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Abstract

We prove an interpolatory estimate linking the directional Haar projection P (ε) to the Riesz
transform in the context of Bochner–Lebesgue spaces Lp(Rn;X), 1 < p < ∞, provided X is a
UMD-space. If εi0 = 1, the result is the inequality

‖P (ε)
u‖Lp(Rn;X) ≤ C‖u‖

1/T

Lp(Rn;X)‖Ri0u‖
1−1/T

Lp(Rn;X), (1)

where the constant C depends only on n, p, the UMD-constant of X and the Rademacher type
T of Lp(Rn;X).

In order to obtain the interpolatory result (1) we analyze stripe operators Sλ, λ ≥ 0, which
are used as basic building blocks to dominate the directional Haar projection. The main result
on stripe operators is the estimate

‖Sλu‖Lp(Rn;X) ≤ C · 2−λ/C‖u‖Lp(Rn;X), (2)

where the constant C depends only on n, p, the UMD-constant of X and the Rademacher
cotype C of Lp(Rn;X). The proof of (2) relies on a uniform bound for the shift operators Tm,
0 ≤ m < 2λ, acting on the image of Sλ.

Mainly based upon inequality (1), we prove a vector-valued result on sequential weak lower
semicontinuity of integrals of the form

u 7→

∫
f(u) dx,

where f : Xn → R
+ is separately convex satisfying f(x) ≤ C(1 + ‖x‖Xn)p.
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1. Main results

1.1. A brief history of development. The calculus of variations, in particular the

theory of compensated compactness, has long been a source of hard problems in harmonic

analysis. One development started with the work of F. Murat and L. Tartar, and espe-

cially in [Tar78, Tar79, Tar83, Tar84, Tar90, Tar93] and [Mur78, Mur79, Mur81]. Their

approach exploited Lp-boundedness of Fourier multipliers to obtain sequential weak lower

semicontinuity of integrals such as

(u, v) 7→

∫

f(x, u(x), v(x)) dx.

The crucial hypothesis on the integrand f was the so-called constant rank condition.

In [Mül99], S. Müller obtained analogous results for separately convex integrands f for

which the constant rank condition is not satisfied. The method introduced by S. Müller

[Mül99] consists of time-frequency localization in combination with the modern Calderón–

Zygmund theory. The result is the following. Let f : R
2 → R be separately convex

satisfying 0 ≤ f(z) ≤ C(1 + |z|2), let U ⊂ R2 be open and suppose that

uj ⇀ u∞, vj ⇀ v∞, in L2
loc(U),

∂2uj ⇀ ∂2u∞, ∂1vj ⇀ ∂1v∞, in H−1
loc (U).

Then for every open V ⊂ U ,
∫

V

f(u∞, v∞) ≤ lim inf
j→∞

∫

V

f(uj, vj) dx. (1.1)

The basis of the result were interpolatory estimates for the directional Haar projection

P (ε), ε ∈ {0, 1}n \ {0}, defined below. Let u ∈ Lp(Rn) with n ≥ 2 and 1 < p < ∞ be

fixed. Then P (ε) : Lp(Rn) → Lp(Rn) is given by

P (ε)u =
∑

Q∈Q

〈u, h
(ε)
Q 〉h

(ε)
Q |Q|−1,

where h
(ε)
Q denote Haar functions, which are briefly discussed in Section 2. The crucial

interpolatory estimate in [Mül99] is then

‖P (ε)u‖L2(R2) ≤ C‖u‖
1/2
L2(R2)‖Ri0u‖

1−1/2
L2(R2), (1.2)

where Ri0 denotes the Riesz transform in direction i0 ∈ {1, 2}, 0 6= (ε1, ε2) = ε ∈ {0, 1}2,

and εi0 = 1. The formal definition of Ri0 is supplied in Section 2.

This inequality was later extended by J. Lee, P. F. X. Müller and S. Müller [LMM11]

for arbitrary 1 < p <∞ and dimension n ≥ 2 to

‖P (ε)u‖Lp(Rn) ≤ C‖u‖
1/min(2,p)
Lp(Rn) ‖Ri0u‖

1−1/min(2,p)
Lp(Rn) , (1.3)
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6 R. Lechner

where ε ∈ {0, 1}n \ {0}, εi0 = 1. If we rewrite inequality (1.3) using the notion of type

T(Lp(Rn)) = min(2, p), it reads

‖P (ε)u‖Lp(Rn) ≤ C‖u‖
1/T(Lp(Rn))
Lp(Rn) ‖Ri0u‖|

1−1/T(Lp(Rn))
Lp(Rn) . (1.4)

It is in this form that (1.3) will be given a vector-valued extension; see estimate (1.5).

The proofs of (1.2) and (1.3) are based on two consecutive time-frequency localizations

of the operator P (ε) as well as on Littlewood–Paley and wavelet expansions. The Lp-

estimates in [LMM11] were obtained by systematically interpolating between the spaces

H1, L2 and BMO. In the present paper we obtain vector-valued extensions of (1.4)

working directly on Lp(Rn;X), avoiding interpolation and using martingale methods

instead.

1.2. The main results. S. Müller asks in [Mül99] whether it is possible to obtain (1.2) in

such a way that the original time-frequency decompositions are replaced by the canonical

martingale decomposition of T. Figiel (see [Fig90]). This paper provides an affirmative

answer to this question. The details of the decomposition are worked out in Section 4.

This allows us to extend the interpolatory estimate (1.4) to the Bochner–Lebesgue space

Lp
X(Rn), provided X satisfies the UMD-property.

Let 1 < p < ∞, and let X be a UMD-space (see [Mau75]) with type T(X). It is

well known that X has non-trivial type T(X) > 1 and cotype C(X) < ∞ (see [Mau75],

[MP76] and [Ald79]). Consequently, Lp
X(Rn) has non-trivial type T(Lp

X(Rn)) and cotype

given by min(p,T(X)) and max(p,C(X)), respectively (see [LT91, Section 9.2, p. 247]).

We will now briefly give definitions of the objects immediately involved in the formu-

lation of the main theorems below. Consider the collection of dyadic intervals at scale

j ∈ Z given by

Dj = {[2−jk, 2−j(k + 1)[ : k ∈ Z},

and the collection of the dyadic intervals

D =
⋃

j∈Z

Dj .

Let hI denote the L∞-normalized Haar function, that is,

hI = 1I0 − 1I1 for all I ∈ D ,

where I0∈D denotes the left and I1∈D the right half of I. The Haar system {hI : I ∈ D}

is an unconditional basis for Lp
X(R), 1 < p <∞, if X has the UMD-property.

In dimensions n ≥ 2 one can obtain an unconditional basis for Lp
X(Rn), 1 < p < ∞,

if X is a UMD-space, as follows. For every ε = (ε1, . . . , εn) ∈ {0, 1}n, ε 6= 0, define

h
(ε)
Q (t) =

n
∏

i=1

hεiIi (ti),

where t = (t1, . . . , tn) ∈ Rn, Q = I1 × · · · × In, |I1| = · · · = |In|, Ii ∈ D , and hεiIi is the

function

hεiIi =

{

hIi , εi = 1,

1Ii , εi = 0.
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We denote the collection of all such cubes Q by Q, that is,

Q = {I1 × · · · × In : Ii ∈ D , 1 ≤ i ≤ n, |I1| = · · · = |In|}.

For a dyadic cube Q ∈ Q, the side length of Q is

sidelength(Q) = |I1|.

Let X be a UMD-space, n ≥ 2 and 1 < p <∞. Then the directional Haar projection

P (ε) : Lp
X(Rn) → Lp

X(Rn) is given by

P (ε)u =
∑

Q∈Q

〈u, h
(ε)
Q 〉h

(ε)
Q |Q|−1

for all u ∈ Lp
X(Rn). For details see (4.1).

The main inequality of this paper reads as follows.

Theorem 1.1. Let 1 < p < ∞, and let X be a Banach space with the UMD-property.

Denote by T(Lp
X(Rn)) > 1 the type of Lp

X(Rn). Let

ε = (ε1, . . . , εn) ∈ {0, 1}n with εi0 = 1,

and let Ri0 denote the Riesz transform in direction i0 (see (2.10)). Then for every u in

Lp
X(Rn) we have

‖P (ε)u‖Lp

X
(Rn) ≤ C‖u‖

1/T(Lp
X(Rn))

Lp

X
(Rn)

‖Ri0u‖
1−1/T(Lp

X(Rn))

Lp

X
(Rn)

, (1.5)

where C depends only on n, p, the UMD-constant of X and the type T(Lp
X(Rn)).

For the proof of Theorem 1.1 see Subsection 1.4.

The Lp-estimates of Theorem 1.1 are obtained directly from estimates of rearrange-

ment operators avoiding the detour to the endpoint spaces H1 and BMO. The basic tools

for the proof of the above theorem are vector-valued estimates of stripe operators Sλ, de-

veloped in Section 3. A careful examination of shift operators acting on dyadic stripes will

be crucial. We also point out that the L2-estimates for the stripe operators are obvious

in the scalar case, but form the main obstacle in the vector-valued case.

The vector-valued interpolatory estimate (1.5) allows us to extend the scalar-valued

result (see inequality (1.1)) on weak lower semi-continuity to the following vector-valued

result.

Theorem 1.2. Let E and X be Banach spaces, assume that X has the UMD-property,

and let J : E → X be a compact operator. Let 1 < p < ∞, and consider the differential

operator A0 : Lp(Rn;Xn) →W−1,p(Rn;Xn ×Xn) given by

(A0(u))i,j =

{

∂iu
(j), i 6= j,

0, i = j,
(1.6)

where u = (u(j))nj=1. Assume the function f : Xn → R is separately convex and satisfies

0 ≤ f(x) ≤ C(1 + ‖x‖Xn)p (1.7)
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for all x ∈ Xn, where C > 0 does not depend on x. Let the sequence {vr} ⊂ L(Rn;En)

be such that

vr → v weakly in Lp(Rn;En), (1.8)

A0(Jvr) is precompact in W−1,p(Rn;Xn ×Xn). (1.9)

Then

lim inf
r→∞

∫

Rn

f(Jvr(x))ϕ(x) dx ≥

∫

Rn

f(Jv(x))ϕ(x) dx (1.10)

for all ϕ ∈ C+
0 (Rn).

The proof of Theorem 1.2 may be found in Subsection 1.5.

Remark 1.3. Theorem 1.2 remains valid if we replace the hypothesis that J is compact

by J being Dunford–Pettis.

1.3. The main inequality and interpolation. The interpolatory main result, Theo-

rem 1.1, concerns interpolation of operators, linking the identity map, the Riesz trans-

forms and the directional Haar projection. We would now like to give a reformulation

of Theorem 1.1 which places it in the context of structure theorems for the so-called

K-method of interpolation spaces. To this end, we first introduce the K-functional, cite

the relevant structure theorem (Proposition 1.4) and apply it to inequality (1.5).

Define the K-functional

K(f, t) = inf{‖g‖E0 + t‖h‖E1 : f = g + h, g ∈ E0, h ∈ E1}

for all f ∈ E0 +E1 and t > 0. For 0 < θ < 1, the interpolation space (E0, E1)θ,1 is given

by

(E0, E1)θ,1 = {f : f ∈ E0 + E1, ‖f‖θ,1 <∞},

where

‖f‖θ,1 =

∫ ∞

0

t−θK(f, t)
dt

t
.

The following proposition interprets interpolatory estimates such as the ones obtained

in Theorem 1.1 in terms of continuity of the identity map between interpolation spaces.

It is a result of general interpolation theory (see [BS88, Proposition 2.10, Chapter 5]).

Proposition 1.4. Let (E0, E1) be a compatible couple and suppose 0 < θ < 1. Then the

estimate

‖f‖E ≤ C‖f‖θ,1 (1.11)

holds for some constant C and all f in (E0, E1)θ,1 if and only if

‖f‖E ≤ C‖f‖1−θ
E0

‖f‖θE1

for some constant C and for all f in E0 ∩ E1.

In the following we will specify the spaces E, E0 and E1 so that the two equivalent

conditions of the above proposition match precisely the assertions of Theorem 1.1.
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Application of Proposition 1.4 to Theorem 1.1. Let 0 6= ε ∈ {0, 1}n with εi0 = 1

be fixed, and let

Ri0 : Lp
X(Rn) → Lp

X(Rn)

denote the Riesz transform defined in Section 2. If we define the Banach spaces

E = Lp
X(Rn)/ker(P (ε)), ‖u+ ker(P (ε))‖E = ‖P (ε)u‖Lp

X(Rn),

E0 = Lp
X(Rn), ‖u‖E0 = ‖u‖Lp

X
(Rn),

E1 = Lp
X(Rn)/ker(Ri0), ‖u+ ker(Ri0)‖E1 = ‖Ri0u‖Lp

X
(Rn),

then Proposition 1.4 together with Theorem 1.1 yields

(E0, E1)θ,1 →֒ E.

In other words, there exists a constant C > 0 such that

‖u‖E ≤ C‖u‖θ,1

for all u ∈ (E0, E1)θ,1.

We summarize this brief discussion in

Theorem 1.5. Let 1 < p < ∞, and let X be a Banach space with the UMD-property.

Denote by T(Lp
X(Rn)) the (non-trivial) type of Lp

X(Rn). Furthermore, let

ε = (ε1, . . . , εn) ∈ {0, 1}n with εi0 = 1,

and define

E0 = Lp
X(Rn), ‖u‖E0 = ‖u‖Lp

X
(Rn),

E1 = Lp
X(Rn)/ker(Ri0), ‖u+ ker(Ri0 )‖E1 = ‖Ri0u‖Lp

X
(Rn).

Then there exists a constant C > 0 such that

‖P (ε)u‖Lp

X
(Rn) ≤ C‖u‖θ,1 (1.12)

for all u ∈ Lp
X(Rn), where θ = 1− 1/T(Lp

X).

The connection with general interpolation theory was pointed out by S. Geiss.

1.4. Proof of Theorem 1.1. The subsequent proof of Theorem 1.1 merges the vector-

valued results of this paper, particularly Theorems 4.7 and 4.5. Apart from replacing

the scalar-valued estimates with our vector-valued analogues, we repeat the scalar-valued

proof in [LMM11].

Before we give the proof we shall discuss the objects involved. Recall that

P (ε)u =
∑

Q∈Q

〈u, h
(ε)
Q 〉h

(ε)
Q |Q|−1

for all u ∈ Lp
X(Rn). Now choose b ∈ C∞

c (]0, 1[
n
) such that

∫

b(x) dx = 1 and

∫

xib(x1, . . . , xi, . . . , xn) dxi = 0

for all 1 ≤ i ≤ n. For every integer l define

∆lu = u ∗ dl, where dl(x) = 2lnd(2lx) and d(x) = 2nb(2x)− b(x).
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If Qj ⊂ Q denotes the collection of all dyadic cubes having measure 2−jn, then

P
(ε)
l u =

∑

j∈Z

∑

Q∈Qj

〈u,∆j+l(h
(ε)
Q )〉h

(ε)
Q |Q|−1.

Note that

P (ε) =
∑

l∈Z

P
(ε)
l ,

and define

P
(ε)
− =

∑

l<0

P
(ε)
l .

For details on the above definitions see Subsection 4.1.

Proof of Theorem 1.1. Within this proof we shall abbreviate Lp
X(Rn) by Lp

X .

First, define M ∈ N by

2M−1 ≤
‖Ri0 : Lp

X → Lp
X‖ ‖u‖Lp

X

‖Ri0u‖Lp

X

≤ 2M . (1.13)

Second, we use decomposition (4.2) and (4.8), that is,

P (ε) = P
(ε)
− +

∑

l≥0

P
(ε)
l ,

and observe that

‖P (ε)u‖Lp

X
≤ ‖P

(ε)
− R−1

i0
Ri0u‖Lp

X
+

M
∑

l=0

‖P
(ε)
l R−1

i0
Ri0u‖Lp

X
+

∞
∑

l=M

‖P
(ε)
l u‖Lp

X
.

If we apply Theorem 4.7 to the first two sums, and inequality (4.45) in Theorem 4.5 to

the latter sum, we get

‖P
(ε)
− R−1

i0
Ri0u‖Lp

X
. ‖Ri0u‖Lp

X
, ‖P

(ε)
l R−1

i0
Ri0u‖Lp

X
. 2l/T(Lp

X
)‖Ri0u‖Lp

X
,

and

‖P
(ε)
l u‖Lp

X
. 2−l(1−1/T(Lp

X))‖u‖Lp

X
.

Thus, we can dominate ‖P (ε)u‖Lp
X

by a constant multiple of

‖Ri0u‖Lp

X
+

M
∑

l=0

2l/T(Lp

X
)‖Ri0u‖Lp

X
+

∞
∑

l=M

2−l(1−1/T(Lp

X
))‖u‖Lp

X
.

Evaluating the geometric series yields

‖P (ε)u‖Lp

X
. 2M/T(Lp

X
)‖Ri0u‖Lp

X
+ 2−M(1−1/T(Lp

X
))‖u‖Lp

X
,

and plugging in M concludes the proof.

1.5. Proof of Theorem 1.2. Apart from using vector-valued analogues dealing with

the technicalities, the subsequent proof is similar to the scalar-valued case (see [Mül99]

and [LMM11]).

We will divide the proof into four steps. Define the projection P : Lp(Rn;Xn) →

Lp(Rn;Xn) by

P (v) = (P (e1)v(1), . . . , P (en)v(n)),
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where v = (v(j))nj=1, and

P (ε)u =
∑

Q∈Q

〈u, h
(ε)
Q 〉h

(ε)
Q |Q|−1

for all u ∈ Lp
X(Rn;X) and ε ∈ {0, 1}n \ {0}.

In the first step the setting is as follows. The operator J : E → X is compact,

wr → 0 weakly in Lp(Rn;En), and
{

A0(Jwr)
}

r
is precompact in the Sobolev space

W−1,p(Rn;Xn ×Xn). It is here that we will see how the interpolatory estimate (1.5) is

used to obtain the estimate

lim
r→∞

‖ψk · Jwr − P (ψk · Jwr)‖Lp(Rn;Xn) ≤ C
1

kθ

for all positive integers k and some 0 < θ < 1. The function ψ is a smooth cut-off function

and ψk(x) = ψ(x/k), x ∈ Rn.

In the second stage of the proof we will show that for our separately convex function

f : Xn → R satisfying the growth condition

0 ≤ f(x) ≤ C(1 + ‖x‖Xn)p, x ∈ Xn,

Jensen’s inequality holds on the image of P , that is,

f(EM (Pv)) ≤ EM (f(Pv))

for all v ∈ Lp(Rn;Xn), where

EM u =
∑

Q∈QM

(

1

|Q|

∫

Q

u(x) dx

)

· 1Q

for all u ∈ Lp(Rn;Xn). Recall that QM is the collection of dyadic cubes having measure

2−Mn.

In the third step we will obtain our desired result, that is, the weak lower semiconti-

nuity

lim inf
r→∞

∫

Rn

f(Jvr)ϕdx ≥

∫

Rn

f(Jv)ϕdx,

assuming that v is a finite sum of Haar functions and ϕ has support in (0, 1)n.

The restrictions on v and ϕ will be lifted in step four.

Proof of Theorem 1.2

Step 1. Within this proof we shall use the abbreviations W−1,p(F ) for W−1,p(Rn;F )

and Lp(F ) for Lp(Rn;F ), where F is a Banach space.

Choose a smooth cut-off function ψ ∈ C∞
c (Rn) such that 0 ≤ ψ(x) ≤ 1 for all x ∈ Rn

and

ψ(x) =

{

1, |x| ≤ 1,

0, |x| ≥ 2.

For every positive integer k, we set ψk(x) = ψ(x/k) for all x ∈ Rn. Define the projection

P : Lp(Xn) → Lp(Xn) by

P (v) = (P (e1)v(1), . . . , P (en)v(n)),
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where v = (v(j))nj=1. We will show that whenever wr → 0 weakly in Lp(En) and

{A0(Jwr)} is precompact in W−1,p(Xn ×Xn), then

lim
r→∞

‖ψk · Jwr − P (ψk · Jwr)‖Lp(Xn) ≤ C
1

kθ
(1.14)

for all positive integers k and some 0 < θ < 1.

To this end, let wr, converging weakly to zero in Lp(En), be fixed. Then, since J

is bounded, Jwr → 0 weakly in Lp(Xn). Note that since {A0(Jwr)} is precompact in

W−1,p(Xn×Xn), the operator A0 : Lp(Xn) →W−1,p(Xn ×Xn) being bounded implies

‖A0(Jwr)‖W−1,p(Xn×Xn) → 0 as r → ∞.

This means that

lim
r→∞

‖∂i(Jw
(j)
r )‖W−1,p(X) = 0 for all i 6= j. (1.15)

We will prove (1.14) using the interpolatory main result Theorem 1.1. First, with

k fixed, we use Theorem 5.5 and the remark thereafter to obtain

Ri(ψk · Jw(j)
r ) = (RiT

(k)
1 )(w(j)

r ) + T2
(

F
−1(〈ξ〉−1ξi · F(ψk · Jw(j)

r ))
)

, i 6= j,

where T
(k)
1 : Lp(E) → Lp(X) is compact and T2 : Lp(X) → Lp(X) is bounded. One

can see from the proof of Theorem 5.5 that, in fact, T2 does not depend on k. From the

identity above it follows immediately that

‖Ri(ψk · Jw(j)
r )‖Lp(X) ≤ ‖RiT

(k)
1 (w(j)

r )‖Lp(X) + C‖∂i(ψk · Jw(j)
r )‖W−1,p(X). (1.16)

Since X has the UMD-property, we may use [McC84, Theorem 1.1] and infer that Ri is

bounded, and therefore RiT
(k)
1 is compact. Since w

(j)
r → 0 weakly in Lp(E), we obtain

lim
r→∞

‖RiT
(k)
1 (w(j)

r )‖Lp(X) = 0 for all k and i 6= j. (1.17)

To estimate the second term we apply Theorem 5.4, and since supr ‖Jw
(j)
r ‖W−1,p(X) <∞,

we infer that

‖∂i(ψk · Jw(j)
r )‖W−1,p(X) ≤ C

1

k
+ C‖∂i(Jw

(j)
r )‖W−1,p(X). (1.18)

Combining (1.16) with (1.18), and letting r → ∞, we deduce in view of (1.15) and (1.17)

that

lim
r→∞

‖Ri(ψk · Jw(j)
r )‖Lp(X) ≤ C

1

k
for all k and i 6= j. (1.19)

Since u =
∑

ε6=0 P
(ε)u for all u ∈ Lp(X), we have

ψk · Jw(j)
r − P (ej)(ψk · Jw

(j)
r ) =

∑

06=ε6=ej

P (ε)(ψk · Jw(j)
r ) for all k and 1 ≤ j ≤ n.

Hence, we can apply the interpolatory estimate (1.5) of Theorem 1.1 to each component

of ψk · Jwr − P (ψk · Jwr) and obtain

‖ψk · Jwr − P (ψk · Jwr)‖Lp(Xn) ≤ C
∑

j

∑

06=ε6=ej

‖ψk · Jw
(j)
r ‖1−θ

Lp(X)‖Rj∗(ψk · Jw
(j)
r )‖θLp(X),

where 0 < θ < 1 and j∗ is some index in {1, . . . , n} \ {j}. The interpolatory estimate

together with (1.19) yields the desired result (1.14), concluding the first step of the proof.
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Step 2. We will prove the following version of Jensen’s inequality for separately convex

functions f on the range of P :

f(EM (Pv)) ≤ EM (f(Pv)) (1.20)

for all v ∈ Lp(Rn;Xn), where

EM u =
∑

Q∈QM

(

1

|Q|

∫

Q

u(x) dx

)

· 1Q

for all u ∈ Lp(Rn;Xn). Recall that QM is the collection of dyadic cubes having measure

2−Mn.

First, we will show that

f

(
∫

[0,1]n
P (v) dx

)

≤

∫

[0,1]n
f(P (v)) dx. (1.21)

Then rescaling and translating (1.21) yields the desired inequality (1.20).

Define the truncated Haar projections

P
(ε)
k u =

k
∑

j=−∞

∑

Q∈Qj

〈u, h
(ε)
Q 〉h

(ε)
Q |Q|−1

for every u ∈ Lp(Rn;X), k ∈ Z, and furthermore

Pkv = (P
(e1)
k v(1), . . . , P

(en)
k v(n))

for all v ∈ Lp(Rn;Xn), k ∈ Z. Note that Pk → P pointwise in Lp(Rn;Xn).

Let k ≥ 0. Then
∫

[0,1]n
f(Pk(v)) dx =

∑

Q∈Qk|[0,1]n

∫

Q

f
(

(P
(ej)
k (v(j)))nj=1

)

dx

=
∑

Q∈Qk|[0,1]n

∫

Q

f
(

(P
(ej)
k−1 (v

(j)) + c
(j)
Q h

(ej)
Q )nj=1

)

dx.

Observe that (P
(ej)
k−1(v

(j)))|Q = a
(j)
Q is constant, and h

(ej)
Q (x) = h

(ej)
Q (xj) for all x ∈ Q and

1 ≤ j ≤ n. Since f is separately convex, we apply Jensen’s inequality to each direction ej,

1 ≤ j ≤ n, which yields
∫

[0,1]n
f(Pk(v)) dx ≥

∑

Q∈Qk|[0,1]n

|Q| · f

((

1

|I
(j)
Q |

∫

I
(j)
Q

(a
(j)
Q + c

(j)
Q h

(ej)
Q (xj)) dxj

)n

j=1

)

=
∑

Q∈Qk|[0,1]n

|Q| · f
(

(P
(ej)
k−1(v

(j)))nj=1

)

,

where
∏n

j=1 I
(j)
Q = Q. Hence,

∫

[0,1]n
f(Pk(v)) dx ≥

∫

[0,1]n
f(Pk−1(v)) dx

for all k ≥ 0. Since P−1(v) is constant on [0, 1]n, we certainly have
∫

[0,1]n
f(P−1(v)) dx = f

(
∫

[0,1]n
P−1(v) dx

)

,
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so by induction on k ≥ 0 we obtain
∫

[0,1]n
f(Pk(v)) dx ≥ f

(
∫

[0,1]n
P−1(v) dx

)

for all k ≥ 0. First, we use the Lipschitz estimate for f in the Appendix (see Theorem 5.1)

and get

∣

∣

∣

∣

∫

[0,1]n
f(P (v)) dx −

∫

[0,1]n
f(Pk(v)) dx

∣

∣

∣

∣

≤ C

∫

[0,1]n

(

1 + ‖f(Pv)‖Xn + ‖f(Pkv)‖Xn

)(p−1)
‖(P − Pk)v‖Xn dx

≤ Cv‖(P − Pk)v‖Lp

Xn (Rn)

for all k ∈ Z. Second, note that
∫

[0,1]n
P−1(v) dx =

∫

[0,1]n
P (v) dx, thus, letting k → ∞,

the latter two inequalities imply estimate (1.21).

As mentioned above, inequality (1.20) follows by rescaling and translating (1.21).

Step 3. The hypothesis in Theorem 1.2 on the sequence {vr} ⊂ L(Rn;En) is that

vr → v weakly in Lp(Rn;En),

A0(Jvr) is precompact in W−1,p(Rn;Xn ×Xn).

In this step of the proof we will additionally assume that v is a finite Haar series and

supp(ϕ) ⊂ (0, 1)n.

Let B ⊂ Q be a finite collection of pairwise disjoint dyadic cubes such that

v =
∑

Q∈B

cQ 1Q. (1.22)

Now define

fQ(x) = f(x+ JcQ) for all Q ∈ Q and x ∈ R
n. (1.23)

Theorem 5.1 asserts that

|fQ(x)− fQ(y)| ≤ A(n, p, cQ)(1 + ‖x‖Xn + ‖y‖Xn)p−1‖x− y‖Xn (1.24)

for all x, y ∈ Xn. We shall abbreviate A(n, p, cQ) as A. If we set wr = vr − v, then since

wr → 0 weakly in Lp(Rn;En) and {A0(Jwr)}r is precompact in W−1,p(Rn;Xn ×Xn),

we know from (1.14) in Step 1 that

lim
r→∞

‖ψk · Jwr − P (ψk · Jwr)‖Lp(Rn;Xn) ≤ C
1

kθ
(1.25)

for all positive integers k and some 0 < θ < 1. At this point we remind the reader that

ψ is a smooth cut-off function taking values in [0, 1] given by

ψ(x) =

{

1, |x| ≤ 1,

0, |x| ≥ 2,

and ψk(x) = ψ(x/k) for all positive integers k.
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Let Q ∈ B be an arbitrary dyadic cube and let k, r ≥ 1 be fixed for now. A glance

at (1.22), (1.23) and noting that ψk(x) = 1 for all x ∈ supp(ϕ) shows that
∫

Q

f(Jvr)ϕdx =

∫

Q

fQ(Jwr)ϕdx =

∫

Q

fQ(ψk · Jwr)ϕdx.

Now we introduce the projection P via the identity
∫

Q

fQ(ψk · Jwr)ϕdx =

∫

Q

fQ(P (ψk · Jwr))ϕdx

+

∫

Q

(

fQ(ψk · Jwr)− fQ(P (ψk · Jwr))
)

ϕdx.

In view of the Lipschitz estimate (1.24), the latter term is bounded by

A
∥

∥1 + ‖ψk · Jwr‖Xn + ‖P (ψk · Jwr)‖Xn

∥

∥

p−1

Lp(0,1)n
‖ψk · Jwr − P (ψk · Jwr)‖Lp(Rn;Xn).

Since supr,k ‖ψk · Jwr‖Lp(Rn;Xn) ≤ C for some constant C, and P maps Lp(Rn;Xn)

boundedly into itself, we get
∫

Q

f(Jvr)ϕdx ≥

∫

Q

fQ(P (ψk ·Jwr))ϕdx−AC‖ψk ·Jwr−P (ψk ·Jwr)‖Lp(Rn;Xn). (1.26)

With M fixed, we introduce the conditional expectation EM :
∫

Q

fQ(P (ψk · Jwr))ϕdx =

∫

Q

fQ(P (ψk · Jwr))EM ϕdx

+

∫

Q

fQ(P (ψk · Jwr))(ϕ− EM ϕ) dx. (1.27)

Considering that
∫

Q

fQ(P (ψk · Jwr))EM ϕdx =

∫

Q

EM

(

fQ(P (ψk · Jwr))
)

EM ϕdx

and applying Jensen’s inequality on the range of P , that is, inequality (1.20), yields
∫

Q

fQ(P (ψk · Jwr))EM ϕdx ≥

∫

Q

fQ
(

EM (P (ψk · Jwr))
)

EM ϕdx.

Introducing fQ(J0) we obtain

∫

Q

fQ(P (ψk · Jwr))EM ϕdx

≥

∫

Q

fQ(J0)EM ϕdx+

∫

Q

(

fQ
(

EM (P (ψk · Jwr))
)

− fQ(J0)
)

EM ϕdx. (1.28)

Using the Lipschitz estimate (1.24) and the boundedness of {ψk · Jwr}r in Lp(Rn;Xn)

as we did above, we can dominate the last term of (1.28) by

AC‖EM P (ψk · Jwr)‖Lp((0,1)n;Xn).

Combining the latter estimate with (1.26), (1.27), (1.28) and using the estimate
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fQ(P (ψk · Jwr)) ≤ A(cQ)(1 + ‖P (ψk · Jwr)‖Xn)p in the latter term of (1.27) implies
∫

Q

f(Jvr)ϕdx ≥

∫

Q

fQ(J0)EM ϕdx −AC‖EM P (ψk · Jwr)‖Lp((0,1)n;Xn)

− C‖ϕ− EM ϕ‖∞ −AC‖ψk · Jwr − P (ψk · Jwr)‖Lp(Rn;Xn). (1.29)

Now let us consider

EM P (ψk · Jwr) =
∑

2−Mn <|K|<2Mn

(

〈ψk · Jw(j)
r , h

(ej)
K 〉h

(ej)
K |K|−1

)n

j=1

+
∑

|K|≥2Mn

(

〈ψk · Jw
(j)
r , h

(ej)
K 〉h

(ej)
K |K|−1

)n

j=1
.

First, observe that ψk ·wr → 0 weakly in Lp(Rn;En) as r → ∞, hence 〈ψk ·wr, h
(ej)
K 〉 → 0

weakly in En as r → ∞. The operator J : E → X is compact, and therefore

‖(〈ψk · Jwr , h
(ej)
K 〉)nj=1‖Xn → 0 for all K as r → ∞;

consequently, with M fixed,
∥

∥

∥

∑

2−Mn <|K|<2Mn

(

〈ψk · Jw
(j)
r , h

(ej)
K 〉h

(ej)
K |K|−1

)n

j=1

∥

∥

∥

Lp((0,1)n;Xn)
→ 0 as r → ∞.

The Lp((0, 1)n;Xn) norm of the second term in EM P (ψk · Jwr) is dominated by
∑

|K|≥2Mn

K⊃[0,1]n

‖ψk · Jwr‖Lp(Rn;Xn)|K|−1/p ≤ C · 2−Mn/p.

We now pass to our last two estimates for EM P (ψk ·Jwr). Plugging them into (1.29)

as well as using inequality (1.25) yields

lim inf
r→∞

∫

Q

f(Jvr)ϕdx ≥

∫

Q

fQ(J0)EM ϕdx

− C · 2−Mn/p − C‖ϕ− EM ϕ‖L∞(0,1)n − C
1

kθ

for all M , k and some 0 < θ < 1. Letting M → ∞ and k → ∞, recalling (1.22), (1.23)

and noting that fQ(J0) = f(Jv(x)) for all x ∈ Q, we obtain

lim inf
r→∞

∫

Q

f(Jvr)ϕdx ≥

∫

Q

f(Jv)ϕdx

for every Q ∈ Q. Since B is a finite collection, summation over Q ∈ B yields

lim inf
r→∞

∫

B∗

f(Jvr)ϕdx ≥

∫

B∗

f(Jv)ϕdx,

where B∗ =
⋃

Q∈B
Q. Repeating the above argument with fQ replaced by f shows that

lim inf
r→∞

∫

(B∗)c
f(Jvr)ϕdx ≥

∫

(B∗)c
f(Jv)ϕdx.

Note that wr(x) = vr(x) for all x ∈ (B∗)c. Adding the last two estimates yields

lim inf
r→∞

∫

Rn

f(Jvr)ϕdx ≥

∫

Rn

f(Jv)ϕdx, (1.30)
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under the additional restrictions of v being a finite Haar series and ϕ having support

in (0, 1)n.

Step 4. First, we will lift the restriction that v is a finite Haar series, then we will

dispose of the restriction that supp(ϕ) ⊂ (0, 1)n.

Consider the auxiliary operators Pk, k ≥ 1, given by

Pku =
∑

ε6=0

∑

j:|j|≤k

∑

Q∈Qj

Q⊂B(0,k)

(

〈u(i), h
(ε)
Q 〉h

(ε)
Q |Q|−1

)n

i=1
for all u = (u(1), . . . , u(n)),

where B(0, k) = {x ∈ Rn : |x| ≤ k}. Then one can see that Pk → Id pointwise in

Lp(Rn;Xn). Now let us define vkr = vr + Pkv − v for all r, k, and note that vkr → Pkv

weakly in Lp(Rn;En) as r → ∞. Since Pkv is a finite Haar series, we know from Step 3,

namely inequality (1.30) applied to vkr , that

lim inf
r→∞

∫

Rn

f(Jvkr )ϕdx ≥

∫

Rn

f(PkJv)ϕdx (1.31)

for all k ≥ 1. In view of the Lipschitz estimate (1.24) and Pk → Id pointwise in

Lp(Rn;Xn), we may lift the restriction of v being a finite Haar series, by using tech-

niques similar to those in Step 3. To elaborate on this, fix an arbitrary k ≥ 1 and observe

lim inf
r→∞

∫

Rn

f(Jvr)ϕdx = lim inf
r→∞

∫

Rn

f(Jvkr )ϕdx+

∫

Rn

(f(Jvr)− f(Jvkr ))ϕdx

≥

∫

Rn

f(PkJv) dx−AC‖Jv − Pk(Jv)‖Lp((0,1)n;Xn),

where for the former term we used (1.31), and for the latter term the aforementioned

Lipschitz estimate (1.24) as in Step 3. Also, note that by definition vr − vkr = v − Pkv.

Similarly, we estimate
∫

Rn

f(PkJv) dx ≥

∫

Rn

f(Jv) dx−AC‖Jv − Pk(Jv)‖Lp((0,1)n;Xn),

so since Jv ∈ Lp(Rn;Xn), combining the above two estimates and letting k → ∞ we

obtain

lim inf
r→∞

∫

Rn

f(Jvr)ϕdx ≥

∫

Rn

f(Jv)ϕdx, (1.32)

with supp(ϕ) ⊂ (0, 1)n being the only additional restriction imposed, as of now.

To lift this restriction, let ϕ ∈ C+
0 (Rn) be arbitrary and let ηk ∈ C+

0 (0, 1)n, k ≥ 1, be

functions such that 0 ≤ ηk ≤ 1 and ηk → 1(0,1)n pointwise. Now extend ηk periodically

to Rn and note that

lim inf
r→∞

∫

Rn

f(Jvr)ϕdx ≥ lim inf
r→∞

∫

Rn

f(Jvr)ϕηk dx =
∑

|Q|=1

lim inf
r→∞

∫

Rn

f(Jvr) 1Qϕηk dx

for all k ≥ 1. In the above sum the Q are dyadic cubes. Since 1Qϕηk ∈ C+
0 (Q), translating

the integration domain of inequality (1.32) from [0, 1]n to the dyadic cube Q yields

lim inf
r→∞

∫

Rn

f(Jvr)ϕdx ≥

∫

Rn

f(Jv)ϕηk dx

for all k ≥ 1. Letting k → ∞ concludes the proof of Theorem 1.2.



2. Preliminaries

This brief section provides notions and tools used frequently in this work. First, we

introduce the Haar system supported on dyadic cubes. Then the notions of Banach spaces

with the UMD-property and type and cotype of Banach spaces are outlined. We recall

Kahane’s contraction principle and Bourgain’s version of Stein’s martingale inequality.

Then we turn to the shift operators Tm, m ∈ Zn.

The Haar system. For the Haar system supported on cubes we refer the reader to

[Cie87]. Consider the collection of dyadic intervals at scale j ∈ Z given by

Dj = {[2−jk, 2−j(k + 1)[ : k ∈ Z},

and the collection of the dyadic intervals

D =
⋃

j∈Z

Dj .

Let hI denote the L∞-normalized Haar function, that is,

hI = 1I0 − 1I1 for all I ∈ D ,

where I0 ∈ D denotes the left and I1 ∈ D the right half of I. The Haar system {hI :

I ∈ D} is an unconditional basis for Lp
X(R), 1 < p <∞, if X has the UMD-property.

In dimensions n ≥ 2 one can obtain an unconditional basis for Lp
X(Rn), 1 < p < ∞,

if X is a UMD-space, as follows. For every ε = (ε1, . . . , εn) ∈ {0, 1}n, ε 6= 0, define

h
(ε)
Q (t) =

n
∏

i=1

hεiIi (ti),

where t = (t1, . . . , tn) ∈ Rn, Q = I1 × · · · × In, |I1| = · · · = |In|, Ii ∈ D , and hεiIi is the

function

hεiIi =

{

hIi , εi = 1,

1Ii , εi = 0.

We denote the collection of all such cubes Q by Q:

Q = {I1 × · · · × In : Ii ∈ D , 1 ≤ i ≤ n, |I1| = · · · = |In|}.

For a dyadic cube Q ∈ Q the side length of Q is

sidelength(Q) = |I1|.

Finally, define the dyadic predecessor map π : Q → Q, where the dyadic predecessor

π(Q) is the unique cube M ∈ Q with M ⊃ Q and sidelength(M) = 2 sidelength(Q).

By πλ, λ ≥ 1, we denote the composition of the function π with itself.

[18]
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Banach spaces with the UMD-property. By Lp(Ω, µ;X) we denote the space of

functions with values in X , Bochner-integrable with respect to µ. If Ω = R
n and µ is

the Lebesgue measure | · | on Rn, we write Lp
X(Rn;X) = Lp(Rn, | · |;X), if unambiguous

further abbreviated as Lp
X(Rn) or even as Lp

X .

We say X is a UMD-space (i.e. a Banach space with the UMD-property) if for every

X-valued martingale difference sequence {dj}j ⊂ Lp(Ω, µ;X) and every choice of signs

εj ∈ {−1, 1} one has
∥

∥

∥

∑

j

εj dj

∥

∥

∥

Lp(Ω,µ;X)
≤ Up(X)

∥

∥

∥

∑

j

dj

∥

∥

∥

Lp(Ω,µ;X)
, (2.1)

where Up(X) does not depend on εj or dj . The constant Up(X) is called the UMD-

constant. We refer the reader to [Bur81].

Type and cotype. A Banach space X is said to be of type T, 1 < T ≤ 2, respectively

of cotype C, 2 ≤ C < ∞, if there are constants A(T, X) > 0 and B(C, X) > 0 such that

for every finite set {xj}j ⊂ X we have
∫ 1

0

∥

∥

∥

∑

j

rj(t)xj

∥

∥

∥

X
dt ≤ A(T, X)

(

∑

j

‖xj‖
T

X

)1/T

, (2.2)

respectively
∫ 1

0

∥

∥

∥

∑

j

rj(t)xj

∥

∥

∥

X
dt ≥ B(C, X)

(

∑

j

‖xj‖
C

X

)1/C

, (2.3)

where {rj}j is an independent sequence of Rademacher functions.

It is well known that if X is a UMD-space, then for every 1 < p < ∞ the space

Lp
X(Rn) has a type and cotype (see [Mau75], [MP76] and [Ald79]).

Kahane’s contraction principle. For every Banach space X , 1 < p < ∞, finite set

{xj} ⊂ X and bounded sequence {cj} of scalars we have
∫ 1

0

∥

∥

∥

∑

j

rj(t)cjxj

∥

∥

∥

p

X
dt ≤ sup

j
|cj|

p

∫ 1

0

∥

∥

∥

∑

j

rj(t)xj

∥

∥

∥

p

X
dt, (2.4)

where {rj}j denotes an independent sequence of Rademacher functions. For details see

[Kah85].

Remark 2.1. Let X be a Banach space with the UMD-property, and let 1 < p < ∞. If

δQ, εQ ∈ {0, 1}n \ {0} for all Q ∈ Q, then
∥

∥

∥

∑

Q∈Q

uQh
(δQ)
Q

∥

∥

∥

Lp
X (Rn)

≤ (Up(X))2
∥

∥

∥

∑

Q∈Q

uQh
(εQ)
Q

∥

∥

∥

Lp
X (Rn)

(2.5)

for all uQ ∈ X , where only finitely many uQ are non-zero. Therefore, we will drop the

superscripts of the Haar functions and simply denote by hQ one of the functions h
(ε)
Q ,

ε 6= 0, where appropriate.

The martingale inequality of Stein–Bourgain’s version. Let X be a UMD-space

and 1 < p < ∞. Let (Ω,F, µ) be a probability space, and let F1 ⊂ · · · ⊂ Fm ⊂ F

denote an increasing sequence of σ-algebras. If r1, . . . , rm denote independent Rademacher
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functions, then for every choice of f1, . . . , fm ∈ Lp(Ω, µ;X) we have
∫ 1

0

∥

∥

∥

m
∑

i=1

ri(t)E(fi | Fi)
∥

∥

∥

Lp(Ω,µ;X)
dt ≤ C

∫ 1

0

∥

∥

∥

m
∑

i=1

ri(t)fi

∥

∥

∥

Lp(Ω,µ;X)
dt, (2.6)

where C depends only on p and X .

A Banach space X having the UMD-property ensures C < ∞. The scalar-valued

version of (2.6) by E. M. Stein can be found in [Ste70b]. The vector-valued extension is

due to J. Bourgain [Bou86]. For details we refer the reader to [Mül05].

The shift operators Tm. For every m ∈ Zn let τm : Q → Q denote the rearrangement

given by

τm(Q) = Q+m sidelength(Q). (2.7)

The map τm induces the rearrangement operator Tm as the linear extension of

TmhQ = hτm(Q), Q ∈ Q. (2.8)

Let X be a UMD-space. Then

‖Tm : Lp
X(Rn) → Lp

X(Rn)‖ ≤ C log(2 + |m|)α, (2.9)

where 0 < α(X) < 1 and C = C(n, p,Up(X), α(X)); for details we refer the reader

to [Fig88] and [Fig90].

The Riesz transform. For all 1 ≤ i ≤ n we define the Riesz transform Ri formally by

Rif = Ki ∗ f, (2.10)

Ki(x) = cn
xi

|x|n+1
, x = (x1, . . . , xn) ∈ R

n. (2.11)

Details may be found in [Ste70a] and [Ste93].

If X is a Banach space with the UMD-property and 1 < p < ∞, then the operator

Ri : L
p(Rn;X) → Lp(Rn;X) is bounded because of [McC84, Theorem 1.1].

Dunford–Pettis operators. LetX and Y be Banach spaces. A bounded linear operator

T : X → Y is a Dunford–Pettis operator if T is weak-to-norm sequentially continuous,

that is, whenever {xn}n ⊂ X converges to x weakly, then Txn converges to Tx in norm.

Clearly, if an operator is compact, then it is Dunford–Pettis. If X is reflexive, then T

is compact if and only if T is Dunford–Pettis. For more information on Dunford–Pettis

operators see [AK06].

Supplementary definitions. Denote the standard Fourier multiplier 〈·〉 by

〈ξ〉 = (1 + |ξ|2)1/2 for all ξ ∈ R
n. (2.12)

The Haar spectrum of an operator T : Lp
X(Rn) → Lp

X(Rn) is defined by

Q \
{

Q ∈ Q : 〈Tu, h
(ε)
Q 〉 = 0 for all u ∈ Lp

X(Rn) and ε ∈ {0, 1}n \ {0}
}

. (2.13)

Given a collection of sets C , we denote by σ(C ) the smallest σ-algebra containing C , i.e.,

σ(C ) =
⋂

{A : A is a σ-algebra, C ⊂ A }.



3. The stripe operator Sλ

Here we introduce and study the stripe operator Sλ (defined in (3.6)), mapping hQ,

Q ∈ Q, onto the blocks gQ,λ, each supported on a dyadic stripe (see (3.3), (3.5) and

Figures 1 and 2). The vector-valued estimates given by

‖Sλu‖Lp

X
(Rn) ≤ C · 2−λ/C(Lp

X(Rn))‖u‖Lp

X
(Rn) (3.1)

constitute the main technical component of this paper (see Theorem 3.6).

The crucial points in the proof of (3.1) are the cotype inequality and Corollary 3.5,

that is, the uniform equivalence

1

C
‖Sλu‖Lp

X(Rn) ≤ ‖Tme1Sλu‖Lp
X(Rn) ≤ C‖Sλu‖Lp

X(Rn) (3.2)

for all 0 ≤ m ≤ 2λ − 1 and u ∈ Lp
X(Rn), where C does not depend on u, λ and m. In

other words, the operators Tm, 0 ≤ m ≤ 2λ − 1, act as isomorphisms on the image of Sλ,

with norm independent of m and λ. This is in contrast to the well known norm estimates

‖Tm : Lp
X(Rn) → Lp

X(Rn)‖ ≈ log(2 +m)α, see (2.9).

3.1. Preparation. Within this section the superscripts (ε) are omitted and we generi-

cally denote by hQ one of the functions {h
(ε)
Q : ε ∈ {0, 1}n\{0}}. Note that ε may depend

on Q (see Remark 2.1).

For every Q ∈ Q and λ ≥ 0 define the dyadic stripe

Uλ(Q) =
{

E ∈ Q : πλ(E) = Q, inf
x∈E

x1 = inf
q∈Q

q1

}

, (3.3)

where x1 respectively q1 denotes the orthogonal projection of x ∈ Rn respectively q ∈ Rn

onto the vector e1 = (1, 0, . . . , 0). Recall that πλ(E) is the unique Q ∈ Q such that

|Q| = 2λn |E| and Q ⊃ E (see Section 2). The dyadic stripe Uλ(Q) is illustrated in

Figure 1.

Additionally, we set

Uλ =
⋃

Q∈Q

Uλ(Q). (3.4)

We define the stripe functions by

gQ,λ =
∑

E∈Uλ(Q)

hE , (3.5)

and the stripe operator by

Sλu =
∑

Q∈Q

〈u, hQ〉gQ,λ|Q|−1 (3.6)

[21]
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Fig. 1. Dyadic stripe Uλ(Q) in dimension n = 2

for all u ∈ Lp
X(Rn). The stripe functions are visualized in Figure 2.
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Fig. 2. Stripe functions gQ,λ in dimension n = 2

Remark 3.1. In (3.5), we used the convention that hE denotes one of the functions h
(ε)
E

for some ε ∈ {0, 1}n \ {0}, where ε may depend on E. The reason behind this is the

following.

For any E ∈ Q let δ1(E), δ2(E) ∈ {0, 1}n \ {0} define the two functions

g
(i)
Q,λ =

∑

E∈Uλ(Q)

h
(δi(E))
E , i = 1, 2,

and the stripe operators

S
(i)
λ u =

∑

Q∈Q

〈u, hQ〉g
(i)
Q,λ|Q|−1, i = 1, 2.
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Let us define

cQ = g
(1)
Q,λg

(2)
Q,λ =

∑

E∈Uλ(Q)

h
(δ1(E))
E h

(δ2(E))
E .

Then cQg
(1)
Q,λ = g

(2)
Q,λ, and cQ is constant on every subcube of every E ∈ Uλ(Q). Hence,

the UMD-property yields

1

C
‖S

(1)
λ u‖Lp

X(Rn) ≤ ‖S
(2)
λ u‖Lp

X(Rn) ≤ C‖S
(1)
λ u‖Lp

X(Rn)

for all u ∈ Lp
X(Rn), where C does not depend on the choice of δ1(E) and δ2(E).

This estimate means that stripe operators are, up to a constant, uniformly invariant

under multiplication with functions of the form cQ, and allows us to simply drop the

superscripts in the Haar functions hE defining gQ,λ.

3.2. Shift operators acting on dyadic stripes. In Lemma 3.2 we will prove a measure

estimate regarding one-dimensional dyadic stripes Sλ, λ ≥ 1, defined in (3.8), and the

action of dyadic shift maps τm, 0 ≤ m ≤ 2λ−1, given by

τm(I) = I +m|I|, I ∈ D .

These estimates will then enter Theorem 3.3, where we prove the uniform estimates

1

C
‖u‖Lp

X
(R) ≤ ‖Tmu‖Lp

X
(R) ≤ C‖u‖Lp

X
(R), (3.7)

for all u supported on Sλ and 0 ≤ m ≤ 2λ − 1. The constant C does not depend on λ

or m. The shift operator Tm is defined in (2.8).

The subsequent Corollary 3.5 states that Tm acts as an isomorphism on the image

of Sλ, with norm independent of m and λ.

Before we state Lemma 3.2, we build up some notation. Define πλ : D → D for all

I ∈ D by

πλ(I) = J,

where J is the uniquely determined J ∈ D such that |J | = 2λ |I| and J ⊃ I. Then define

the one-dimensional stripe Sλ by

Sλ = {I ∈ D : inf I = inf πλ(I)}. (3.8)

Lemma 3.2. For every λ ≥ 1 let 0 ≤ m ≤ 2λ−1, and let

τm(I) = I +m|I|, I ∈ D .

Let B ⊂ Sλ be such that for all J,K ∈ B with |J | 6= |K| either

|J | ≤ 1
4 |K| or |K| ≤ 1

4 |J |.

Then

∣

∣

∣
I ∩

λ−1
⋃

d=1

⋃

J∈B

|J|=2−d|I|

J ∪ τm(J)
∣

∣

∣
≤ 2

3 |I|,
∣

∣

∣
τm(I) ∩

λ−1
⋃

d=1

⋃

J∈B

|J|=2−d|I|

J ∪ τm(J)
∣

∣

∣
≤ 2

3 |I|,

for all I ∈ B.
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Proof. First, we claim that for any I ∈ B ∪ τm(B), 1 ≤ d ≤ λ − 1 and J,K ∈ B with

|J | = |K| = 2−d|I|,

whenever (J ∪ τm(J)) ∩ I 6= ∅ and (K ∪ τm(K)) ∩ I 6= ∅, then J = K. (3.9)

Indeed, assume that (3.9) is incorrect. Hence, we can find intervals I ∈ B ∪ τm(B) and

J,K ∈ B with J 6= K, |J | = |K| = 2−d |I| where 1 ≤ d ≤ λ− 1, such that

(J ∪ τm(J)) ∩ I 6= ∅ and (K ∪ τm(K)) ∩ I 6= ∅.

Since J 6= K, we see from the definition of B that

dist(τm(J), τm(K)) = dist(J,K) ≥ (2λ − 1)|J |,

and consequently

dist(J ∪ τm(J),K ∪ τm(K)) ≥ (2λ − 1−m)|J |.

We know that I intersects both J ∪ τm(J) and K ∪ τm(K), so

|I| ≥ dist(J ∪ τm(J),K ∪ τm(K)) + 2|J | ≥ (2λ−m+ 1)2−d|I| ≥ (2λ−1+ 1)2−d|I| > |I|,

which is a contradiction.

Hence, (3.9) holds true, which means that for all 1 ≤ d ≤ λ − 1, every interval

I ∈ B ∪ τm(B) intersects at most one element of the set

{J ∪ τm(J) ∈ B : |J | = 2−d|I|}.

If such a J exists, we denote it by Jd(I) ∈ B, and set Jd(I) = ∅ otherwise. Note that for

small shift widths m or small J it may happen that Jd(I) ∪ τm(Jd(I)) ⊂ I.

Using (3.9) we find that for every I ∈ B ∪ τm(B),

∣

∣

∣
I ∩

λ−1
⋃

d=1

⋃

J∈B

|J|=2−d|I|

J ∪ τm(J)
∣

∣

∣
≤

λ−1
∑

d=1

∣

∣I ∩
(

Jd(I) ∪ τm(Jd(I))
)∣

∣

≤
λ−1
∑

d=1

2|Jd(I)| ≤ 2

∞
∑

d=1

2−2d|I| = 2
3 |I|.

The last inequality is true since for J,K ∈ B, if |J | 6= |K|, then either |J | ≤ |K|/4 or

|K| ≤ |J |/4.

For m ∈ Z the shift operator Tm is given by

TmhI = hτm(I), I ∈ D ,

where τm(I) = I +m|I|, I ∈ D (see (2.7) and (2.8)). We will now investigate the action

of Tm restricted to functions supported on the dyadic stripe Sλ, λ ≥ 0, defined in (3.8).

Observe that Sλ is the spectrum of the stripe operator Sλ, when it is restricted to lines

in direction (1, 0, . . . , 0). This will be discussed in more detail in Corollary 3.5. For now

we dedicate ourselves to the one-dimensional case.

Theorem 3.3. Let X be a Banach space with the UMD-property and 1 < p < ∞. For

λ ≥ 0 define the linear subspace Zλ of Lp
X(R) by

Zλ =
{

∑

I∈Sλ

uI hI |I|
−1 : uI ∈ X

}

∩ Lp
X(R). (3.10)
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Then there exists a constant C > 0 such that for all integers λ and m satisfying 0 ≤ m ≤

2λ − 1 we have
1

C
‖u‖Lp

X
(R) ≤ ‖Tmu‖Lp

X
(R) ≤ C‖u‖Lp

X
(R) (3.11)

for all u ∈ Zλ, where C depends only on p and the UMD-constant of X. In other words,

Tm acts as an isomorphism on Zλ with norm independent of m and λ.

Proof. With λ ≥ 0 fixed, we will first prove

1

C
‖u‖Lp

X(R) ≤ ‖Tmu‖Lp
X(R) ≤ C‖u‖Lp

X(R) (3.12)

for all 0 ≤ m ≤ 2λ−1 and u ∈ Zλ. Once we have (3.12), it is easy to see by symmetry

that also
1

C
‖T2λ−1u‖Lp

X
(R) ≤ ‖Tmu‖Lp

X
(R) ≤ C‖T2λ−1u‖Lp

X
(R) (3.13)

for all 2λ−1 − 1 ≤ m ≤ 2λ − 1 and u ∈ Zλ. Certainly, (3.12) together with (3.13)

implies (3.11), since we may join (3.12) and (3.13) at the intersection of the two collections

of operators

{Tm : 0 ≤ m ≤ 2λ−1} and {Tm : 2λ−1 − 1 ≤ m ≤ 2λ − 1},

that is, at m = 2λ−1 or at m = 2λ−1 − 1.

We begin the proof of (3.12) by defining the four collections

B
0
odd =

⋃

j∈Z

λ−1
⋃

k=0
k odd

Sλ ∩ D2jλ+k , B
0
even =

⋃

j∈Z

λ−1
⋃

k=0
k even

Sλ ∩ D2jλ+k,

B
1
odd =

⋃

j∈Z

λ−1
⋃

k=0
k odd

Sλ ∩ D(2j+1)λ+k, B
1
even =

⋃

j∈Z

λ−1
⋃

k=0
k even

Sλ ∩ D(2j+1)λ+k.

For any given j ∈ Z we shall call the collections

B
0
odd :

λ−1
⋃

k=0
k odd

Sλ ∩ D2jλ+k, B
0
even :

λ−1
⋃

k=0
k even

Sλ ∩ D2jλ+k,

B
1
odd :

λ−1
⋃

k=0
k odd

Sλ ∩ D(2j+1)λ+k, B
1
even :

λ−1
⋃

k=0
k even

Sλ ∩ D(2j+1)λ+k

λ-blocks, each associated to the indicated collection.

Let B denote one of those four collections. We claim the existence of a filtration {Fj}j
such that for every j ∈ Z and I ∈ B ∩ Dj there exists an atom A(I) of Fj satisfying the

inequalities

|A(I)| ≤ 2|I|, |I ∩ A(I)| ≥ 1
3 |I|, |τm(I) ∩A(I)| ≥ 1

3 |I|. (3.14)

We will now define the atoms within each λ-block C of B. The resulting atoms

are unions of dyadic intervals having length minI∈C |I|. The construction of the atoms is

independent of other λ-blocks of B. Now, for each I ∈ B we will define atoms inductively,
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beginning at the finest level of C . Initially, define

A(I) = I ∪ τm(I) (3.15)

for all I ∈ C such that |I| = minJ∈C |J |. Let I ∈ C , and assume that we already

constructed atoms A(J) for all J ∈ C , |J | < |I|. Then we define the atom A(I) by

A(I) = (I ∪ τm(I)) \
⋃

J∈C

|J|<|I|

A(J). (3.16)

Applying Lemma 3.2 to the atoms A(I) ⊂ I ∪ τm(I) inside the λ-block C , we obtain

|I ∩ A(I)| = |I| −
∣

∣

∣
I ∩

⋃

J∈C

|J|<|I|

A(J)
∣

∣

∣
≥ 1

3 |I|,

and analogously

|τm(I) ∩ A(I)| ≥ 1
3 |I|,

which yields (3.14). Finally, we define the collections

Aj = {A(I) : I ∈ B ∩ Dj}, j ∈ Z, (3.17)

and the filtration

Fj = σ
(

⋃

i≤j

Ai

)

, j ∈ Z. (3.18)

What is left to show is that every A ∈ Aj is an atom for the σ-algebra Fj .

To see this we reason as follows. First, note that any two atoms are either in the same

λ-block, or are separated by at least λ levels. If atoms A(I) and A(I ′) are in the same

λ-block, then they do not intersect by construction (see (3.15) and (3.16)). Whenever

A(I) and A(I ′) intersect and |I ′| ≤ 2−λ|I|, then since

A(I ′) ⊂ (I ′ ∪ τm(I ′)) ⊂ πλ(I ′),

we have

πλ(I ′) ∩A(I) 6= ∅.

Clearly, A(I) consists of intervals K which are at least as big as πλ(I ′), so |πλ(I ′)| ≤ |K|,

hence

A(I ′) ⊂ A(I).

This means that
⋃

j Aj is a nested collection of sets, hence every A ∈ Aj is an atom for

the σ-algebra Fj .

Now we are prepared to estimate the shift operator Tm. To this end, let u ∈ Zλ

be fixed throughout the rest of the proof. Having (3.14) at hand and knowing that the

collection Aj consists of atoms of Fj , observe that

1I ≤ 18E
(

E(1τm(I) | Fj)
∣

∣ Dj

)

, I ∈ B ∩ Dj , (3.19)

and analogously

1τm(I) ≤ 18E
(

E(1I | Fj)
∣

∣ Dj

)

, I ∈ B ∩ Dj . (3.20)
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The UMD-property and Kahane’s contraction principle applied to |hI | ≤ 1I yield

‖u‖p
Lp

X
(R)

≈

∫ 1

0

∥

∥

∥

∑

j∈Z

rj(t)(u)j

∥

∥

∥

p

Lp

X
(R)

dt,

where ( · )j denotes the restriction of the Haar expansion to intervals in Dj , and the

Haar functions hI , I ∈ Dj , are replaced by the characteristic functions 1I , I ∈ Dj . More

precisely, if

u =
∑

j∈Z

∑

I∈Dj

uIhI |I|
−1,

then

(u)j =
∑

I∈Dj

uI1I |I|
−1.

Applying Kahane’s contraction principle in view of (3.19) yields

‖u‖p
Lp

X
(R)

.

∫ 1

0

∥

∥

∥

∑

j∈Z

rj(t)E
(

E((Tmu)j | Fj)
∣

∣ Dj

)

∥

∥

∥

p

Lp
X(R)

dt.

Using Stein’s martingale inequality (2.6) with respect to the filtration {Dj}j gives

‖u‖p
Lp

X
(R)

.

∫ 1

0

∥

∥

∥

∑

j∈Z

rj(t)E((Tmu)j | Fj)
∥

∥

∥

p

Lp
X(R)

dt.

Now we apply Stein’s martingale inequality with respect to the filtration {Fj}j and get

‖u‖p
Lp

X
(R)

.

∫ 1

0

∥

∥

∥

∑

j∈Z

rj(t)(Tmu)j

∥

∥

∥

p

Lp

X(R)
dt.

Subsequently, we apply Kahane’s contraction principle to 1τm(I) ≤ |hτm(I)| and make use

of the UMD-property to dispose of the Rademacher functions and obtain

‖u‖p
Lp

X
(R)

. ‖Tmu‖
p
Lp

X
(R)
.

Repeating this argument with the roles of u and Tmu reversed, and using (3.20)

instead of (3.19) we get the converse inequality

‖Tmu‖
p
Lp

X(R)
. ‖u‖p

Lp

X(R)
.

A fortiori, we proved (3.12), that is,

1

C
‖u‖Lp

X
(R) ≤ ‖Tmu‖Lp

X
(R) ≤ C‖u‖Lp

X
(R)

for all λ ≥ 0, 0 ≤ m ≤ 2λ−1 and u ∈ Zλ, where C depends only on p and the UMD-

constant of X .

Observe that due to symmetry we may use the same argument for the operators Tm,

2λ−1 ≤ m ≤ 2λ− 1, if we reverse the sign of the shift operation and replace u by T2λ−1u.

Therefore inequality (3.13) holds true as well, i.e.

1

C
‖T2λ−1u‖Lp

X
(R) ≤ ‖Tmu‖Lp

X
(R) ≤ C‖T2λ−1u‖Lp

X
(R)

for all 2λ−1 − 1 ≤ m ≤ 2λ − 1 and u ∈ Zλ, where C depends only on p and the UMD-

constant of X .
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Joining the last two displayed inequalities via T2λ−1 (or T2λ−1−1) as indicated above

concludes the proof of Theorem 3.3.

Remark 3.4. The central difficulty of the proof was finding the filtration {Fj}j, given

by (3.18), such that each collection Aj , given by (3.17), consists of atoms A(I) of Fj . This

was achieved by subtracting the atoms A(J) succeeding A(I) within a λ-block (see (3.15)

and (3.16)). The measure estimates in Lemma 3.2 guaranteed inequalities (3.14). As a

consequence, we obtained inequalities (3.19) and (3.20), which enabled us to shift hI
to hτm(I) by means of Kahane’s contraction principle and Bourgain’s version of Stein’s

martingale inequality.

For a detailed exposition and the development of a method of estimating rearrange-

ment operators that admit a supporting tree, we refer the reader to [KM09] and [MS91].

Given a rearrangement τ such that |τ(I)| = |I|, the existence of a supporting tree is

essentially the existence of a filtration having the properties of {Fj}j listed above, with

τm replaced by τ .

In order to shift an essential portion of hI to hτm(I), one can replace Bourgain’s version

of Stein’s martingale inequality by the martingale transforms used in [Fig88, Proposi-

tion 2, Step 0]. To this end, we need additional symmetry properties (see (3.21)), which

were not needed in the first proof. For our purposes we will refine the above construction

of the filtration {Fj}j . The details are given in the proof below.

Alternative proof of Theorem 3.3. We modify the construction of the above collections B

by taking only every fourth level instead of every second level, and denote each of those

collections by C . Hence, for all J,K ∈ C , if |J | 6= |K| we have either

|J | ≤ 1
16 |K| or |K| ≤ 1

16 |J |.

Inspecting the proof of Lemma 3.2 we see that

∣

∣

∣
I ∩

λ−1
⋃

d=1

⋃

J∈C

|J|=2−d|I|

J ∪ τm(J)
∣

∣

∣
≤ 2

15 |I|,
∣

∣

∣
τm(I) ∩

λ−1
⋃

d=1

⋃

J∈C

|J|=2−d|I|

J ∪ τm(J)
∣

∣

∣
≤ 2

15 |I|.

So if we construct the atoms A(I) according to (3.15) and (3.16) (with B replaced by C ),

instead of (3.14) we obtain the inequalities

|A(I)| ≤ 2|I|, |I ∩ A(I)| ≥ 13
15 |I|, |τm(I) ∩ A(I)| ≥ 13

15 |I|.

In what follows we denote the left and right dyadic successors of I by I0 and I1, respec-

tively. To be more precise, I0, I1 ∈ D , |I0| = |I1| = |I|/2, and inf I0 = inf I, sup I1 = sup I.

Consequently, if we define

B(I) =
(

A(I) ∩ (A(I) ∩ I1 − |I|/2)
)

∪
(

A(I) ∩ (A(I) ∩ I0 + |I|/2)
)

∪
(

A(I) ∩ (A(I) ∩ τm(I)1 − |I|/2)
)

∪
(

A(I) ∩ (A(I) ∩ τm(I)0 + |I|/2)
)

and furthermore

C(I) =
(

B(I) ∩ (B(I)−m|I|)
)

∪
(

B(I) ∩ (B(I) +m|I|)
)

,

we see that

|C(I)| ≤ 2|I|, |I ∩C(I)| ≥ 7
15 |I|, |τm(I) ∩ C(I)| ≥ 7

15 |I|.
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Since C(I) ⊂ A(I), the C(I), I ∈ C , do not intersect inside a λ-block. Retracing our

steps, we may replace A(I) by C(I) in the above proof. Observe that additionally we

have the following identities at our disposal:

C(I) ∩ τm(I) = C(I) ∩ I +m|I|, C(I) ∩ I1 = C(I) ∩ I0 + |I|/2; (3.21)

they allow us to use the martingale transform in the proof of [Fig88, Proposition 2,

Step 0]. To be more precise, if we define

dI,1 = 1
2 (hI + hτm(I)) · 1C(I) and dI,2 = 1

2 (hI − hτm(I)) · 1C(I), (3.22)

then due to (3.21) we see that {dI,1, dI,2 : I ∈ C } is a martingale difference sequence.

Furthermore, note that

{hI · 1C(I) : I ∈ C } and {hτm(I) · 1C(I) : I ∈ C }

are martingale difference sequences as well. Observe that

dI,1 + dI,2 = hI · 1C(I) and dI,1 − dI,2 = hτm(I) · 1C(I); (3.23)

thus we can swap hI · 1C(I) with hτm(I) · 1C(I), according to [Fig88, Lemma 2].

Thus we shifted hI · 1C(I) to hτm(I) · 1C(I) by means of the martingale transformation

given by (3.23) instead of applying Bourgain’s version of Stein’s martingale inequality for

this purpose.

The following Corollary 3.5 connects the one-dimensional Theorem 3.3 with the mul-

tidimensional stripe operators Sλ. In Figure 3 the action of the shift operators Tm,

0 ≤ m ≤ 2λ − 1, on the image of Sλ is visualized.
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Fig. 3. Shifting the image of a stripe operator Sλ in dimension n = 2

Corollary 3.5. Let X be a UMD-space. Let 1 < p < ∞, n ∈ N, and denote by e1
the unit vector (1, 0, . . . , 0) ∈ Rn. Then there exists a constant C > 0 such that, for all

integers λ and m satisfying 0 ≤ m ≤ 2λ − 1 and every u ∈ Lp
X(Rn),

1

C
‖Sλu‖Lp

X
(Rn) ≤ ‖Tme1Sλu‖Lp

X
(Rn) ≤ C‖Sλu‖Lp

X
(Rn), (3.24)
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where C depends only on n, p and the UMD-constant of X. In other words, Tm acts as

an isomorphism on the image of Sλ, having norm estimates independent of m and λ.

Proof. We recall the definitions (3.3) and (3.4), that is,

Uλ =
⋃

Q∈Q

{

E ∈ Q : πλ(E) = Q, inf
x∈E

x1 = inf
q∈Q

q1

}

;

by ·1 we denoted the projection onto the first coordinate. Observe that due to the defi-

nitions (3.5) and (3.6) we have

image(Sλ) ⊂
{

∑

Q∈Uλ

uQ hQ|Q|−1 : uQ ∈ X
}

∩ Lp
X(Rn).

With this in mind we will apply Theorem 3.3 to every line in the direction e1. Recall

that we omitted the superscripts for the Haar functions h
(ε)
Q , ε 6= 0, and used the generic

notation hQ instead. Note that Kahane’s contraction principle allows us to choose the

function hQ = h
(ε)
Q with ε1 = 1, at the same time preserving the norm of the operator,

up to a constant (see (2.5)). So now we shall assume that each hQ has zero mean in the

first coordinate.

Fix u ∈ Lp
X , define v = Sλu, and denote by vx the function v(·, x) for all x ∈ Rn−1.

Due to our assumption above, vx ∈ Zλ for almost all x ∈ Rn. Observe that for all

x ∈ Rn−1 and t ∈ R we have the identity

(Tme1v)(t, x) = (Tmvx)(t),

hence

‖Tme1v‖
p
Lp

X
(Rn)

=

∫

Rn−1

∫

R

‖(Tmvx)(t)‖
p
X dt dx =

∫

Rn−1

‖Tmvx‖
p
Lp

X
(R)

dx.

Since vx ∈ Zλ for almost every x ∈ Rn, we may use Theorem 3.3 to get
∫

Rn−1

‖Tmvx‖
p
Lp

X
(R)

dx ≈

∫

Rn−1

‖vx‖
p
Lp

X
(R)

dx = ‖v‖p
Lp

X
(Rn)

.

Substituting v = Sλu finishes the proof.

3.3. Estimates for the stripe operator. Before we formulate and prove the main

result on stripe operators Sλ, we will recapitulate the definition of Sλ (see (3.6)). The

dyadic stripe Uλ(Q) (for details see (3.3)) was defined to be the collection
{

E ∈ Q : πλ(E) = Q, inf
x∈E

x1 = inf
q∈Q

q1

}

,

where πλ(E) is the unique Q ∈ Q such that |Q| = 2λn|E| and Q ⊃ E. Furthermore, x1
respectively q1 denotes the orthogonal projection of x ∈ Rn respectively q ∈ Rn onto the

vector e1 = (1, 0, . . . , 0). Then the stripe operator Sλ is given by the linear extension of

SλhQ = gQ,λ,

and the stripe functions were defined in (3.5) by

gQ,λ =
∑

E∈Uλ(Q)

hE .
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Having verified Corollary 3.5 we will now present our main theorem on stripe opera-

tors.

Theorem 3.6. Let X be a UMD-space, 1 < p <∞ and n ∈ N. For λ ≥ 0 let Sλ denote

the stripe operator given by

Sλu =
∑

Q∈Q

〈u, hQ〉gQ,λ|Q|−1

for all u ∈ Lp
X(Rn). Recall that hQ denotes any of the functions h

(ε)
Q , ε 6= 0. If Lp

X(Rn)

has cotype C(Lp
X(Rn)), then there exists a constant C > 0 such that for every u ∈ Lp

X(Rn)

and λ ≥ 0,

‖Sλu‖Lp

X
(Rn) ≤ C · 2−λ/C(Lp

X(Rn))‖u‖Lp

X
(Rn), (3.25)

where the constant C depends only on n, p, the UMD-constant of X and the cotype

C(Lp
X(Rn)).

Proof. The UMD-property and Kahane’s contraction principle shows that the estimate

holds true if we restrict λ to 0 ≤ λ ≤ 1.

So from now on we may assume that λ ≥ 2. The definition of the dyadic stripe Uλ

(see (3.3) and (3.4)) implies that

τke1 (Uλ) ∩ τme1 (Uλ) = ∅ (3.26)

if 0 ≤ k < m ≤ 2λ − 1. Furthermore, one has the high frequency cover of Q ∈ Q given by

2λ−1
⋃

m=0

τme1(Uλ(Q)) = {E ∈ Q : πλ(E) = Q},

thus we see that

|hQ| =
∣

∣

∣

2λ−1
∑

m=0

Tme1gQ,λ

∣

∣

∣
(3.27)

by the definition of gQ,λ (see Figure 4).
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Fig. 4. High frequency cover of the cube Q obtained by shifts of the stripe functions gQ,λ
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Now let u ∈ Lp
X(Rn) be fixed. For the rest of the proof we shall write Lp

X for Lp
X(Rn)

and C for C(Lp
X). We want to bound ‖u‖Lp

X
from below by means of the stripe operator Sλ.

First, the UMD-property allows us to introduce the Rademacher means

‖u‖Lp
X
≈

∫ 1

0

∥

∥

∥

∑

j

rj(t)
∑

Q∈Qj

uQhQ|Q|−1
∥

∥

∥

Lp

X

dt.

Second, Kahane’s contraction principle applied to (3.27) on the right hand side yields

‖u‖Lp

X
≈

∫ 1

0

∥

∥

∥

∑

j

rj(t)
∑

Q∈Qj

uQ

2λ−1
∑

m=0

Tme1gQ,λ|Q|−1
∥

∥

∥

Lp

X

dt. (3.28)

Third, if we set

d(j,m) = Tme1

∑

Q∈Qj

gQ,λ for j ∈ Z and 0 ≤ m ≤ 2λ − 1,

and define the lexicographic ordering relation

(j,m) < (j′,m′) iff

{

j < j′, or

j = j′ and m < m′,

then {d(j,m) : j ∈ Z, 0 ≤ m ≤ λ} with respect to “<” generates a martingale difference

sequence. So in view of (3.26) and the UMD-property we may introduce the following

new Rademacher means in (3.28):

∫ 1

0

∥

∥

∥

2λ−1
∑

m=0

rm(t)Tme1

∑

Q∈Q

uQgQ,λ|Q|−1
∥

∥

∥

Lp

X

dt.

Hence, we have

‖u‖Lp

X
≈

∫ 1

0

∥

∥

∥

2λ−1
∑

m=0

rm(t)Tme1

∑

Q∈Q

uQgQ,λ|Q|−1
∥

∥

∥

Lp

X

dt. (3.29)

Fourth, with gQ,λ = SλhQ in mind, we apply the cotype inequality (2.3) to (3.29) to

find that

‖u‖Lp

X
&

(

2λ−1
∑

m=0

‖Tme1Sλu‖
C

Lp

X

)1/C

.

Finally, utilizing Corollary 3.5 concludes the proof:

(

2λ−1
∑

m=0

‖Tme1Sλu‖
C

Lp
X

)1/C

≈
(

2λ−1
∑

m=0

‖Sλu‖
C

Lp
X

)1/C

= 2λ/C‖Sλu‖Lp

X
.

Repeating the proof of Theorem 3.6 without Corollary 3.5, and using Figiel’s bound

(2.9) on shift operators directly, would lead to the weaker result

‖Sλu‖Lp
X(Rn) ≤ Cλα2−λ/C(Lp

X
(Rn)) ‖u‖Lp

X(Rn), (3.30)

where the exponent 0 < α < 1 is the one occurring in (2.9).
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3.4. The ring domain operator. We will define the ring domain operator Hλ, which

is supported in the vicinity of the set of discontinuities of Haar functions. We will show

that Hλ can be written as a finite sum of continuous images of stripe operators Sλ. Thus,

estimate (3.6) for the stripe operator carries over to the ring domain operator, that is,

‖Hλu‖Lp

X
(Rn) ≤ C · 2−λ/C(Lp

X(Rn))‖u‖Lp

X
(Rn). (3.31)

For every Q denote by D(Q) the set of discontinuities of the Haar function h
(1,...,1)
Q

and define

Dλ(Q) = {x ∈ R
n : dist(x,D(Q)) ≤ C · 2−λ sidelength(Q)}

for all λ ≥ 0. Note that

|Dλ(Q)| ≤ C · 2−λ|Q| (3.32)

for all λ ≥ 0 and Q ∈ Q, where C does not depend on λ or Q. Now we cover the set

Dλ(Q) using dyadic cubes E(Q) with sidelength(E(Q)) = 2−λ sidelength(Q), and call

the collection of those cubes Vλ(Q). To be more precise,

Vλ(Q) = {E ∈ Q : sidelength(E) = 2−λ sidelength(Q), E ∩Dλ(Q) 6= ∅}, (3.33)

and we define

Vλ =
⋃

Q∈Q

Vλ(Q). (3.34)

The set covered by Vλ(Q) is illustrated by the shaded region in Figure 5, where the

dashed lines represent the set of discontinuities D(Q). The cardinality #Vλ(Q) does not
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Fig. 5. The dyadic stripe Uλ(Q) embedded in the ring domain Vλ(Q) in dimension n = 2. The
picture is drawn for C = 1.
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depend on the choice of Q, so we note that

#Vλ(Q) ≈ 2λ(n−1). (3.35)

Finally, define the functions dQ,λ associated to the ring domain Vλ(Q) by

dQ,λ =
∑

E∈Vλ(Q)

hE , (3.36)

and the ring domain operator Hλ by

Hλu =
∑

Q∈Q

〈u, hQ〉 dQ,λ|Q|−1. (3.37)

In the subsequent theorem, Hλ is dominated by the stripe operator Sλ. This is done

by covering the ring domain function dQ,λ with continuous mappings of the dyadic stripe

functions gQ,λ (see identity (3.40)).

Theorem 3.7. Let X be a UMD-space, 1 < p < ∞ and n ∈ N. For λ ≥ 0 we can

dominate Hλ by Sλ, that is,

‖Hλu‖Lp

X
≤ C‖Sλu‖Lp

X
(3.38)

for all u ∈ Lp
X(Rn), where the constant C depends only on n, p and the UMD-constant

of X.

A fortiori, we have the following estimate for Hλ.

Corollary 3.8. Let X be a UMD-space, 1 < p < ∞ and n ∈ N. If Lp
X(Rn) has cotype

C(Lp
X(Rn)), then there exists a constant C > 0 such that

‖Hλu‖Lp

X
(Rn) ≤ C · 2−λ/C(Lp

X(Rn))‖u‖Lp

X
(Rn) (3.39)

for every u ∈ Lp
X(Rn) and λ ≥ 0, where C depends only on n, p, the UMD-constant of

X and the cotype C(Lp
X(Rn)).

Proof. Once we have proved Theorem 3.7, we obtain Corollary 3.8 simply by plugging in

estimate (3.25) for the stripe operator.

Proof of Theorem 3.7. Let q denote the lower left corner of Q, that is,

qi = inf{xi : x ∈ Q} for all 1 ≤ i ≤ n,

where x1 respectively q1 denotes the orthogonal projection of x ∈ Rn respectively q ∈ Rn

onto the vector e1 = (1, 0, . . . , 0). Furthermore, let Mi be the orthogonal transformation

swapping e1 and ei, that is, the linear extension of

Mie1 = ei, Miei = e1, Miej = ej for all j /∈ {1, i},

and finally define the stripe functions

gQ,λ,i = gQ,λ(Mi(x− q) + q), Q ∈ Q, 1 ≤ i ≤ n,

and the stripe operators

Sλ,ihQ = gQ,λ,i, Q ∈ Q, 1 ≤ i ≤ n,
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with respect to the coordinate i. Clearly, the operators Sλ,i, 1 ≤ i ≤ n, have analogous

properties to Sλ, in particular they satisfy the estimates

‖TkeiSλ,iu‖Lp

X
(Rn) ≤ C · 2−λ/C(Lp

X
(Rn))‖u‖Lp

X
(Rn), 0 ≤ k ≤ 2λ − 1,

for u∈Lp
X(Rn) and λ≥0. We can find a constant C>0 and functions |cQ,i,(k1,...,kn),m|≤1,

constant on dyadic cubes of measure 2−λn|Q|, such that

dQ,λ =

n
∑

i,j=1

∑

|kj |≤C

∑

m∈{0,2λ−1−1,2λ−1}

Tk1e1 ◦ · · · ◦Tknen ◦TmeicQ,i,(k1,...,kn),mgQ,λ,i. (3.40)

The ring domain Vλ(Q) and the dyadic stripe Uλ(Q) are pictured in Figure 5. Plug-

ging the previous identity into (3.37) and using estimate (2.9), we see that ‖Hλu‖Lp

X
is

dominated by a constant multiple of
n
∑

i=1

∑

k

∥

∥

∥
Tkei

∑

Q∈Q

uQcQ,igQ,λ,i|Q|−1
∥

∥

∥

Lp

X

,

where uQ = 〈u, hQ〉, and the summation over k extends over the set {0, 2λ−1− 1, 2λ− 1}.

Also, for the sake of brevity, we dropped the rest of the subscripts for the function cQ,i.

Because we have the same properties in every coordinate 1 ≤ i ≤ n, we only need to

estimate
∥

∥

∥
Tke1

∑

Q∈Q

uQcQ,1gQ,λ|Q|−1
∥

∥

∥

Lp

X

for all k ∈ {0, 2λ−1 − 1, 2λ − 1}. Recall that
∑

Q∈Q

uQcQ,1gQ,λ|Q|−1 =
∑

Q∈Q

∑

E∈Uλ(Q)

uQcQ,1hE|Q|−1,

and observe that the collection

{Tke1hE : E ∈ Uλ(Q), Q ∈ Q}

forms a martingale difference sequence, separately for every 0 ≤ k ≤ 2λ − 1. Since

|cQ,1| ≤ 1, we may estimate
∥

∥

∥
Tke1

∑

Q∈Q

uQcQ,1gQ,λ|Q|−1
∥

∥

∥

Lp
X

.
∥

∥

∥
Tke1

∑

Q∈Q

uQgQ,λ|Q|−1
∥

∥

∥

Lp
X

.

Since gQ,λ = SλhQ, we can now use estimate (3.24), and collecting all our inequalities

yields

‖Hλu‖Lp

X
≤ C‖Sλu‖Lp

X
,

concluding the proof.



4. Decomposition of the directional Haar projection P (ε)

Given 1 < p <∞ and an integer n ≥ 2, the directional Haar projection P (ε) : Lp
X(Rn) →

Lp
X(Rn) is defined by

P (ε)u =
∑

Q∈Q

〈u, h
(ε)
Q 〉h

(ε)
Q |Q|−1 (4.1)

for all u ∈ Lp
X(Rn).

In order to estimate P (ε), we decompose it in Subsection 4.1 into a series of molli-

fied operators
∑

l P
(ε)
l , following [LMM11]. Subsequently, wavelet expansions are used

in [LMM11] to further analyze P
(ε)
l .

On the other hand, we decompose P
(ε)
l into a series of stripe operators

P
(ε)
l =

∑

λ(l)

cλ(l)Sλ(l),

using martingale methods feasible in UMD-spaces. In Subsection 4.2 we use T. Figiel’s

martingale approach (see [Fig90]) to find a suitable representation for P
(ε)
l . In the fol-

lowing Subsection 4.3 we define the main cases for further decomposition of P
(ε)
l , which

we then dominate by weighted series of ring domain operators Hλ in Subsection 4.4. In

Subsection 4.5, we reduce the estimates for P
(ε)
l R−1

i0
to inequalities for P

(ε)
l .

4.1. Decomposition of P (ε) into P
(ε)
l . We give a brief overview of the Littlewood–

Paley decomposition used in [LMM11] and continue with further decompositions in Sub-

sections 4.2 and 4.3, different from the methods in [LMM11].

We utilize a compactly supported, smooth approximation of the identity to obtain a

decomposition of P (ε) into a series of mollified operators P
(ε)
l ,

P (ε) =
∑

l∈Z

P
(ε)
l . (4.2)

To this end, we fix b ∈ C∞
c (]0, 1[

n
) such that

∫

b(x) dx = 1 and

∫

xib(x1, . . . , xi, . . . , xn) dxi = 0 (4.3)

for all 1 ≤ i ≤ n. For every integer l define

∆lu = u ∗ dl, where dl(x) = 2lnd(2lx) and d(x) = 2n b(2x)− b(x). (4.4)

Then for all u ∈ Lp
X(Rn),

u =
∑

l∈Z

∆lu, (4.5)

[36]
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with the series converging in Lp
X(Rn). Denoting by Qj ⊂ Q the collection of all dyadic

cubes having measure 2−jn, we set

P
(ε)
l u =

∑

j∈Z

∑

Q∈Qj

〈u,∆j+l(h
(ε)
Q )〉h

(ε)
Q |Q|−1, (4.6)

and observe that by (4.5), for all u ∈ Lp
X(Rn),

P (ε)u =
∑

l∈Z

P
(ε)
l u,

where equality holds in the sense of Lp
X(Rn). Setting f

(ε)
Q,l = ∆j+lh

(ε)
Q , if Q ∈ Qj , we

rewrite (4.6) as

P
(ε)
l u =

∑

Q∈Q

〈u, f
(ε)
Q,l〉h

(ε)
Q |Q|−1. (4.7)

In contrast to [LMM11] we will rather estimate the operator

P
(ε)
− =

∑

l<0

P
(ε)
l (4.8)

instead of estimating each P
(ε)
l , l < 0, separately.

4.2. The integral kernels K
(ε)
l and K

(ε)
− of P

(ε)
l and P

(ε)
− . In this subsection we

identify the integral kernel K
(ε)
l of the operator P

(ε)
l . As mentioned in Subsection 1.2,

S. Müller asks in [Mül99] whether it is possible to obtain (1.2) in such a way that the

original time-frequency decompositions are replaced by the canonical martingale decom-

position of T. Figiel (see [Fig90]). This paper provides an affirmative answer to this

question. The details of the decomposition are worked out in this subsection.

Note that

(P
(ε)
l u)(x) =

∫

K
(ε)
l (x, y)u(y) dy, (4.9)

where

K
(ε)
l (x, y) =

∑

Q∈Q

h
(ε)
Q (x)f

(ε)
Q,l(y)|Q|−1. (4.10)

Now we expand K
(ε)
l into the series

∑

α,β∈{0,1}n

(α,β) 6=0

∑

K,M,Q∈Q

|K|=|M|

〈h
(ε)
Q , h

(α)
K 〉〈f

(ε)
Q,l, h

(β)
M 〉|K|−1|M |−1|Q|−1h

(α)
K (x)h

(β)
M (y). (4.11)

We seek a simpler algebraic form of (4.11), and therefore we distinguish the following

settings for the parameters α and β, with (α, β) 6= 0:

(1) β 6= 0, α 6= 0,

(2) β 6= 0, α = 0,

(3) β = 0.

Note that due to the condition (α, β) 6= 0 in (4.11), case (3) clearly implies α 6= 0.
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In case (1), that is, β 6= 0 and α 6= 0, we begin by rewriting the inner sum of (4.11)

as

∑

K,M,Q∈Q

|K|=|M|

〈h
(ε)
Q , h

(α)
K 〉〈f

(ε)
Q,l, h

(β)
M 〉|K|−1|M |−1|Q|−1h

(α)
K (x)h

(β)
M (y)

=
∑

M,Q∈Q

〈f
(ε)
Q,l, h

(β)
M 〉|M |−1|Q|−1h

(β)
M (y)

∑

K∈Q

|K|=|M|

〈h
(ε)
Q , h

(α)
K 〉|K|−1h

(α)
K (x).

If we now sum this identity over all α 6= 0, we get
∑

M,Q∈Q

|M|=|Q|

〈f
(ε)
Q,l, h

(β)
M 〉|M |−1|Q|−1h

(ε)
Q (x)h

(β)
M (y) (4.12)

for all β 6= 0 in case (1).

In case (2), that is, β 6= 0 and α = 0, the inner sum of (4.11) reads
∑

M,Q∈Q

〈f
(ε)
Q,l, h

(β)
M 〉|M |−1|Q|−1h

(β)
M (y)

∑

K∈Q

|K|=|M|

〈h
(ε)
Q , 1K〉|K|−1 · 1K(x).

Observe that the second sum is the conditional expectation of h
(ε)
Q , thus it is zero if

|K| ≥ |Q|, and hQ(x) if |K| < |Q|. So in case (2) we get
∑

M,Q∈Q

|M|<|Q|

〈f
(ε)
Q,l, h

(β)
M 〉|M |−1|Q|−1h

(ε)
Q (x)h

(β)
M (y), (4.13)

with β 6= 0 fixed.

Finally, in case (3) we know that β = 0 and α 6= 0, as noted before. Therefore, the

inner sum of (4.11) reads

∑

K,M,Q∈Q

|K|=|M|

〈h
(ε)
Q , h

(α)
K 〉〈f

(ε)
Q,l, 1M 〉|K|−1|M |−1|Q|−1h

(α)
K (x) · 1M (y)

=
∑

M,Q∈Q

|M|=|Q|

〈f
(ε)
Q,l, 1M 〉|M |−1|Q|−1h

(ε)
Q (x) · 1M (y).

Expanding the y-component of the last expression into a Haar series yields
∑

γ∈{0,1}n

γ 6=0

∑

K,M,Q∈Q

|M|=|Q|

〈f
(ε)
Q,l, 1M 〉〈h

(γ)
K , 1M 〉|K|−1|M |−1|Q|−1h

(ε)
Q (x)h

(γ)
K (y)

=
∑

γ∈{0,1}n

γ 6=0

∑

K,Q∈Q

h
(ε)
Q (x)h

(γ)
K (y)|K|−1|Q|−1

∑

M(K
|M|=|Q|

〈f
(ε)
Q,l, 1M 〉〈h

(γ)
K , 1M 〉|M |−1

=
∑

γ∈{0,1}n

γ 6=0

∑

K,Q∈Q

|Q|<|K|

h
(ε)
Q (x)h

(γ)
K (y)|K|−1|Q|−1

〈

f
(ε)
Q,l,

∑

M(K
|M|=|Q|

1M 〈h
(γ)
K , 1M 〉|M |−1

〉

.

Observe that with K and Q fixed, the inner sum is indeed the conditional expectation of
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h
(γ)
K at a finer scale. Hence, h

(γ)
K is reproduced, i.e.
∑

M(K
|M|=|Q|

1M 〈h
(γ)
K , 1M 〉|M |−1 = h

(γ)
K ,

and we obtain
∑

γ∈{0,1}n

γ 6=0

∑

K,Q∈Q

|Q|<|K|

〈f
(ε)
Q,l, h

(γ)
K 〉|K|−1|Q|−1h

(ε)
Q (x)h

(γ)
K (y) (4.14)

in case (3).

Summing (4.12) and (4.13) over all β 6= 0 and adding (4.14) yields

K
(ε)
l (x, y) =

∑

γ∈{0,1}n

γ 6=0

K
(ε,γ)
l (x, y),

K
(ε,γ)
l (x, y) =

∑

M,Q∈Q

〈f
(ε)
Q,l, h

(γ)
M 〉|M |−1|Q|−1h

(ε)
Q (x)h

(γ)
M (y).

(4.15)

We summarize the results of the preceding discussion in

Proposition 4.1. For fixed ε ∈ {0, 1}n \ {0} and every l ∈ Z and γ ∈ {0, 1}n \ {0} let

(P
(ε,γ)
l u)(x) =

∫

K
(ε,γ)
l (x, y)u(y) dy for all u ∈ Lp

X(Rn),

K
(ε,γ)
l (x, y) =

∑

M,Q∈Q

〈f
(ε)
Q,l, h

(γ)
M 〉|M |−1|Q|−1h

(ε)
Q (x)h

(γ)
M (y),

(4.16)

and f
(ε)
Q,l = ∆j+lh

(ε)
Q for all Q ∈ Qj (see (4.4) for details). If we define

P
(ε,γ)
− =

∑

l<0

P
(ε,γ)
l and f

(ε)
Q =

∑

l<0

f
(ε)
Q,l, (4.17)

then the integral kernel K
(ε,γ)
− (x, y) of P

(ε,γ)
− is given by

(P
(ε,γ)
− u)(x) =

∫

K
(ε,γ)
− (x, y)u(y) dy,

K
(ε,γ)
− (x, y) =

∑

M,Q∈Q

〈f
(ε)
Q , h

(γ)
M 〉|M |−1|Q|−1h

(ε)
Q (x)h

(γ)
M (y).

(4.18)

Furthermore, we have the following decomposition of the directional Haar projection P (ε):

P (ε) =
∑

γ∈{0,1}n

γ 6=0

(

P
(ε,γ)
− +

∑

l≥0

P
(ε,γ)
l

)

, (4.19)

where equality holds true pointwise in Lp
X(Rn).

Remark 4.2. To ease notation we will drop the superscripts (ε), (γ) and (ε, γ) from all of

the operators P
(ε)
l , P

(ε,γ)
l , P

(ε)
− , P

(ε,γ)
− , their respective kernels K

(ε)
l , K

(ε,γ)
l , K

(ε)
− , K

(ε,γ)
− ,

as well as from the mollified Haar functions f
(ε)
Q,l, f

(ε)
Q and the Haar functions h

(ε)
Q , h

(γ)
Q .

Compare Remark 2.1.
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By dropping the superscripts we obtain the following generic representation for the

integral kernels K
(ε,γ)
l and K

(ε,γ)
− , abbreviated as Kl and K−:

Kl(x, y) =
∑

M,Q∈Q

〈fQ,l, hM 〉|M |−1|Q|−1hQ(x)hM (y),

K−(x, y) =
∑

M,Q∈Q

〈fQ, hM 〉|M |−1|Q|−1hQ(x)hM (y).

Note that by (4.18) and (4.16), both the Haar functions hM share (γ) and both hQ share

the superscript (ε). Throughout this article we will work with the generic representation

of the operators and will interpret every occurrence of a Haar function so that each

occurrence of a Haar function might have a different superscript, i.e.

Kl(x, y) =
∑

M,Q∈Q

〈f
(αQ)
Q,l , h

(βM )
M 〉|M |−1|Q|−1h

(γQ)
Q (x)h

(δM )
M (y),

K−(x, y) =
∑

M,Q∈Q

〈f
(α′

Q)

Q , h
(β′

M )
M 〉|M |−1|Q|−1h

(γ′

Q)

Q (x)h
(δ′M )
M (y),

where each of the above superscripts is a vector in {0, 1}n \ {0}. In correspondence with

(4.16)–(4.19) we obtain the generic operators Pl and P− with their respective integral

kernels Kl and K−, as well as the generic mollified Haar functions fQ,l and fQ.

4.3. Decomposition of Pl—the main cases. Henceforth we will use the notation of

Remark 4.2. We will decompose the operator Pl guided by the different behavior of the

coefficients 〈fQ,l, hM 〉, l ≥ 0, M ∈ Q, and 〈fQ,l, hM 〉, l < 0, M ∈ Q. This is primarily

caused by the different shape of the support of the functions fQ,l, l ≥ 0, and fQ,l,

l < 0 (compare the support inclusions in (4.20) and (4.21) below), in relation to the

size of the cubes M . We remind the reader that hQ is an abbreviation for one of h
(γ)
Q ,

γ ∈ {0, 1}n \ {0}.

4.3.1. Estimates for the coefficients. First, we want to investigate the mollified Haar

functions fQ,l, l ∈ Z. To this end, let D(Q) denote the set of discontinuities of the Haar

function hQ. Then

Dl(Q) = {x ∈ R
n : dist(x,D(Q)) ≤ C · 2−l diam(Q)}.

If l ≥ 0, note that
∫

fQ,l(x) dx = 0, supp fQ,l ⊂ Dl(Q),

|fQ,l| ≤ C, Lip(fQ,l) ≤ C · 2l(diam(Q))−1,

(4.20)

and if l ≤ 0, we have
∫

fQ,l(x) dx = 0, supp fQ,l ⊂ C · 2|l|Q,

|fQ,l| ≤ C · 2−|l|(n+1), Lip(fQ,l) ≤ C · 2−|l|(n+2)(diam(Q))−1,

(4.21)

where the constant C does not depend on l or Q.

Recall that for Q ∈ Qj we defined

fQ,l = ∆j+lhQ = hQ ∗ dj+l = hQ ∗ (bj+l+1 − bj+l).



An interpolatory estimate for the Haar projection 41

Taking the sum over l < 0 yields
∑

l<0

fQ,l = hQ ∗ bj ,

hence the mollified Haar functions fQ defined in (4.17) are given by

fQ = hQ ∗ bj for all Q ∈ Qj ,

where bj(x) = 2jnb(2jx). The functions fQ have the following properties, which are easily

verified: there exists a C > 0 independent of Q such that
∫

fQ(x) dx = 0, supp fQ ⊂ CQ,

|fQ| ≤ C, Lip(fQ) ≤ C(diam(Q))−1,

(4.22)

for all Q ∈ Q.

Proposition 4.3 stated below estimates the coefficients 〈fQ,l, hM 〉, l ≥ 0, and 〈fQ, hM 〉.

The different behavior of the inequalities is determined by the ratio of the diameters of

the cubes Q and M .

Proposition 4.3. For all dyadic cubes Q,M ∈ Q we have the following estimates for

the coefficients 〈fQ,l, hM 〉, l ≥ 0:

(1) If diam(Q) ≤ diam(M), then

|〈fQ,l, hM 〉| ≤ C · 2−l|Q|. (4.23)

(2) If 2−l diam(Q) ≤ diam(M) < diam(Q), we get

|〈fQ,l, hM 〉| ≤ C · 2−l diam(Q)(diam(M))n−1. (4.24)

(3) If diam(M) < 2−l diam(Q), we obtain

|〈fQ,l, hM 〉| ≤ C · 2l
diam(M)

diam(Q)
|M |. (4.25)

The constant C does not depend on l, Q or M .

Moreover, for all dyadic cubes Q,M ∈ Q we have:

(4) If diam(M) ≤ diam(Q), then

|〈fQ, hM 〉| ≤ C(diam(Q))−1(diam(M))n+1. (4.26)

(5) If diam(M) > diam(Q), we have

|〈fQ, hM 〉| ≤ C|Q|. (4.27)

The constant C does not depend on Q or M .

Proof. First, we want to estimate 〈fQ,l, hM 〉, so we fix l ≥ 0 and Q,M ∈ Q.

If diam(Q) ≤ diam(M), then using |Dl(Q)| . 2−l|Q| and exploiting the boundedness

of fQ,l and hM implies (4.23).

If 2−l diam(Q) ≤ diam(M) < diam(Q), then the measure estimate

|Dl(Q) ∩M | . 2−l diam(Q)(diam(M))n−1

together with (4.20) yields (4.24).
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If diam(M) < 2−l diam(Q), then in view of Lip(fQ,l) . 2l(diam(Q))−1 and
∫

hM = 0

in (4.20) we may infer (4.25).

Now we turn to the estimates for 〈fQ, hM 〉, Q,M ∈ Q. If diam(M) ≤ diam(Q), we

make use of

Lip(fQ) ≤ C(diam(Q))−1,

according to (4.22), and we obtain (4.26).

For diam(M) > diam(Q), we exploit

|fQ| ≤ C and supp fQ ⊂ CQ

in (4.22) to obtain (4.27).

Remark 4.4. Observe that the coefficients 〈fQ,l, hM 〉 respectively 〈fQ, hM 〉 vanish if the

support of fQ,l respectively fQ is contained in a set where hM is constant (see Figure 6

on p. 44). More precisely, if we can find a K ∈ Q with π(K) =M such that

supp fQ,l ⊂ K respectively supp fQ ⊂ K,

then certainly

〈fQ,l, hM 〉 = 0 respectively 〈fQ, hM 〉 = 0.

Finally, note that for diam(M) > diam(Q) the cubes Q for which 〈fQ,l, hM 〉 6= 0

respectively 〈fQ, hM 〉 6= 0 cluster in the vicinity of D(M), the set of hM ’s discontinuities.

4.3.2. Definition of the main cases. For each l ≥ 0 we split the set Q×Q according

to the cases in Proposition 4.3 into the three disjoint collections

Al = {(Q,M) : diam(Q) ≤ diam(M)}, (4.28)

Bl = {(Q,M) : 2−l diam(Q) ≤ diam(M) < diam(Q)}, (4.29)

Cl = {(Q,M) : diam(M) < 2−l diam(Q)}, (4.30)

respectively the two disjoint collections

A− = {(Q,M) : diam(M) ≤ diam(Q)}, (4.31)

B− = {(Q,M) : diam(M) > diam(Q)}. (4.32)

Then we define the integral kernels

Al(x, y) =
∑

(Q,M)∈Al

〈fQ,l, hM 〉hQ(x)hM (y)|Q|−1|M |−1, (4.33)

Bl(x, y) =
∑

(Q,M)∈Bl

〈fQ,l, hM 〉hQ(x)hM (y)|Q|−1|M |−1, (4.34)

Cl(x, y) =
∑

(Q,M)∈Cl

〈fQ,l, hM 〉hQ(x)hM (y)|Q|−1|M |−1, (4.35)

respectively

A−(x, y) =
∑

(Q,M)∈A−

〈fQ, hM 〉hQ(x)hM (y)|Q|−1|M |−1, (4.36)

B−(x, y) =
∑

(Q,M)∈B−

〈fQ, hM 〉hQ(x)hM (y)|Q|−1|M |−1, (4.37)
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and associate to each integral kernel the induced operator,

(Alu)(x) =

∫

Al(x, y)u(y) dy, (4.38)

(Blu)(x) =

∫

Bl(x, y)u(y) dy, (4.39)

(Clu)(x) =

∫

Cl(x, y)u(y) dy, (4.40)

respectively

(A−u)(x) =

∫

A−(x, y)u(y) dy, (4.41)

(B−u)(x) =

∫

B−(x, y)u(y) dy. (4.42)

Finally, note that

Pl = Al +Bl + Cl for all l ≥ 0, (4.43)

P− = A− +B−. (4.44)

4.4. Estimates for Pl, l ≥ 0, and P−. We will show that each of the operators Al,

B∗
l , C∗

l and A∗
−, B− (see Subsection 4.3.2) can be controlled by certain weighted series

of ring domain operators; for details on Hλ we refer the reader to Subsection 3.4.

Combining the results for Al, Bl and Cl, respectively A∗
− and B−, yields the following

result.

Theorem 4.5. Let X be a UMD-space, 1 < p < ∞ and n ∈ N. Let Lp
X(Rn) have

type T(Lp
X(Rn)). Then there exists a constant C > 0 such that for all l ≥ 0 and every

u ∈ Lp
X(Rn) we have

‖Plu‖Lp
X(Rn) ≤ C · 2−l(1−1/T(Lp

X
(Rn)))‖u‖Lp

X(Rn), (4.45)

where C depends only on n, p, the UMD-constant of X and the type T(Lp
X(Rn)).

Moreover, there exists a constant C > 0 such that for all u ∈ Lp
X(Rn),

‖P−u‖Lp
X(Rn) ≤ C‖u‖Lp

X(Rn), (4.46)

where C depends only on n, p, the UMD-constant of X and the type T(Lp
X(Rn)).

The proof of the theorem is divided into seven parts:

• Subsection 4.4.1: Estimates for Al.

• Subsection 4.4.2: Estimates for Bl.

• Subsection 4.4.3: Estimates for Cl.

• Subsection 4.4.4: Summary for Pl.

• Subsection 4.4.5: Estimates for A−.

• Subsection 4.4.6: Estimates for B−.

• Subsection 4.4.7: Summary for P−.

Keeping in mind that

Pl = Al +Bl + Cl, respectively P− = A− +B−,
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we will have proved the theorem once we establish the inequalities (4.47)–(4.49), summa-

rized in Subsection 4.4.4, respectively (4.50)–(4.51), summarized in Subsection 4.4.7.

4.4.1. Estimates for Al. In view of (4.28), (4.33) and (4.38) note that diam(Q) ≤

diam(M), and so we may utilize inequality (4.23). This setting is illustrated in Figure 6.

Vl(Q)

Vl(Q
′)

Vl(Q
′′)

Vl(Q
′′′)

M

si
d
el
en

g
th
(M

)

D(M)

Fig. 6. The ring domains Vl(Q), Vl(Q
′), Vl(Q

′′), Vl(Q
′′′) are contained in sets where the Haar

function hM is constant.

First, we split the set Al (see (4.28)) into the disjoint collections Al,λ, λ ≥ 0, given

by

Al,λ = {(Q,M) ∈ Al : diam(Q) = 2−λ diam(M)},

and define the operator Al,λ accordingly, that is,

Al,λu =
∑

(Q,M)∈Al,λ

〈fQ,l, hM 〉hQuM |Q|−1|M |−1

for all u =
∑

K∈Q
uKhK |K|−1. Clearly,

Alu =

∞
∑

λ=0

Al,λu.

Recalling that the coefficients 〈fQ,l, hM 〉 vanish if hM is constant on the support of fQ,l

(see Remark 4.4) and the definition of the ring domain (3.33), we see that

{Q : 〈fQ,l, hM 〉 6= 0} ⊂ {Q : Q ∩Dλ(M) 6= ∅} = Vλ(M).

Using this fact, we have the identity

Al,λu =
∑

M∈Q

uM |M |−1
∑

Q∈Vλ(M)

〈fQ,l, hM 〉|Q|−1hQ,

hence glancing at inequality (4.23), utilizing the UMD-property and Kahane’s contraction
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principle we obtain

‖Al,λu‖Lp

X
(Rn) . 2−l

∥

∥

∥

∑

M∈Q

uM |M |−1
∑

Q∈Vλ(M)

hQ

∥

∥

∥

Lp

X
(Rn)

= 2−l
∥

∥

∥

∑

M∈Q

uMdM,λ|M |−1
∥

∥

∥

Lp

X
(Rn)

= 2−l‖Hλu‖Lp
X(Rn).

The last equality is the definition of the ring domain operator Hλ (see (3.37)). Applying

the triangle inequality, using the above estimate for Al,λ and invoking Corollary 3.8 yields

‖Alu‖Lp
X(Rn) . 2−l

∞
∑

λ=0

2−λ/C(Lp

X
(Rn))‖u‖Lp

X(Rn).

Evaluating the geometric series we obtain the estimate

‖Alu‖Lp
X(Rn) ≤ C · 2−l‖u‖Lp

X(Rn), (4.47)

where C depends on n, p, the UMD-constant of X and the cotype C(Lp
X(Rn)).

Remark 4.6. Note that with λ ≥ 0 fixed, the collections Vλ(M) are not disjoint as M

ranges over Q. But since the number of overlaps is bounded by a constant depending

solely on the dimension n and the constant appearing in the definition of Dλ(Q), the

above proof still applies.

4.4.2. Estimates for Bl. In view of (4.29), (4.34) and (4.39) note that 2−l diam(Q) ≤

diam(M) < diam(Q), and so we may utilize inequality (4.24). This setting is visualized

in Figure 7.
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Fig. 7. The cubes M , M ′ and M ′′ intersect the ring domain Vl(Q).

This time we prefer to analyze B∗
l , of course with respect to the norm ‖ · ‖Lq

Y
(Rn),

where Y = X∗ and 1/p + 1/q = 1. As before, we parametrize the series according to
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the ratio of the sizes of Q and M . So we split the set Bl (see (4.29)) into the disjoint

collections Bl,λ, λ ≥ 0, given by

Bl,λ = {(Q,M) ∈ Bl : diam(M) = 2−λ diam(Q)},

and define the operator Bl,λ accordingly, that is,

Bl,λu =
∑

(Q,M)∈Bl,λ

〈fQ,l, hM 〉hQuM |Q|−1|M |−1

for all u =
∑

K∈Q
uKhK |K|−1.

Note that for (Q,M) ∈ Bl,λ we have

{M : 〈fQ,l, hM 〉 6= 0} ⊂ {M :M ∩Dl(Q) 6= ∅} = Vλ(Q),

hence we can rewrite B∗
l,λu as

B∗
l,λu =

∑

Q∈Q

uQ|Q|−1
∑

M∈Vλ(Q)

〈fQ,l, hM 〉|M |−1hM .

Taking the norm, utilizing the UMD-property and applying Kahane’s contraction prin-

ciple to (4.24) yields the estimate

‖B∗
l,λu‖Lq

Y
(Rn) . 2−l

∥

∥

∥

∑

Q∈Q

uQ|Q|−1
∑

M∈Vλ(Q)

hM

∥

∥

∥

Lq
Y (Rn)

= 2−l
∥

∥

∥

∑

Q∈Q

uQ dQ,λ|Q|−1
∥

∥

∥

Lq

Y
(Rn)

= 2−l‖Hλu‖Lq
Y (Rn).

The last equality is the definition of the ring domain operator Hλ (see (3.37)). Recall

B∗
l u =

∞
∑

λ=0

B∗
l,λu,

so applying the triangle inequality, using the above estimate for B∗
l,λ and invoking Corol-

lary 3.8 yields

‖B∗
l u‖Lq

Y
(Rn) . 2−l

l
∑

λ=1

2λ‖Hλu‖Lq

Y
(Rn) . 2−l

l
∑

λ=1

2λ(1−1/C(Lq

Y
(Rn)))‖u‖Lq

Y
(Rn).

Evaluating the geometric series we obtain the estimate

‖B∗
l u‖Lq

Y (Rn) ≤ C · 2−l/C(Lq

Y
(Rn))‖u‖Lq

Y (Rn), (4.48)

where C depends only on n, q, the UMD-constant of Y and the cotype C(Lq
Y (R

n)).

4.4.3. Estimates for Cl. In view of (4.30), (4.35) and (4.40) note that now diam(M) <

2−l diam(Q), and so we may utilize inequality (4.25). This setting is visualized in Figure 8.

As in the preceding case we aim at estimating the adjoint operator C∗
l ; so with Y = X∗

and 1/p+1/q = 1, we split the collection Cl (see (4.30)) into the disjoint collections Cl,λ,

λ ≥ l+ 1, given by

Cl,λ = {(Q,M) ∈ Bl : diam(M) = 2−λ diam(Q)}.
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Fig. 8. The tiny cubes M , M ′ and M ′′ are contained in the cover of the ring domain Vl(Q).

We define the operator Cl,λ accordingly, that is,

Cl,λu =
∑

(Q,M)∈Cl,λ

〈fQ,l, hM 〉hQuM |Q|−1|M |−1

for all u =
∑

K∈Q
uKhK |K|−1. The adjoint operators C∗

l and C∗
l,λ are given by

C∗
l u =

∞
∑

λ=l+1

∑

Q,M∈Cl,λ

〈fQ,l, hM 〉|M |−1hMuQ|Q|−1 =

∞
∑

λ=l+1

C∗
l,λu.

Observe that for (Q,M) ∈ Cl,λ we have

{M : 〈fQ,l, hM 〉 6= 0} ⊂ {M :M ∩Dl(Q) 6= ∅},

therefore
∣

∣

∣

∑

(Q,M)∈Cl,λ

〈fQ,l,hM 〉6=0

hM

∣

∣

∣
≤

∣

∣

∣

∑

M∈Vl(Q)

hM

∣

∣

∣
= |dQ,l|.

We proceed by applying essentially the same steps as in the preceding cases. Using the

UMD-property and subsequently Kahane’s contraction principle we obtain

‖C∗
l,λu‖Lq

Y (Rn) . 2l2−λ
∥

∥

∥

∑

Q∈Q

uQ dQ,l|Q|−1
∥

∥

∥

Lq

Y (Rn)
= 2l2−λ‖Hlu‖Lq

Y (Rn).

Hence, applying the triangle inequality and using the above estimate for C∗
l,λ we get

‖C∗
l u‖Lq

Y
(Rn) . ‖Hlu‖Lq

Y
(Rn).



48 R. Lechner

Finally, Corollary 3.8 yields

‖C∗
l u‖Lq

Y
(Rn) ≤ C · 2−l/C(Lq

Y (Rn)), (4.49)

where C depends only on n, q, the UMD-constant of Y and the cotype C(Lq
Y (R

n)).

4.4.4. Summary for Pl. First, note that, for Y = X∗ and 1/p+ 1/q = 1,

(Lp
X(Rn))∗ = Lq

Y (R
n) and

1

T(Lp
X(Rn))

+
1

C(Lq
Y (R

n))
= 1.

Second, we use

‖B∗
l : Lq

Y (R
n) → Lq

Y (R
n)‖ . ‖Bl : L

p
X(Rn) → Lp

X(Rn)‖,

‖C∗
l : Lq

Y (R
n) → Lq

Y (R
n)‖ . ‖Cl : L

p
X(Rn) → Lp

X(Rn)‖,

to combine the inequalities (4.47)–(4.49) via the identity

Pl = Al +Bl + Cl.

Thereby we obtain

‖Pl : L
p
X(Rn) → Lp

X(Rn)‖ ≤ C · 2−l(1−1/T(Lp

X
(Rn))),

where Lp
X(Rn) has type T(Lp

X(Rn)) and C depends only on n, p, the UMD-constant of

X and the type T(Lp
X(Rn)).

4.4.5. Estimates for A−. In view of (4.31), (4.36) and (4.41) note that diam(M) ≤

diam(Q), and so we may utilize inequality (4.26). In this case the size of the cube M

cannot exceed the size of Q, so we may indeed use inequality (4.26). We rather want to

estimate A∗
− than A−, therefore we set Y = X∗ and q such that 1/p+ 1/q = 1.

First, we split the set A− (see (4.31)) into the disjoint collections A−,λ, λ ≥ 0, given

by

A−,λ = {(Q,M) ∈ A− : diam(M) = 2−λ diam(Q)},

and define the operator A−,λ accordingly, that is,

A−,λu =
∑

(Q,M)∈A−,λ

〈fQ, hM 〉hQuM |Q|−1|M |−1

for all u =
∑

K∈Q
uKhK |K|−1. The adjoint operators A∗

− and A∗
−,λ are given by

A∗
−u =

∞
∑

λ=0

∑

Q,M∈A−,λ

〈fQ, hM 〉uQhM |Q|−1|M |−1 =

∞
∑

λ=0

A∗
−,λu.

Utilizing the UMD-property and subsequently Kahane’s contraction principle (2.4) with

respect to (4.26), we infer that

‖A∗
−,λu‖Lq

Y
(Rn) . 2−λ

∥

∥

∥

∑

Q∈Q

∑

(Q,M)∈A−,λ

M∩(CQ) 6=∅

uQ|Q|−1hM

∥

∥

∥

Lq

Y
(Rn)

.

For every Q ∈ Q we observe that
∣

∣

∣

∑

(Q,M)∈A−,λ

M∩(CQ) 6=∅

hM

∣

∣

∣
≤ 1CQ and 1CQ ≤

∣

∣

∣

∑

|m|≤C1

TmhQ

∣

∣

∣
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for some constant C1. Combining the last two estimates and applying Kahane’s contrac-

tion principle together with estimate (2.9), we get

‖A∗
−,λu‖Lq

Y (Rn) . 2−λ
∥

∥

∥

∑

Q∈Q

uQ|Q|−1
∑

(Q,M)∈A−,λ

M∩(CQ) 6=∅

hM

∥

∥

∥

Lq

Y
(Rn)

. 2−λ‖u‖Lq
Y (Rn).

Summing over λ ≥ 0 yields

‖A∗
−u‖Lq

Y (Rn) ≤ C‖u‖Lq
Y (Rn), (4.50)

where C depends only on n, q, the UMD-constant of Y and the cotype C(Lq
Y (R

n)).

4.4.6. Estimates for B−. In view of (4.32), (4.37) and (4.42) note that diam(M) >

diam(Q), and so we may utilize inequality (4.27).

As usual, we split the set B− (see (4.32)) into the disjoint collections B−,λ, λ ≥ 1,

given by

B−,λ = {(Q,M) ∈ B− : diam(Q) = 2−λ diam(M)},

and define the operator B−,λ accordingly, that is,

B−,λu =
∑

(Q,M)∈B−,λ

〈fQ, hM 〉hQuM |Q|−1|M |−1

for all u =
∑

K∈Q
uKhK |K|−1. Obviously,

B−u =

∞
∑

λ=1

B−,λu.

For all (Q,M) ∈ B−,λ we have the inclusions

{Q : 〈fQ, hM 〉 6= 0} ⊂ {Q : (CQ) ∩D(Q) 6= ∅} ⊂ Vλ(M).

Successively using the UMD-property, Kahane’s contraction principle applied to (4.27)

and the inclusion above, we obtain

‖B−,λu‖Lp

X
(Rn) .

∥

∥

∥

∑

M∈Q

uM |M |−1
∑

Q∈Vλ(M)

hQ

∥

∥

∥

Lp

X
(Rn)

=
∥

∥

∥

∑

M∈Q

uMdM,λ|M |−1
∥

∥

∥

Lp
X(Rn)

= ‖Hλu‖Lp

X
(Rn).

The last equality is the definition of Hλ (see (3.37)). The main result on ring domain

operators, Corollary 3.8, yields

‖B−,λu‖Lp
X(Rn) . ‖Hλu‖Lp

X(Rn) . 2−λ/C(Lp

X
(Rn))‖u‖Lp

X(Rn).

Hence, summation over λ ≥ 1 gives

‖B−u‖Lp

X
(Rn) ≤ C‖u‖Lp

X
(Rn), (4.51)

where C depends only on n, p, the UMD-constant of X and the cotype C(Lp
X(Rn)).

4.4.7. Summary for P−. First, note that for Y = X∗ and 1/p+ 1/q = 1 we have

(Lp
X(Rn))∗ = Lq

Y (R
n) and

1

T(Lp
X(Rn))

+
1

C(Lq
Y (R

n))
= 1.
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Second, we use

‖A∗
− : Lq

Y (R
n) → Lq

Y (R
n)‖ . ‖A− : Lp

X(Rn) → Lp
X(Rn)‖,

to combine the inequalities (4.50) and (4.51) via the identity

P− = A− +B−

so that we obtain

‖P− : Lp
X(Rn) → Lp

X(Rn)‖ ≤ C,

where Lp
X(Rn) has type T(Lp

X(Rn)) and C depends only on n, p, the UMD-constant of

X and the type T(Lp
X(Rn)).

4.5. Estimates for P
(ε)
l R−1

i0
. Following [LMM11] we will establish estimates for

P
(ε)
l R−1

i0
, l ∈ Z, by reducing them to estimates for P

(ε)
l . We exploit the fact that (R−1

i0
)∗

maps the mollified Haar functions f
(ε)
Q,l to functions k

(ε)
Q,l having similar properties. Due

to the algebraic identity (4.52) below this amounts to controlling the support of the kQ,l,

besides factors depending on l. Assuming that εi0 = 1, we have

supp(Ei0 h
(ε)
Q ) ⊂ Q,

restricting the support of the functions kQ,l,i defined in (4.53), and exhibiting the condi-

tions asserted in (4.56) and (4.57).

We do not omit the superscripts (ε) this time.

It is a well known fact that one can write the inverse of the Riesz transform R−1
i0

as

R−1
i0

= Ri0 +
∑

1≤i≤n
i6=i0

Ei0∂iRi, (4.52)

where Ei0 is given by

Ei0f(x) =

∫ xi0

−∞

f(x1, . . . , xi0−1, s, xi0+1, . . . , xn) ds, x = (x1, . . . , xn).

We introduce the family of functions

k
(ε)
Q,l,i = ∆j+l(Ei0∂ih

(ε)
Q ) if Q ∈ Qj , (4.53)

and consider

P
(ε)
l R−1

i0
u =

∑

j∈Z

∑

Q∈Qj

〈Ri0u,∆j+l(h
(ε)
Q )〉h

(ε)
Q |Q|−1

+
∑

1≤i≤n
i6=i0

∑

j∈Z

∑

Q∈Qj

〈Ei0∂iRiu,∆j+l(h
(ε)
Q )〉h

(ε)
Q |Q|−1. (4.54)

Since the Riesz transforms Ri, 1 ≤ i ≤ n, are continuous on Lp
X(Rn), it is obvious that

the first sum of (4.54) can be treated as if it were Pl (see also (4.6)).

For the second sum of (4.54), we fix a coordinate i 6= i0, rearrange the operators in

the scalar product and use the functions defined in (4.53), hence
∑

j∈Z

∑

Q∈Qj

〈Ei0∂iRiu,∆j+l(h
(ε)
Q )〉h

(ε)
Q |Q|−1 =

∑

Q∈Q

〈Riu, k
(ε)
Q,l,i〉h

(ε)
Q |Q|−1.



An interpolatory estimate for the Haar projection 51

Due to the continuity of the Riesz transforms Ri : L
p
X(Rn) → Lp

X(Rn) we may estimate

the following type of operator:

K
(ε)
l,i u =

∑

Q∈Q

〈u, k
(ε)
Q,l,i〉h

(ε)
Q |Q|−1 (4.55)

instead of the second sum in (4.54).

In order to estimate K
(ε)
l,i , we need to examine the analytic properties of the functions

k
(ε)
Q,l,i. If l ≥ 0, then

∫

k
(ε)
Q,l,i(x) dx = 0, supp k

(ε)
Q,l,i ⊂ D

(ε)
l (Q),

|k
(ε)
Q,l,i| ≤ C · 2l, Lip(k

(ε)
Q,l,i) ≤ C · 22l(diam(Q))−1,

(4.56)

and for l ≤ 0,
∫

k
(ε)
Q,l,i(x) dx = 0, supp k

(ε)
Q,l,i ⊂ C · 2|l|Q,

|k
(ε)
Q,l,i| ≤ C · 2−|l|(n+1), Lip(k

(ε)
Q,l,i) ≤ C · 2−|l|(n+2)(diam(Q))−1.

(4.57)

Note that the above properties of k
(ε)
Q,l,i depend in particular on the coordinatewise van-

ishing moments of b (4.3), introduced by ∆l in (4.4) and (4.6). Furthermore, observe that

the definition of k
(ε)
Q,l,i involves an integration of h

(ε)
Q with respect to the variable xi0 . Now

if εi0 = 1, then Ei0 h
(ε)
Q is compactly supported in Q, but if εi0 = 0, then supp(Ei0 h

(ε)
Q )

is unbounded.

If we compare this with the properties (4.20) and (4.21) of f
(ε)
Q,l, it turns out that

the properties coincide if l ≤ 0, and that 2−lk
(ε)
Q,l,i satisfies the same conditions as f

(ε)
Q,l if

l ≥ 0. Inspecting the proof of Theorem 4.5, we note that those arguments where solely

depending on the analytic properties (4.20) and (4.21) of f
(ε)
Q,l. With regard to (4.56)

respectively (4.57), the same proofs are feasible with the functions k
(ε)
Q,l,i replacing fQ,l if

l ≤ 0, respectively 2−l k
(ε)
Q,l,i replacing fQ,l if l ≥ 0. Furthermore, we have to replace Pl

by Kl,i for every 1 ≤ i ≤ n.

Altogether we obtain the following theorem from the estimates of Theorem 4.5.

Theorem 4.7. Let X be a UMD-space, 1 < p < ∞, n ∈ N and let Lp
X(Rn) have type

T(Lp
X(Rn)). Furthermore, denote by Ri0 the Riesz transform acting in direction i0 and let

εi0 = 1. Then there exists a constant C > 0 such that for every l ≥ 0 and all u ∈ Lp
X(Rn)

we have

‖P
(ε)
l R−1

i0
u‖Lp

X(Rn) ≤ C · 2l/T(Lp

X
(Rn))‖u‖Lp

X(Rn), (4.58)

where C depends only on n, p, the UMD-constant of X and the type T(Lp
X(Rn)).

Moreover, there exists a constant C > 0 such that, for all u ∈ Lp
X(Rn),

‖P
(ε)
− R−1

i0
u‖Lp

X
(Rn) ≤ C‖u‖Lp

X
(Rn), (4.59)

where C depends only on n, p, the UMD-constant of X and the type T(Lp
X(Rn)).



5. Appendix

In order to keep the paper self-contained, we include several auxiliary results used in this

work.

Lipschitz estimate for separately convex functions. We record a Lipschitz esti-

mate for separately convex functions satisfying convenient growth estimates on the Ba-

nach space X . The resulting inequality holds without any assumptions on the underlying

Banach space X .

Theorem 5.1. Let X be a Banach space, n ≥ 1, f : Xn → R be separately convex, and

g : Xn → R, where g(x) = 1 +
∑n

i=1 ‖xi‖
p
X . If 0 ≤ f(x) ≤ g(x), x ∈ X, then

|f(x)− f(y)| ≤ C(1 + ‖x‖Xn + ‖y‖Xn)p−1‖x− y‖Xn (5.1)

for all x, y ∈ Xn. The constant C > 0 depends only on n and p.

Proof. Let x 6= y ∈ Xn, 1 ≤ k ≤ n, and define

fk(t) = f(x1, . . . , xk−1, xk + t(yk − xk), xk+1, . . . , xn),

gk(t) = g(x1, . . . , xk−1, xk + t(yk − xk), xk+1, . . . , xn),

nk(t) = ‖xk + t(yk − xk)‖X ,

for all t ∈ R. We may assume that fk(0) ≤ fk(1), otherwise we would switch xk and yk.

Observe that nk(t) is increasing if t ≥ 2‖xk‖/‖yk − xk‖, hence gk(t) is increasing if

t ≥ 2‖xk‖/‖yk − xk‖. To justify this claim, assume there exist t1 > t0 > 2‖xk‖/‖yk − xk‖

such that nk(t1) ≤ nk(t0). The convexity of nk(t) implies nk(0) ≥ nk(t0), so

‖xk‖ ≥ ‖xk + t0(yk − xk)‖ ≥ t0‖yk − xk‖ − ‖xk‖ > ‖xk‖,

which is a contradiction. Thus we proved that nk is increasing for all t > 2‖xk‖/‖yk − xk‖,

and so by continuity for all t ≥ 2‖xk‖/‖yk − xk‖ as claimed.

For t0 < t1 which will be specified later, we define the affine functions

ℓ1(t) = fk(0) + t(fk(1)− fk(0)),

ℓ2(t) = gk(t0) +
gk(t1)− gk(t0)

t1 − t0
(t− t0),

and let t̄ denote the point where ℓ2(t̄) = 0, that is,

t̄ = t0 −
gk(t0)

gk(t1)− gk(t0)
(t1 − t0). (5.2)

[52]
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Now we prove that if 1 ≤ t̄ < t0 < t1 and t0 ≥ 2‖xk‖/‖yk − xk‖, then

fk(1)− fk(0) ≤
gk(t1)− gk(t0)

t1 − t0
. (5.3)

Assume that (5.3) does not hold; then since fk(0) ≥ 0 and t̄ ≥ 1, we have ℓ1(t) >

ℓ2(t) for all t > t̄. Since fk(t) is convex we know that fk(t) ≥ ℓ1(t), t ≥ t̄, and hence

fk(t1) ≥ ℓ1(t1) > ℓ2(t1) = gk(t1), which contradicts fk(t) ≤ gk(t), t ∈ R.

Now we want to impose conditions on t0 < t1 such that t̄ ≥ 1. Observe that since

nk(t1) > nk(t0), we obtain

gk(t1)− gk(t0)

t1 − t0
≥ pnk(t0)

p−1nk(t1)− nk(t0)

t1 − t0

≥ pnk(t0)
p−1

(

‖yk − xk‖ −
2‖xk‖

t1 − t0

)

,

and plugging this estimate into (5.2) yields

t̄ ≥ t0 −
gk(t0)

p‖xk + t0(yk − xk)‖p−1(‖yk − xk‖ − 2‖xk‖/(t1 − t0))
. (5.4)

If we impose the following constraints:

• (t1 − t0)‖yk − xk‖ ≥ 2C‖xk‖,

• t0‖yk − xk‖ ≥ 2C‖xi‖, 1 ≤ i ≤ n,

• t0‖yk − xk‖ ≥ C,

• t0‖yk − xk‖ ≥ 2‖xk‖,

in order to estimate (5.4), we get

t̄ ≥ t0 −A1 −A2 −A3,

where

A1 =
1

p(1− 1/C)‖xk + t0(yk − xk)‖p−1‖yk − xk‖
≤

t0
p(C − 1)p

,

A2 =
∑

i6=k

‖xi‖p

p‖xk + t0(yk − xk)‖p−1‖yk − xk‖(1− 1/C)
≤

t0(n− 1)

p(C − 1)p
,

A3 =
‖xk + t0(yk − xk)‖

p(1− 1/C)‖yk − xk‖
≤
t0(1 + C)

p(C − 1)
.

Using these estimates we obtain

t̄ ≥ t0

(

1−
1

p(C − 1)p
−

n− 1

p(C − 1)p
−

1 + C

p(C − 1)

)

= t0 · α. (5.5)

If we choose C large enough so that α ≥ (p− 1)/(2p) and define

t0 =

n
∑

i=1

C‖xi‖

‖yk − xk‖
+

C

‖yk − xk‖
+

1

α
, t1 = 3t0, (5.6)

then t0 and t1 satisfy our constraints. Hence we can infer (5.5), and get 1 ≤ t̄ < t0 < t1,

t0 ≥ 2‖xk‖/‖yk − xk‖. Thus (5.3) yields

fk(1)− fk(0) ≤
gk(t1)− gk(t0)

t1 − t0
, (5.7)
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where t0, t1 are defined in (5.6). A straightforward computation shows that

gk(t1)− gk(t0)

t1 − t0
≤ (t1‖yk − xk‖X + ‖xk‖Xn)p−1‖yk − xk‖X ,

and plugging (5.6) into the latter estimate we obtain

gk(t1)− gk(t0)

t1 − t0
. (1 + ‖yk − xk‖X + ‖x‖Xn)p−1‖yk − xk‖X . (5.8)

Combining (5.7) with (5.8) and recalling the definition of fk yields

|f(x1, . . . , xk−1, xk, xk+1, . . . , xn)− f(x1, . . . , xk−1, yk, xk+1, . . . , xn)|

. (1 + ‖yk − xk‖X + ‖x‖Xn)p−1‖yk − xk‖X . (5.9)

Using (5.9) inductively one can verify that

|f(x)− f(y)| ≤ C(1 + ‖x‖Xn + ‖y‖Xn)p−1‖x− y‖Xn ,

where C depends only on n and p.

Convolution operators on Lp
X(Rn). Let E and X be Banach spaces. A bounded

linear operator J : E → X is a Dunford–Pettis operator if it is weak-to-norm sequentially

continuous, which means that whenever {en}n ⊂ E converges to e weakly, then Ten
converges to Te in norm (see Section 2).

Theorem 5.2. Let E and X be Banach spaces and let J : E → X be a Dunford–Pettis

operator. With ϕ ∈ S(Rn) and ψ ∈ C∞
c (Rn) fixed, define the kernel

K(x, y) = ϕ(x − y)ψ(y), x, y ∈ R
n.

Then if 1 < p <∞, the operator T : Lp
E(R

n) → Lp
X(Rn) given by

(Tu)(x) =

∫

Rn

K(x, y)J(u(y)) dy

is Dunford–Pettis.

Remark 5.3. Theorem 5.2 remains valid if we replace Dunford–Pettis by compact, in

both the hypothesis on J and the conclusion for T .

Proof of Theorem 5.2. Let ε > 0 be fixed. First note that K ∈ S(Rn × Rn), hence

|K(x, y)| ≤ Cn
1

(1 + |x|)n+2

1

(1 + |y|)n+1
. (5.10)

Let B1 denote the smallest cube centered at 0 such that

1

1 + |x|
≤ ε for all x /∈ 1

2B1,

and let B2 denote the smallest cube centered at 0 such that

ψ(y) = 0 for all y /∈ B2.

Choose η ∈ C∞
c (Rn) with 0 ≤ η(x) ≤ 1 for all x ∈ Rn, η(x) = 1 for all x ∈ 1

2B1, and

η(x) = 0 if x /∈ B1. Now we split K according to η into

K(x, y) = η(x)K(x, y) + (1− η(x))K(x, y) = K1(x, y) +K2(x, y)
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for all x, y ∈ R
n. Notice that

suppK1 ⊂ B1 ×B2 and K2(x, y) = 0 for all x ∈ 1
2B1, y ∈ R

n.

We now define two nested collections P and Q of cubes. We begin by setting P0 = {B1}

and Q0 = {B2}. Assuming that we have already defined P0, . . . ,Pj and Q0, . . . ,Qj ,

we proceed in the following way. We split every P ∈ Pj respectively Q ∈ Qj into 2n

subcubes having half the diameter of P respectively Q and collect those cubes in Pk+1

respectively Qk+1. Finally P =
⋃

j Pj and Q =
⋃

j Qj . We define the σ-algebra

Fj = σ({P ×Q : P ∈ Pj , Q ∈ Qj})

and the conditional expectation

Ej(·) = E(· | Fj).

Associated to each direction δ ∈ {0, 1}n \ {0} and cubes P ∈ P and Q ∈ Q, we define

Haar functions h
(δ)
P and h

(δ)
Q by

h
(δ)
P = (hI1 )

δ1 ⊗ · · · ⊗ (hIn)
δn and hQP

(δ) = (hJ1)
δ1 ⊗ · · · ⊗ (hJn

)δn ,

where P = I1 × · · · × In with |I1| = · · · = |In|, Q = J1 × · · · × Jn with |J1| = · · · = |Jn|,

and we use the convention that (hK)0 = 1K .

Recall that K1 is smooth and supported on B1 × B2, so Ej(K1) → K1 uniformly

in Rn. Hence, for given δ > 0 we may find an integer N0 ≥ 0 such that

|K1(x, y)− (EN K1)(x, y)| ≤ δ for all x, y ∈ R
n,

for all N ≥ N0. This allows us to choose N so that

sup
y∈Rn

∫

B1

|K1(x, y)− (EN K1)(x, y)|
p dx ≤ εp. (5.11)

Note that suppK1 ⊂ B1 ×B2 as well as supp(EN K1) ⊂ B1 ×B2.

Now let us define the approximating operator Tε : L
p
E(R

n) → Lp
X(Rn) by

(Tεu)(x) =

∫

Rn

(EN K1)(x, y)J(u(y)) dy.

With u ∈ Lp
E(R

n) fixed, we see that

‖Tu− Tεu‖Lp

X
≤

∥

∥

∥

∥

∫

Rn

(K1(·, y)− (EN K1)(·, y))J(u(y)) dy

∥

∥

∥

∥

Lp

X

+

∥

∥

∥

∥

∫

Rn

K2(·, y)J(u(y)) dy

∥

∥

∥

∥

Lp

X

= A+B.

In order to estimate A we use the Minkowski inequality for integrals and Hölder’s in-

equality to find

A ≤

∫

Rn

(
∫

Rn

|K1(x, y)− (EN K1)(x, y)|
p dx

)1/p

‖J(u(y))‖X dy

≤

(
∫

Rn

(
∫

Rn

|K1(x, y)− (EN K1)(x, y)|
p dx

)p′/p

dy

)1/p′

‖Ju‖Lp

X
,
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where p′ denotes the Hölder conjugate index to p. Recall that suppK1 ⊂ B1 × B2,

supp(EN K1) ⊂ B1 × B2, and appeal to estimate (5.11) to obtain

A ≤ ε|B2|
1/p′

‖Ju‖Lp

X
.

In a similar fashion we estimate B, but using K2(x, y) = 0 if x ∈ 1
2B1, y ∈ Rn, and

estimate (5.10) to find

B ≤

(
∫

Rn

(
∫

( 1
2B1)c

|K2(x, y)|
p dx

)p′/p

dy

)1/p′

‖Ju‖Lp

X
≤ εC‖Ju‖Lp

X
,

where C does not depend on ε.

Considering our estimate for A and B and that J is a bounded map, we get

‖Tu− Tεu‖Lp
X
≤ εC‖u‖Lp

E
,

with C not depending on ε. Consequently,

‖Tε − T : Lp
E(R

n) → Lp
X(Rn)‖ → 0 as ε tends to zero.

If we can show that Tε is Dunford–Pettis for every ε > 0, then one can easily verify that

T is Dunford–Pettis as well.

To this end, let ε > 0, and choose B1 and N according to our construction above. Let

um → 0 weakly in Lp
E(R

n). Then certainly supm ‖um‖Lp

E
≤ C for some C > 0. For each

u ∈ Lp
E(R

n), we split u into u = u(1) + u(2), where u(1) = u · 1B2 and u(2) = u · 1(B2)c .

Since Tεu2 = 0, we may assume that um is supported in B2, hence

um(y) =
∑

δ∈{0,1}n

∞
∑

j=0

∑

Q∈Qj

〈um, h
(δ)
Q 〉h

(δ)
Q (y)|Q|−1,

where h
(0)
Q = 0 if Q 6= B2, and h

(0)
B2

= 1B2 . Since um converges to 0 weakly in Lp
E(R

n),

one can verify that 〈um, h
(δ)
Q 〉 → 0 weakly in E for all Q ∈ Q and δ ∈ {0, 1}n. This is

due to the fact that h
(δ)
Q e∗ ∈ (Lp

E(R
n))∗ whenever e∗ ∈ E∗. Now since J : E → X is

Dunford–Pettis, we deduce that ‖J(〈um, h
(δ)
Q 〉)‖X → 0 as m → ∞ for all Q ∈ Q and

δ ∈ {0, 1}n.

Since Tεum is given by the finite sum

(Tεum)(x) =
∑

γ,δ∈{0,1}n

N−1
∑

j=0

∑

P∈Pj

Q∈Qj

〈K1, h
(γ)
P ⊗ h

(δ)
Q 〉J(〈um, h

(δ)
Q 〉)h

(γ)
P (x)|P |−1|Q|−1,

where h
(0)
P ⊗ h

(0)
Q = 0 if (P ×Q) 6= (B1 ×B2) and h

(0)
B1

⊗ h
(0)
B2

= 1B1 ⊗ 1B2 , we infer that

‖Tεum‖Lp
X
→ 0 as m tends to ∞, therefore Tε is Dunford–Pettis.

Finally, let us verify that T is Dunford–Pettis, too. Let um → 0 weakly in Lp
E(R

n)

and note that

‖Tum‖Lp

X
(Rn) ≤ ‖Tεum‖Lp

X
(Rn) + C‖(T − Tε) : L

p
E(R

n) → Lp
X(Rn)‖

for all ε > 0 and m, where supm ‖um‖ ≤ C. Now with ε fixed, letting m → ∞ and Tε
being Dunford–Pettis implies that ‖Tεum‖ → 0, and so we obtain

lim
m

‖Tum‖Lp
X(Rn) ≤ C‖T − Tε : L

p
E(R

n) → Lp
X(Rn)‖
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for all ε > 0. We conclude the proof by recalling that ‖T −Tε : L
p
E(R

n) → Lp
X(Rn)‖ → 0

as ε→ 0.

Fourier multipliers on Lp
X(Rn) and the Sobolev spaces W−1,p

X (Rn). From now

onward the Banach space X has the UMD-property. We gather some facts contributing

to the proof of Theorem 1.2.

Theorem 5.4. Let X be a UMD-space, n ≥ 1 and 1 < p < ∞. If α ∈ S(Rn;C), define

αk(x) = α(x/k) for all x ∈ R
n and every positive integer k. Then there exists a constant

C > 0 such that

‖αku‖W−1,p(Rn;X) ≤ C‖u‖W−1,p(Rn;X), (5.12)

‖∂i(αk)u‖W−1,p(Rn;X) ≤ C ·
1

k
‖u‖W−1,p(Rn;X), (5.13)

for all u ∈ W−1,p(Rn;X), k > 0. The constant C does not depend on k.

Proof. Note that in UMD-spaces

‖u‖W−1,p(Rn;X) = ‖F−1(〈ξ〉−1
Fu)‖Lp(Rn;X),

where 〈ξ〉 = (1 + |ξ|2)1/2 and F denotes the Fourier transform. Since

F
−1

(

〈ξ〉−1
F(αku)

)

(x) = (2π)−n/2

∫

Rn

eixηFαk(η)〈η〉
NTmη

(

F
−1(〈ξ〉−1

Fu)
)

(x) dη,

where

Tmη
f = F

−1
(

mη(ξ)Ff(ξ)
)

, mη(ξ) = 〈ξ〉〈ξ + η〉−1〈η〉−N ,

we obtain

‖αku‖W−1,p(Rn;X) ≤ ‖Fαk(η)〈η〉
N‖L1(Rn;R) sup

η∈Rn

∥

∥Tmη

(

F
−1(〈ξ〉−1

Fu(ξ))
)∥

∥

Lp(Rn;X)
.

Observe that 〈ξ + η〉〈η〉 ≥ c〈ξ〉 for a constant c > 0, hence |∂βξmη(ξ)| ≤ A〈ξ〉−|β| for all

multi-indices β. Note that the constant A does not depend on η, if N = N(β) is chosen

sufficiently large. Setting N = n+2 will be good enough for our purposes. Thus we know

by [McC84, Theorem 1.1] that

‖Tmη
: Lp(Rn;X) → Lp(Rn;X)‖ ≤ C,

where C does not depend on η, hence

‖αku‖W−1,p(Rn;X) ≤ C‖Fαk(η)〈η〉
n+2‖L1(Rn;R)‖F

−1(〈ξ〉−1
Fu(ξ))‖Lp(Rn;X).

Since α ∈ S(Rn;C), one can check that

‖Fαk(η)〈η〉
n+2‖L1(Rn;R) ≤ Cn,

thus we proved inequality (5.12).

Now we prove inequality (5.13) by using (5.12). Define β = ∂iα, and βk(x) = β(x/k)

for all x ∈ Rn and every positive integers k. Then clearly ∂iαk = 1
kβk, and since βk is in

S(Rn;C), we may use estimate (5.12) with α and αk replaced by β and βk, yielding

k‖(∂iαk)u‖W−1,p(Rn;X) = ‖βku‖W−1,p(Rn;X) ≤ C‖u‖W−1,p(Rn;X)

for all positive integers k.
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Theorem 5.5. Let E and X be Banach spaces, assume that X has the UMD-property,

and let J : E → X be a Dunford–Pettis operator. Let Ri denote the Riesz transform with

respect to direction i, and let ψ ∈ C∞
c (Rn). Then

Ri(ψ · Ju) = (RiT1)(u) + T2
(

F
−1(〈ξ〉−1ξi · F(ψ · Ju))

)

(5.14)

for all u ∈ Lp
E(R

n), where

T1 : Lp
E(R

n) → Lp
X(Rn) is Dunford–Pettis, and

T2 : Lp
X(Rn) → Lp

X(Rn) is bounded.

Remark 5.6. Theorem 5.5 remains valid if we replace Dunford–Pettis by compact, in

both the hypothesis on J and the conclusion for T1.

Proof of Theorem 5.5. If u ∈ Lp
E(R

n), then Ju = (x 7→ J(u(x))) ∈ Lp
X(Rn). Let us

choose a smooth cut-off function ϕ ∈ C∞
c (Rn) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 if |x| ≤ 1/2

and ϕ(x) = 0 if |x| ≥ 1. Observe that

Ri(ψ · Ju) = F
−1(ξi|ξ|

−1 · F(ψ · Ju))

= RiF
−1(ϕ · F(ψ · Ju)) + F

−1
(

(1− ϕ(ξ))ξi|ξ|
−1 · F(ψ · Ju)

)

= Ri(F
−1(ϕ) ∗ (ψ · Ju)) + F

−1
(

(1− ϕ(ξ))|ξ|−1〈ξ〉〈ξ〉−1ξi · F(ψ · Ju)
)

= (RiT1)(u) + T2
(

F
−1(〈ξ〉−1ξiF(ψ · Ju))

)

,

where

(T1u)(x) =

∫

Rn

F
−1(ϕ)(x − y)ψ(y)J(u(y)) dy, u ∈ Lp

E(R
n),

(T2v)(x) = F
−1(m · Fv)(x), v ∈ Lp

X(Rn).

The smooth function m is given by m(ξ) = (1− ϕ(ξ))〈ξ〉|ξ|−1 and satisfies

|∂αξ m(ξ)| ≤ Aα〈ξ〉
−|α| for all multi-indices α and ξ ∈ R

n,

and is therefore a Fourier multiplier.

The representation of the operator T1 fits the hypothesis of Theorem 5.2, from which

we deduce that T1 is Dunford–Pettis.

Since m satisfies the above differential inequalities, we know from [McC84, Theorem

1.1] that T2 is bounded.
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