϕt = dν.

By taking the determinant, we obtain

(Kt ◦ ϕt) · det(id + tdη) = K.

After substituting in (2.1.3) and observing that

det(id + tdη) = 1 + t tr(dη) + t2 det(dη)
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we have

K̇ = lim
t→0

(Kt ◦ ϕt)(1− det(id + tdη))

t
= −K tr(dη).

The lemma is proved.

2.3. Proof of Theorem 2.1.4. The proof is based on two lemmas.

Lemma 2.3.1. Let η be an isogauss infinitesimal deformation of M . Assume that M has

a positive Gauss curvature at x. Then at this point x we have

(a) det(dη) ≤ 0;

(b) det(dη) = 0 only if dη = 0.

Proof. On the four-dimensional vector space End(TxM), consider the quadratic form

det. The associated symmetric bilinear form is called the mixed determinant (see Sub-

section A.1 for more details). As det(id, A) = trA for all A, equation (2.2.1) implies

det(id, dη) = 0, (2.3.1)

because we have K̇ = 0 and K 6= 0. By differentiating the identity

〈ν, dη〉 = 0,

and using the fact that the connection ∇̃ is flat, we also obtain

det(JB, dη) = 0, (2.3.2)

where J : TxM → TxM is rotation by π/2. Thus the vector dη ∈ End(TxM) is orthogonal

to the vectors id and JB with respect to the form det(· , ·).
On the other hand, det takes positive values on both id and JB; the latter value is

K > 0 by our assumption. As the signature of det is (+,+,−,−) and the vectors id and

JB are linearly independent, this implies that dη lies in a two-dimensional subspace of

End(TxM) on which det is negative definite. This implies both statements of the lemma.

Definition 2.3.2. Let M ⊂ R3 be an embedded orientable surface with a chosen unit

normal field ν. The support function h : M → R sends every point x to the (signed)

distance of the tangent plane TxM from the coordinate origin in R3. The distance is

considered positive if the normal ν points away from the origin.

Clearly, we have h(x) = 〈ν(x), x〉. In terms of the position vector field p this can be

written as

h = 〈ν, p〉.

Lemma 2.3.3. For every isogauss infinitesimal deformation η of a closed surface M ⊂ R3

we have ∫
M

2hdet(dη) dareaM = 0, (2.3.3)

where h is the support function of M .

Proof. The proof uses partial integration. We will present it in terms of vector-valued

differential forms; see Section A for more details.
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View a map η : M → R3 as an R3-valued differential 0-form. The differential dη is

naturally an R3-valued differential 1-form. The wedge product of vector-valued forms

takes values in the tensor power of R3. For example, p ∧ dη ∧ dη is a differential 2-form

on M with values in R3 ⊗ R3 ⊗ R3. Consider the linear map

dvol : R3 ⊗ R3 ⊗ R3 → R

sending a triple of vectors to the signed volume of the parallelepiped spanned by them.

By applying dvol to the coefficient of the form p∧dη∧dη, we obtain a real-valued 2-form

dvol(p ∧ dη ∧ dη) ∈ Ω2(M).

At the same time, dη can be viewed as a TM -valued 1-form (see Subsection 2.2), so that

dareaM (dη ∧ dη) is also a 2-form on M . We have

dvol(p ∧ dη ∧ dη) = hdareaM (dη ∧ dη) = 2hdet(dη) dareaM . (2.3.4)

Due to the Leibniz rule and to d(dη) = 0 (see Subsections A.4 and A.5) we have

d(dvol(p ∧ dη ∧ dη)) = dvol(dp ∧ η ∧ dη) + dvol(p ∧ dη ∧ dη). (2.3.5)

Similarly to (2.3.4),

dvol(dp ∧ η ∧ dη) = −〈ν, η〉dareaM (dp ∧ dη) = −2〈ν, η〉det(dp, dη) dareaM .

As dp = id, equation (2.3.1) (which holds because η is isogauss) implies

dvol(dp ∧ η ∧ dη) = 0.

Thus, integrating (2.3.5) and applying the Stokes formula yields∫
M

dvol(p ∧ dη ∧ dη) = 0.

Together with (2.3.4) this implies the statement of the lemma.

Proof of Theorem 2.1.4. Let M be a closed surface with everywhere positive Gauss cur-

vature, and let η be an isogauss infinitesimal deformation of M . We may assume that the

coordinate origin of R3 lies in the region bounded by M , which implies h > 0. Together

with Lemma 2.3.1(a) this yields∫
M

2hdet(dη) dareaM ≤ 0.

On the other hand, by Lemma 2.3.3 equation (2.3.3) holds. Thus we must have

det(dη) = 0 everywhere on M . By Lemma 2.3.1(a) again, this implies dη = 0. Hence

the map η : M → R3 is constant i.e. is a trivial deformation.

Remark 2.3.4. Pull the shape operator Bt : TMt → TMt back to TM by identifying

TMt with TM through parallel translation. Then it is easy to see that

Bt = (id + tdη)−1 ◦B,

which implies

Ḃ = −dη ◦B.
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This equation leads to alternative proofs of (2.2.1) and (2.3.2):

K̇ = (detB)· = 2 det(Ḃ, B) = −2 det(dη ◦B,B)

= −2 det(dη, id) · detB = − tr(dη) ·K,

det(JB, dη) = det(JB,−ḂB−1) = det(J,−B−1ḂB−1) · detB

= det(J, (B−1)·) · detB = 0,

where the last equality holds because det(J,A) = 0 for every self-adjoint operator A.

2.4. Second derivative of the volume. Here we give a geometric interpretation of

the integral
∫
M
hdet(dη) dareaM that plays a crucial role in the proof of Theorem 2.1.4.

Lemma 2.4.1. Let P ⊂ R3 be the body bounded by a closed surface M , and let p : M → R3

be the position vector field along M . Then

Vol(P ) =
1

6

∫
M

dvol(p ∧ dp ∧ dp). (2.4.1)

Proof. We have

dvol(dp ∧ dp ∧ dp) = 6

(cf. Lemma A.3.3). Thus

Vol(P ) =
1

6

∫
P

dvol(dp ∧ dp ∧ dp) =
1

6

∫
M

dvol(p ∧ dp ∧ dp),

where we applied the Stokes theorem in the last equality.

Remark 2.4.2. In a more classical notation, formula (2.4.1) reads

Vol(P ) =
1

3

∫
M

hdareaM

and can be obtained similarly by integrating the function ∆(‖x‖2) = 6 over P and

applying the Stokes theorem.

Let η be an infinitesimal deformation of M satisfying condition (a) from Defini-

tion 2.1.2. Let Mt be the surface defined in Subsection 2.1, and denote by Pt the body

bounded by Mt. Denote further

Vol· =
d

dt

∣∣∣∣
t=0

Vol(Pt), Vol·· :=
d2

dt2

∣∣∣∣
t=0

Vol(Pt).

Lemma 2.4.3. We have

Vol· =
1

2

∫
M

dvol(η ∧ dp ∧ dp) =
1

2

∫
M

dvol(p ∧ dη ∧ dp), (2.4.2)

Vol·· =

∫
M

dvol(η ∧ dη ∧ dp) =

∫
M

dvol(p ∧ dη ∧ dη). (2.4.3)

Proof. Pull back the position vector field pt : Mt → R3 to M by the map ϕt. Retaining

the same notation, we have

pt = p+ tη.

Lemma 2.4.1 implies

Vol(Pt) =
1

6

∫
M

dvol(pt ∧ dpt ∧ dpt).
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By differentiating and using Lemma A.3.4 we obtain

Vol· =
1

6

∫
M

dvol(η ∧ dp ∧ dp) +
1

3

∫
M

dvol(p ∧ dη ∧ dp).

Integration by parts shows that the integrals on the right hand side are equal. This implies

equation (2.4.2).

Equation (2.4.3) is proved in a similar way. The formula for integration by parts

appeared already in (2.3.5).

Equations (2.3.4) and (2.4.3) imply

Vol·· =

∫
M

2hdet(dη) dareaM .

The proof of Theorem 2.1.4 given in Subsection 2.3 consists in computing the second

derivative of Vol in two different ways—the first and the second integral in (2.4.3)—

and then showing that the first integral vanishes (Lemma 2.3.3) while the second one is

non-positive and can vanish only if η is trivial (Lemma 2.3.1).

2.5. Hessian of the support function. A more traditional way to present the above

proof is in terms of the support function.

First, we need to change the setup. Instead of considering a closed convex surface

M ⊂ R3, we consider a smooth embedding

ϕ : S2 → R3.

An infinitesimal deformation

η : S2 → R3

determines a family of embeddings

ϕt = ϕ+ tη.

Finally, the position vector field p coincides with the map ϕ:

p = ϕ.

If M = ϕ(S2) has everywhere positive Gauss curvature, then the Gauss map from M

to S2 is one-to-one. So we can make the following important assumption: ϕ is the inverse

of the Gauss map. In other words, we view S2 as a unit sphere centered at 0 ∈ R3, and

the map ϕ sends every x ∈ S2 to a point on M with outward unit normal x.

The support function is now also being viewed as a function on S2, namely

h = 〈ι, p〉, (2.5.1)

where ι : S2 → R3 is the inclusion map.

Lemma 2.5.1. The position vector of a Gauss image parametrized surface is given by

p = hι+∇h, (2.5.2)

where ∇ is the Levi-Civita connection on S2.

Proof. By differentiating (2.5.1) in the direction of a vector X ∈ TxS2, we obtain

X(h) = 〈∇̃Xι, p(x)〉+ 〈ι(x), ∇̃Xp〉 = 〈X, p(x)〉+ 〈x, dϕ(X)〉.
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As dϕ(X) ∈ Tϕ(x)M ‖TxS2, the last summand vanishes and we have

〈X,∇h〉 = 〈X, p(x)〉.

It follows that ∇h is the orthogonal projection of p(x) to TxS2, that is,

∇h = p(x)− 〈x, p(x)〉x = p(x)− h(x)x.

The linear map dp : TS2 → TR3 is related to the shape operator. Namely, as p = ϕ is

the inverse of the Gauss map, dp postcomposed with the parallel translation of Tϕ(x)M

to TxS2 is the pullback of B−1 to S2:

dp = ϕ∗(B−1). (2.5.3)

Lemma 2.5.2. Let ϕ : S2 →M be the inverse of the Gauss map. Then the pullback of the

inverse of the shape operator expresses in terms of the support function h : S2 → R as

ϕ∗(B−1) = h id + Hessh, (2.5.4)

where Hessh : X 7→ ∇X(∇h) is the (1, 1)-Hessian of h.

Proof. By differentiating (2.5.2) and using (2.5.3) we obtain at every point x ∈ S2 the

equation

ϕ∗(B−1)(X) = X(h)x+ hX + ∇̃X(∇h).

As the left hand side lies in TxS2, we have

X(h)x+ hX + ∇̃X(∇h) = >(X(h)x+ hX + ∇̃X(∇h))

= hX +>(∇̃X(∇h)) = hX +∇X(∇h),

where > : TxR3 → TxS2 is the orthogonal projection.

Lemma 2.5.3. The volume of the body P bounded by M expresses in terms of the support

function as

Vol(P ) =
1

3

∫
S2
hdet(h id + Hessh) dareaS2 .

Proof. This follows from

Vol(P ) =
1

3

∫
M

h ◦ ϕ−1 dareaM =
1

3

∫
S2
hdet(B−1) dareaS2

and from (2.5.4).

By equation (2.5.2), the position vector field and the support function are related in

a linear manner. Therefore every infinitesimal deformation can be expressed in terms of

the support function by the same formula:

η = kι+∇k,

where k : S2 → R is an arbitrary smooth function. It follows that (2.4.3) can be rewritten

as

Vol·· =

∫
S2
k det(B−1, (B−1)·) dareaS2 =

∫
S2
hdet((B−1)·) dareaS2 , (2.5.5)

or

Vol·· =

∫
S2
k det(k id + Hess k, h id + Hessh) dareaS2 =

∫
S2
hdet(h id + Hessh) dareaS2 .
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The proof of rigidity goes similarly to Subsection 2.3. The assumption K̇ = 0 implies

det(B−1, (B−1)·) = 1
2 (det(B−1))· = 0,

so that the first integrand in (2.5.5) vanishes. Non-positivity of the second integrand is

proved in a simpler way than in Lemma 2.3.1: as B−1 is self-adjoint, it suffices to prove

its det-orthogonality to one operator with positive determinant, and for this we can just

use the last equation (cf. Corollary A.1.6).

Remark 2.5.4. The Hessian of the support function was used by Hilbert [27] to provide

a basis of mixed volumes theory for bodies with smooth boundary established earlier by

Minkowski for general convex bodies. The argument outlined in this section serves as a

lemma in a proof of the Aleksandrov–Fenchel inequality. A recent generalization of the

latter is obtained in [23].

3. Metric rigidity of smooth convex surfaces

3.1. The Liebmann–Blaschke theorem. Let M ⊂ R3 be a smooth surface, and let

ξ : M → R3 be a vector field along M . Similarly to Subsection 2.1, consider for small t

the family of surfaces

Mt = ϕt(M), ϕt(x) = x+ tξ(x).

Let gt be the induced Riemannian metric on Mt. We write g0 = g. Put

ġ = lim
t→0

ϕ∗t gt − g
t

.

Definition 3.1.1. An infinitesimal deformation ξ of a surface M ⊂ R3 is called isometric

if ġ = 0.

Definition 3.1.2. An infinitesimal deformation ξ of a surface M ⊂ R3 is called trivial

if ξ is the restriction of an infinitesimal isometry (Killing vector field) of R3:

ξ(x) = a× x+ b

for some a, b ∈ R3, with × meaning the cross product of vectors in R3.

As the Lie derivative of canR3 along a Killing vector field vanishes, every trivial in-

finitesimal deformation is isometric. If a surface has no isometric infinitesimal deforma-

tions other than trivial ones, then it is called (metrically) infinitesimally rigid.

Theorem 3.1.3 (Liebmann–Blaschke–Weyl). Let M ⊂ R3 be a convex closed surface

with everywhere positive Gauss curvature. Then M is infinitesimally rigid.

This theorem was proved by Liebmann in [40] under the analyticity assumption, and

later by Blaschke and Weyl for C3-surfaces. A modern version of Blaschke–Weyl’s proof

is given in Subsection 3.4, the background of this proof is explained in Subsection 5.1.

3.2. Rotation and translation vector fields of an isometric infinitesimal defor-

mation. Recall from Subsection 2.2 that we denote by

p : M → R3
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the position vector field p(x) = x, and that for any vector field, say ξ, we view its

differential (or covariant derivative) as a map

dξ : TM → R3.

In particular, dp(X) = X for every X ∈ TM .

The following lemma is due to Darboux [21].

Lemma 3.2.1. Let ξ be an isometric infinitesimal deformation of a surface M . Then there

exists a unique pair (η, τ) of vector fields along M such that

ξ = η × p+ τ

and moreover

dξ = η × dp, (3.2.1)

dτ = p× dη. (3.2.2)

Proof. The condition ġ = 0 is easily seen to be equivalent to

〈dξ(X), Y 〉+ 〈X, dξ(Y )〉 = 0

for all X,Y ∈ TM . This implies that dξ : TM → R3 has a unique extension to a skew-

symmetric operator A : R3 → R3. As every skew-symmetric operator in R3 is the cross

product with a fixed vector, this defines a vector field η : M → R3 satisfying (3.2.1). If

we put τ = ξ − η × p, then (3.2.2) is automatically fulfilled.

Intuitively: an isometric infinitesimal deformation ξ moves every tangent plane TxM

as a rigid body. Thus there exists a first-order approximation of ξ in a neigborhood of

every point x0 by a Killing vector field x 7→ η(x0)× x+ τ(x0).

Definition 3.2.2. Vector fields η and τ are called the rotation and translation vector

fields of an isometric infinitesimal deformation ξ.

Note that the rotation field is invariant under translations of surface M while the

translation field is not. Namely, if M is translated by a vector a ∈ R3 and ξ kept un-

changed, then the corresponding vector fields are

p′ = p+ a, η′ = η, τ ′ = τ + η × a.

Lemma 3.2.3. We have dη(X) ∈ TM for all X ∈ TM .

Proof. This can be proved by taking the differential of (3.2.1) (or computing the second

covariant derivatives ∇̃X∇̃Y ξ and ∇̃Y ∇̃Xξ).

Lemma 3.2.4. An isometric infinitesimal deformation is trivial if and only if its rotation

vector field is constant.

Proof. The rotation vector field of a trivial isometric infinitesimal deformation is constant

by Definition 3.1.2 and Lemma 3.2.1.

In the opposite direction, if η = const, then dη = 0, and by (3.2.2), dτ = 0. Hence

τ = const. By definition, if both η and τ are constant, then ξ is trivial.
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3.3. Variation of the shape operator. Let ν : M → R3 be a local unit normal field

to M , and let νt : Mt → R3 be the corresponding local unit normal field on Mt. Consider

the shape operators B = dν and

Bt = dνt : TMt → TMt.

Denote

Ḃ = lim
t→0

ϕ∗tBt −B
t

.

Lemma 3.3.1. The operator Ḃ : TM → TM is self-adjoint for every isometric infinites-

imal deformation ξ.

Proof. The self-adjointness of Bt with respect to gt implies

(ϕ∗t gt)((ϕ
∗
tBt)(X), Y ) = (ϕ∗t gt)(X, (ϕ

∗
tBt)(Y ))

for all X,Y ∈ TM . By differentiating with respect to t, we obtain

ġ(B(X), Y ) + g(Ḃ(X), Y ) = ġ(X,B(Y )) + g(X, Ḃ(Y )).

As ξ is isometric, we have ġ = 0. This implies the lemma.

The next lemma relates the operators dη and dτ to Ḃ.

Lemma 3.3.2. Let ξ be an isometric infinitesimal deformation of a surface M ⊂ R3, and

let η and τ be its rotation and translation vector fields. Then

dη = JḂ, (3.3.1)

where J : TM → TM is rotation by π/2. Moreover

> ◦ dτ = −hḂ, (3.3.2)

where > : R3 → TM is the orthogonal projection, and h : M → R is the support function

(see Definition 2.3.2).

Proof. Denote

ν̇ := lim
t→0

νt ◦ ϕt − ν
t

.

By differentiating the equations ‖νt‖2 = 1 and 〈νt, dϕt(X)〉 = 0 and using (3.2.1), we

obtain

ν̇ = η × ν.

(This is intuitively clear: if a tangent plane to M is rotated by η, then the normal is also

rotated by η.) Thus we have

dν̇ = dη × ν + η × dν = −J ◦ dη + η ×B, (3.3.3)

where we used the fact that dη(TM) ⊂ TM (see Lemma 3.2.3).

On the other hand,

d(νt ◦ ϕt) = dνt ◦ dϕt = dϕt ◦ ϕ∗tBt.

Differentiating with respect to t yields

dν̇ = dξ ◦B + dp ◦ Ḃ = η ×B + Ḃ (3.3.4)

(cf. [52, equation (0)]). Equating the right hand sides of (3.3.3) and (3.3.4) yields (3.3.1).
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Now let us prove formula (3.3.2). We have

dτ = p× dη = (hν +>p)× dη = hν × dη + cν

for some c ∈ R, because dη(X) ∈ TM . Hence, due to (3.3.1),

> ◦ dτ = hν × dη = hJ ◦ dη = hJ2Ḃ = −hḂ.

3.4. Blaschke’s proof of Theorem 3.1.3. Here we give a coordinate-free version of the

proof from [10] (see also [54, Chapter 12]). The main novelty is the interpretation of the

operator dη : TM → TM through the variation of the shape operator (see Lemma 3.3.2).

Blaschke’s proof of Theorem 3.1.3. Let M ⊂ R3 be a closed surface with positive Gauss

curvature, and let ξ be an isometric infinitesimal deformation of M . Let η be the rotation

vector field of ξ (see Subsection 3.2). By Lemma 3.3.2, we have

dη = JḂ : TM → TM.

This implies two remarkable properties of the operator dη: first,

tr(dη) = 0, (3.4.1)

as tr(JA) = 0 for every self-adjoint operator A, and Ḃ is self-adjoint by Lemma 3.3.1,

and second,

det(dη) ≤ 0, while det(dη) = 0 only if dη = 0, (3.4.2)

which holds by Corollary A.1.6 as detB = K > 0 by assumption on M and (detB)· = K̇

= 0 because ξ is isometric.

Recall that p : M → R3 denotes the position vector field so that dp = id: TM → TM .

Consider the differential 1-form

dvol(p ∧ η ∧ dη) ∈ Ω1(M); (3.4.3)

see Subsections A.3–A.5 or a brief explanation in the proof of Lemma 2.3.3. We have

d(dvol(p ∧ η ∧ dη)) = dvol(dp ∧ η ∧ dη) + dvol(p ∧ dη ∧ dη).

The first summand on the right hand side vanishes due to

dp ∧ dη = det(id, dη) dareaM = 1
2 tr(dη) dareaM = 0,

where we used (3.4.1) in the last step. The integrand in the second summand equals

2hdet dη, where h is the support function of the surface M . Thus Stokes’s theorem

implies ∫
M

2hdet(dη) dareaM = 0. (3.4.4)

Without loss of generality we may assume that the origin of R3 lies in the region bounded

by M , so that h > 0. Together with (3.4.2), this implies dη = 0. Thus η is constant, and

by Lemma 3.2.4 the deformation ξ is trivial.

Subsection 5.1 tells about the origin of this proof. We will now give another proof

that looks more complicated at first but allows a variational interpretation similar to

that given in Subsection 2.4 to the proof of Theorem 2.1.4.
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3.5. Another proof of Theorem 3.1.3. Let ν be the field of outward unit normals

to M . Introduce a new vector field along M ,

ψ = ν/h.

Consider the differential 1-form

dvol(ψ ∧ τ ∧ dτ) ∈ Ω1(M)

and its differential

d(dvol(ψ ∧ τ ∧ dτ)) = dvol(dψ ∧ τ ∧ dτ) + dvol(ψ ∧ dτ ∧ dτ).

By Stokes’s theorem,∫
M

dvol(τ ∧ dψ ∧ dτ) =

∫
M

dvol(ψ ∧ dτ ∧ dτ). (3.5.1)

Lemma 3.5.1. We have

dvol(τ ∧ dψ ∧ dτ) = 0.

Proof. First of all, let us show that

〈dτ, p〉 = 0 = 〈dψ, p〉.

The first equality follows from dτ = p× dη. For the second one, compute

〈dψ(X), p〉 = X〈ψ, p〉 − 〈ψ,X〉.

The right hand side vanishes as ψ ⊥ X and 〈ψ, p〉 = 1. Thus the left hand side vanishes

too, and the claim is proved.

It follows that

dvol(τ ∧ dψ ∧ dτ) =
〈τ, p〉
‖p‖

dareap⊥(dψ ∧ dτ), (3.5.2)

where dareap⊥ is the area form in the orthogonal complement to vector p.

Substitute dτ = p× dη. A simple computation shows that

dareap⊥(ψ ∧ (p× dη))(X,Y ) = ‖p‖(〈ψ(X), dη(Y )〉 − 〈ψ(Y ), dη(X)〉).

By using (3.3.1), we compute

〈dψ(X), dη(Y )〉 = 〈h−1B(X) +X(h−1)ν, JḂ(Y )〉

= h−1〈B(X), JḂ(Y )〉 = −h−1 dareaM (B(X), Ḃ(Y )).

It follows that

dareap⊥(dψ ∧ dτ) = −‖p‖
h

dareaM (B, Ḃ) = 0, (3.5.3)

because 2 det(B, Ḃ) = (detB)· = K̇ = 0 for an isometric infinitesimal deformation.

Substitution in (3.5.2) proves the lemma.

Lemma 3.5.2. We have

dvol(h−1ν ∧ dτ ∧ dτ) = 2hdet Ḃ dareaM .
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Proof. Recall that > : R3 → TM denotes the orthogonal projection (thus > sends a

vector in TR3|M to its tangential component). We have

dvol(h−1ν ∧ dτ ∧ dτ) = h−1 dareaM (> ◦ dτ,> ◦ dτ)

= 2h−1 det(> ◦ dτ) = 2h−1 det(−hḂ) = 2hdet Ḃ,

where we used equation (3.3.2).

By substituting the results of Lemmas 3.5.1 and 3.5.2 in (3.5.1), we obtain∫
M

2hdet Ḃ dareaM = 0. (3.5.4)

The end of the proof is the same as in Subsection 3.4: we may assume h > 0, at the

same time by Corollary A.1.6 we have det Ḃ ≤ 0; thus det Ḃ = 0, which again by

Corollary A.1.6 implies Ḃ = 0. As dη = JḂ, it follows that the rotation vector field is

constant, thus by Lemma 3.2.4 the deformation ξ is trivial.

3.6. Hessian of the squared distance function. Here we rewrite the proof from the

previous subsection in other terms. For a surface M ⊂ R3, consider the function

f : M → R, f(x) = ‖x‖2/2.

Lemma 3.6.1. We have

∇f = p− hν,

where p : M → R3 is the position vector field, and h : M → R is the support function

relative to the unit normal field ν.

Proof. Clearly, ∇̃f = p. Thus

∇f = >p = p− 〈ν, p〉ν = p− hν.

Lemma 3.6.2. We have

Hess f = id− hB, (3.6.1)

where Hess f : TM → TM , X 7→ ∇X∇f is the (1, 1)-Hessian of function f .

Proof. By using Lemma 3.6.1, we obtain

∇X∇f = >(∇̃X∇f) = >(∇̃X(p− hν)) = >(X −X(h)ν − hB(X)) = X − hB(X),

which proves the lemma.

Let ξ be an infinitesimal deformation of M , and let Mt = ϕt(M) be the geodesic flow

of M along ξ (see Subsection 3.1). Put ft : Mt → R, ft(x) = ‖x‖2/2 and

ḟ = lim
t→0

ft ◦ ϕt − f
t

.

Lemma 3.6.3. If ξ is an isometric infinitesimal deformation, then

Hess ḟ = −(ḣB + hḂ),

where Ḃ is defined as in Subsection 3.3.

Proof. Since ξ is isometric,

Hess ḟ = (Hess f)·,
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where (Hess f)· is defined similarly to Ḃ. Now the lemma follows by differentiating equa-

tion (3.6.1).

Consider the differential 1-form

dareaM (∇ḟ ∧ Ḃ) ∈ Ω1(M).

Here ∇ḟ is viewed as a TM -valued 0-‘form, and Ḃ as a TM -valued 1-form on M . By

Subsection A.4, we have

d(dareaM (∇ḟ ∧ Ḃ)) = dareaM (Hess ḟ ∧ Ḃ) + dareaM (∇ḟ ∧ d∇Ḃ), (3.6.2)

where d∇ : Ω1(M,TM) → Ω2(M,TM) is the exterior differential associated with the

Levi-Civita connection ∇ on M . As the deformation ξ is isometric, the Codazzi–Mainardi

equations imply

d∇Ḃ = (d∇B)· = 0,

so that the second summand on the right hand side of (3.6.2) vanishes. Further, by

Lemma 3.6.3 and because of 2 det(B, Ḃ) = (detB)· = K̇ = 0 we have

dareaM (Hess ḟ ∧ Ḃ) = −2(ḣdet(B, Ḃ) + hdet Ḃ) = −2hdet Ḃ.

By integrating (3.6.2) and applying Stokes’ theorem we arrive at (3.5.4).

Remark 3.6.4. A similar argument is used in the proof of [37, Lemma 3.1] that deals

with infinitesimal rigidity in the Minkowski space.

The following lemma allows us to relate the above argument to the argument in

Subsection 3.5.

Lemma 3.6.5. Let τ be the translation vector field of an isometric infinitesimal deforma-

tion ξ. Then

∇ḟ = >τ.

Proof. By differentiating the equation ft = ‖pt‖2/2, we obtain ḟ = 〈p, ξ〉. Hence for all

X ∈ TM we have

〈X,∇ḟ〉 = ∇X ḟ = 〈X, ξ〉+ 〈p, η ×X〉 = 〈X, ξ + p× η〉 = 〈X, τ〉,

where we used equations from Lemma 3.2.1. This implies the statement of the lemma.

Together with equation (3.3.2) this implies that the differential 1-forms used here and

in Subsection 3.5 are closely related:

dareaM (∇ḟ ∧ Ḃ) = dvol(ν ∧ >τ ∧ (h−1> ◦ dτ)) = dvol(h−1ν ∧ τ ∧ dτ).

4. Metric rigidity and the Hilbert–Einstein functional

In this section we provide a variational interpretation of the proof of Theorem 3.1.3 given

in Subsections 3.5 and 3.6. This interpretation does not simplify the arguments, rather

the opposite. But it supports the ideas suggested in Section 8 concerning approaches to

the Weyl problem and to the pleating lamination conjecture.
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4.1. Reduction to warped product deformations. Let M ⊂ R3 be a smooth convex

closed surface such that the coordinate origin 0 lies in the interior of the body P bounded

by M . Instead of deforming the embedding of M into R3, we will deform the metric

inside P in the following way. Think of P as composed of thin pyramids with apex at 0

and bases on M ; vary the lengths of lateral edges of the pyramids while leaving the base

edge lengths constant and thus preserving the intrinsic metric of M .

If the lengths of lateral edges are given by a smooth function r : M → R, then this

construction gives a smooth metric g̃r on P \ {0}, called a warped product metric. For

some functions r, the metric g̃r is Euclidean, for example if r is the distance from some

interior point a ∈ P (if we are just moving the origin inside P , so to say). The key

point is that the surface M is infinitesimally rigid if and only if no variations of r besides

those mentioned above leave the metric g̃r Euclidean in the first order. The goal of this

subsection is to explain this equivalence and to state a reformulation of Theorem 3.1.3.

Consider the radial projection

M → S2, y 7→ y/‖y‖,

and denote by ϕ0 its inverse.

Definition 4.1.1. The distance function of a surface M is

r0 : S2 → R+, r0(x) = ‖ϕ0(x)‖.

It follows that the surface M is the image of the embedding

ϕ0 : S2 → R3, ϕ0(x) = r0(x) · x. (4.1.1)

Lemma 4.1.2. Consider the diffeomorphism

F : R+ × S2 → R3 \ {0}, (ρ, x) 7→ ρx.

Then the pullback of the canonical Euclidean metric on R3 \{0} to R+×S2 by the map F

is given by

F ∗(can) = dρ2 + (ρ/r0)2(g − dr0 ⊗ dr0),

where g = ϕ∗0(can) is the metric induced on S2 by the embedding (4.1.1).

Proof. We know that F ∗(can) = dρ2 + ρ2 canS2 . Thus we have to show that

canS2 =
1

r20
(g − dr0 ⊗ dr0),

or equivalently, g = r20 canS2 + dr0 ⊗ dr0. The last equation follows easily by taking the

differential of (4.1.1).

Lemma 4.1.2 motivates the following construction. Let g be the Riemannian metric

on S2, and let r : S2 → R+ be a smooth function such that

‖∇r‖g < 1 (4.1.2)

everywhere on S2. Associate with (g, r) the Riemannian metric

g̃r = dρ2 + (ρ/r)2(g − dr ⊗ dr) (4.1.3)
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on R+ × S2. (Condition (4.1.2) ensures that the symmetric bilinear form g − dr ⊗ dr is

positive definite.) It is easy to see that the map

ϕr : S2 → R+ × S2, ϕr(x) = (r(x), x), (4.1.4)

embeds (S2, g) isometrically into (R+ × S2, g̃r).
Assume that the metric (4.1.3) is flat, i.e. has vanishing curvature tensor. Then (see

[53], [61, Section 2.3]) the Riemannian manifold (R+ × S2, g̃r) is locally isometric to R3,

moreover there is an isometry R+ × S2 → R3 \ {0}, since the source space is simply-

connected and the metric g̃r is complete. It follows that the map (4.1.4) composed with

this isometry is an isometric embedding of (S2, g) into R3.

In particular, if the metric g is induced by an embedding ϕ0 : S2 → R3 and r0(x) =

‖ϕ0(x)‖, then the metric g̃r0 is flat. By the previous paragraph, the embedding ϕ0 is

determined by r0 up to an isometry of R3 fixing 0.

Remark 4.1.3. The embedding ϕ0 from the previous paragraph need not be the inverse

of the radial projection. Indeed, if the metric g̃r is flat, then so is the metric determined by

g′ = ψ∗g and r′ = r◦ψ for any diffeomorphism ψ : S2 → S2. The distinctive feature of the

parametrization (4.1.1) is that the corresponding isometry (R+×S2, g̃r)→ (R3\{0}, can)

is the map F in Lemma 4.1.2.

Consider a smooth function s : S2 → R and put

rt = r0 + ts.

As r0 satisfies condition (4.1.2), rt also satisfies (4.1.2) for all sufficiently small t. Let R̃t
be the curvature tensor of the metric g̃rt on R+ × S2; denote

Ṙ = lim
t→0

R̃t − R̃0

t
.

Definition 4.1.4. A function s : S2 → R is called a curvature preserving infinitesimal

deformation of r0 if Ṙ = 0.

Definition 4.1.5. A function s : S2 → R is called a trivial infinitesimal deformation

of r0 if there exists an a ∈ R3 such that

s(x) =

〈
a,

ϕ0(x)

‖ϕ0(x)‖

〉
. (4.1.5)

As the embedding ϕ0 is determined by r0 up to an isometry of R3 fixing 0, the class

of trivial deformations is well-defined.

Lemma 4.1.6. If s is trivial in the sense of Defitinion 4.1.5, then s is curvature preserving

in the sense of Definition 4.1.4.

Proof. Let s be as in (4.1.5). Consider the function

r′t(x) = ‖ϕ0(x) + ta‖.

As r′t is the distance function of the surface M translated by the vector −ta, the metric g̃r′t
is flat. But since r′t − rt = o(t) in the C2-norm, the metric g̃rt is flat to first order. Thus

Ṙ = 0, and s is curvature preserving.

Now we can state the main result of this subsection.
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Theorem 4.1.7. A smooth convex closed surface M is infinitesimally rigid if and only

if every curvature preserving deformation of its distance function is trivial.

Proof. The theorem is proved by establishing a correspondence between isometric defor-

mations ξ of M and curvature preserving deformations s of the distance function r0 so

that trivial deformations correspond to trivial ones.

Let ξ : S2 → R3 be a vector field along an embedding ϕ0 : S2 → R3. Define the function

s : S2 → R as

s(x) =

〈
ξ(x),

ϕ0(x)

‖ϕ0(x)‖

〉
. (4.1.6)

We claim that if ξ is an isometric infinitesimal deformation, then s is curvature preserving.

The proof is similar to that of Lemma 4.1.6. Consider the embedding ϕt = ϕ0 + tξ. Let

r′t = ‖ϕt‖ be its distance function, and let gt be the metric induced on S2 by ϕt. It follows

that the metric on R+ × S2 obtained by substituting, in (4.1.3), gt for g and r′t for r is

flat. As r′t − rt = o(t), and gt − g = o(t) in the C2-norm, the metric g̃rt is flat to first

order.

Now let s be such that Ṙ = 0. By [16, Proposition 3], an infinitesimal deformation h̃

of a flat Riemannian metric g̃ leaving the curvature zero to first order is locally induced

by an infinitesimal diffeomorphism, i.e. h̃ is the Lie derivative of g̃ along a vector field η.

As R+× S2 is simply-connected, the local vector field η can be extended to a global one,

so that we have
d

dt

∣∣∣∣
t=0

g̃rt = Lη g̃r0 .

Note that η is defined uniquely up to adding a Killing vector field with respect to the flat

metric g̃r0 . It can be shown that the limit

η(0) := lim
ρ→0

η(ρ, x)

exists. Add to η a parallel translation so that η(0) = 0 and put

ξ(x) = η(r0(x), x).

It is easy to see that ξ is an isometric infinitesimal deformation of the surface

M = {(r0(x), x)} ⊂ R+ × S2.

Moreover, the variation s of the distance of the point (r0(x), x) from the singular point

ρ = 0 is related to ξ through the formula (4.1.6). (This is due to the fact that η(0) = 0

and that the lines R+×{x} are geodesics in the metric g̃r.) It follows that the map s 7→ ξ

thus obtained is the inverse of the map constructed in the previous paragraph. Note that

ξ is well-defined up to adding a rotation around 0.

Trivial deformations are sent to trivial ones; in particular, if s satisfies (4.1.5), then

we can put

η(ρ, x) =
ρ

r0(x)
a,

which results in ξ = a.

The curvature tensor of the metric g̃r is completely determined by sectional curvatures

with respect to some small set of planes (see Appendix B). For example, it suffices to
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take all planes tangent to the surface

Mr = {(r(x), x)}. (4.1.7)

Definition 4.1.8. Denote by sec(r)(x) the sectional curvature of the Riemannian mani-

fold (R+×S2, g̃r) with respect to the plane T(r(x),x)Mr. We will usually omit the argument

r of sec.

Let s = ṙ be an arbitrary infinitesimal deformation of the function r. Denote by sec·
the derivative of sec in the direction ṙ:

sec·(x) = lim
t→0

sec(r + tṙ)(x)− sec(r)(x)

t
.

Corollary 4.1.9. A smooth convex closed surface M = ϕ0(S2) is infinitesimally rigid if

and only if every infinitesimal deformation ṙ of its distance function r0 such that sec· = 0

is trivial.

4.2. Hessian of the squared distance function in a warped product. Consider

the function

f : R+ × S2 → R, f(ρ, x) = ρ2/2,

and denote by H̃ess f its Hessian with respect to the metric g̃r in (4.1.3):

H̃ess f(X) = ∇̃X∇̃f.
Lemma 4.2.1. We have

H̃ess f = id.

Proof. We know that (see [44, Chapter 2, Section 1.3])

g̃r(H̃ess f(X), Y ) = 1
2L∇̃f g̃r(X,Y ).

The flow Ft on R+ × S2 generated by ∇̃f scales the ρ-coordinate by et. It follows that

L∇̃f g̃r = 2g̃r.

Thus H̃ess f(X) = X for all X, and the lemma is proved.

We now introduce several vector fields along the surfaceMr ⊂ R+×S2 given by (4.1.7).

First, there is the field of outward unit normals ν. Second, let ∂ρ be the radial unit vector

field on R+ × S2. The vector field ρ∂ρ generalizes the position vector field p that we

considered in the case of a surface M ⊂ R3. Since ∂ρ has unit norm and is orthogonal

to TS2 with respect to g̃r, it is also the gradient field of the function ρ : (ρ, x) 7→ ρ. It

follows that

∇̃f = ρ∇̃ρ = ρ∂ρ. (4.2.1)

Denote the restriction of the function ρ to Mr by r:

r : Mr → R, r = ρ|Mr
.

(This is an abuse of notation, as earlier we denoted by r the function ϕ−1r ◦ ρ on S2.) Let

us introduce two auxiliary functions on Mr.

Definition 4.2.2. Denote by α : Mr → [0, π/2) the angle between vectors ∂ρ and ν, and

define h : Mr → R+ as h = r cosα.
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The function h generalizes the support function defined in the case of a surface

M ⊂ R3.

0

∂ρ

∇̃f

∇f

ν

hν

α
Mr

Fig. 1. The gradients of f = ρ2/2

Lemma 4.2.3. Let ∇ be the covariant derivative on Mr associated with the metric g =

g̃r|Mr
. Let Hess f : X 7→ ∇X∇f be the Hessian of f |Mr

. Then

Hess f = id− hB, (4.2.2)

where B : X 7→ ∇̃Xν is the shape operator on Mr.

Proof. By (4.2.1) and Definition 4.2.2 we have ∇f = >(∇̃f) = ∇̃f − hν. Further,

∇X∇f = >(∇̃X∇f) = >(∇̃X(∇̃f − hν))

= >(H̃ess f(X)−X(h)ν − hB(X)) = X − hB(X),

which proves the lemma.

4.3. The Hilbert–Einstein functional. Denote

Pr = {(ρ, x) ∈ R+ × S2 | ρ ≤ r(x)}.

Definition 4.3.1. The Hilbert–Einstein functional of the Riemannian manifold with

boundary (Pr, g̃r) is defined as

HE(r) = 1
2

∫
Pr

scal dvol + 2

∫
Mr

H darea, (4.3.1)

where scal is the scalar curvature of the metric g̃r, and H = 1
2 tr(B) is the total mean

curvature of the surface Mr = ∂Pr.

The manifold Dr is not compact (as we exclude the point ρ = 0). However the first

integral in (4.3.1) converges; this follows from the next lemma that expresses it as an

integral over Mr.

Recall that sec(x) denotes the sectional curvature of g̃r in the plane tangent to Mr at

(r(x), x).

Lemma 4.3.2. We have ∫
Pr

scal dvol = 2

∫
Mr

r
sec

cosα
darea,
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Proof. Put ĝ = (g − dr ⊗ dr)/r2, so that

g̃r = dρ2 + ρ2ĝ.

Then dvol = ρ2 · dρ ∧ dareaĝ and∫
Pr

scal dvol =

∫
S2

dareaĝ

∫ r(x)

0

ρ2 scal dρ.

Equations (B.1.3) and (B.1.4) imply

scal(ρ, x) = 2 sec(ρ,x)(∂
⊥
ρ ) = 2

sec(1,x)(∂
⊥
ρ )

ρ2
.

Substituting this in the previous equation yields∫
Pr

scal dvol = 2

∫
S2
r · sec(1,x)(∂

⊥
ρ ) dareaĝ. (4.3.2)

We now want to rewrite this as an integral over Mr. First, note that the Jacobian of

the radial projection π : {1} × S2 →Mr equals r2/cosα, so that

dareaĝ =
cosα

r2
· π∗(dareag).

And secondly, again by (B.1.4) and (B.1.3), we have

sec(1,x)(∂
⊥
ρ ) = r(x)2 · sec(r(x),x)(∂

⊥
ρ ) = r2

sec

cos2 α
.

By substituting both equations in (4.3.2), we obtain∫
Pr

scal dvol = 2

∫
Mr

r · r2 sec

cos2 α
· cosα

r2
darea = 2

∫
Mr

r
sec

cosα
darea.

Theorem 4.3.3. We have

HE(r) =

∫
Mr

h(K + detB) darea,

where K is the Gauss curvature of Mr, and h is as in Definition 4.2.2.

Proof. Consider the differential 2-form

darea(Hess f ∧B)

on Mr. Here the linear operators Hess f and B are viewed as TMr-valued 1-forms; their

wedge product and operation of darea on it are defined in Subsection A.3. We have

Hess f = ∇(∇f) = d∇(∇f),

where d∇ is the exterior derivative on TMr-valued forms. Thus by Lemmas A.4.3 and A.4.2,

d(darea(∇f ∧B)) = darea(Hess f ∧B) + darea(∇f ∧ d∇B).

Stokes’ theorem implies∫
Mr

darea(Hess f ∧B) +

∫
Mr

darea(∇f ∧ d∇B) = 0. (4.3.3)

With the help of Lemmas A.3.3 and 4.2.3 the first integrand in (4.3.3) can be computed

as

darea(Hess f ∧B) = 2(H − hdetB) darea. (4.3.4)
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To compute the second integrand in (4.3.3), observe that

d∇B(X,Y ) = ∇X(B(Y ))−∇Y (B(X))−B([X,Y ]) = ∇X∇̃Y ν −∇Y ∇̃Xν − ∇̃[X,Y ]ν

= >(∇̃X∇̃Y ν − ∇̃Y ∇̃Xν − ∇̃[X,Y ]ν = >(R̃(X,Y )ν).

By (B.1.2) we have

R̃(X,Y )ν = sec(∂⊥ρ ) · dvol(∂ρ, X, Y ) · (ν × ∂ρ) ∈ TMr.

Note that

dvol(∂ρ, X, Y ) = cosα · darea(X,Y ), ν × ∂ρ = J(∇r),

where J : TMr → TMr is the rotation by π/2. Moreover, by (B.1.3) we have

sec(∂⊥ρ ) =
sec

cos2 α
.

As a result,

d∇B =
sec

cosα
J(∇r) darea, (4.3.5)

so that

darea(∇f ∧ d∇B) = 〈∇f,∇r〉 sec

cosα
darea. (4.3.6)

By substituting (4.3.4) and (4.3.6) in (4.3.3) and using the identity

〈∇f,∇r〉 = r‖∇r‖2 = r sin2 α,

we obtain ∫
Mr

H darea =

∫
Mr

hdetB darea−1

2

∫
Mr

r sin2 α
sec

cosα
darea.

Together with Lemma 4.3.2 this implies

HE(r) =

∫
Mr

(
r

sec

cosα
+ 2hdetB − r sin2 α

sec

cosα

)
darea

=

∫
Mr

(h sec + 2hdetB) darea =

∫
Mr

h(K + detB) darea.

Here we used the identity h = r cosα and the Gauss equation

K = sec + detB. (4.3.7)

Remark 4.3.4. For a surface M in R3 the same argument yields one of the Minkowski

formulas: ∫
M

H darea =

∫
M

hK darea

(see [54, Chapter 12]). The other Minkowski formula

Area(M) =

∫
M

hH darea

also holds in our more general situation and can be proved by integrating the 2-form

darea(Hess f ∧ id).
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4.4. First derivative of the Hilbert–Einstein functional. The Hilbert–Einstein

functional is a differentiable map from C∞(S2) to R. Denote by HE· the derivative of HE

in the direction of ṙ ∈ C∞(S2).

Theorem 4.4.1. We have

HE· =

∫
Mr

ṙ
sec

cosα
darea. (4.4.1)

Proof. Similarly to the proof of Theorem 4.3.3, we integrate by parts the differential

2-form

darea(Hess ḟ ∧B).

We have ∫
Mr

darea(Hess ḟ ∧B) +

∫
Mr

darea(∇ḟ ∧ d∇B) = 0. (4.4.2)

As the metric g on Mr does not depend on r (rather, one should speak about the

metric induced on S2 by ϕr : S2 →Mr), we have ∇̇ = 0, and hence

Hess ḟ = (Hess f)· = −ḣB − hḂ.

Thus the first integrand in (4.4.2) equals

darea(Hess ḟ ∧B) = −2(ḣdetB + hdet(Ḃ, B)) darea.

By Lemma A.1.5, we have 2 det(Ḃ, B) = (detB)·. Moreover, since the metric g is con-

stant, we have K̇ = 0, so that the Gauss equation (4.3.7) implies (detB)· = − sec·. As a

result, we obtain

darea(Hess ḟ ∧B) = (−2ḣdetB + h sec·) darea. (4.4.3)

To compute the second integrand in (4.4.2), substitute (4.3.5):

darea(∇ḟ ∧ d∇B) = 〈∇ḟ ,∇r〉 sec

cosα
darea.

An easy computation yields

〈∇ḟ ,∇r〉 = ṙ − ḣ cosα, (4.4.4)

so that

darea(∇ḟ ∧ d∇B) =

(
ṙ

sec

cosα
− ḣ sec

)
darea. (4.4.5)

By substituting (4.4.3) and (4.4.5) in (4.4.2), we obtain∫
Mr

(
−2ḣdetB + h sec· + ṙ

sec

cosα
− ḣ sec

)
darea = 0.

On the other hand, by differentiating the formula from Theorem 4.3.3 we get

HE· =

∫
Mr

(
ḣ(K + detB) + h(detB)·

)
darea =

∫
Mr

(ḣ sec + 2ḣdetB − h sec·) darea.

By inserting this into the previous formula, we obtain (4.4.1).
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Remark 4.4.2. By differentiating the formula in Lemma 4.3.2 and combining the result

with (4.4.1), we obtain ∫
Mr

Ḣ darea = −1

2

∫
Mr

r

(
sec

cosα

)·
darea.

The same can be proved by integrating darea(Hess f ∧Ḃ). It follows that the derivative of

the total mean curvature vanishes if (sec /cosα)· vanishes at every point. This happens in

particular for sec = 0 = sec·, that is, for isometric infinitesimal deformations of a surface

in R3. See [6, 48, 52, 5].

Remark 4.4.3. Theorem 4.4.1 can also be derived from the general formula for the

derivative of the Hilbert–Einstein functional on a manifold with boundary (see e.g.

[7, equation (2.9)]), provided that care is taken of the singularity at ρ = 0. For this,

one has to estimate the decay of the derivative of scalar curvature at ρ → 0, which is

easily done.

4.5. Second derivative of HE and the proof of Theorem 3.1.3. Denote by HE··

the second derivative of HE in the direction ṙ:

HE·· =
d2

dt2

∣∣∣∣
t=0

HE(r + tṙ) = (HE·)·.

The second derivative is a quadratic form in ṙ.

Theorem 4.5.1. We have

HE·· =

∫
Mr

ṙ

(
sec

cosα

)·
darea

and

HE·· =

∫
Mr

2hdet Ḃ darea +

∫
Mr

r(cosα)·· sec darea.

Proof. The first formula of the theorem follows by differentiating (4.4.1). The second

formula is proved fully in the spirit of Theorems 4.3.3 and 4.4.1, by integrating the

differential 2-form

darea(Hess ḟ ∧ Ḃ).

We have ∫
Mr

darea(Hess ḟ ∧ Ḃ) +

∫
Mr

darea(∇ḟ ∧ d∇Ḃ) = 0. (4.5.1)

Compute the first integrand:

darea(Hess ḟ ∧ Ḃ) = (ḣ sec· − 2hdet Ḃ) darea. (4.5.2)

For the second integrand, observe that (4.3.5) implies

d∇Ḃ = J

(
sec

cosα
∇r
)·

darea,
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due to the constancy of g and of the associated operators ∇ and d∇. Thus we have

darea(∇ḟ ∧ d∇Ḃ) =

〈
∇ḟ ,

(
sec

cosα
∇r
)·〉

darea

=

(
〈∇ḟ ,∇ṙ〉 sec

cosα
+ 〈∇ḟ ,∇r〉

(
sec

cosα

)·)
darea. (4.5.3)

One easily computes 〈∇f,∇ṙ〉 = −h(cosα)·, hence

〈∇ḟ ,∇ṙ〉 = 〈∇f,∇ṙ〉· = −ḣ(cosα)· − h(cosα)··.

By substituting this and (4.4.4) in (4.5.3), we compute the scalar factor at darea:

(
−ḣ(cosα)· − h(cosα)··

) sec

cosα
+ (ṙ − ḣ cosα)

(
sec

cosα

)·
= −ḣ

(
(cosα)· sec

cosα
+ cosα

(
sec

cosα

)·)
− r(cosα)·· sec + ṙ

(
sec

cosα

)·
= −ḣ sec· − r(cosα)·· sec + ṙ

(
sec

cosα

)·
.

We finally obtain

darea(∇ḟ ∧ d∇Ḃ) =

(
−ḣ sec· − r(cosα)·· sec + ṙ

(
sec

cosα

)·)
darea. (4.5.4)

By substituting (4.5.2) and (4.5.4) in (4.5.1), we obtain∫
Mr

(
−2hdet Ḃ − r(cosα)·· sec + ṙ

(
sec

cosα

)·)
darea = 0.

Combined with the first equation of the theorem, this implies the second equation.

Proof of Theorem 3.1.3. Let r= r0 be the distance function of an embedding ϕ0 : S2 → R3

and let ṙ be the variation of r that corresponds to an infinitesimal isometric deformation ξ.

By Theorem 4.1.7, we have sec· = 0.

As the metric g̃r0 is flat we have sec = 0. It follows that(
sec

cosα

)·
=

sec·

cosα
+ sec

(
1

cosα

)·
= 0.

Thus the first formula from Theorem 4.5.1 implies

HE·· = 0.

On the other hand, due to sec = 0 the second formula says

HE·· =

∫
Mr

2hdet Ḃ darea.

Applying Corollary A.1.6, we obtain Ḃ = 0.

It suffices to show that Ḃ = 0 implies triviality of the deformation ξ. Here Ḃ is

understood as the variation of the shape operator of the surface

Mr ⊂ (R+ × S2, g̃r).
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But, similarly to the first part of the proof of Theorem 4.1.7, this is the same as the

variation of the shape operator of the embedding

ϕt = ϕ0 + tξ : S2 → R3.

With this interpretation of Ḃ, triviality of an infinitesimal deformation that preserves

both the metric and the shape operator is well-known. This can be seen as an infinitesimal

version of the uniqueness part of the Bonnet theorem: the first and second fundamental

forms determine a surface uniquely. An alternative proof is to use the relation between

Ḃ and the differential dη of the rotation field (see Lemmas 3.2.4 and 3.3.2).

Thus every isometric infinitesimal deformation is trivial, and the theorem is proved.

5. Connections between Gauss and metric rigidity

5.1. Shearing vs. bending. The proof of Theorem 2.1.4 in Subsection 2.3 is almost

identical to Blaschke’s proof of Theorem 3.1.3 in Subsection 3.4, although in the former η

is an isogauss infinitesimal deformation while in the latter η is the rotation field of an

isometric infinitesimal deformation. This similarity is explained by the following direct

connection between Gauss and metric infinitesimal rigidity of surfaces in R3.

Lemma 5.1.1. Let M ⊂ R3 be a smooth surface.

(a) If ξ : M → R3 is an isometric infinitesimal deformation of M , then its rotation vector

field η is an isogauss infinitesimal deformation of M .

(b) Conversely, if η is an isogauss infinitesimal deformation of M and H1(M) = 0,

then there exists an isometric infinitesimal deformation ξ of M with rotation vector

field η.

In both cases, ξ is the restriction of a Killing vector field if and only if η is constant.

Proof. Let ξ be an isometric infinitesimal deformation. By Lemma 3.2.3, its rotation

vector field satisfies dη(X) ∈ TxM for all X ∈ TxM . By (3.4.1), we also have tr(dη) = 0,

which means that η, viewed as an infinitesimal deformation of M , preserves the Gauss

curvature in the first order (see Lemma 2.2.1). Thus both conditions in Defintion 2.1.2

are satisfied and the first part of the lemma is proved.

In the opposite direction, assume that η is an isogauss infinitesimal deformation. Then

we have tr(dη) = 0. This implies that the vector-valued 1-form η × dp is closed. Since

H1(M) = 0 by assumption, there exists a vector field ξ along M such that dξ = η × dp.
Then, clearly, 〈dp, dξ〉 = 0, so that ξ is an isometric infinitesimal deformation of M . By

construction, η is its rotation field, and the second part of the lemma is proved.

The last statement of the lemma is contained in Lemma 3.2.4.

Roughly speaking, it is the correspondence between Theorems 2.1.4 and 3.1.3 de-

scribed in the above lemma that led Blaschke to his proof. The matter is a bit compli-

cated by the fact that Theorem 2.1.4 seems to not have been explicitly stated, neither

before Blaschke nor by himself. Here is a detailed account of events.
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In the note [9] Blaschke observed that the rotation vector field of an isometric infinites-

imal deformation satisfied a certain differential equation which, as Hilbert had shown in

[27, Section XIX], had only constant solutions. At the end of the paper, Blaschke promised

to expand his argument and provide a geometric interpretation in a later article, but no

such article appeared in the following years. Then Weyl [60] elaborated Blaschke’s argu-

ment, including also the discrete case: infinitesimal rigidity of convex polyhedra. Blaschke

rewrote this proof in a concise form in [10]; since then it became a classical argument

and can be found i.a. in [54, Chapter 12].

Hilbert dealt in [27, Section XIX] with Minkowski’s theory of mixed volumes which

involves deforming a convex surface by parallel translating its tangent planes. A lemma in

Hilbert’s work can be interpreted as the infinitesimal rigidity statement in Theorem 2.1.4.

Minkowski worked mainly with convex polyhedra, and an analogous infinitesimal rigidity

statement is Theorem 2.1 in [32]. See [32, Subsection 4.5] also for a discrete analog of

Lemma 5.1.1.

To explain the title of this subsection, note that an isogauss infinitesimal deformation

is shearing without bending while an isometric deformation is bending without shearing,

and Lemma 5.1.1 transforms bending into shearing.

5.2. Polar duality between Gauss and metric rigidity. There is another connection

between Gauss and metric infinitesimal rigidity. It relates metric rigidity of a surface with

Gauss rigidity of its polar dual, as opposed to the previous subsection, where everything

happens on a single surface.

It will be convenient to change the setup and consider a surface M as parameterized

by a map ϕ : S → R3, where S is an abstract smooth surface. This extends the scope a

little, as we are able to consider immersed surfaces instead of embedded ones.

Everywhere in this subsection we assume the surface S to be orientable. Let ν : S → R3

be a field of unit normals to M = ϕ(S). Recall that h(x) = 〈ν, ϕ(x)〉 is the support

function of the immersion ϕ. We do not distinguish the map ϕ from the position vector

p in this subsection.

Definition 5.2.1. Assume that the support function of the immersion ϕ : S → R3

nowhere vanishes. Then the map

ψ : S → R3, ψ(x) =
ν(x)

h(x)
,

is called the polar dual of ϕ. Geometrically, ψ(x) is the pole of the plane dϕ(TxS) with

respect to the unit sphere in R3 centered at the origin.

The map ψ is always smooth, but may fail to be an immersion. For example, if ϕ

maps an open subset U ⊂ S into a plane, then ψ maps all of U to the pole of this plane.

Lemma 5.2.2. Let ψ be the polar dual of an immersion ϕ. If ψ is itself an immersion,

then the polar dual of ψ is ϕ.

Proof. The condition on ψ in Definition 5.2.1 is equivalent to

〈ϕ,ψ〉 = 1, 〈dϕ, ψ〉 = 0.
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This determines the map ψ uniquely up to multiplication with −1, which corresponds to

inverting the field of unit normals to ϕ.

By taking the differential of the first equation and subtracting the second one, we

obtain 〈dψ, ϕ〉 = 0. Together with the first equation (and under the assumption rk dψ = 2)

this forms the conditions on ϕ being the polar dual of ψ, under an appropriate choice of

the field of unit normals to ψ.

Example 5.2.3. If ϕ : S2 → R3 is a smooth embedding with everywhere positive Gauss

curvature and such that 0 lies in the interior of the body P bounded by ϕ(S2), then the

polar dual ψ also enjoys all of these properties. If ν in Definition 5.2.1 is the outward

normal, then the body Q bounded by ψ(S2) can be described as

Q = {w ∈ R3 | 〈v, w〉 ≤ 1 for all v ∈ P}.

This is sometimes used as the definition of the polar dual of a convex body.

Now we are ready to establish the announced equivalence.

Lemma 5.2.4. Let ϕ : S → R3 be an immersion such that its polar dual ψ : S → R3 is

also an immersion.

(a) If ξ : S → R3 is an isometric infinitesimal deformation of M = ϕ(S), then its trans-

lation vector field τ is an isogauss infinitesimal deformation of N = ψ(S).

(b) Conversely, if τ is an isogauss infinitesimal deformation of N and H1(S) = 0, then

there is an isometric infinitesimal deformation ξ of M such that τ is its rotation

vector field.

In both cases, ξ is induced by a Killing field on R3 if and only if τ is constant.

Proof. (a) is essentially proved in Lemma 3.5.1. There we have shown that 〈dτ, ϕ〉 = 0

and det(dψ, dτ) = 0. The former is equivalent to dτ(X) ‖TN , as p is orthogonal to TN ,

and together with the latter it implies that the infinitesimal deformation τ of N pre-

serves Gauss curvature in the first order (see Subsection 2.2). Thus both conditions of

Definition 2.1.2 are fulfilled and τ is an isogauss infinitesimal deformation of N = ψ(S).

In the opposite direction, assume that τ : S → R3 is given such that 〈dτ, ϕ〉 = 0 and

det(dψ, dτ) = 0. It follows that the 1-form dτ × ψ is closed, and due to H1(S) = 0 there

is a vector field η : S → R3 such that dη = dτ × ψ. Consequently,

ϕ× dη = ϕ× (dτ × ψ) = 〈ϕ,ψ〉dτ − 〈ϕ, dτ〉ψ = dτ.

Thus if we put ξ = η×ϕ+τ , then ξ is an isometric infinitesimal deformation of M = ϕ(S).

The translation vector field of an isometric infinitesimal deformation is constant by

definition. If τ is constant, then the equation dη = dτ × ψ shown above implies that η is

also constant, and therefore ξ is trivial.

5.3. Darboux wreath. By combining Lemmas 5.1.1 and 5.2.4 one can find another

correspondence which is involutive up to sign.

Lemma 5.3.1. Let ϕ : S → R3 be an immersion such that its polar dual ψ : S → R3 is

also an immersion. Assume that ξ is an isometric infinitesimal deformation of M = ϕ(S)
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with associated rotation and translation vector fields η and τ . Then the vector field

ζ = τ × ψ − η (5.3.1)

is an isometric infinitesimal deformation of N = ψ(S) with τ and η as associated rotation

and translation vector fields.

Proof. By Lemma 5.1.1, τ is an isogauss infinitesimal deformation of ψ. By Lemma 5.2.4,

there exists an isometric infinitesimal deformation ζ of ψ with rotation vector field τ . To

find the corresponding translation vector field, compute

ψ × dτ = ψ × (ϕ× dη) = 〈ψ, dη〉ϕ− 〈ψ,ϕ〉dη = −dη. (5.3.2)

Thus by Definition 3.2.2, −η is the translation vector field of ζ.

Assume that all maps from S to R3 under consideration are immersions. Then τ is

an isometric infinitesimal deformation of η with rotation vector field ϕ and translation

vector field ξ. In other words, the map

(surface, deformation) 7→ (rotation field, translation field)

is an involution. On the other hand, one can view η as an isometric infinitesimal de-

formation of τ . Then, by equations (5.3.1) and (5.3.2), the corresponding rotation and

translation vector fields are −ψ and −ζ. That is, the map

(surface, deformation) 7→ (translation field, rotation field) (5.3.3)

has the orbit (ϕ, ξ) 7→ (τ, η) 7→ (−ζ,−ψ) 7→ · · · . By Darboux, [21], [49, Section 3.4.1],

the map (5.3.3) has order six in general. The twelve surfaces in the orbit are called the

Darboux wreath.

6. Polar duality between volume and Hilbert–Einstein functional

6.1. A conjecture about second derivatives. Lemma 5.2.4 establishes a correspon-

dence between isometric infinitesimal deformations of a surface M and isogauss infinites-

imal deformations of its polar dual N . In the case of convex closed surfaces, we iden-

tified isometric deformations with zeros of the second derivative HE·· of the Hilbert–

Einstein functional, and isogauss deformations with zeros of the second derivative Vol··

of the volume. This suggests that there is a relation between the Hilbert–Einstein func-

tional of a convex body P and the volume of the polar dual P ∗, at least at the level of

second derivatives.

Let M ⊂ R3 be a convex closed surface with positive Gauss curvature and enclosing

the coordinate origin, and let N be its polar dual. Denote by r0 : S2 → R the distance

function of M (see Definition 4.1.1), and by h0 : S2 → R the support function of N (see

Subsection 2.5). Clearly, h0 = 1/r0. By (4.4.1), we have

HE· =

∫
S2
ṙ

sec

cosα
dareag,
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where g is the metric induced on S2 by the radial projection ϕ0 : S2 →M . Denote by L1

the linearization at r0 of the operator

r 7→ sec

cosα
.

As the metric g remains constant during the warped product deformations considered in

Section 4, the above formula implies that L1 is self-adjoint. Similarly, we have

Vol· =

∫
S2
ḣdet(h id + Hessh) dareaS2

(see Subsection 2.5). Again, the linearization L2 of the operator

h 7→ det(h id + Hessh)

at h = h0 is self-adjoint.

Lemma 6.1.1. kerL1 = kerL2.

Proof. As sec = 0 at r = r0, we have kerL1 = {ṙ | sec· = 0}. By Subsection 4.1, there is

an isometric infinitesimal deformation ξ of M such that

ṙ(x) = 〈ξ(x), x〉.
By Lemma 5.2.4, the corresponding translation vector field τ is an isogauss infinitesimal

deformation of N . As det(h id + Hessh) is the reciprocal of the Gauss curvature of N , it

follows that the corresponding variation of h belongs to the kernel of L2. Since

ḣ(x) = 〈τ(x), x〉 = 〈ξ(x), x〉 = ṙ(x),

where the second equation follows from ξ(x) = η(x) × x + τ(x), it follows that

kerL1 ⊂ kerL2. By inverting the argument, we obtain kerL2 ⊂ kerL1, and the lemma is

proved.

The above lemma might seem less exciting, as the rigidity theorems imply that both

kernels correspond to trivial deformations. But it says more when understood locally:

note that Lemma 5.2.4 is of a local character, as are all other arguments in the proof of

Lemma 6.1.1.

Conjecture 6.1.2. The operators L1 and L2 are equal.

This conjecture is motivated by a polyhedral analog (see [32, Lemma 4.1]).

The rest of this section deals with spherical and hyperbolic-de Sitter geometry, where

the relation between the Hilbert–Einstein functional and volume of the dual is a more

straightforward one.

6.2. Polar duality and fundamental forms in spherical geometry. Let S be an

orientable smooth surface and ϕ : S → S3 be an immersion. We say that the surface

N = ϕ(S3) is co-oriented if for every x ∈ S one of the half-spaces into which Tϕ(x)N

divides Tϕ(x)S3 is dubbed positive, and this in a continuous way. A co-orientation can be

introduced by choosing a unit normal field pointing in the positive direction.

Definition 6.2.1. The polar dual of a co-oriented immersion ϕ is the map ψ : S → S3
that sends x to the pole of the 2-sphere through ϕ(x) tangent to Tϕ(x)M . Of the two

poles the one is chosen that lies on the positive side.
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Lemma 6.2.2. Let ψ be the polar dual of an immersion ϕ : S → S3. If ψ is itself an

immersion, then ϕ is the polar dual to ψ for an appropriate co-orientation of N = ψ(S).

Proof. View S3 as the unit sphere in R4 centered at the origin. For any v, w ∈ S3 the

scalar product 〈v, w〉 is then understood as the scalar product of the corresponding vectors

in R4. Then Definition 6.2.1 implies

〈ϕ,ψ〉 = 0, 〈dϕ, ψ〉 = 0.

This determines the map ψ uniquely up to antipodal involution, which corresponds to

changing the co-orientation of M = ϕ(S). Taking the differential of the first equation

and subtracting the second one yields 〈ϕ, dψ〉 = 0. Together with the first equation and

under the assumption rk dψ = 2 this means that ϕ is the polar dual of ψ for a certain

co-orientation of N = ψ(S).

The polar dual can be interpreted as follows: ψ(x) is obtained as the endpoint of the

co-orienting unit normal ν(x) to ϕ, translated so that its starting point is at the origin

of R4. It follows that

dψ(X) = ∇̃Xν,

which should again be understood as equality between free vectors in R4. Therefore the

three fundamental forms of the immersion ϕ can be written as follows:

Iϕ(X,Y ) = 〈dϕ(X), dϕ(Y )〉,
IIϕ(X,Y ) = 〈dϕ(X), dψ(Y )〉 = 〈dϕ(Y ), dψ(X)〉,

IIIϕ(X,Y ) = 〈dψ(X), dψ(Y )〉.

This immediately implies the following lemma.

Lemma 6.2.3. Assume that the polar dual ψ of an immersion ϕ is itself an immersion.

Interpreting ϕ as a unit normal field along ψ, co-orient ψ by ϕ. Then

Iϕ = IIIψ, IIϕ = IIψ, IIIϕ = Iψ.

Finally, let us characterize immersions whose polar duals are also immersions.

Lemma 6.2.4. The polar dual ψ of an immersion ϕ has full rank at x ∈ S if and only if

ϕ(x) is not a parabolic point for ϕ.

Proof. Choose an arbitrary volume form on S. This gives sense to the determinants

det Iϕ, det IIϕ, and det IIIϕ. Then we have

det IIIϕ
det Iϕ

= det(B2) = (detB)2,

where B is the shape operator of the surface M = ϕ(S). Thus the symmetric bilinear

form Iψ = IIIϕ is non-degenerate if and only if detB 6= 0.

In particular, if K(x) > 1 is the Gauss curvature of ϕ, then ψ is an immersion with

Gauss curvature K(x)−1.
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6.3. Polar duality between Gauss and metric rigidity for surfaces in S3. Let

ψ : S → S3 be an immersion. An infinitesimal deformation of ψ is a vector field along ψ:

η : S → TS3, η(x) ∈ Tψ(x)S3.

The geodesic flow of ψ along η defines a family of immersions (for small t)

ψt : S → S3, ψt(x) = expψ(x)(tη(x)).

Clearly, ψ0 = ψ. Denote

˙IIIψ =
d

dt

∣∣∣∣
t=0

IIIψt .

The following definition is known to be the spherical analog of the Gauss infinitesimal

rigidity defined in Subsection 2.1.

Definition 6.3.1. A vector field η along an immersion ψ is called an isogauss infinites-

imal deformation of N if ˙IIIψ = 0. The surface N = ψ(S) is called Gauss infinitesimally

rigid if every its isogauss infinitesimal deformation is trivial, i.e. is a restriction of a

Killing field on S3.

In S3, Gauss infinitesimal rigidity is straightforwardly related to the metric infinites-

imal rigidity of the polar dual.

Lemma 6.3.2. Let (ϕ,ψ) be a polar pair of immersions of an orientable surface S in S3.

Then the surface N = ψ(S) is Gauss infinitesimally rigid if and only if the surface

M = ϕ(S) is metrically infinitesimally rigid.

Proof. Let η be an infinitesimal deformation of q and ψt = expq(tη) be the corresponding

geodesic flow. Let ϕ′t be the polar dual of ψt. By Lemma 6.2.3, we have Iϕ′t = IIIψt , hence

d

dt

∣∣∣∣
t=0

Iϕ′t = ˙IIIψ.

The left hand side depends only on the 1-jet of ϕ′t, hence it does not change if we replace ϕ′t
by ϕt = expϕ(tξ), where ξ(x) = d

dt

∣∣
t=0

ϕt(x). It follows that ξ is an isometric infinitesimal

deformation of ϕ if and only if η is an isogauss infinitesimal deformation of ψ.

If η is induced by a Killing vector field on S3, then ψt = Ψt ◦ q for the corresponding

one-parameter group of isometries Φt. Then also ϕt = Ψt ◦ p. It follows that ξ is induced

by the same Killing vector field and is therefore a trivial deformation.

6.4. Herglotz’s formula in S3. The last subsection relates Gauss rigidity and metric

rigidity of the polar dual in S3 in a very natural way. Here we recall a formula of Herglotz

that relates the Hilbert–Einstein functional to the volume of the polar dual. In the next

subsection we discuss corresponding variational approaches to infinitesimal rigidity of

surfaces in S3.

Theorem 6.4.1 (Herglotz). Let P ⊂ S3 be a convex body with smooth boundary M with

Gauss curvature greater than 1. Let P ∗ ⊂ S3 be the body bounded by the surface M∗ polar

dual to M . Then

Vol(P ) +

∫
M

H darea + Vol(P ∗) = π2, (6.4.1)

where H is the mean curvature, i.e. half the trace of the shape operator.
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Proof. Assume M to be co-oriented by the outward unit normal ν, so that the bodies P

and P ∗ are disjoint (like northern and southern ice caps). We will compute the volume

of the complement S3 \ (P ∪ P ∗).
The field of unit normals to M can be viewed as a map ν : M → M∗, and the

differential dν can be identified with the shape operator B on M (cf. Subsection 6.2).

Consider the map

F : M × [0, π/2]→ S3, F (x, t) = cos t · x+ sin t · ν(x).

Note that F (M × {t}) is the set of points at distance t from M and distance π/2 − t
from M∗. Thus the map F is a diffeomorphism onto the closure of S3 \ (P ∪ P ∗) and we

have

Vol(S3 \ (P ∪ P ∗)) =

∫
M×[0,π/2]

F ∗(dvolS3).

By denoting Ft = F (· , t), we can write

F ∗(dvolS3) = dtF ∗t (dareaFt(M)) = det(dFt)dtdareaM .

As dFt = cos t · id + sin t ·B, we have

det(dFt) = cos2 t+ 2 sin t cos t ·H + sin2 t ·K.

It follows that

Vol(S3 \ (P ∪ P ∗)) =

∫
M

darea

∫ π/2

0

(cos2 t+ 2 sin t cos t ·H + sin2 t ·K) dt

=

∫
M

(
π

4
+H +

π

4
K

)
darea

=
π

4
Area(M) +

∫
M

H darea +
π

4
Area(M∗).

As Vol(S3) = 2π2, this leads to

Vol(P ) +
π

4
Area(M) +

∫
M

H darea +
π

4
Area(M∗) + Vol(P ∗) = 2π2 (6.4.2)

(an instance of Steiner’s formula on S3). On the other hand, a simple computation:

Area(M∗) =

∫
M

det(dFπ
2

) dareaM =

∫
M

detB dareaM

=

∫
M

(K − 1) dareaM = 4π −Area(M)

proves the formula

Area(M) + Area(M∗) = 4π. (6.4.3)

Multiplying it with π/4 and subtracting from (6.4.2) we obtain (6.4.1).

Remark 6.4.2. There is an alternative to applying the Gauss–Bonnet formula in the

second part of the proof. Consider the map

G : M × [0, π/2]→ S3, G(x, t) = cos t · x− sin t · ν(x).

Then G0 maps M identically to itself, whereas Gπ/2 maps M to −M∗. Attach a ball to

each of the bases of the cylinder M × [0, π/2] and extend the map G by mapping these
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balls to P and −P ∗, respectively. This results in a piecewise smooth map Ḡ : S3 → S3 (the

source space itself is equipped with only piecewise smooth structure). As Ḡ has degree 0,

we have

Vol(P ) +

∫
M×[0,π/2]

G∗(dvolS3) + Vol(P ∗) =

∫
S3
Ḡ∗(dvolS3) = 0.

By performing computations similar to the first part of the proof, we obtain

Vol(P )− π

4
Area(M) +

∫
M

H darea− π

4
Area(M∗) + Vol(P ∗) = 0. (6.4.4)

By summing this with (6.4.2), we obtain (6.4.1).

The argument that uses the maps F and G is a slight modification of Herglotz’s proof

in [26]. Herglotz works in Sd for arbitrary d and obtains two formulas of which (6.4.1)

and (6.4.3) are special cases for d = 3. For d odd both formulas are self-dual (in particular,∫
M
H darea is also the total mean curvature of M∗), while for d even they are dual to

each other, so that the terms Vol(P ) and Vol(P ∗) occur in different formulas.

Remark 6.4.3. Points of P ∗ are poles of great spheres disjoint from the interior of P .

This provides an integral-geometric interpretation of the formula (6.4.1): a random great

sphere intersects a convex body P with probability

1

π2

(
Vol(P ) +

∫
∂P

H darea

)
.

6.5. Approaches to proving infinitesimal rigidity of convex surfaces in S3.
A smooth convex closed surface M ⊂ S3 with Gauss curvature bigger than 1 is infinites-

imally rigid (see Remark 6.6.4 below). Most likely, a direct proof can be found that uses

the approximating section in the bundle of germs of Killing fields, similarly to the rota-

tion and translation fields approach in Subsections 3.2–3.5. The proof from Subsection 3.5

should be equivalent to studying derivatives of the functional

S(P ) := 2 Vol(P ) +
1

2

∫
P

scal dvol + 2

∫
∂P

H darea,

where P is the body bounded by M , and the metric in the interior of P varies in the

class of warped products (cf. Section 4). The functional S can be seen as a gravity action

with non-zero cosmological constant (cf. [35]).

Under the above assumptions, the surface M is also Gauss infinitesimally rigid. As

indicated by Subsections 6.3 and 6.4, a proof of (metric) infinitesimal rigidity of M using

the Hilbert–Einstein functional should translate in a straightforward way as a proof of

Gauss infinitesimal rigidity of M∗ = ∂P ∗ using the volume of P ∗. One should probably

study the functional

S∗(P ∗) := 2 Vol(P ∗) +
1

2

∫
P∗

scal dvol,

that is, the gravity action without the boundary term, where the metric in the interior

of P ∗ varies in the class of warped products while preserving the third fundamental

form of the boundary. Indeed, warping the metric around the north pole of S3, which is

contained in P , is equivalent to warping around the south pole, contained in P ∗, and we
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conjecture that S(P ) + S∗(P ∗) = 2π2 for every warped product metric on S3 (cf. [32,

Lemma 4.9]).

6.6. Polar duality in hyperbolic-de Sitter geometry. Less classical than the polar

duality in the sphere is the polar duality between the hyperbolic and de Sitter spaces

(see [50, Section 1] and references therein).

Consider the hyperboloid model of the hyperbolic space

H3 = {x ∈ R4 | ‖x‖3,1 = −1, x0 > 0},
where ‖x‖3,1 = −x20 + x21 + x22 + x23. The polar dual to an immersion ϕ : S → H3 is an

immersion in the de Sitter space

dS3 = {x ∈ R4 | ‖x‖3,1 = 1}.
Indeed, if we define the polar dual ψ similarly to Subsection 6.2 through

〈ϕ,ψ〉 = 0, 〈dϕ, ψ〉 = 0,

then ψ(x) lies on a space-like line which intersects dS3 and not H3.

Relations between the fundamental forms and the Gauss and metric infinitesimal

rigidity for polar pairs of surfaces carry over to the hyperbolic-de Sitter case. In order to

transfer Theorem 6.4.1, one has to give a meaning to the term Vol(P ∗). First of all, we

put
P ∗ = cone(M∗) ∩ (dS3 ∪H3

−),

where cone(M∗) ⊂ R4 is the cone over M∗, and H3
− is the antipodal copy of H3. Thus

P ∗ is the union of H3
− and of an infinite end of dS3. However, there is a consistent way

to define a finite quantity Vol(P ∗).

Theorem 6.6.1. Let P ⊂ H3 be a convex body with smooth boundary M with everywhere

positive definite shape operator. Let P ∗ ⊂ dS3 be the convex body bounded by the surface

M∗ polar dual to M . Then

Vol(P )−
∫
M

H darea + Vol(P ∗) = 0, (6.6.1)

where H is the mean curvature, i.e. half the trace of the shape operator.

Herglotz [26] proves this theorem in the same way as in the spherical case, multiplying

the arguments of sin and cos with i. In footnote 10, he remarks that the same result can

be achieved by studying the asymptotics of the volume of parallel bodies in H3. In [19],

contour integrals in the complex plane are used in order to assign a finite volume to

certain subsets of H3 ∪ dS3. This might be related to the argument of Herglotz.

Remark 6.6.2. An integral geometric interpretation of (6.6.1) says that the (motion-

invariant and appropriately normalized) measure of the set of planes that intersect a

convex body P ⊂ H3 equals ∫
∂P

H darea−Vol(P ).

In particular, this quantity is always positive.

Remark 6.6.3. In [35], the asymptotics of the volume of parallel bodies of the convex

core is used to define the renormalized volume of a non-compact hyperbolic manifold.
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Remark 6.6.4. Infinitesimal rigidity of smooth surfaces is invariant under projective

transformations, as was shown by Darboux [21]. Closely related to this are the so-called

Pogorelov maps [45, Chapter V]. They associate to an isometric infinitesimal deformation

of a surface M ⊂ R3 an isometric infinitesimal deformation of the surface MH ⊂ H3

obtained by taking an open ball B ⊃M and interpreting it as the Klein model of H3. As

a result, MH is infinitesimally rigid if and only if M is. The same holds with MH replaced

by MS ⊂ S3 defined as the inverse gnomonic projection of M . Volkov [57] gives a unified

treatment of these two results.

A surface M ⊂ R3 is convex if and only if MH (respectively, MS) is convex. Thus

infinitesimal rigidity of closed strictly convex surfaces in the hyperbolic (respectively,

spherical) space follows from rigidity in the Euclidean space.

7. Relation to Minkowski and Weyl problems

7.1. A brief overview. The following problem was posed by Weyl in [59].

Weyl problem. Let g be a Riemannian metric on S2 with everywhere positive Gauss

curvature. Show that there exists a smooth convex embedding ϕ : S2 → R3 such that

ϕ∗(canR3) = g. Show that this embedding is unique up to an isometry of R3.

Weyl outlined a proof for the analytic case; it was accomplished later by Lewy [39].

Nirenberg [42] extended Weyl’s method to certain finite differentiability classes.

A. D. Aleksandrov [3, 4] stated and proved a polyhedral analog of the Weyl problem.

In this case g is a Euclidean metric with cone points of angles less than 2π, and (S2, g)

must be embedded as a convex polyhedron. By approximating a Riemannian metric with

polyhedral ones, Aleksandrov showed that (S2, g) from the Weyl problem can be embed-

ded isometrically into R3 as a convex surface, but he did not show that the embedding

is smooth. Pogorelov filled this gap in [46], again for some finite differentiability classes,

and strengthened his results in later works.

Minkowski problem. Let K : S2 → (0,+∞) be a smooth function such that∫
S2
K(x)xdareaS2 = 0,

where S2 = {x ∈ R3 | ‖x‖ = 1}. Show that there exists a smooth convex embedding

ψ : S2 → R3 such that K(x) is the Gauss curvature of the surface N = ψ(S2) at the

point ψ(x), and x is the outward unit normal to N at ψ(x). Show that the embedding ψ

is unique up to a parallel translation.

The problem that was stated and proved by Minkowski in [41] is different: he assumed

only continuity of K and wanted to prove the existence of a convex surface whose curva-

ture measure has density K, the curvature measure being defined as the measure of the

Gauss image pulled back to N . Minkowski first proved an analog for convex polyhedra

and then used polyhedral approximation. Later, the argument was extended to arbi-

trary measures, not necessarily having a positive continuous density [2], [51, Section 7.1].

Pogorelov [47] proved that if K is smooth then the corresponding surface is also smooth
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and thus has Gauss curvature K. This settled the Minkowski problem in the formulation

given above.

In a different line of research, H. Lewy [38] solved the Minkowski problem for analytic

metrics by adapting the method suggested by Weyl for solution of his problem, and

Nirenberg [42] extended this to the smooth case.

7.2. Uniqueness in the Minkowski and Weyl problems. The uniqueness part in

both Minkowski and Weyl problems is essentially easier than the existence part. For the

former, it was proved by Minkowski himself using his mixed volumes theory. Minkowski’s

ideas were developed by Aleksandrov, who gave another uniqueness proof using mixed

determinants [1]. The uniqueness in the Weyl problem was proved by Herglotz in [25];

this proof is reproduced in [28].

A proof similar to that of Aleksandrov was found by Chern [17] and, independently,

by Hsiung [30]. The main difference is that they argued in terms of the position vector

of an embedding while Aleksandrov argued in terms of the support function. The proof

by Chern and Hsiung is reproduced in [54, Chapter 12]. One should also mention the

paper [18] of Chern, where he generalizes his arguments and establishes a connection

with Aleksandrov’s work.

Quite curiously, the ideas came full circle. Hsiung’s work was motivated by that of

Herglotz. Herglotz refers to Blaschke’s proof of the infinitesimal rigidity of convex sur-

faces. And Blaschke’s proof was inspired by Hilbert’s work [27] related to the Minkowski

problem (see discussion at the end of our Subsection 5.1).

Our proof of the infinitesimal Gauss rigidity in Subsection 2.3 is related to Chern–

Hsiung’s proof of the Minkowski uniqueness in the same way as Blaschke’s proof of

the infinitesimal metric rigidity is related to Herglotz’s proof of the Weyl uniqueness.

However, we came to our proof by “smoothing” the polyhedral analog [32].

We should also mention the work [55] of Stoker who studiese uniqueness in the

Minkowski and Weyl problems, as well as metric infinitesimal rigidity, by Hilbert’s method

from [27].

7.3. Existence in the Minkowski and Weyl problems. Weyl, Lewy, and Nirenberg

solved the Minkowski and Weyl problems using the continuity method. For example, in

the case of Weyl’s problem, they consider a family of metrics {gt | t ∈ [0, 1]} on S2 such

that g1 = g and g0 is the standard metric of curvature 1. For t = 0 there is an isometric

embedding (S2, gt) → R3, and one wants to show that the set of all t for which this is

the case is an open and closed subset of [0, 1]. Openness follows from the ellipticity of a

certain operator (which is, in fact, related to infinitesimal rigidity), and closedness follows

from a priori estimates.

Aleksandrov’s solution of the polyhedral Weyl problem also uses a variant of the con-

tinuity method. At the same time, Minkowski proved the polyhedral Minkowski theorem

in a different, quite elegant way. On the space of convex polyhedra with given directions

of outward normals, he maximized the volume function under a certain linear constraint

and showed that the maximum point is the desired polyhedron up to a scaling. Aleksan-

drov [2] extended this method to arbitrary curvature measures.
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A variational approach to the Weyl problem was suggested by Blaschke and Herglotz

in [11]. Their idea was to consider it not as an embedding problem (S2, g) → (R3, can),

but as an extension problem: given a ball B3, a Riemannian metric g on S2 = ∂B3 must

be extended to a flat metric on B3. On the space of all extensions g̃ they consider the

Hilbert–Einstein functional and show that its critical points are exactly the flat metrics.

Thus the Weyl problem reduces to showing that the Hilbert–Einstein functional has

exactly one critical point. This idea was never implemented.

7.4. An approach to the Minkowski and Weyl problems. Section 4 of the present

paper suggests a modification of Blaschke–Herglotz’s approach: instead of considering all

Riemannian metrics g̃ on B3 that extend a given metric g on S2, one considers only warped

products g̃r of the form (4.1.3). The metric g̃r is determined by a function r : S2 → R
and determines a function sec : S2 → R such that g̃r is flat if and only if sec ≡ 0. We have

shown in Section 4 that the kernel of the map ṙ 7→ sec· (the linearization of r 7→ sec) at

r such that g̃r is flat has dimension three.

Conjecture 7.4.1. The map ṙ 7→ sec· is onto provided that

0 < sec < K, (7.4.1)

where K : S2 → R is the Gauss curvature of the metric g.

(Note that sec < K implies detB > 0, where B is the shape operator on S2 embedded

in the warped product.)

If this conjecture is true, then under assumption (7.4.1) every small perturbation

of sec can be obtained by an appropriate modification of r.

In order to achieve sec = 0, put r0 ≡ R for a sufficiently large R ∈ R. Then the

corresponding sec0 satisfies (7.4.1). Construct a family of functions {rt | t ∈ [0, 1)} by

requiring

sect = (1− t) sec0 . (7.4.2)

One needs some a priori estimates in order to show that the set of t ∈ [0, 1) for which rt
exists is closed and that the limit at t → 1 is a smooth function. This would prove the

existence in the Weyl problem.

In the polyhedral case, the above approach was realized in [12]. A different modifica-

tion of the Blaschke–Herglotz approach in the polyhedral case was found and realized by

Aleksandrov’s student Volkov in [56].

A similar approach to the existence part of the Minkowski problem consists in choosing

an arbitrary function h0 : S2 → R and constructing a family of functions {ht | t ∈ [0, 1]}
such that K−1t − K−1 = (1 − t)(K−10 − K−1), where Kt is the Gauss curvature of the

surface with support function ht.

In [20], the curvature flow ḣ = − log(Kt/K) is considered. It is shown that, depending

on the initial data, the solution either shrinks to a point or expands to infinity or converges

to a smooth surface with Gauss curvature K. The advantage of this approach is the

explicitness of the evolution equation, while our approach would give convergence to the

solution of the Minkowski problem independently of the initial data.
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8. Directions for future research

Problem 1. What is the analog of Darboux wreath (Subsection 5.3) for infinitesimal

deformations of surfaces in the sphere and in the hyperbolic-de Sitter space?

Problem 2. Find new proofs of the existence part in the Minkowski and Weyl problems

based on the approach outlined in Subsection 7.4.

Koiso [34] proved infinitesimal rigidity of Einstein manifolds under certain restrictions

on the curvature by studying the second variation of the Hilbert–Einstein functional. Our

approach to the infinitesimal rigidity of convex surfaces in Section 4 has some similar

features.

Problem 3. Prove infinitesimal rigidity of an Einstein manifold M with convex bound-

ary by unifying Koiso’s and our arguments.

Koiso used certain Weitzenböck-type formulas for HE··. In the case with boundary

an integral over ∂M should appear. Hopefully it can be identified as
∫
∂M

f det Ḃ dvol for

some positive function f .

Koiso’s method works in particular for compact closed hyperbolic manifods (whose

infinitesimal rigidity was previously proved by Calabi [16] and Weil [58]). Thus a special

case of Problem 3 is to give a new proof of Schlenker’s theorem [50] on the infinitesimal

rigidity of compact hyperbolic manifolds with convex boundary. Schlenker also proves

Gauss infinitesimal rigidity of such manifolds. It would also be interesting to find a

variational proof of this theorem (cf. Subsection 6.5).

Similar problems for manifolds with convex polyhedral boundary are not solved, al-

though infinitesimal rigidity of convex polyhedra can be proved in a similar spirit (cf. [32]).

A challenge would be to find a common generalization from polyhedral and smooth to

arbitrary convex surfaces (respectively, manifolds with convex boundary).

Problem 4. By extending the approach proposed in Problem 3, prove the infinitesimal

rigidity of compact hyperbolic manifolds with convex boundary which is neither smooth

nor polyhedral. In particular, prove the infinitesimal rigidity of the convex core of a

hyperbolic manifold.

Infinitesimal rigidity of convex cores would probably allow one to prove the uniqueness

part in Thurston’s pleating lamination conjecture. See [14], where the existence part is

proved.

Note that the Schläfli formula for convex cores proved by Bonahon [13] should be

equivalent to a formula for the first variation of the Hilbert–Einstein functional under

arbitrary variations of the metric in the interior of the convex core. More generally,

first variations of Lipschitz–Killing curvatures in the case of non-smooth boundary are

computed by Bernig in [8].

Problem 5. In the same spirit, reprove Pogorelov’s theorem [45, Chapter IV] on the in-

finitesimal rigidity of arbitrary convex surfaces without flat pieces by studying variations

of the Hilbert–Einstein functional.
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Appendix A. Mixed determinants of linear operators
and of vector-valued differential forms

A.1. Mixed determinants of linear operators. Let V be a vector space with

dimV = n. Then the determinant

det : End(V )→ R

is a homogeneous polynomial of degree n. Therefore there is a unique polarization of det,

that is, a symmetric polylinear form on End(V ) denoted also by det and such that

det(A, . . . , A) = detA

for all A ∈ End(V ) (see e.g. [29, Appendix A]).

Definition A.1.1. The number det(A1, . . . , An) is called the mixed determinant of the

operators A1, . . . , An.

For example, by polarizing the determinant of 2× 2-matrices we obtain

det

((
a11 a12
a21 a22

)
,

(
b11 b12
b21 b22

))
= 1

2 (a11b22 + a22b11 − a12b21 − a21b12).

Corollary A.1.2. We have
det(id, B) = 1

2 trB.

Lemma A.1.3. The symmetric bilinear form det(· , ·) on the space of 2× 2-matrices has

signature (+,+,−,−). The restriction of det(· , ·) to the space of symmetric 2×2-matrices

has signature (+,−,−).

Proof. The matrices (
1 0

0 1

)
,

(
1 0

0 −1

)
,

(
0 1

1 0

)
,

(
0 1

−1 0

)
form an orthogonal basis for det(· , ·), the first three of them spanning the space of sym-

metric matrices. The first and the fourth matrices have a positive determinant, the second

and the third a negative.

Corollary A.1.4. Let A,B be symmetric 2× 2-matrices such that

detB > 0, det(A,B) = 0. (A.1.1)

Then detA ≤ 0. Moreover, the equality detA = 0 occurs only if A = 0.

Proof. Assumptions (A.1.1) mean that B is a positive vector for the symmetric bilinear

form det(· , ·) and that A is orthogonal to B. By the second part of Lemma A.1.3, det(· , ·)
is negative definite on B⊥. Hence detA ≤ 0, and the determinant vanishes only if the

matrix A vanishes.

Lemma A.1.5. Let Bt ∈ End(V ) be a differentiable family of linear operators. Denote

B = B0 and Ḃ = d
dt

∣∣
t=0

Bt. Then

(detB)· = 2 det(Ḃ, B),

where (detB)· = d
dt

∣∣
t=0

(detBt).

Proof. Follows easily from bilinearity and symmetry of det(· , ·).
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Corollary A.1.6. Let Bt be a differentiable family of symmetric 2×2-matrices, B0 = B.

Assume that

detB > 0, (detB)· = 0.

Then det Ḃ ≤ 0. Moreover, the equality det Ḃ = 0 occurs only if Ḃ = 0.

Proof. Use Lemma A.1.5 and Corollary A.1.4 for A = Ḃ.

A.2. Mixed determinants and tensor algebra. Recall the definitions of the alter-

nating and symmetrizing operators on the kth tensor power
⊗k

V of a vector space V :

Alt(v1 ⊗ · · · ⊗ vk) :=
1

k!

∑
σ∈Sk

sgnσ · vσ(1) ⊗ · · · ⊗ vσ(k),

Sym(v1 ⊗ · · · ⊗ vk) :=
1

k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k).

The image of Alt is denoted by
∧k

V ⊂
⊗k

V and consists of linear combinations of

multivectors

v1 ∧ · · · ∧ vk := k! Alt(v1 ⊗ · · · ⊗ vk) =
∑
σ∈Sk

sgnσ · vσ(1) ⊗ · · · ⊗ vσ(k).

Let A1, . . . , Ak ∈ End(V ) ∼= V ⊗ V ∗ be a collection of linear operators. Their tensor

product acts naturally as a linear operator on the kth tensor power of V :

k⊗
i=1

Ai ∈
⊗k

(V ⊗ V ∗) ∼= (
⊗k

V )⊗ (
⊗k

(V ∗)) ∼= End(
⊗k

V ), (A.2.1)

because we have
⊗k

(V ∗) ∼= (
⊗k

V )∗. Explicitly,( k⊗
i=1

Ai

)
(v1 ⊗ · · · ⊗ vk) := A1(v1)⊗ · · · ⊗Ak(vk).

If Ai = A for all i, then the operator
⊗k

A commutes with Alt:

(
⊗k

A)(Alt(v1 ⊗ · · · ⊗ vk)) =
1

k!

∑
σ∈Sk

sgnσ ·A(vσ(1))⊗ · · · ⊗A(vσ(k))

= Alt((
⊗k

A)(v1 ⊗ · · · ⊗ vk)).

Consequently,

(
⊗k

A)(v1 ∧ · · · ∧ vk) = A(v1) ∧ · · · ∧A(vk),

so that the operator
⊗k

A maps
∧k

V to itself. In particular, if dimV = n, then

dim
∧n

V = 1 and
⊗n

A|∧nV is multiplication by a scalar. It is well-known that this

scalar is the determinant of A: ⊗n
A|∧nV = detA · id. (A.2.2)

Now let us come back to the general case (A.2.1). The operator
⊗k

i=1Ak in general

does not commute with the alternating operator. Instead, consider the symmetrized tensor
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product

Sym

k⊗
i=1

Ai =
1

k!

∑
σ∈Sk

k⊗
i=1

Aσ(i),

that is, the image of
⊗k

i=1Ai under the symmetrizing operator

Sym:
⊗k

(V ⊗ V ∗)→
⊗k

(V ⊗ V ∗).

A simple computation shows that Sym
⊗k

i=1Ai commutes with the alternating operator

on
⊗k

V and acts on
∧k

V as(
Sym

k⊗
i=1

Ai

)
(v1 ∧ · · · ∧ vk) =

1

k!

∑
σ,τ∈Sk

(
sgn τ ·

k⊗
i=1

Aσ(i)(vτ(i))
)

=
1

k!

∑
σ∈Sk

Aσ(1)(v1) ∧ · · · ∧Aσ(k)(vk).

For k = n = dimV we have the following lemma that can serve as an alternative definition

of the mixed determinant.

Lemma A.2.1. If dimV = n and A1, . . . , An ∈ End(V ), then(
Sym

n⊗
i=1

Ai

)∣∣∣∧nV = det(A1, . . . , An) · id. (A.2.3)

Proof. If Ai = A for all i, then Sym
⊗n

A =
⊗n

A, and (A.2.3) turns into (A.2.2). Both

sides of (A.2.3) are symmetric and polylinear in (Ai): the left hand side by construction,

the right hand side by definition. Therefore the equality holds for all (Ai).

Remark A.2.2. Instead of applying symmetrization to
⊗k

i=1Ai, one can compose alter-

nation with
⊗k

i=1Ai. This gives the same operator when restricted to
∧k

V :(
Alt ◦

k⊗
i=1

Ai

)∣∣∣∧kV =
(

Sym
k⊗
i=1

Ai

)∣∣∣∧kV . (A.2.4)

A.3. Vector-valued forms. Let V and W be vector spaces.

Definition A.3.1. A V -valued k-form on W is an element of V ⊗
∧k

W ∗. For two

V -valued forms ω ∈ V ⊗
∧k

W ∗ and η ∈ V ⊗
∧l
W ∗, their wedge product

ω ∧ η ∈ (V ⊗ V )⊗
∧k+l

W ∗

is defined as the image of ω ⊗ η under the map

id⊗ ∧ : (V ⊗ V )⊗ (
∧k

W ∗ ⊗
∧l
W ∗)→ (V ⊗ V )⊗

∧k+l
W ∗

that takes the wedge product of
∧
W ∗-components.

The wedge product of several V -valued forms is defined in a similar way.

Let n = dimV , and let dvol ∈
∧n

(V ∗) be a distinguished element, a volume form.

Definition A.3.2. Let ω ∈ (
⊗n

V )⊗
∧k

W ∗ be a (
⊗n

V )-valued k-form on W . Define

a k-form

dvol(ω) ∈
∧k

W ∗
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as the image of ω under the linear map

dvol⊗ id : (
⊗n

V )⊗ (
∧k

W ∗)→
∧k

W ∗.

In particular, for ωi ∈ V ⊗
∧kiW , i = 1, . . . , n, we have a k-form

dvol(ω1 ∧ · · · ∧ ωn) ∈
∧k

W,

where k =
∑n
i=1 ki. In the special case V = W , ki = 1, this construction is related to the

mixed determinant of linear operators. Indeed, each

ωi ∈ V ⊗
∧1
V ∼= V ⊗ V ∗

is a linear operator on V , and we have the following lemma.

Lemma A.3.3. Let ωi ∈ V ⊗ V ∗, i = 1, . . . , n, be V -valued 1-forms on an n-dimensional

vector space V . Then

dvol(ω1 ∧ · · · ∧ ωn) = n! det(ω1, . . . , ωn) · dvol, (A.3.1)

where on the right hand side stands the mixed determinant of linear operators ωi ∈ EndV .

Proof. The proof goes by inverting the roles of V and V ∗ in Lemma A.2.1 and Re-

mark A.2.2.

Since V ⊗V ∗ ∼= End(V ∗), we can view ωi as a linear operator on V ∗. It is easy to see

that

ω1 ∧ · · · ∧ ωn = n! Alt ◦
n⊗
i=1

ωi ∈ End(
⊗n

V ∗).

Due to (A.2.4) and (A.2.3), the restriction of ω1 ∧ · · · ∧ ωn to
∧n

V ∗ is multiplication

with n! det(ω1, . . . , ωn). On the other hand, dvol(ω1 ∧ · · · ∧ ωn) is by definition the value

of ω1 ∧ · · · ∧ ωn on dvol. Equation (A.3.1) follows.

More generally, if ωi ∈ V ⊗W ∗ ∼= Hom(W,V ) with dimW = dimV = n, then we

have

dvolV (ω1 ∧ · · · ∧ ωn) = n! det(ω1, . . . , ωn) · dvolW ,

where dvolV and dvolW are some volume forms on V , respectively W , and the mixed

determinant is the polarization of det : Hom(W,V )→ R which is defined with respect to

dvolV and dvolW . In the special case ωi = ω we obtain

dvolV (
∧n

ω) = n! detω · dvolW . (A.3.2)

One sees immediately that

dvolV (
∧n

ω) = n!ω∗(dvolV ).

Therefore (A.3.2) is just another form of a well-known identity

ω∗(dvolV ) = detω · dvolW .

Lemma A.3.4. Let ωi ∈ V ⊗
∧ki V ∗ be a V -valued form on V , i = 1, . . . , n. Then

dvol(ω1 ∧ ω2 ∧ · · · ∧ ωn) = (−1)k1k2+1 dvol(ω2 ∧ ω1 ∧ · · · ∧ ωn),

and similarly for any other transposition of two factors.
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Proof. As with usual forms with values in a field, transposing two factors in ω1∧ · · ·∧ωn
exchanges two blocks of factors in

∧k
V ∗, which causes the factor (−1)kikj to appear. In

our case there is also a transposition of two factors in
⊗n

V , which changes the sign of

the evaluation of dvol.

A.4. Vector-bundle-valued differential forms. Let M be a smooth manifold, and

let E →M be a smooth finite-dimensional vector bundle over M .

Definition A.4.1. An E-valued differential k-form onM is a section of the vector bundle

E ⊗
∧k

(T ∗M). The set of all E-valued differential k-forms is denoted by Ωk(M,E).

The wedge product of two vector-bundle-valued differential forms

∧ : Ωk(M,E)⊗Ωl(M,F )→ Ωk+l(M,E ⊗ F )

is defined as in Definition A.3.1. If dimE = n, and E is equipped with a volume form

dvol ∈ Γ (
∧n

E), then we define

dvol : Ωk(M,
⊗n

E)→ Ωk(M)

as in Definition A.3.2.

A connection ∇ on E induces exterior differentiation of E-valued differential forms:

d∇ : Ωk(M,E)→ Ωk+1(M,E)

(see e.g. [33, Section 3.1]). A connection ∇ induces also connections on all tensor bundles

associated with E, and thus exterior differentiation of corresponding tensor-bundle-valued

differential forms. All these definitions go by postulating certain Leibniz rules and imply

the following two lemmas.

Lemma A.4.2. Let ωi ∈ Ωki(M,E), i = 1, . . . , p, be E-valued differential forms on M .

Then

d∇(ω1 ∧ · · · ∧ ωp) =

p∑
i=1

(−1)k1+···+ki−1(ω1 ∧ · · · ∧ d∇ωi ∧ · · · ∧ ωp),

where d∇ are the exterior derivatives on Ω(M,E) and Ω(M,
⊗p

E).

Lemma A.4.3. Assume that the volume form dvol is parallel:

∇(dvol) = 0.

Then

d(dvol(ω)) = dvol(d∇ω)

for every ω ∈ Ωk(M,
⊗n

E).

In particular, the assumption of Lemma A.4.3 holds if the vector bundle E is equipped

with a scalar product, dvol is the associated volume form, and ∇ is a metric connection.

A natural situation when this occurs is a smooth submanifold M of a Riemannian mani-

foldN with E = TN |M , the restriction of the tangent bundle ofN toM . More specifically,

N may be M itself, with ∇ the Levi-Civita connection on E = TM .
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A.5. Vector-valued differential forms. Assume that E is trivial and a trivialization

E ∼= V ×M (A.5.1)

is fixed. This induces an isomorphism

Ωk(M,E) ∼= C∞(M,V )⊗ΩkM,

which allows us to call differential forms with values in a trivialized bundle vector-valued

differential forms. A choice of a basis in V establishes an isomorphism

C∞(M,V )⊗ΩkM ∼= (ΩkM)n,

where n = dimV .

Let ∇ be the connection associated with the trivialization (A.5.1). The associated

exterior derivative d∇ is nothing other than the componentwise differentiation

(ΩkM)n → (Ωk+1M)n

with respect to an arbitrary choice of a basis in V .

A trivialization (A.5.1) also induces a trivialization of the dual bundle E∗. Choose an

element dvol ∈
∧n

V ∗ and consider the constant section dvol of the bundle
∧n

E∗. Then

we have ∇(dvol) = 0, which implies that Lemma A.4.3 holds for the canonical connection

on a trivialized bundle.

The next lemma states that a trivial connection is flat, which is false for general

connections.

Lemma A.5.1. Let d∇ be the exterior derivative associated with the canonical flat con-

nection on a trivialized vector bundle (A.5.1). Then

d∇(d∇ω) = 0

for every V -valued differential form ω.

Proof. Immediate from the interpretation of d∇ as the componentwise exterior differen-

tiation.

A natural situation when we have to do with a trivialized vector bundle is an embedded

manifold M ⊂ Rn with the vector bundle E = TRn|M .

Appendix B. Curvature of ρ2-warped product metrics

Let ĝ be a Riemannian metric on S2. Consider the Riemannian metric

g̃ = dρ2 + ρ2ĝ (B.1.1)

on the manifold R+ × S2. In particular, the metric g̃r in (4.1.3) is of this form.

We compute here the Riemann tensor and the sectional curvatures of the metric g̃. In

more general settings, this is done in [43, Section 7.42] and [36, Section 6, Exercise 11].

Let R̃ be the curvature tensor of the Riemannian manifold (R+×S2, g̃). Let ∂ρ be the

unit vector field arising from the product structure on R+×S2. By ∂⊥ρ ⊂ T(ρ,x)(R+×S2)

we denote the plane orthogonal to ∂ρ. As ∂ρ is also the gradient of the function ρ, the

plane ∂⊥ρ is tangent to the level sets of ρ. Denote by sec(ρ,x)(L) the sectional curvature

of g̃ with respect to the plane L ⊂ T(ρ,x)(R+ × S2).
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Lemma B.1.1. The curvature of the Riemannian metric (B.1.1) has the following prop-

erties:
R̃(X,Y )Z = sec(∂⊥ρ ) · dvol(∂ρ, X, Y ) · (Z × ∂ρ) (B.1.2)

for all vectors X,Y, Z ∈ T(ρ,x)(R+ × S2);

sec(ρ,x)(L) = cos2 ϕ · sec(ρ,x)(∂
⊥
ρ ), (B.1.3)

where ϕ is the angle between the planes L and ∂⊥ρ ;

sec(ρ,x)(∂
⊥
ρ ) =

sec(1,x)(∂
⊥
ρ )

ρ2
. (B.1.4)

Proof. The curvature tensor can be computed following [44, Section 2.4]. For this, con-

sider the function ρ on R+ × S2 → R given by the projection to the first factor. This is

a distance function, i.e. its gradient has norm 1. The Hessian

H̃ess ρ : X 7→ ∇̃X∇̃ρ
can easily be computed:

H̃ess ρ =
1

ρ
πρ,

where πρ is the orthogonal projection to ∂⊥ρ . Then the radial curvature equation yields

R̃( · , ∂ρ)∂ρ = 0,

and the mixed curvature equation (Codazzi–Mainardi equation) implies

g̃(R̃(X,Y )Z, ∂ρ) = 0

for any vectors X,Y, Z ∈ ∂⊥ρ . It follows that

g̃(R̃(X,Y )Z,W ) = g̃(R̃(X ′, Y ′)Z ′,W ′) (B.1.5)

for arbitrary vectors X,Y, Z,W , where X ′ = πρ(X) and so on. As X ′, Y ′, Z ′, and W ′ all

lie in the plane ∂⊥ρ , we have

g̃(R̃(X ′, Y ′)Z ′,W ′) = sec(∂⊥ρ ) · darea(X ′, Y ′) · darea(W ′, Z ′), (B.1.6)

where darea denotes the area form in ∂⊥ρ induced from g̃. Clearly,

darea(X ′, Y ′) = dvol(∂ρ, X, Y ),

darea(W ′, Z ′) = dvol(∂ρ,W,Z) = g̃(Z × ∂ρ,W ).

By substituting this in (B.1.6) and using (B.1.5), we obtain (B.1.2).
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Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1993.

[22] J. F. Escobar, Conformal deformation of a Riemannian metric to a constant scalar cur-

vature metric with constant mean curvature on the boundary , Indiana Univ. Math. J. 45

(1996), 917–943.

[23] P. Guan, X. Ma, N. Trudinger, and X. Zhu, A form of Alexandrov–Fenchel inequality ,

Pure Appl. Math. Quart. 6 (2010), 999–1012.

[24] S. Hawking, Euclidean quantum gravity , in: M. Levy and S. Deser (eds.), Recent Devel-

opments in Gravitation, Cargese Lectures, Plenum Press, New York, 1978, 145–173.

http://dx.doi.org/10.1512/iumj.2003.52.2222
http://dx.doi.org/10.1023/A:1024269221528
http://dx.doi.org/10.1007/BF01378340
http://dx.doi.org/10.5802/aif.2358
http://dx.doi.org/10.4007/annals.2004.160.1013
http://dx.doi.org/10.2307/2372445
http://dx.doi.org/10.1007/s10711-012-9698-0
http://dx.doi.org/10.1016/S0294-1449(00)00053-6


Rigidity of smooth surfaces and the Hilbert–Einstein functional 57
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[27] D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Sechste
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