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Abstract

We prove an interpolatory estimate linking the directional Haar projection P to the Riesz
transform in the context of Bochner-Lebesgue spaces LP(R™; X), 1 < p < oo, provided X is a
UMBD-space. If €;, = 1, the result is the inequality

1/T 1-1/T
HP(E)UHLT’(R";X) < CHUHL/I)(RW;)()HRiouHLp(]}én;X)v (1)

where the constant C' depends only on n, p, the UMD-constant of X and the Rademacher type
T of LP(R™; X).

In order to obtain the interpolatory result ({l) we analyze stripe operators Sx, A > 0, which
are used as basic building blocks to dominate the directional Haar projection. The main result
on stripe operators is the estimate

1Saull Lo @n;x) < C 27 lul| Lo @n,x), (2)

where the constant C' depends only on n, p, the UMD-constant of X and the Rademacher
cotype € of LP(R"™; X). The proof of (@) relies on a uniform bound for the shift operators T,
0 <m < 2*, acting on the image of Sy.

Mainly based upon inequality (), we prove a vector-valued result on sequential weak lower
semicontinuity of integrals of the form

U /f(u) dz,

where f: X™ — R" is separately convex satistying f(z) < C(1 + ||z||xn)P.
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1. Main results

1.1. A brief history of development. The calculus of variations, in particular the
theory of compensated compactness, has long been a source of hard problems in harmonic
analysis. One development started with the work of F. Murat and L. Tartar, and espe-
cially in [Tar78| [Tar79, [Tar83| [Tar84, [Tar90) [Tar93| and [Mur78, Mur79, Mur81]. Their
approach exploited LP-boundedness of Fourier multipliers to obtain sequential weak lower
semicontinuity of integrals such as

(u,0) / f(,u(z), v(x)) de.

The crucial hypothesis on the integrand f was the so-called constant rank condition.
In [M199], S. Miiller obtained analogous results for separately convex integrands f for
which the constant rank condition is not satisfied. The method introduced by S. Miiller
[Miil99] consists of time-frequency localization in combination with the modern Calderén—
Zygmund theory. The result is the following. Let f : R?> — R be separately convex
satisfying 0 < f(z) < C(1 + |z|?), let U C R? be open and suppose that

)
Uj — Uoso, Vj = Voo, in Li,.(U),

Oouj = Oolloo, 010 = 0100, In HIOC(U)

Then for every open V C U,
/ f (oo, Vo) < liminf/ f(uj,v;) de. (1.1)
1% J=oo Jy

The basis of the result were interpolatory estimates for the directional Haar projection
PE) e € {0,1}"\ {0}, defined below. Let u € LP(R™) with n > 2 and 1 < p < oo be
fixed. Then P() : LP(R™) — LP(R™) is given by

POu="3"(u,h) b QI

Qe2

where hg) denote Haar functions, which are briefly discussed in Section 21 The crucial
interpolatory estimate in [Miil99] is then

1-1/2
||P(E)U||L2(R2) < CHuHLz(u@)||RiouHL2(ué2)v (1.2)

where R;, denotes the Riesz transform in direction ig € {1,2}, 0 # (1,&2) = € € {0,1}?,
and ¢;, = 1. The formal definition of R;, is supplied in Section

This inequality was later extended by J. Lee, P. F. X. Miiller and S. Miiller [LMM11]
for arbitrary 1 < p < oo and dimension n > 2 to

1/min(2, 1—1/min(2,
1P ul| oy < Cllull i | Rigull oy ™7, (1.3)

(5]



6 R. Lechner

where € € {0,1}"\ {0}, &;, = 1. If we rewrite inequality (I3]) using the notion of type
T(LP(R™)) = min(2,p), it reads

1/T(LP(R"™ 1-1/T(LP(R™
1P u]| oy < Cllull e ™ | Rigull [y = . (1.4)

It is in this form that (3] will be given a vector-valued extension; see estimate (LT).

The proofs of (2)) and (I3]) are based on two consecutive time-frequency localizations
of the operator P®) as well as on Littlewood-Paley and wavelet expansions. The LP-
estimates in [LMM11] were obtained by systematically interpolating between the spaces
H', L? and BMO. In the present paper we obtain vector-valued extensions of (4)
working directly on LP(R™; X), avoiding interpolation and using martingale methods
instead.

1.2. The main results. S. Miiller asks in [Miil99] whether it is possible to obtain (I.2)) in
such a way that the original time-frequency decompositions are replaced by the canonical
martingale decomposition of T. Figiel (see [Fig90]). This paper provides an affirmative
answer to this question. The details of the decomposition are worked out in Section
This allows us to extend the interpolatory estimate (L4 to the Bochner-Lebesgue space
L% (R™), provided X satisfies the UMD-property.

Let 1 < p < o0, and let X be a UMD-space (see [Mau75|) with type T(X). It is
well known that X has non-trivial type T(X) > 1 and cotype C(X) < oo (see [Mau75,
[IMPT76] and [AId79]). Consequently, L% (R™) has non-trivial type T(L% (R™)) and cotype
given by min(p, 7(X)) and max(p, €(X)), respectively (see [LT91], Section 9.2, p. 247]).

We will now briefly give definitions of the objects immediately involved in the formu-
lation of the main theorems below. Consider the collection of dyadic intervals at scale
j € Z given by

P; ={[277k, 277 (k+1)[: k € Z},

and the collection of the dyadic intervals

72=J2

JEZ
Let h; denote the L°°-normalized Haar function, that is,
hy =1, —1;, forall ] € 9,

where Iy € 2 denotes the left and I1 € Z the right half of I. The Haar system {h; : I € 2}
is an unconditional basis for L% (R), 1 < p < oo, if X has the UMD-property.

In dimensions n > 2 one can obtain an unconditional basis for L% (R™), 1 < p < oo,
if X is a UMD-space, as follows. For every € = (e1,...,&,) € {0,1}", € # 0, define

0] Hm
where t = (t1,...,t,) €ER", Q =11 x - x In, [I1] = --- = |I], [; € 2, and h7’ is the

function
X h[i, g = ].,
hi = {

1]i, g, — 0.
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We denote the collection of all such cubes @ by 2, that is,
Q={hLxxL,: €2, 1<i<n, |L|=-=|[,}
For a dyadic cube Q € 2, the side length of @ is
sidelength(Q) = |I1].

Let X be a UMD-space, n > 2 and 1 < p < oco. Then the directional Haar projection
PE LB (R™) — L5 (R™) is given by

POu= 3" (u,hg )G 1QI™
Qe2
for all u € L% (R™). For details see ({.1)).
The main inequality of this paper reads as follows.

THEOREM 1.1. Let 1 < p < oo, and let X be a Banach space with the UMD-property.
Denote by T(L5 (R™)) > 1 the type of L% (R™). Let

e=(e1,...,en) €{0,1}" with &;, =1,

and let R;, denote the Riesz transform in direction ig (see ZI0)). Then for every u in
L% (R™) we have

L/T(LE (R™) L-1/T (L% (R™)
1P ull iz ny < Cllull @y 1 Rigull 1y (any ; (1.5)

where C' depends only on n, p, the UMD-constant of X and the type T(L% (R™)).

For the proof of Theorem [I.1] see Subsection [l

The LP-estimates of Theorem [[LT] are obtained directly from estimates of rearrange-
ment operators avoiding the detour to the endpoint spaces H' and BMO. The basic tools
for the proof of the above theorem are vector-valued estimates of stripe operators Sy, de-
veloped in Section[3l A careful examination of shift operators acting on dyadic stripes will
be crucial. We also point out that the L2-estimates for the stripe operators are obvious
in the scalar case, but form the main obstacle in the vector-valued case.

The vector-valued interpolatory estimate (5] allows us to extend the scalar-valued
result (see inequality (II])) on weak lower semi-continuity to the following vector-valued
result.

THEOREM 1.2. Let E and X be Banach spaces, assume that X has the UMD-property,
and let J : E — X be a compact operator. Let 1 < p < 0o, and consider the differential
operator Ag : LP(R™; X™) — W~LP(R"; X" x X™) given by

8'u(j)7 i 7é ja
(Ao(w))iy = { ' 0 (1.6)
0, i =],
where u = (u(J)) . Assume the function f: X™ — R is separately convexr and satisfies

0< f(x) < C(1+ [lal|xn)? (L.7)
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for all x € X™, where C' > 0 does not depend on x. Let the sequence {v,} C L(R™; E™)
be such that

Up =V weakly in LP(R™; E™), (1.8)

Ao(Juv,) is precompact in WEP(R™; X™ x X™). (1.9)
Then

imint [ (o, @)pla)da > [ fa)e() do (1.10)

for all p € CF (R™).
The proof of Theorem may be found in Subsection

REMARK 1.3. Theorem remains valid if we replace the hypothesis that J is compact
by J being Dunford—Pettis.

1.3. The main inequality and interpolation. The interpolatory main result, Theo-
rem [[LT] concerns interpolation of operators, linking the identity map, the Riesz trans-
forms and the directional Haar projection. We would now like to give a reformulation
of Theorem [[LT] which places it in the context of structure theorems for the so-called
K-method of interpolation spaces. To this end, we first introduce the K-functional, cite
the relevant structure theorem (Proposition [[L4) and apply it to inequality ().

Define the K-functional

K(f,t) = mf{||gllm, + t|hlle, : f=9+h, g€ Eo, he Er}

for all f € Ey + Eq and t > 0. For 0 < 6 < 1, the interpolation space (Ey, E1)g,1 is given
by
(Eo, E1)o1 ={f : f € Eo + Ex, || fllon < oo},

where

> d
||f||a,1=/0 t“’K(f,t)?t.

The following proposition interprets interpolatory estimates such as the ones obtained
in Theorem [[T] in terms of continuity of the identity map between interpolation spaces.
It is a result of general interpolation theory (see [BS88, Proposition 2.10, Chapter 5]).

PROPOSITION 1.4. Let (Eg, E1) be a compatible couple and suppose 0 < 6 < 1. Then the
estimate

1flle < Cllflloa (1.11)
holds for some constant C and all f in (Eo, E1)g1 if and only if
£l < ClAIRIFIE,
for some constant C and for all f in Ey N Ey.

In the following we will specify the spaces E, Ey and F; so that the two equivalent
conditions of the above proposition match precisely the assertions of Theorem [L[.1}
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Application of Proposition [[.4] to Theorem [I.Il Let 0 # ¢ € {0,1}" with g;, = 1
be fixed, and let
Ry, : L4 (R") — I (R")
denote the Riesz transform defined in Section [2} If we define the Banach spaces
E = L% (R") /ker(PY),  |lu+ker(P)||p = | P@ul| 1z (),
Ep = L% (R™), lullz = llullz @),
By = LA (R™) /ker(Ri, ), [lu+ker(Rip)||g, = [|Rigull Lz @ny,
then Proposition [[L4] together with Theorem [Tl yields
(Eo,El)gJ — F.
In other words, there exists a constant C' > 0 such that
[ullz < Cllullo.x

for all u € (Eo, E1)971.
We summarize this brief discussion in

THEOREM 1.5. Let 1 < p < oo, and let X be a Banach space with the UMD-property.
Denote by T(LE (R™)) the (non-trivial) type of L% (R™). Furthermore, let

e=(e1,...,en) € {0,1}" with &;, =1,
and define
Ey = L% (R™), lullg, = llull Lz @n),
By = L5 (R") /ker(Riy),  |lu+ker(Rig)| 5, = || Rigull Lz &ny-
Then there exists a constant C' > 0 such that
IPul e gy < Cllullo. (1.12)
for all uw € L5 (R™), where § =1 —1/T(L%,).

The connection with general interpolation theory was pointed out by S. Geiss.

1.4. Proof of Theorem [I.1l The subsequent proof of Theorem [Tl merges the vector-
valued results of this paper, particularly Theorems [£77] and Apart from replacing
the scalar-valued estimates with our vector-valued analogues, we repeat the scalar-valued
proof in [LMMI11].
Before we give the proof we shall discuss the objects involved. Recall that
POu= 3" (u,h)h$ Q™!
Qe2
for all u € L% (R™). Now choose b € C2°(]0,1[") such that

/b(x)dle and /mib(xl,...,xi,...,xn)dxi:0
for all 1 <14 < n. For every integer [ define
A =uxdy, where di(z)=2"d(2'z) and d(z)=2"b(2z) — b(z).
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If 2; C 2 denotes the collection of all dyadic cubes having measure 277", then

FOu=3"3" (u, Apa(h§ )RS0

JEL QE2;
Note that
pl) — Z Pl(e)7
ez
and define ° °
pP¥ = P,
; )

For details on the above definitions see Subsection [£.1}
Proof of Theorem[1]l. Within this proof we shall abbreviate L% (R™) by L%.
First, define M € N by
[ Riy « L% — LE| llull s,
[ Rioullzy,
Second, we use decomposition ([@2)) and ([LF]), that is,

PE = PO 4+ 37 P,
>0

< < oM, (1.13)

and observe that

M 00
|POullpg, < IPE R Rigullog, + D IFT Ry Rigullig, + 3 117wl
1=0 I=M
If we apply Theorem [£7] to the first two sums, and inequality (£45) in Theorem to
the latter sum, we get

IPOR Rigullrr S I Rigullrr, 1P Ry Rigullr, < 27| Rigull 1z
and

1P| g S 271 Y TERD) |y e

Thus, we can dominate ||P(€)u||L§( by a constant multiple of

M 0o
IRigullz, + Y 275 |Rigul g + Y 27 O TED || g
1=0 =M
Evaluating the geometric series yields

1POul gy < 2M7E Ryl g, + 27 MO TED | g

and plugging in M concludes the proof. m

1.5. Proof of Theorem Apart from using vector-valued analogues dealing with
the technicalities, the subsequent proof is similar to the scalar-valued case (see [Miil99)
and [LMMTI]).
We will divide the proof into four steps. Define the projection P : LP(R™; X™) —
LP(R™; X™) by
P(v) = (P plen)ym)y,
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n

where v = (v(j))jzl, and

POu= 3" (whghg' Q1™
Qe2
for all u € L% (R™; X) and € € {0,1}™\ {0}.

In the first step the setting is as follows. The operator J : F — X is compact,
wy — 0 weakly in LP(R™; E™), and {Ao(Jw,«)}r is precompact in the Sobolev space
W=LP(R™; X™ x X™). It is here that we will see how the interpolatory estimate (L3 is
used to obtain the estimate

. 1
im [y - Jw, = Py - Jwr )| Lo e xm) < CF
for all positive integers k and some 0 < 6 < 1. The function ¥ is a smooth cut-off function
and Y (z) = Y (x/k), v € R™.
In the second stage of the proof we will show that for our separately convex function
f+ X™ — R satisfying the growth condition
0< flx) <CA+|zf[xn)?, e X,
Jensen’s inequality holds on the image of P, that is,

f(En(Pv)) < En(f(Pv))
for all v € LP(R™; X™), where

Eyu= Y (ra/(gu(x)dx)m

QE2N

for all uw € LP(R™; X™). Recall that 2, is the collection of dyadic cubes having measure
2—Mn.

In the third step we will obtain our desired result, that is, the weak lower semiconti-
nuity

lim inf f(Jvp)pdx > f(Jv)pde,
Rn

r—=oc  Jpn

assuming that v is a finite sum of Haar functions and ¢ has support in (0, 1)".
The restrictions on v and ¢ will be lifted in step four.

Proof of Theorem

STEP 1. Within this proof we shall use the abbreviations W~=YP(F) for W~1P(R"™; F)
and LP(F) for LP(R™; F), where F is a Banach space.
Choose a smooth cut-off function ¢ € C°(R™) such that 0 < ¢(z) <1 for all x € R
and
L Jof <1,

Vo) = {o, | > 2.

For every positive integer k, we set ¢ (z) = ¥ (z/k) for all z € R™. Define the projection
P:LP(X™) — LP(X™) by

P(U) = (P(el)v(l), o ,P(e")v(”)),
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where v = (v(J))j We will show that whenever w, — 0 weakly in LP(E™) and
{Ao(Jw,)} is precompact in W=1P(X™ x X™), then

. 1
Jim [ - Jwy = Pty Jwn)|oxn < Cpg (1.14)

for all positive integers k& and some 0 < 6 < 1.

To this end, let w,, converging weakly to zero in LP(E™), be fixed. Then, since .J
is bounded, Jw, — 0 weakly in L?(X™). Note that since {Ag(Jw,)} is precompact in
W=LP(X™ x X™), the operator Ag : LP(X™) — W~LP(X™ x X™) being bounded implies

Ao (Jw:)[[w-1.p(xnxxny =0 asr — oo.
This means that

hm 110; (w8 [l -1, »xy) =0 foralli#j. (1.15)

We will prove ([LI4) using the interpolatory main result Theorem [[Il First, with
k fixed, we use Theorem and the remark thereafter to obtain

Ri(v - Ju®) = (RTM)(wD) + To(F (&) 1& - F(by, - Jwl)))), i # 5,

where Tl(k) : LP(E) — LP(X) is compact and Ty : LP(X) — LP(X) is bounded. One
can see from the proof of Theorem that, in fact, T5 does not depend on k. From the
identity above it follows immediately that

IR (k- Jw) | 1o xy < IRTE (D) | o) + ClO: (W - JwD) [ -1(xy.  (1.16)

Since X has the UMD-property, we may use [McC84, Theorem 1.1] and infer that R; is
bounded, and therefore R;T M is compact. Since w(j ) 50 weakly in LP(E), we obtain

Tgn;onRin (WD) || Loxy =0 for all k and i # j. (1.17)

To estimate the second term we apply Theorem[5.4] and since sup, || Juwd lw-1rx) < 00,
we infer that

. 1 .
110: (Wr, - JwS) [y -10(x) < Cr+ Cll0:(TwD) | w-1.(x)- (1.18)

Combining (LT8) with (TLI8), and letting r — oo, we deduce in view of ([LIH) and (LI
that

, 1
lim ||R;(¢k - Jw)||1o(xy < C—  for all k and i # j. (1.19)
r—00 k

Since u =3__ PE)y for all u € LP(X), we have

Ur - Jwd) — P (g JuP)y = > POy - Jwl)  forall kand 1< j <n.

O#e#e;
Hence, we can apply the interpolatory estimate (LX) of Theorem [IT]to each component
of Yy, - Jw, — P(¢y, - Jw,) and obtain

[k - Jwr = P(og - Jw) | oxny CY > bk - Jwl |10 1Ry (- JwD) 3o x
Jj OFc#e;

where 0 < # < 1 and j* is some index in {1,...,n}\ {j}. The interpolatory estimate
together with (LT9)) yields the desired result (II4), concluding the first step of the proof.
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STEP 2. We will prove the following version of Jensen’s inequality for separately convex
functions f on the range of P:

f(Er(Pv)) < En(f(Pv)) (1.20)
for all v € LP(R™; X™), where
Eyu= u(z)dz | -1
Y Q;_@ (|@| / )

for all uw € LP(R™; X™). Recall that 2, is the collection of dyadic cubes having measure
2~ Mn,

First, we will show that

f(/[m]" P(v) da:) < /[o,l]n F(PW)) da. (1.21)

Then rescaling and translating ([21]) yields the desired inequality ([20).
Define the truncated Haar projections

k
PPu= 3" 3 (wh)hslel™

J=—00 QEZ;
for every u € LP(R™; X), k € Z, and furthermore
Pro = (PIo® L plem)y(m)

for all v € LP(R™; X™), k € Z. Note that P, — P pointwise in LP(R™; X™).
Let £ > 0. Then

_ () (i .
RGOS SR (G S

QEZ;|[0,1]"

= Z / Péel )+ (J)h(e )j 1)d$

Qegu [0,1]n

Observe that (P(e (vW)|Q = aQ is constant, and hgj)(x) = h(er)(xj) for allz € @ and
1 < j < n. Since f is separately convex, we apply Jensen’s inequality to each direction e;,
1 < j <n, which yields

1 WD DD o g )
RGOS |Q|-f(<|lé?—j)|/18)( e az,) )

Qe2,|[0,1]" Jj=1

= > QAP e)),

QE2;|[0,1]™
where H?:1 Ig) = Q. Hence,
/[ RCOTE / F(Pes (v)) de
0,1]"

[0,1]"

for all k£ > 0. Since P_;(v) is constant on [0, 1], we certainly have

/W F(Py(v) di = f< /W o) dx>,
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so by induction on k > 0 we obtain

[, awdnas= g ([ poaas)

for all k& > 0. First, we use the Lipschitz estimate for f in the Appendix (see Theorem [5.T])
and get

’ /[071]” J(P(v)) da — /W F(P(v)) da

-1
<c . (1+ 1 £(Po)xn + [ F(Pev) | xn) VN (P = Pi)ol|xn da
0,1]"

< Gol[(P = Py)vll e,z

for all k& € Z. Second, note that f[o o P-1(v) do = f[
the latter two inequalities imply estimate (LZ2I]).

0,1]" P(v) dx, thus, letting k — oo,

As mentioned above, inequality (L20) follows by rescaling and translating (L2T).
STEP 3. The hypothesis in Theorem on the sequence {v,} C L(R™; E™) is that
U = U weakly in LP(R"™; E™),
Ao(Jv,) is precompact in W~1P(R™; X™ x X™).
In this step of the proof we will additionally assume that v is a finite Haar series and

supp(p) C (0,1)".
Let # C 2 be a finite collection of pairwise disjoint dyadic cubes such that

v=Y colg. (1.22)

Qe#
Now define
folx) = flx+Jcg) forall Q€ 2 and z € R™ (1.23)

Theorem [5.1] asserts that

[fa(z) = faW)| < A(n,p,cQ)(A + ||zl xn + llyllx=)"~ & — yllx» (1.24)
for all z,y € X™. We shall abbreviate A(n,p,cq) as A. If we set w, = v, — v, then since
w, — 0 weakly in LP(R™; E™) and {Ao(Jw,)}, is precompact in W~1P(R™; X™ x X™),
we know from (LI4) in Step 1 that

. 1
dim [k - Jwr = P(r - Jwr)ll oo xny < O (1.25)

for all positive integers k and some 0 < 6 < 1. At this point we remind the reader that
1 is a smooth cut-off function taking values in [0, 1] given by

e) = {1, o] <1,

0, [z[>2,

and ¢y (z) = ¢(x/k) for all positive integers k.
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Let Q € £ be an arbitrary dyadic cube and let k,r > 1 be fixed for now. A glance
at (L22), (23) and noting that i, (z) = 1 for all € supp(¢) shows that

/ f(Jvp)pde = / fo(Jw,)pdx = / fo(y - Jw, ) de.
Q Q Q
Now we introduce the projection P via the identity

/ Jolwn - Jun)pde = / Jo(P(by - Tw,))p de
Q Q

+ [ (ol ) = folPCbs - )
In view of the Lipschitz estimate (L24]), the latter term is bounded by

—1
A1+ ([ - Jwp |l xcn + [ P(r, - Jw,)|| x| ip((),l)nﬂwk ~Jwy — P(r - Jw,)| Lo mnixn)-

Since sup,. ;. [k - Jwr|[Lr@n;xn) < C for some constant C, and P maps LP(R"; X")
boundedly into itself, we get

[ soedn = [ fo(PlonTw)eda—ACTb: Jur = Pl Tw) ooy (1.26)
Q Q
With M fixed, we introduce the conditional expectation E;:

/ Jo(P(by - Tuw,))pd = / Fo(P(bx - Jw,)) Ens pda
Q Q

+ /Q JoP(be - Jw,)) ¢ —Ear o) da.  (127)
Considering that
/Q fo(P(e - Jw,)) Ear g de = /Q En (fo(PWe - Ju))) Eas ¢ do
and applying Jensen’s inequality on the range of P, that is, inequality (L20), yields
/Q Ja(P(x - Jw,)) Eas o d > /Q Jo(Eat (P(y - Jw,)) Eas o da.

Introducing fq(J0) we obtain
| folPlin- Jun)) B g s
Q

> [t Barpds+ [ (Jo(Ba(Plin- Jun))) - folJ0) Barpds. (129
Q Q

Using the Lipschitz estimate (L.24]) and the boundedness of {¢y, - Jw,}, in LP(R™; X™)
as we did above, we can dominate the last term of (L2§)) by

AC”EM P(i/% ' Jw’l")”LP((O71)n;Xn).
Combining the latter estimate with (L28), (C21), (L28) and using the estimate
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fo(P(Wy - Jwy)) < A(eg)(1 + [|P(¢k - Jw, )| x»)P in the latter term of (I27)) implies

[ f0mpds = [ fol10)Earpds ~ ACEM Pl - T r(onyexo
Q Q

= Cllp = Ep ¢lloc — AC||¢k - Jwr — P(k - Jwe)||pernyxny. (1.29)
Now let us consider

Ear P(¢y - Jwy) = Z (. - Juwd), h;’)>h§’)|K|—1)?:1

2—Mn <‘K‘<2]W"

30 (e Jwd R RS [K |
‘K‘ZQM?L

First, observe that ¢y -w, — 0 weakly in LP(R™; E™) as r — oo, hence (¢, - w,, hg?)> —0
weakly in E™ as r — oco. The operator J : E — X is compact, and therefore
| (g - Jw,, h(;j)>)?:1||X”, — 0 for all K as r — oo;
consequently, with M fixed,
S (e Tl B Y
2=Mn <|K|<2Mn
The LP((0,1)™; X™) norm of the second term in Ep; P(¢)y - Jw,) is dominated by

Z |19 - Jwr||Lp(Rn;Xn)|K|71/p <C- 9—Mn/p

|K|22Mn
K>2[0,1]"

—0 asr — oo.
Lr((0,1)™;X™)

We now pass to our last two estimates for Eyr P(¢y - Jw;.). Plugging them into (L29])
as well as using inequality ([25]) yields

1iminf/Qf(Jvr)<pda:Z/QfQ(JO)EMgada:

r—>00
_ 1
—C-2 Mn/p—C”gp—EM (pHLoo(O’l)?L —Cﬁ

for all M, k and some 0 < 0 < 1. Letting M — oo and k — oo, recalling (I22), (L23))
and noting that fo(J0) = f(Jv(x)) for all z € @, we obtain

1iminf/Qf(.]v,«)gadx2/Qf(Jv)goda:

r—00

for every Q € 2. Since £ is a finite collection, summation over @ € £ yields

lim inf f(Jv)pdr > f(Jv)pde,
oo g B
where #* = UQe 2 @- Repeating the above argument with fg replaced by f shows that
1iminf/ f(Jv)pdr > / f(Jv)pdx.
7—>00 (‘@*)c (‘@*)c
Note that w,(z) = v.(z) for all z € (#*)°. Adding the last two estimates yields
lim inf f(Jv)pdr > f(Jv)pde, (1.30)

T—00 Rn Rn
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under the additional restrictions of v being a finite Haar series and ¢ having support
in (0,1)™.

STEP 4. First, we will lift the restriction that v is a finite Haar series, then we will
dispose of the restriction that supp(¢) C (0,1)".
Consider the auxiliary operators Py, k > 1, given by

Pou = Z Z Z ((u(i), hg))hg)@rl)?:l for all u = (uV, ... u(™),

H0jiljl<k Q€2;
QCB(0.k)

where B(0,k) = {z € R™ : |z| < k}. Then one can see that P, — Id pointwise in
LP(R™; X™). Now let us define v¥ = v, + Pyv — v for all r, k, and note that v¥ — Pyov
weakly in LP(R™; E™) as r — co. Since Pjv is a finite Haar series, we know from Step 3,
namely inequality (I30) applied to v¥, that
liminf [ f(JvF)odx > f(PrJv)pdz (1.31)
r—00 Rn R
for all & > 1. In view of the Lipschitz estimate (L24) and P, — Id pointwise in
LP(R™; X™), we may lift the restriction of v being a finite Haar series, by using tech-
niques similar to those in Step 3. To elaborate on this, fix an arbitrary & > 1 and observe

liminf [ f(Ju)pde = lirrginf (IR da + /n(f(Jvr) — f(JvE))p da

r—00 Rn oo Rn

> [ f(Pyv)dz — AC||Jv — Py(J0)||1o((0.1)m:x7)s
Rn

where for the former term we used (L3I]), and for the latter term the aforementioned
Lipschitz estimate (24) as in Step 3. Also, note that by definition v, — v*¥ = v — Pyv.
Similarly, we estimate

f(PyJv)dz > f(Jv)dz — AC||Jv — Pe(Jv)| Lr(0,1)m;:x7)
R”L R’IZ

so since Jv € LP(R™; X™), combining the above two estimates and letting k& — oo we
obtain

lim inf f(Jvp)pdz > f(Jv)pde, (1.32)
RTL

T—>00 Rn

with supp(¢) C (0,1)™ being the only additional restriction imposed, as of now.

To lift this restriction, let ¢ € Cj"(R™) be arbitrary and let n € Cy (0,1)", k > 1, be
functions such that 0 < < 1 and 7, — 1(0,1)» pointwise. Now extend 7 periodically
to R™ and note that

liminf | f(Jor)pde > ligg'g.gf/w F(Jv)pmede =) liminf | e g da

lQl=1
for all k > 1. In the above sum the @ are dyadic cubes. Since 1o¢nx € Cif (Q), translating
the integration domain of inequality (IL32]) from [0, 1]™ to the dyadic cube @ yields
lim inf f(Jv)pdr > / f(Jv)eny dz
r—00 Rn Rn

for all k£ > 1. Letting k — oo concludes the proof of Theorem n



2. Preliminaries

This brief section provides notions and tools used frequently in this work. First, we
introduce the Haar system supported on dyadic cubes. Then the notions of Banach spaces
with the UMD-property and type and cotype of Banach spaces are outlined. We recall
Kahane’s contraction principle and Bourgain’s version of Stein’s martingale inequality.
Then we turn to the shift operators T,,, m € Z™.

The Haar system. For the Haar system supported on cubes we refer the reader to
[Cie87]. Consider the collection of dyadic intervals at scale j € Z given by

P; ={[277k, 277 (k+1)[: k € Z},
and the collection of the dyadic intervals
7= 2.
JEL
Let h; denote the L*-normalized Haar function, that is,
hy =1, —1;, forall ] € 9,

where Iy € 2 denotes the left and I; € 2 the right half of I. The Haar system {hs :
I € 2} is an unconditional basis for L% (R), 1 < p < oo, if X has the UMD-property.

In dimensions n > 2 one can obtain an unconditional basis for L% (R™), 1 < p < oo,

if X is a UMD-space, as follows. For every € = (e1,...,&,) € {0,1}", ¢ # 0, define

n

he' () =103 ),
i=1
where t = (t1,...,t,) ER", Q = Iy X -+ X I, |1 = -+ = [I,)], I; € 2, and hi' is the

function
h? _ {h;i, g =1,
17, € =0.
We denote the collection of all such cubes @ by 2:
Q={hLxxL,: €2 1<i<n, |L|=-=|[,}
For a dyadic cube Q € 2 the side length of @ is

sidelength(Q) = |I1].

Finally, define the dyadic predecessor map 7 : 2 — 2, where the dyadic predecessor
m(Q) is the unique cube M € 2 with M D @ and sidelength(M) = 2sidelength(Q).
By 7, A > 1, we denote the composition of the function 7 with itself.

(18]
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Banach spaces with the UMD-property. By LP(£, u; X) we denote the space of
functions with values in X, Bochner-integrable with respect to p. If Q@ = R™ and p is
the Lebesgue measure | - | on R™, we write L% (R"; X) = LP(R", | - |; X), if unambiguous
further abbreviated as L% (R™) or even as L.

We say X is a UMD-space (i.e. a Banach space with the UMD-property) if for every
X-valued martingale difference sequence {d;}; C LP(€, u; X) and every choice of signs
gj € {—1,1} one has

[ = B[

where %,(X) does not depend on ¢; or d;. The constant %,(X) is called the UMD-
constant. We refer the reader to [Bur81].

(2.1)

Lr(Q,:X)]

Type and cotype. A Banach space X is said to be of type T, 1 < T < 2, respectively
of cotype C, 2 < € < o0, if there are constants A(T, X) > 0 and B(C, X) > 0 such that
for every finite set {z;}; C X we have

' 1T
/0 |32 riwas| at < a0 (X lesl%) (2.2)
J j
respectively

1 er(t)xj dt > B(C, X) ZH%H% l/e, (2.3)
0 - X -

where {r;}; is an independent sequence of Rademacher functions.
It is well known that if X is a UMD-space, then for every 1 < p < oo the space
L% (R™) has a type and cotype (see [Mau7h|, [MP76] and [AI79)]).

Kahane’s contraction principle. For every Banach space X, 1 < p < oo, finite set
{z;} € X and bounded sequence {c;} of scalars we have

1 P , 1 P
/Hzrj(t)cjxjuxdtgsup|cj| /Her(t)xjHth, (2.4)
0 j J 0 j

where {r;},; denotes an independent sequence of Rademacher functions. For details see
[Kah8&5].

REMARK 2.1. Let X be a Banach space with the UMD-property, and let 1 < p < oo. If
00,0 € {0,1}™\ {0} for all @ € 2, then

] €
152 uehl?|| < @(x)?| 3 uohl®|
Qe2 ) Qe2

for all ug € X, where only finitely many ug are non-zero. Therefore, we will drop the

(2.5)

L% (R L% (R™)

superscripts of the Haar functions and simply denote by hg one of the functions h(s),
e # 0, where appropriate.

The martingale inequality of Stein—Bourgain’s version. Let X be a UMD-space
and 1 < p < oo. Let (2,5, u) be a probability space, and let § € --- C F,, C F
denote an increasing sequence of g-algebras. If r1, . .., 7, denote independent Rademacher
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functions, then for every choice of fi,..., fn, € LP(2, u; X) we have

kS 1, m
/0 H;m(t)ﬂi(fil%) ooy T <€ /0 H;m(tm\

where C' depends only on p and X.

A Banach space X having the UMD-property ensures C' < oo. The scalar-valued
version of (Z.0) by E. M. Stein can be found in [Ste70b]. The vector-valued extension is
due to J. Bourgain [Bou86|. For details we refer the reader to [Mul05].

dt, (2.6)
Lr(Q,u;X)

The shift operators T;,. For every m € Z" let 7,,, : 2 — 2 denote the rearrangement
given by

Tm(Q) = Q + msidelength(Q). (2.7)
The map 7, induces the rearrangement operator T,, as the linear extension of
Twmhg =h., @, Q€. (2.8)
Let X be a UMD-space. Then
[T LB (") = L5 (R™)]| < Clog(2 + |m])°, (2.9)

where 0 < a(X) < 1 and C = C(n,p, %, (X),a(X)); for details we refer the reader
to |Fig88| and [Fig90].

The Riesz transform. For all 1 < i < n we define the Riesz transform R; formally by

Rif =K [, (2.10)
Ki(x):cnpjﬁ, z=(z1,...,2,) € R (2.11)

Details may be found in [SteT0a] and [Ste93].
If X is a Banach space with the UMD-property and 1 < p < oo, then the operator
R;: LP(R™; X) — LP(R™; X) is bounded because of [McC84, Theorem 1.1].

Dunford—Pettis operators. Let X and Y be Banach spaces. A bounded linear operator
T : X — Y is a Dunford—Pettis operator if T is weak-to-norm sequentially continuous,
that is, whenever {x,}, C X converges to x weakly, then T'z,, converges to Tz in norm.
Clearly, if an operator is compact, then it is Dunford—Pettis. If X is reflexive, then T
is compact if and only if T' is Dunford—Pettis. For more information on Dunford—Pettis
operators see [AK06].

Supplementary definitions. Denote the standard Fourier multiplier () by

€ =1+ forall € € R™. (2.12)
The Haar spectrum of an operator T : L5 (R™) — LK (R™) is defined by
2\{Q € 2: (Tu,hy)) = 0 for all u € L% (R") and ¢ € {0,1}"\ {0}}. (2.13)

Given a collection of sets €, we denote by o(%) the smallest o-algebra containing %, i.e.,

o(%) = ﬂ{d : of is a o-algebra, € C «/'}.



3. The stripe operator S)

Here we introduce and study the stripe operator Sy (defined in (B.4])), mapping hq,
Q € 2, onto the blocks gg », each supported on a dyadic stripe (see (33)), (3] and
Figures [[l and B]). The vector-valued estimates given by

1Sxull L gy < C - 27N CEXED | o oy (3.1)

constitute the main technical component of this paper (see Theorem [3.0]).
The crucial points in the proof of ([BI]) are the cotype inequality and Corollary 35
that is, the uniform equivalence

1
5||SAU||L§(RH) < | Toney Saullpr ey < CllSxull Lz @ny (3.2)

forall0 < m<2*—1and u € L%(R"), where C' does not depend on u, A and m. In
other words, the operators T},, 0 < m < 2* — 1, act as isomorphisms on the image of S},
with norm independent of m and A. This is in contrast to the well known norm estimates
| T LB (B) — L (R)] & log(2 4+ m)?, see (Z3).

3.1. Preparation. Within this section the superscripts (¢) are omitted and we generi-
cally denote by h¢ one of the functions {h(QE) :e € {0,1}™\ {0} }. Note that ¢ may depend
on @ (see Remark 27T)).

For every Q € 2 and A > 0 define the dyadic stripe

UN(Q) = {E € 2:7\(E) = Q. inf a1 = inf ql}, (3.3)

where x1 respectively g; denotes the orthogonal projection of z € R™ respectively ¢ € R™
onto the vector e; = (1,0,...,0). Recall that 7*(E) is the unique Q € 2 such that
|Q| = 22" |E| and Q D E (see Section [2]). The dyadic stripe 2, (Q) is illustrated in
Figure [Tl

Additionally, we set

%= | %(Q). (3.4)

QeE2
We define the stripe functions by
gox = Z he, (3.5)
EcUx\(Q)
and the stripe operator by
Syu =Y (u,hq)golQ ™" (3.6)
QE2

[21]
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27 sidelength(Q)
> Q

sidelength(Q)
|%>\ KQ)|

B T
| — | €2
€1

Fig. 1. Dyadic stripe %, (Q) in dimension n = 2

for all u € L% (R™). The stripe functions are visualized in Figure

27" sidelength(Q)

Q

—~ |
&5

= _—
<

® | Ig
=)

5} >
—~

5] _—
]

=

n

hE T
|| €2
€1

Fig. 2. Stripe functions gg,» in dimension n = 2

REMARK 3.1. In (3X), we used the convention that hg denotes one of the functions hg)
for some ¢ € {0,1}" \ {0}, where € may depend on E. The reason behind this is the

following.
For any E € 2 let §1(E),d2(E) € {0,1}™\ {0} define the two functions

[ di .
Ec%\(Q)

and the stripe operators

SPu= 3" (u.hg)gshlQI™!,  i=1,2.
Qe
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Let us define

1 2 01(E 02(E
ca=gPe@ = 3 nGEEE)

Eeux\(Q)
Then CQQS,),\ = gg’))\, and cg is constant on every subcube of every E € %4, (Q). Hence,

the UMD-property yields
1.0 2 1
SIS ull @y < 1537 ullig @ny < CUSK ull g, g

for all uw € L% (R™), where C' does not depend on the choice of §1(E) and d2(E).

This estimate means that stripe operators are, up to a constant, uniformly invariant
under multiplication with functions of the form cg, and allows us to simply drop the
superscripts in the Haar functions hg defining g, x.

3.2. Shift operators acting on dyadic stripes. In LemmaB.2we will prove a measure
estimate regarding one-dimensional dyadic stripes #, A > 1, defined in (3.8)), and the
action of dyadic shift maps 7,,, 0 < m < 2*~1, given by

Tm(I)=1T+ml|I|, I€9.

These estimates will then enter Theorem [3.3] where we prove the uniform estimates

1
EHUHL’)’((R) < | Twmullzz @) < Cllullz &), (3.7)

for all u supported on .%\ and 0 < m < 2* — 1. The constant C' does not depend on A
or m. The shift operator T,, is defined in ([Z.8]).
The subsequent Corollary states that T, acts as an isomorphism on the image
of Sy, with norm independent of m and .
Before we state Lemma 3.2, we build up some notation. Define 7* : 2 — 2 for all
I €2hby
M) = J,

where J is the uniquely determined J € 2 such that |.J| = 2*|I| and J D I. Then define
the one-dimensional stripe .y by

A ={I€P:infI =infr*(I)}. (3.8)
LEMMA 3.2. For every A >1let 0 <m < 221 and let
(D) =T+ml|I|, I€9.
Let # C . be such that for all J, K € % with |J| # | K| either
I <K or K] < 41
Then
A—1 A—1
‘m U U JUTm(J)’ < 21, ‘Tm(f)m U U Jum| <2

d=1 Je# d=1 Je#
|J]=2"9|1| |J]=2"9|1|

for all I € A.
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Proof. First, we claim that for any I € BU1,(#), 1 <d < A—1and J, K € £ with
7] = |K| =271,
whenever (JU 7, (J)) NI # 0 and (KU, (K))NI#0, then J =K. (3.9)

Indeed, assume that ([39]) is incorrect. Hence, we can find intervals I € # U 7,,(#) and
J,K € # with J # K, |J| = |K| = 27¢|I| where 1 < d < X\ — 1, such that

(JUTn(INNI#D and (KUT,(K))NI#0.
Since J # K, we see from the definition of Z that
dist (7, (J), T (K)) = dist(J, K) > (2* — 1)|J],
and consequently
dist(J U T (J), K U (K)) > (2% =1 —m)|J]|.
We know that I intersects both J U 7, (J) and K U 7, (K), so
[I| > dist(J U T (J), K Ut (K)) +21J] > (2 = m + 1)274 1| > (2> 1+ 1)2741] > |1],
which is a contradiction.
Hence, [39) holds true, which means that for all 1 < d < X — 1, every interval
I € BUT,(P) intersects at most one element of the set
{JUTm(J) € B:|J| =2"4I|}.
If such a J exists, we denote it by J4(I) € %, and set Jq(I) = ) otherwise. Note that for
small shift widths m or small J it may happen that Jq(I) U 7, (Ja(I)) C I.
Using ([39) we find that for every I € U 7,,,(%),

A—1 A—1
’m U U JUTm(J)’ <3710 (JalD) Urin(Ja(D))) |
d=1 JeR d=1
12741

A—1 )
<> 2la(D)] <2 27 = 21,
d=1 d=1

The last inequality is true since for J, K € £, if |J| # |K|, then either |J| < |K|/4 or
K| < |J|/4. =

For m € 7Z the shift operator T}, is given by
TmhI = h‘rm(f)7 Ie -@7

where 7, (I) = I + m|I|, I € 2 (see (Z7) and (Z8)). We will now investigate the action
of T, restricted to functions supported on the dyadic stripe %\, A > 0, defined in ([38).
Observe that .#) is the spectrum of the stripe operator Sy, when it is restricted to lines
in direction (1,0,...,0). This will be discussed in more detail in Corollary For now
we dedicate ourselves to the one-dimensional case.

THEOREM 3.3. Let X be a Banach space with the UMD-property and 1 < p < oo. For
A > 0 define the linear subspace Zy of L% (R) by

7y = { S urhglI| 7 ur € X} N L% (R). (3.10)
Ie. s\
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Then there exists a constant C > 0 such that for all integers A and m satisfying 0 < m <
22 — 1 we have

1
EHUHL’)’((R) < | Twmulle @) < CllullLz &) (3.11)

for all w € Zy, where C' depends only on p and the UMD-constant of X. In other words,
T, acts as an isomorphism on Zy with norm independent of m and .

Proof. With A > 0 fixed, we will first prove
Sl < 1Tl 2 < Clell g (312)
for all 0 < m < 2*! and u € Z,. Once we have {312, it is easy to see by symmetry
that also
ST rulig ) < Wl ey < ClTo vl (313)
for all 227! —1 < m < 2* — 1 and u € Z,. Certainly, (3.12) together with (B.I3)

implies ([B.I1]), since we may join (312 and (BI3) at the intersection of the two collections
of operators
{T,:0<m <21} and {T,:2"'—1<m <2 -1},
that is, at m = 2* 1 or at m = 2> 1 — 1.
We begin the proof of [BI2) by defining the four collections

A—1 A—-1
0 0
‘@odd = U U yA n 92]“4‘]% ‘%even = U U yA N -@2j)\+ka
JEZ k=0 JEZ k=0
k odd k even
A-1 A—1
1 1
Braa=J U AN Zejinin: Boen = U 0 Zejrna
JEZ k=0 JEZ k=0
kodd k even

For any given j € Z we shall call the collections
A-1 A—1

0 . 0 .
r%odd . U y)\ N @2j)\+k7 r%even . U ‘y)\ N @2j)\+ka
k=0 k=0
kodd k even
A—1 A-1
1. 1 .
%wd'LJy&m%%HMMv %Mm'LJy&m%%HMM
k=0 k=0
kodd k even

A-blocks, each associated to the indicated collection.

Let # denote one of those four collections. We claim the existence of a filtration {F;};
such that for every j € Z and I € BN Z; there exists an atom A(I) of F; satisfying the
inequalities

A <201), ITNAD] = 3], [ra(D) N AD)] = 311 (3.14)
We will now define the atoms within each A-block % of %. The resulting atoms

are unions of dyadic intervals having length minse¢ |]. The construction of the atoms is
independent of other A-blocks of #. Now, for each I € & we will define atoms inductively,
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beginning at the finest level of %. Initially, define
A(I) =TUT,(I) (3.15)

for all I € € such that |I| = minjes |J|. Let I € €, and assume that we already
constructed atoms A(J) for all J € €, |J| < |I|. Then we define the atom A(I) by

A =(Tur(D)\ |J AW). (3.16)
Je€
1<1|

Applying Lemma B2 to the atoms A(I) C I U7, (I) inside the A-block ¥, we obtain
InAml =111 =10 |J AW)| 2§
Je€
[J1<]1|
and analogously

[T (1) N A(D)| > 5111,
which yields (BI4). Finally, we define the collections

o, ={A(I): 1€ BN}, jeEL, (3.17)
and the filtration
7 :a(U m), j e (3.18)
i<j

What is left to show is that every A € <7, is an atom for the o-algebra F;.

To see this we reason as follows. First, note that any two atoms are either in the same
A-block, or are separated by at least A levels. If atoms A(I) and A(I’) are in the same
A-block, then they do not intersect by construction (see BI5) and (BI6])). Whenever
A(I) and A(I') intersect and |I'| < 27*|I|, then since

A(I') C (I' Ur (1) € 7N T,
we have
NI N AI) # 0.
Clearly, A(I) consists of intervals K which are at least as big as #*(I'), so | #*(I')| < | K],

hence
AI") c A(D).
This means that J; </ is a nested collection of sets, hence every A € &7 is an atom for
the o-algebra J;.
Now we are prepared to estimate the shift operator T,,. To this end, let u € Z)
be fixed throughout the rest of the proof. Having (8:14) at hand and knowing that the
collection &7; consists of atoms of J, observe that

1; < ].SE(E(le(]) | 9:]) | @j), le#n @j, (3.19)

and analogously
17.7”([) < 18E(E(1] | 3}) | gj)v IeAnN .@j. (320)
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The UMD-property and Kahane’s contraction principle applied to |h;| < 1; yield

g~ [ [0

JEZ

L% (R)

where (-); denotes the restriction of the Haar expansion to intervals in Zj;, and the
Haar functions hy, I € 9;, are replaced by the characteristic functions 1;, I € Z;. More

U = Z Z th]|I|717

JELIE€D;

’U,)j = Z ’U,]11|I|_1.

1€9;

precisely, if
then

Applying Kahane’s contraction principle in view of ([3.19) yields

wmm)/WZm E((Tou); | 55) | )|

L% (R)

Using Stein’s martingale inequality (Z6]) with respect to the filtration {Z;}, gives

gy % [ [0 Ry 155

JEZ

dt.
L% (R)

Now we apply Stein’s martingale inequality with respect to the filtration {J;}; and get

g < [ [0

JEZ

p
O dL
ez @

Subsequently, we apply Kahane’s contraction principle to 1., (r) < |k, ()| and make use

Tm

of the UMD-property to dispose of the Rademacher functions and obtain

N HTmuHIZ,;((R).

Repeating this argument with the roles of w and T,,u reversed, and using (B.20)
instead of ([BI9) we get the converse inequality

HUJH;ZI;((R)

ITmullle gy S lllfe

A fortiori, we proved (B:[ZI) that is,

(R) ~ ®)

—||u||LP ® < NTwmullLz @ < Cllull e )

for all A > 0,0 < m < 2 ! and u € Z, where C depends only on p and the UMD-
constant of X.

Observe that due to symmetry we may use the same argument for the operators T},
221 <m < 2* — 1, if we reverse the sign of the shift operation and replace u by Tox_qu.
Therefore inequality BI3) holds true as well, i.e.

—||T2A 1ullze @)y < | Tmullzz @) < CllToryull e &

for all 2~ —1 <m < 2* — 1 and u € Z,, where C depends only on p and the UMD-
constant of X.
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Joining the last two displayed inequalities via Thx-1 (or Tpa-1_1) as indicated above
concludes the proof of Theorem n

REMARK 3.4. The central difficulty of the proof was finding the filtration {J;};, given
by (B:I8)), such that each collection <7}, given by (B.17), consists of atoms A(I) of F;. This
was achieved by subtracting the atoms A(J) succeeding A(I) within a A-block (see (BI3])
and ([BI6])). The measure estimates in Lemma guaranteed inequalities (B.14)). As a
consequence, we obtained inequalities (BI9) and ([B20), which enabled us to shift h;
to h, (1) by means of Kahane’s contraction principle and Bourgain’s version of Stein’s
martingale inequality.

For a detailed exposition and the development of a method of estimating rearrange-
ment operators that admit a supporting tree, we refer the reader to [KM09] and [MS91].
Given a rearrangement 7 such that |7(I)] = |I|, the existence of a supporting tree is
essentially the existence of a filtration having the properties of {F;}; listed above, with
Tm replaced by 7.

In order to shift an essential portion of hs to h. (1), one can replace Bourgain’s version
of Stein’s martingale inequality by the martingale transforms used in [Fig88, Proposi-
tion 2, Step 0]. To this end, we need additional symmetry properties (see (32I])), which
were not needed in the first proof. For our purposes we will refine the above construction
of the filtration {J;};. The details are given in the proof below.

Alternative proof of Theorem[3.3. We modify the construction of the above collections %
by taking only every fourth level instead of every second level, and denote each of those
collections by . Hence, for all J, K € %, if |J| # | K| we have either

[J| < 15lK| or |K|< g5|J].

Inspecting the proof of Lemma we see that

\mU U Jum)| <2 | U U JUm()] < 211

d=1 JEE d=1 JEE
|J]=2741| [J|=2741]

So if we construct the atoms A(I) according to (3.10]) and (B10) (with & replaced by %),
instead of (BI4]) we obtain the inequalities

A <21, TnAD| = L )N AD)] = FHI.

= 15 = 15

In what follows we denote the left and right dyadic successors of I by Iy and I, respec-
tively. To be more precise, Iy, I1 € 2, |Ip| = |I1| = |I|/2, and inf Iy = inf I, sup I; = sup I.
Consequently, if we define

B(I) = (A(I) N (A(T) "Iy = [1]/2)) U (A(T) N (A(I) N o +|11/2))

U (A(I) N (A() N7 (D)1 = [11/2)) U (A(T) 0 (AT) N7 (D)o + 111/2))
and furthermore
C(I) = (B(I) N (B(I) = m|I])) U (B(I) N (B(I) +m|I])),

we see that

Cl <21, [INCW)| = FlIl,  |ra(D)n O] = &1l



An interpolatory estimate for the Haar projection 29

Since C(I) C A(I), the C(I), I € €, do not intersect inside a A-block. Retracing our
steps, we may replace A(I) by C(I) in the above proof. Observe that additionally we
have the following identities at our disposal:

ChNmp()=CI)NI+mlIl, CINLH=CI)NI+|I]/2; (3.21)
they allow us to use the martingale transform in the proof of Proposition 2,
Step 0]. To be more precise, if we define

dry = 3(hs +hrp (1) - 1cy and  dro = $(hs — hr 1) - 1o, (3.22)
then due to B2I) we see that {d;1,dr2 : I € €} is a martingale difference sequence.
Furthermore, note that

{h[ : 1C(I) I e %} and {h.,.m(]) : 10(1) S %}
are martingale difference sequences as well. Observe that
dri+dr2=hr-1gqy and dry—dra=h. (1) low; (3.23)

thus we can swap hy - 1oy with k. (1) - 1¢(r), according to Lemma 2].

Thus we shifted iy - 1o (r) to hr, (1) 1c(r) by means of the martingale transformation
given by ([3.23) instead of applying Bourgain’s version of Stein’s martingale inequality for
this purpose. m

The following Corollary 3.5 connects the one-dimensional Theorem 3.3 with the mul-
tidimensional stripe operators Sy. In Figure [3] the action of the shift operators T,,,
0<m<2*—1, on the image of S is visualized.
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Fig. 3. Shifting the image of a stripe operator Sy in dimension n = 2

COROLLARY 3.5. Let X be a UMD-space. Let 1 < p < oo, n € N, and denote by e;
the unit vector (1,0,...,0) € R™. Then there exists a constant C > 0 such that, for all
integers A and m satisfying 0 < m < 2* — 1 and every u € L% (R"),

1
6||S>\U||L’;((R") < | Tmey Saul| z rey < CllSxulle @n), (3.24)
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where C' depends only on n, p and the UMD-constant of X. In other words, T, acts as
an isomorphism on the image of Sy, having norm estimates independent of m and .

Proof. We recall the definitions (83) and (34, that is,
— C A _ ; — .
Uy, = U {EGQ.W (E)—Q,;releml—qlggql},
Qe2
by -1 we denoted the projection onto the first coordinate. Observe that due to the defi-

nitions ([3.5) and ([B.6) we have
image(Sy) C { Z ug holQ|™ :ug € X} N L% (R™).
QEUx

With this in mind we will apply Theorem to every line in the direction e;. Recall
that we omitted the superscripts for the Haar functions hg), € # 0, and used the generic
notation hg instead. Note that Kahane’s contraction principle allows us to choose the
function hg = hg) with €; = 1, at the same time preserving the norm of the operator,
up to a constant (see (ZH])). So now we shall assume that each hg has zero mean in the
first coordinate.

Fix u € L%, define v = S\u, and denote by v, the function v(-,z) for all z € R"~1.
Due to our assumption above, v, € Z, for almost all z € R™. Observe that for all
x € R""! and t € R we have the identity

(Tine, v)(t, ) = (Trvs)(t),

hence

Tcstllig oy = [ [ 1T @ dtde = [ Tl g do

Since v, € Z for almost every x € R™, we may use Theorem [3.3] to get

/RH ITomvellZs, ) 4o ~ /Rf loallZr, ) 42 = 0 Ls, n)-

Substituting v = Syu finishes the proof. m

3.3. Estimates for the stripe operator. Before we formulate and prove the main
result on stripe operators Sy, we will recapitulate the definition of Sy (see (3:6)). The
dyadic stripe %, (Q) (for details see ([B3])) was defined to be the collection
Ec2:7ME)=Q, inf z; = inf }
{Fe2:m(®)=0 nfo=nla

where 7 (F) is the unique Q € 2 such that |Q| = 2*\"|E| and Q D E. Furthermore, z;

respectively g1 denotes the orthogonal projection of x € R™ respectively ¢ € R™ onto the

vector e; = (1,0,...,0). Then the stripe operator S is given by the linear extension of
Sxhq = 9@,

and the stripe functions were defined in ([3.3) by

9Q.x = Z hg.

Ee\(Q)
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Having verified Corollary [3.5 we will now present our main theorem on stripe opera-

tors.
THEOREM 3.6. Let X be a UMD-space, 1 < p < oo andn € N. For A > 0 let Sy denote
the stripe operator given by

Syu= > (u,hq)golQ ™"

Qe2

for all uw € L% (R™). Recall that hg denotes any of the functions hg), e # 0. If L5 (R™)
has cotype C(L% (R™)), then there exists a constant C > 0 such that for every u € L% (R™)
and A\ >0,
_ P (on

||S/\U'||L§’((]R") < C .2 MEIAE ))HUHL’;{(R"), (3.25)
where the constant C depends only on n, p, the UMD-constant of X and the cotype
C(LY (R™)).
Proof. The UMD-property and Kahane’s contraction principle shows that the estimate

holds true if we restrict A to 0 < A < 1.
So from now on we may assume that A > 2. The definition of the dyadic stripe %\

(see (B3) and (B4)) implies that
Tier (%0) N Tiney () = 0 (3.26)

if 0 < k < m < 2* — 1. Furthermore, one has the high frequency cover of Q € 2 given by

22 —1

U Tme, (Z\(Q)) ={E € 2: WA(E) = Q},

m=0

thus we see that
2 —1

lho| = ‘ Z Tmeng,/\’ (3.27)
m=0

by the definition of gg » (see Figure @).
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Fig. 4. High frequency cover of the cube () obtained by shifts of the stripe functions g,
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Now let u € L (R") be fixed. For the rest of the proof we shall write L% for L% (R™)
and € for (L% ). We want to bound [|ul| .z from below by means of the stripe operator Sj.
First, the UMD-property allows us to introduce the Rademacher means

ol ~ [ 20 X sancler,,
Q X

€2;

dt.

Second, Kahane’s contraction principle applied to (327) on the right hand side yields

ol ~ [ DIECPIRE Z Tuvgaa Il d

QEZ;

(3.28)

Third, if we set
d(jm) = Tines Z gox forje€Zand0<m<2d 1,
Qe2;

and define the lexicographic ordering relation

j < 4, or
Gom) < (7'sm') it {77

j =7 and m < m/,
then {d(;m) : j € Z, 0 < m < A} with respect to “<” generates a martingale difference
sequence. So in view of ([B320) and the UMD-property we may introduce the following
new Rademacher means in (8:28):

1 22—1
LI e, 3 wosanier ], o
Qe2
Hence, we have
1 22 —1
Jullos, ~ | |52 @, 3 wasaail”|, ¢ (329)
Qe2

Fourth, with g » = Sahq in mind, we apply the cotype inequality (23] to (3:29) to
find that

22 —1

el s, (Z ToerSuly)

Finally, utilizing Corollary [3.5] concludes the proof:

221 1/e 2*—1 1/e
(3 WTmesnullfy ) = (3 ISwulfy) " =2VC)Sxuly, . m
m=0 m=0

Repeating the proof of Theorem without Corollary 35 and using Figiel’s bound
23) on shift operators directly, would lead to the weaker result
ISxull g @y < CA*2™ M CEXEDD |y 1 o), (3.30)

where the exponent 0 < o < 1 is the one occurring in (Z9)).
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3.4. The ring domain operator. We will define the ring domain operator Hy, which
is supported in the vicinity of the set of discontinuities of Haar functions. We will show
that Hy can be written as a finite sum of continuous images of stripe operators Sy. Thus,
estimate ([B.0) for the stripe operator carries over to the ring domain operator, that is,

[ Hull Ly ey < C - 2_/\/G(LZS‘(W))||7~t||L1§((1Rn)- (3.31)

For every @ denote by D(Q) the set of discontinuities of the Haar function h(Q1 eerl)
and define

DA(Q) = {z € R"™ : dist(z, D(Q)) < C - 2~ sidelength(Q)}
for all A > 0. Note that
IDAQ)| < C-277Q) (3.32)
for all A > 0 and @ € 2, where C does not depend on A or Q). Now we cover the set

D, (Q) using dyadic cubes E(Q) with sidelength(F(Q)) = 27*sidelength(Q), and call
the collection of those cubes ¥4 (Q). To be more precise,

I\(Q) = {E € 2 : sidelength(F) = 27 *sidelength(Q), E N DA(Q) # 0}, (3.33)

and we define

%= K. (3.34)

Qe2

The set covered by ¥#,(Q) is illustrated by the shaded region in Figure Bl where the
dashed lines represent the set of discontinuities D(Q). The cardinality # ¥#3(Q) does not

Q
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Fig. 5. The dyadic stripe %, (Q) embedded in the ring domain #3(Q) in dimension n = 2. The
picture is drawn for C' = 1.
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depend on the choice of @), so we note that

#75(Q) ~ 22, (3.35)
Finally, define the functions dg, » associated to the ring domain %3 (Q) by
dor= > hg, (3.36)
Ee?x(Q)

and the ring domain operator H) by

Hyu= Y (u,hq)dgaQ|™". (3.37)
Qe2

In the subsequent theorem, H) is dominated by the stripe operator Sy. This is done
by covering the ring domain function dg, » with continuous mappings of the dyadic stripe

functions gg x (see identity (340)).

THEOREM 3.7. Let X be a UMD-space, 1 < p < oo and n € N. For A\ > 0 we can
dominate Hy by Sy, that is,

[Haullzz, < ClSxullrs, (3.38)

for all w € L5 (R™), where the constant C depends only on n, p and the UMD-constant
of X.

A fortiori, we have the following estimate for H.

COROLLARY 3.8. Let X be a UMD-space, 1 < p < oo and n € N. If LK (R™) has cotype
C(LE (R™)), then there exists a constant C > 0 such that

”H)\UHL’)’((]R") <C- 27’\/6(LI’J((W))||U||L1;((1Rw) (3.39)

for every uw € L5 (R™) and X\ > 0, where C depends only on n, p, the UMD-constant of
X and the cotype C(L% (R™)).

Proof. Once we have proved Theorem [3.7] we obtain Corollary simply by plugging in
estimate ([B.20) for the stripe operator. m

Proof of Theorem[371. Let q denote the lower left corner of @, that is,
¢ =inf{x; :x € Q} forall<i<nmn,

where z7 respectively ¢; denotes the orthogonal projection of x € R™ respectively ¢ € R"
onto the vector e; = (1,0,...,0). Furthermore, let M; be the orthogonal transformation
swapping e; and e;, that is, the linear extension of

Miei =e;, Me;=e1, Me;=c¢; foralljé¢{1,i},
and finally define the stripe functions
9o = goa(Mi(z —q) +4q), Q€ 2, 1<i<n,
and the stripe operators

Sxihg =99, Q€ 2,1<i<n,
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with respect to the coordinate i. Clearly, the operators Sy ;, 1 < i < n, have analogous
P Y: ;
properties to Sy, in particular they satisfy the estimates
[ Tre Sxiull e gny < C - 27)\/8(L§((Rn))”u”LT)’((]R")v 0<k<2h—1,

for uwe L% (R™) and A>0. We can find a constant C' >0 and functions |c¢q i (k,,...kn),m| <1,
constant on dyadic cubes of measure 27*"|Q|, such that

n
dox = Z Z Z Tryer 0 0 Thpep © TineiCQui (ki oooikn) m9Qi- (3.40)
0,=1|k;|<C me{0,2X~1-1,2* ~1}

The ring domain #3(Q) and the dyadic stripe %, (Q) are pictured in Figure Bl Plug-
ging the previous identity into (3.37) and using estimate (Z9), we see that |[Hyul[zz is
dominated by a constant multiple of

z”: ZHTke Z UQCQ,ng,A,iler}

i=1 k Qc2

?
p
LX

where ug = (u, hg), and the summation over k extends over the set {0, A1 1,22 —1}.
Also, for the sake of brevity, we dropped the rest of the subscripts for the function cg ;.
Because we have the same properties in every coordinate 1 < ¢ < n, we only need to
estimate

HTkel > UQCQ719Q,>\|Q|71’
Qe2

for all k € {0,271 — 1,2* — 1}. Recall that
> ugegagaalQT =Y Y ugegihelQT
Qe2 QEZ Ec\(Q)

and observe that the collection

{TkelhE NS %)\(Q)a Q € Q}

forms a martingale difference sequence, separately for every 0 < k < 2 — 1. Since

L%

lcg.1] <1, we may estimate

HTkel > UQCQ,IQQ,A|Q|_1‘
Qe2

S HTkel > UQQQ,A|Q|_1‘
X Qe2

Since gg,» = Sxhg, we can now use estimate (324, and collecting all our inequalities
yields

L%

[Hxullzz, < CllSxullLy ,

concluding the proof. m



4. Decomposition of the directional Haar projection P

Given 1 < p < 0o and an integer n > 2, the directional Haar projection P : L (R™) —
L% (R™) is defined by
POu= 3" (u,n)1nS)|Q| (4.1)
Qe2

for all u € L% (R™).
In order to estimate P(), we decompose it in Subsection E.I] into a series of molli-
fied operators ), Pl(e), following [LMMTI]. Subsequently, wavelet expansions are used

in [LMMT11] to further analyze Pl(e).
On the other hand, we decompose Pl(6

P =3xS
()

) into a series of stripe operators

using martingale methods feasible in UMD-spaces. In Subsection we use T. Figiel’s
martingale approach (see [Fig90]) to find a suitable representation for Pl(e). In the fol-

lowing Subsection we define the main cases for further decomposition of PI(E), which
we then dominate by weighted series of ring domain operators Hy in Subsection L4l In

Subsection B8l we reduce the estimates for Pl(E)R;Ol to inequalities for Pl(g).

4.1. Decomposition of P©) into Pl(e). We give a brief overview of the Littlewood—
Paley decomposition used in [LMMII] and continue with further decompositions in Sub-
sections .2 and 3] different from the methods in [LMMII].

We utilize a compactly supported, smooth approximation of the identity to obtain a
decomposition of P(®) into a series of mollified operators Pl(e),

P =3"p. (4.2)
leZ

To this end, we fix b € C2°(]0, 1[") such that

/b(x) dr =1 and /xib(xl,...,mi,...,mn)dxi:O (4.3)
for all 1 <14 < n. For every integer [ define
A =uxdy, where dj(z)=2"d2'z) and d(z)=2"b(2z)— b(z). (4.4)

Then for all u € LE (R™),
w = Z A, (4.5)

lEZ

36]



An interpolatory estimate for the Haar projection 37

with the series converging in L% (R™). Denoting by 2; C 2 the collection of all dyadic
cubes having measure 277", we set

BPu=3" 37 (u, Aa(hg NhG Q1 (4.6)
JEZ QE2,
and observe that by 1), for all u € L% (R™),
PEy — Z Pl(e)u,

Iz

where equality holds in the sense of L% (R™). Setting fc(;)l = Aj+lh(€ L if Q € 25, we
rewrite ([AG) as
POu=3" (u f5)0G 101 (4.7)
Qe2

In contrast to [LMMTI] we will rather estimate the operator

PO =%"p" (4.8)

<0

instead of estimating each PZ(E), l < 0, separately.

4.2. The integral kernels Kl(e) and K of Pl(g) and P°). In this subsection we

identify the integral kernel K l(e) of the operator PZ(E). As mentioned in Subsection [[.2]
S. Miiller asks in [Mul99] whether it is possible to obtain (I2)) in such a way that the
original time-frequency decompositions are replaced by the canonical martingale decom-
position of T. Figiel (see [Fig90]). This paper provides an affirmative answer to this
question. The details of the decomposition are worked out in this subsection.

Note that

/K(6 z, y)u(y) dy, (4.9)
where
K@y =Y b @S5 Q™ (4.10)
Qe2

Now we expand K ) into the series

SN S S DK MR R (0)hD (). (411)
a,$€{0,1}" K,M,Qe2
(a,8)#0 \K\ZIM\

We seek a simpler algebraic form of ([@I1]), and therefore we distinguish the following
settings for the parameters o and g, with («, 8) # 0:

(1) B#0, a#0,
(2) B#0,a=0,
(3) B=0.

Note that due to the condition («, 8) # 0 in (@IT), case @) clearly implies « # 0.
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In case (), that is, 8 # 0 and « # 0, we begin by rewriting the inner sum of (£I1])
as

> G ) e MK MR R (@Rl ()
K,M,Qe2
| K|=|M]|

= Y USRI R () Y (b R KT ().

M,Qe2 Ke2
|K|=|M]|
If we now sum this identity over all o # 0, we get
> USHRIMITIRI RS (@RS ) (4.12)
M,Qe2
[M|=|Q|

for all 8 # 0 in case ().
In case (@), that is, 8 # 0 and a = 0, the inner sum of (&I reads
> USMDIMITIRIT P W) YD (hE LK k().

M,Qe2 Ke2
|K|=|M]|

Observe that the second sum is the conditional expectation of h(E), thus it is zero if
|K| > |Q|, and hg(z) if | K| < |Q|. So in case ([2)) we get

ST UL EIMITIQIT RS ()] (), (4.13)
M,Qe2
IMI<IQ)

with 8 # 0 fixed.
Finally, in case (@) we know that 8 = 0 and a # 0, as noted before. Therefore, the
inner sum of ([@IT)) reads

ST (S RS ) ) K THMITHQIT RS (2) - 1 (y)
K,M,Qe2

|K|=|M| e _ 1, (e
= > U5 IMITQIT RS () - 1 ().
M,Qe2
|M|=|Q|

Expanding the y-component of the last expression into a Haar series yields
S UStnm ) K MRS @)k ()

~e{0,1}" K,M,Qe2
v#0 IMI=IQI

= > > @R WIKITIRIT Y (fk tand b tan) (M|

ve{0,1}" K,Qe 2 MCK

v#0 |M|=|Q|
= Y Y @R OIETRTE Y b i,
ve{0,1}" K,Qe2 MCK

40 |QI<IK] IM|Z|Q

Observe that with K and @ fixed, the inner sum is indeed the conditional expectation of
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h(V) at a finer scale. Hence, h is reproduced, i.e.
S 1P )M =R,
MCK
|M]=|Q
and we obtain
o> o hIETIQIT G @k v) (4.14)
~e{0,1}" K,Qe2
7#0  |QI<IK]

in case (@3)).
Summing (£12) and I3) over all 5 # 0 and adding (£I4) yields

Z KZ(E”Y) (J), y)7

~e{0,1}"
V#0 (4.15)
K@) = > (S aSHIMIHQI RS ()RS ()
M,Qe2

We summarize the results of the preceding discussion in

PROPOSITION 4.1. For fized ¢ € {0,1}"\ {0} and every l € Z and v € {0,1}"\ {0} let

(Pl(e’wu)(x) = /KZ(E’V)(x, yu(y)dy  for all u € LK (R™),

. . 3 1 (e (4.16)
K@y = Y UonhDIMITQI G @hs) ),
M,Qe2
and fé;)z = Aj_HhS) for all Q € 2; (see (EQ) for details). If we define
PEY =S PEY and =375, (4.17)
1<0 1<0
then the integral kernel K(fﬁ)(a:, y) of PEY s given by
(P @) = [ KDyl d,
(4.18)

K@ y) = 37 (& BIMIT QIS @)hi) ().
M,Qe2

Furthermore, we have the following decomposition of the directional Haar projection P(®) :

ple) — Z (P(E ) +ZP(€ 7)) (4.19)

ve{0,1}" 1>0
0

where equality holds true pointwise in L5 (R™).

REMARK 4.2. To ease notation we will drop the superscripts (¢), () and (e, ) from all of
the operators P(E) P(E"Y) P(E) P(E’W) their respective kernels Kl(e), Kl(erv)’ K(_E), K(_E’W),
as well as from the mollified Haar functions fQ i’ fg ) and the Haar functions h(e), hg).
Compare Remark 211
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By dropping the superscripts we obtain the following generic representation for the
integral kernels KZ(E’V) and K(f”), abbreviated as K; and K _:

Ki(z.y) = Y (fauha)|M|7QI™ ho(@)har(y),
M,Qe2

K (z,y)= Y (fo,han)IM|7QI™ he(a)has (y).
M,Qe2
Note that by (18) and [@I6]), both the Haar functions ks share () and both h¢g share
the superscript (g). Throughout this article we will work with the generic representation
of the operators and will interpret every occurrence of a Haar function so that each
occurrence of a Haar function might have a different superscript, i.e.

_ _ )
Ki(z,y)= Y (S 05 M QI RS (@)n (),

M,Qe2
(o) ’ _ _1, (%) 8"
E_(my)= Y (fo bl M|I7QI  hg® (2)h5 (y),
M,Qe2

where each of the above superscripts is a vector in {0,1}™\ {0}. In correspondence with
(I08)-TI9) we obtain the generic operators P, and P_ with their respective integral
kernels K; and K_, as well as the generic mollified Haar functions fg; and fg.

4.3. Decomposition of P—the main cases. Henceforth we will use the notation of
Remark We will decompose the operator P, guided by the different behavior of the
coefficients (fq i, har), 1 > 0, M € 2, and (fg.,ha), | < 0, M € 2. This is primarily
caused by the different shape of the support of the functions fg;, | > 0, and fg,
[ < 0 (compare the support inclusions in ([@20) and (£ZI) below), in relation to the
size of the cubes M. We remind the reader that h¢g is an abbreviation for one of ),

v €1{0,1}"\ {0}

4.3.1. Estimates for the coefficients. First, we want to investigate the mollified Haar
functions fg, I € Z. To this end, let D(Q) denote the set of discontinuities of the Haar
function hg. Then

Dy(Q) = {z € R" : dist(z, D(Q)) < C - 27 diam(Q)}.
If I > 0, note that
/fQ,z(JJ) dr =0, supp fq C Di(Q),

[foul < C,  Lip(fo.) < C-2(diam(Q)) ",

(4.20)

and if [ < 0, we have
/fQJ(a:) dx =0, suppfg,CC- 2“'@,

[foul < C - 271D Lip(fo,) < €271+ (diam(Q))

where the constant C' does not depend on [ or Q.
Recall that for Q € 2; we defined

(4.21)

fai=Ajihg = hg * djyi = hq * (bjtit1 — bjp)-
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Taking the sum over [ < 0 yields

ZfQ’l = hQ * bj,

1<0
hence the mollified Haar functions fg defined in (£I7) are given by

fo=hgx*b; forall Qe 2,

where b;(z) = 27"b(27z). The functions fg have the following properties, which are easily
verified: there exists a C' > 0 independent of () such that

/fQ(x) dr =0, supp fo C CQ,

lfol <C, Lip(fq) < C(diam(Q)) ™",

(4.22)

for all @ € 2.

Proposition @3] stated below estimates the coefficients (fo.1, har), { > 0, and (fo, har).
The different behavior of the inequalities is determined by the ratio of the diameters of
the cubes Q and M.

PRrROPOSITION 4.3. For all dyadic cubes Q, M € 2 we have the following estimates for
the coefficients (foi, har), 1> 0:

(1) If diam(Q) < diam(M), then

[{fauhan)| < C-271Q). (4.23)
(2) If 27 diam(Q) < diam(M) < diam(Q), we get
|(fou, har)] < C - 271 diam(Q)(diam(M))" 1. (4.24)
(3) If diam(M) < 2~ ' diam(Q), we obtain
(o an)| < 02 S g, (1.25)
The constant C' does not depend on l, Q or M.
Moreover, for all dyadic cubes Q, M € 2 we have:
(4) If diam(M) < diam(Q), then
[(fa har)] < C(diam (@)~ (diam(M))™ 1. (4.26)
(5) If diam(M) > diam(Q), we have
[(f@ har)| < C1QI. (4.27)

The constant C' does not depend on Q or M.

Proof. First, we want to estimate (fg 1, har), so we fix [ > 0 and Q, M € 2.

If diam(Q) < diam(M), then using |D;(Q)| < 27!Q| and exploiting the boundedness
of fo, and hps implies (Z23).

If 27! diam(Q) < diam(M) < diam(Q), then the measure estimate

1D(@Q) N M| £ 27" diam(Q)(diam(M))"
together with (Z20) yields ([@.24]).
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If diam(M) < 27! diam(Q), then in view of Lip(fg,) < 2!(diam(Q))~! and [hy =0
in ([£20) we may infer ([@25].

Now we turn to the estimates for (fqg,har), Q, M € 2. If diam(M) < diam(Q), we
make use of

Lip(fg) < C(diam(Q)) ™",
according to ([@22]), and we obtain (Z20]).
For diam(M) > diam(Q), we exploit
|fol <C and supp fo C CQ
in (A22) to obtain (27). m
REMARK 4.4. Observe that the coefficients (fg i, has) respectively (fg, har) vanish if the
support of fo; respectively fq is contained in a set where hjps is constant (see Figure
on p. @)). More precisely, if we can find a K € 2 with 7(K) = M such that
supp fo, C K respectively supp fo C K,
then certainly
(fo.u, ha) =0 respectively (fo,har) =0.
Finally, note that for diam(M) > diam(Q) the cubes @ for which (fg, har) # 0
respectively (fo, har) # 0 cluster in the vicinity of D(M), the set of has’s discontinuities.

4.3.2. Definition of the main cases. For each | > 0 we split the set 2 x 2 according
to the cases in Proposition [£3] into the three disjoint collections

o ={(Q, M) : diam(Q) < diam(M)}, (4.28)
B, ={(Q, M) : 27" diam(Q) < diam(M) < diam(Q)}, (4.29)
6 = {(Q, M) : diam(M) < 2" diam(Q)}, (4.30)

respectively the two disjoint collections

- ={(Q,M) : diam(M) < diam(Q)}, (4.31)
B_ ={(Q,M) : diam(M) > diam(Q)}. (4.32)
Then we define the integral kernels
Az,y) = > (founhanho(@)ha ()| QM| (4.33)
(@M)€
Bz, y) = Y (fou ha)ho@)ha(y)|Q M|, (4.34)
(Q.M)e
Ciz,y) = > (fou ha)ho@)hu (y)|Q M|, (4.35)
(Q,M)e6,
respectively
A(wy)= Y (fohahe@)hu®)IQI™ M|, (4.36)
(Q,M)es_
B (z,y)= > (fo,han)ho(@)ha(y)|Q™ M|, (4.37)

(Q.M)ez
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and associate to each integral kernel the induced operator,
(A)(a) = [ Ao w)uly) d (4.39)
(Br@) = [ Bilevyuly)dy, (439)

(Cru)(z /Cl (z,y)u(y) dy, (4.40)

respectively

/A (z,y)u(y) dy, (4.41)

(B-w)(@) = [ B-(.vuly) dv (1.42)
Finally, note that

P=A+B+C;, foralll >0, (443)
P.—A +B_. (4.44)

4.4. Estimates for P, [ > 0, and P_. We will show that each of the operators A,
B}, Cf and A* , B_ (see Subsection E3.2)) can be controlled by certain weighted series
of ring domain operators; for details on Hy we refer the reader to Subsection [3.4

Combining the results for A;, B; and Cj, respectively A* and B_, yields the following
result.

THEOREM 4.5. Let X be a UMD-space, 1 < p < oo and n € N. Let L% (R™) have
type T(L (R™)). Then there exists a constant C' > 0 such that for all 1 > 0 and every
u € L5 (R™) we have

1Pl g, gy < € - 27 Y TEXEM o] 1y gy, (4.45)
where C' depends only on n, p, the UMD-constant of X and the type T(L% (R™)).
Moreover, there exists a constant C > 0 such that for all u € L5 (R™),
[ P-ullLr ®ny < Cllullzz &ny, (4.46)
where C' depends only on n, p, the UMD-constant of X and the type T(L% (R™)).
The proof of the theorem is divided into seven parts:

e Subsection [ 4.1} Estimates for A;.
e Subsection 4.2} Estimates for B;.
e Subsection Estimates for Cj.

e Subsection [ 4.4t Summary for P,.

e Subsection 4.5} Estimates for A_.
e Subsection Estimates for B_.
e Subsection [ 47t Summary for P_.

Keeping in mind that
P =A;+B;+ (), respectively P_=A_+ B_,
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we will have proved the theorem once we establish the inequalities (L47)—([£49), summa-
rized in Subsection 44 respectively (Z5L0)—(L5])), summarized in Subsection L47

4.4.1. Estimates for A;. In view of ([@28), (£33) and [@38) note that diam(Q) <
diam (M), and so we may utilize inequality (€23]). This setting is illustrated in Figure 6

M
AT o i
| Q") : |
OO 2
— ! : IZH:‘ : "
S R
2| L | s
= o |
2] | |
@ | |
OO0 | | D(M)
OO | |
| | v
Yy o ___ Lo !

Fig. 6. The ring domains ¥(Q), %(Q"), % (Q"), ¥(Q"") are contained in sets where the Haar
function hys is constant.

First, we split the set o7 (sce (2]))) into the disjoint collections < , A > 0, given
by
Ay ={(Q, M) € o : diam(Q) = 27 diam(M)},

and define the operator A; \ accordingly, that is,
Appu= > (fouhu)hqual|Q~ M|
(Q,M)e st

for all u =3 ;5 uxhi|K| ™. Clearly,

0
Alu = Z Aw\u.
A=0

Recalling that the coefficients (fq i, har) vanish if hps is constant on the support of fg
(see Remark [4]) and the definition of the ring domain ([333]), we see that

{Q: (fou, ha) # 0} C {Q: QN DA(M) # 0} = FA(M).
Using this fact, we have the identity

Appu = E:UMU\/!'F1 Z (fou, han)|Q| " he,

Me2 QeA (M)

hence glancing at inequality [@23]), utilizing the UMD-property and Kahane’s contraction
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principle we obtain

JAirullzg gy S 27| S0 war Mt ST g
Me2 QEYA (M)

L% ()

= 2_ZH Z uMdM7)\|M|_1‘

Me2
The last equality is the definition of the ring domain operator Hy (see (B31)). Applying
the triangle inequality, using the above estimate for A;  and invoking Corollary 3.8 yields

=27YH P (mny-
L2 (R") [ /\UHLX(R )

o0
— _ P n
1wl g gy S 270 27 M CEXED ) g gy
A=0
Evaluating the geometric series we obtain the estimate
| Al Ly my < C - 27 |ul| Ly gy, (4.47)
where C' depends on n, p, the UMD-constant of X and the cotype C(L% (R™)).
REMARK 4.6. Note that with A > 0 fixed, the collections ¥\ (M) are not disjoint as M
ranges over 2. But since the number of overlaps is bounded by a constant depending
solely on the dimension n and the constant appearing in the definition of D) (Q), the
above proof still applies.
4.4.2. Estimates for B;. In view of [{.29), (34) and [39) note that 2~! diam(Q) <
diam(M) < diam(Q), and so we may utilize inequality (£24). This setting is visualized
in Figure[7l

7(Q)

—_—— -

Z Q

|
>

sidelength(Q)
>
2[C7 - 27 sidelength(Q)

D(Q)

[
<

Fig. 7. The cubes M, M’ and M" intersect the ring domain ¥;(Q).

This time we prefer to analyze B}, of course with respect to the norm || - [|1s (mn),
where Y = X* and 1/p + 1/q¢ = 1. As before, we parametrize the series according to
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the ratio of the sizes of @ and M. So we split the set % (see ([29)) into the disjoint
collections %, », A > 0, given by

Bix={(Q,M) € B : diam(M) =2~ diam(Q)},
and define the operator B; » accordingly, that is,

Biau= Y (fou, hamdhqualQ| ' |M|™!
(Q,M)eRBi A
for all u = ZK@@ uxhr|K|™L.
Note that for (Q, M) € %, we have

{M : (fou,hm) #0} C{M : MNDy(Q) #0} = 77 (Q),
hence we can rewrite Blf AU as
Biyu= > ulQ™ > (fou han)M|[ " har
Qe Me¥\(Q)

Taking the norm, utilizing the UMD-property and applying Kahane’s contraction prin-
ciple to ([#24) yields the estimate

1By g S 27| S0 wal@l ™ Y
Qe2

Me\(Q)

LY. &)

- 24” > ugdgalQl™!

Qe2

LL@®n) 24”H)‘u”qu(R")'
Y

The last equality is the definition of the ring domain operator Hy (see (B31)). Recall
Bju = Z B \u,
A=0

so applying the triangle inequality, using the above estimate for By, and invoking Corol-
lary 3.8 yields
l

!
IBfullpg ey S 27 Z 2N Haullpg ey S 27 Z 2'\(1_1/8(LY(R")))||U||L§V(Rn)~
A=1 A=1

Evaluating the geometric series we obtain the estimate
_ q n
B ullps ®ny < C -2 ey ® ))||U||qu(Rn)a (4.48)
where C' depends only on n, g, the UMD-constant of ¥ and the cotype C(L{ (R™)).
4.4.3. Estimates for C;. In view of ([@30), ([35]) and (@40) note that now diam(M) <
27! diam(Q), and so we may utilize inequality (@25]). This setting is visualized in Figure[®l
As in the preceding case we aim at estimating the adjoint operator C}; so with Y = X*

and 1/p+1/q = 1, we split the collection 4; (see ([@30)) into the disjoint collections % x,
A>1+1, given by

G =1{(Q,M) e % : diam(M) = 2~ diam(Q)}.
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|
>

sidelength(Q)
-
L-T <
e
2[C7 - 27 sidelength(Q)

D(Q)
M ———-

e
<

Fig. 8. The tiny cubes M, M’ and M" are contained in the cover of the ring domain % (Q).

We define the operator Cj » accordingly, that is,

Ciau= > {fouhahqua|Q~ M|~
(Q,M)EL A

forall u=73 o uhg|K|™'. The adjoint operators C} and C}' are given by
(oo}
Ciu= Z > (o) M| haruglQ ™ = Y Cryu.
A=l+1Q,M€EF) \ A=Il+1
Observe that for (Q, M) € 6,5 we have
{M : <fQ,l,hM> #+ 0} C {M :MN Dl(Q) #* @},

therefore
> <] Y ha| =ldadl
(Q.M)€€ » Me¥i(Q)
(fQ,i,hm)#0

We proceed by applying essentially the same steps as in the preceding cases. Using the
UMD-property and subsequently Kahane’s contraction principle we obtain

||Cz AU'HL” R7) <22 AH Z uq dg|Q|” )
Qe2

212_/\”Hlu”L’§,(R")~

Hence, applying the triangle inequality and using the above estimate for C}', we get

||Cl*u||Lq (R?) S ||Hlu||L‘1 (R™)-
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Finally, Corollary yields
IC ull g oy < C -2 HEULED), (4.49)
where C' depends only on n, ¢, the UMD-constant of ¥ and the cotype C(L3 (R™)).

4.4.4. Summary for P,. First, note that, for Y = X* and 1/p+1/q =1,
1 1

(TR =1L (R and ey * @@ =

Second, we use

1B : Ly (R™) — LY (R™)|| < [|1B1 = L (R™) — LE (R™)]],

ICF: LY (R™) — LY (R™)|| S IC : L5 (R™) — LE (R™)]),
to combine the inequalities (£47)—-49) via the identity

P =A+B+C.
Thereby we obtain
1Py : L5 (R™) = LA (R™)]| < €27 (- W/ TUAEDD),

where L% (R™) has type T(L% (R™)) and C depends only on n, p, the UMD-constant of
X and the type T(L% (R™)).

4.4.5. Estimates for A_. In view of ([@31)), @306) and (A1) note that diam(M) <
diam(Q), and so we may utilize inequality (£20). In this case the size of the cube M
cannot exceed the size of @), so we may indeed use inequality ([@28). We rather want to
estimate A* than A_, therefore we set Y = X* and ¢ such that 1/p+1/¢g = 1.

First, we split the set @7_ (see [@31))) into the disjoint collections <7_ , A > 0, given
by

A =1{(Q,M) € o/ : diam(M) = 27> diam(Q)},
and define the operator A_ ) accordingly, that is,
Aju= > (fo. ha)houa@Q| T M|™!
(Q:M)ea_ 5

forallu=73 .o ughr|K|~t. The adjoint operators A* and A* , are given by

Au=3" 3" {fo hadughu|QT M| = 3" A% yu,
A=0

A=0Q,MEot_

Utilizing the UMD-property and subsequently Kahane’s contraction principle (2.4]) with
respect to ([L20), we infer that

I el e 27020 D wel@l b
Q€2 (Q.M)es
MN(CQ)#D

LY (R™)

For every (Q € 2 we observe that

Z hM‘ <lecg and 1lgg < ‘ Z Tth‘
(Q.M)ea_ 5 Im|<C1
MN(CQ)#0
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for some constant C7. Combining the last two estimates and applying Kahane’s contrac-
tion principle together with estimate ([2.9), we get

1A% sl gy £ 27| B wel@l™ 30 ke, S0 M oy o
Qe2 (QM)e_ v
MN(CQ)#£D
Summing over A > 0 yields
[AZullLe &ny < CllullLe @n), (4.50)

where C' depends only on n, ¢, the UMD-constant of Y and the cotype €(L{.(R™)).

4.4.6. Estimates for B_. In view of [@32)), (@31) and (£22) note that diam(M) >
diam(Q), and so we may utilize inequality (£27]).
As usual, we split the set B_ (see ([@32)) into the disjoint collections H_ x, A > 1,
given by
B_=1{(Q,M)c #_ :diam(Q) = 2~ diam(M)},

and define the operator B_ ) accordingly, that is,

Boau= Y (o hadhguulal M~
(QvM)e'%—)\

for all u = )", o uxhi|K|™'. Obviously,

B_u= i B_ \u.
A=1

For all (Q,M) € %_ x we have the inclusions

{Q: (fq,har) # 0} C{@Q: (CQ)ND(Q) # 0} C V4(M).

Successively using the UMD-property, Kahane’s contraction principle applied to (27
and the inclusion above, we obtain

1B-sullign S | 30 walM™t > ko
Me2 QEYA (M)

= H Z ’u,]\/[d]\/[,)\|.]\4|_1
Me2

The last equality is the definition of Hy (see (B31)). The main result on ring domain
operators, Corollary [3.8] yields

LE (R")

L7 (Rm) = ”H)\UHL’)’((]R")-

< 9= Ne(LL(R"

[1B-aullzz @y S [[Haull Lz @ny Dllull g, @n)-

Hence, summation over A > 1 gives
| B-ull Lz, gy < Cllullze, gny, (4.51)
where C' depends only on n, p, the UMD-constant of X and the cotype C(L% (R™)).

4.4.7. Summary for P_. First, note that for Y = X* and 1/p+ 1/q = 1 we have

p n\\* __ 1749 n 1 1 _
(R B) =Ly (&) and 5y *earen)
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Second, we use
|AZ : LY (R") — LY (R™)|| S 1A~ : L% (R™) — LE (R™)]],
to combine the inequalities (£50) and (£51)) via the identity
_=A_+B_
so that we obtain
IP_: I (R") - L& )] < C,

where L% (R™) has type T(L% (R™)) and C depends only on n, p, the UMD-constant of
X and the type T(L% (R™)).

4.5. Estimates for P(E)R*1 Following [LMMII| we will establish estimates for
(E)R 11 € Z, by reducing them to estimates for P( ) We exploit the fact that (R byx

maps the mollified Haar functions le to functions k‘é? )l having similar properties. Due
to the algebraic identity ([£52) below this amounts to controlling the support of the k¢ i,
besides factors depending on [. Assuming that ¢;, = 1, we have

Supp(Eio h(QE)) C Qa
restricting the support of the functions kg ;; defined in ([@53)), and exhibiting the condi-

tions asserted in (£50) and (£57).

We do not omit the superscripts (¢) this time.
It is a well known fact that one can write the inverse of the Riesz transform R;O L as

Ri_ol =R, + Z E;,0iR;, (4.52)
1<i<n
iio
where E;, is given by
E; f(z / flx1, o ®ig—1, 8, Tigt1s-- -5 Tn)ds, T = (T1,...,Zn).

We introduce the family of functions
kS = M(Ei,0ih%))  if Q € 25, (4.53)
and consider

POR =" 3" (Rigu, Ay (hS))hS1Q1 7

JEZ QGQ

+ 33 S bR A (hS)RS) QI (4.54)
1§;§n JEZ Qe2;
1F10

Since the Riesz transforms R;, 1 < i < n, are continuous on L% (R™), it is obvious that
the first sum of ([@54) can be treated as if it were P, (see also (G]).
For the second sum of ([54]), we fix a coordinate i # ig, rearrange the operators in
the scalar product and use the functions defined in ([@53), hence
> > EadiRiu Aa(hg)hG 1QI ™ = Y (Riu k) )0 1Q1

JEZ QE2; Qe2
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Due to the continuity of the Riesz transforms R; : L% (R™) — L% (R") we may estimate
the following type of operator:

Eu="Y"(uk5) )00 (4.55)
Qe2
instead of the second sum in ([£54]).
In order to estimate K l(_?, we need to examine the analytic properties of the functions

kS I 1> 0, then

/kg,)l,i(x) dr =0, supp kg?l?i - DZ(E) (Q),

(4.56)
k).l < 02, Lip(h$),) < C - 2%(diam(Q)) ",
and for [ <0,
K (2)de =0, suppkl),ccC-2lQ,
/ e o (4.57)

k574 < €27 MFD - Lip(k) ) < € 2710 (diam(Q)) .

Note that the above properties of kg_)l , depend in particular on the coordinatewise van-

ishing moments of b (£3)), introduced by A; in (IZEI; and (£6). Furthermore, observe that
the definition of kS?L , involves an integration of hg with respect to the variable x;,. Now
if ;, = 1, then E;, hg) is compactly supported in @, but if €;, = 0, then supp(E;, hg))
is unbounded.

If we compare this with the properties ([20) and (@21 of fé;)l, it turns out that
the properties coincide if [ < 0, and that 27%8,)1,1 satisfies the same conditions as fg)l if
1 > 0. Inspecting the proof of Theorem 5] we note that those arguments where solely
depending on the analytic properties (£20) and @21)) of fg )l With regard to (£56)
respectively (LI71), the same proofs are feasible with the functions ké;)l’i replacing fg,; if
1 < 0, respectively 27 kéi)l?i replacing fo if I > 0. Furthermore, we have to replace P,
by K ; for every 1 <i <n.

Altogether we obtain the following theorem from the estimates of Theorem
THEOREM 4.7. Let X be a UMD-space, 1 < p < oo, n € N and let L5 (R™) have type
T(L% (R™)). Furthermore, denote by R;, the Riesz transform acting in direction io and let
giy = 1. Then there exists a constant C > 0 such that for everyl > 0 and all u € L (R™)

we have ’
1P R ull g gny < C - 2V TERED ]| o ), (4.58)

where C' depends only on n, p, the UMD-constant of X and the type T(L% (R™)).
Moreover, there exists a constant C > 0 such that, for all u € L% (R"™),

1P R o,y < Cllullag o, (4.59)
where C' depends only on n, p, the UMD-constant of X and the type T(L5 (R™)).



5. Appendix

In order to keep the paper self-contained, we include several auxiliary results used in this
work.

Lipschitz estimate for separately convex functions. We record a Lipschitz esti-
mate for separately convex functions satisfying convenient growth estimates on the Ba-
nach space X. The resulting inequality holds without any assumptions on the underlying
Banach space X.

THEOREM 5.1. Let X be a Banach space, n > 1, f: X™ — R be separately convez, and
g: X" = R, where g(x) =1+ >0, |lzill%. If 0< f(z) < g(z), z € X, then
[f(2) = f)l < CA A+ [lelxn + lyllx) "z = yllxe (5.1)

for all x,y € X™. The constant C > 0 depends only on n and p.
Proof. Let x #y € X™, 1 <k <n, and define

fe(®) = f(z1, . or—1, @6 + H(Yr — Tk), Thot 15 - -+, Tn),

gk(t) = g('xh vy Tk—1, Tk + t(yk - xk)?'xk-‘rla DRI ;xn)7

() = llze + tyr — 1)l x,
for all ¢ € R. We may assume that f(0) < fi(1), otherwise we would switch xj, and y.

Observe that ng(t) is increasing if ¢ > 2||zx||/||lyx — @], hence gx(t) is increasing if
t > 2||k|l/llye — zk||- To justify this claim, assume there exist ¢; > to > 2||zk||/||yr — k|l
such that ng (1) < ng(to). The convexity of ny(t) implies nx(0) > ng(to), so
el = [lzs +to(ye — 2x)ll = tollyn — zill = llzkll > [k,

which is a contradiction. Thus we proved that ny, is increasing for all ¢ > 2|z /||y — &/,
and so by continuity for all ¢ > 2|z ||/||yx — x| as claimed.
For tg < t; which will be specified later, we define the affine functions

01 (t) = fr(0) +t(fe(1) — fr(0)),
gr(t1) — gk(to)(

ba(t) = gi(to) + = t—to),
1— %o
and let ¢ denote the point where ¢2(f) = 0, that is,
_ t
Fotg— — 9t (5.2)

gr(t1) — gr(to)
[52]
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Now we prove that if 1 <t <ty < t; and to > 2||ak||/||lyx — x|, then

1) = ful0) < 2= 0:l0)

53

(5.3)

Assume that (53) does not hold; then since fx(0) > 0 and # > 1, we have ¢1(t) >
lo(t) for all ¢ > . Since fi(t) is convex we know that fi(t) > ¢1(¢), t > ¢, and hence

Jr(t1) = £1(t1) > La(t1) = gk (t1), which contradicts fi(t) < gr(t), t € R.

Now we want to impose conditions on o < t; such that ¢ > 1. Observe that since

ng(t1) > nk(to), we obtain

k(1) — gk(t —1nk(t) — nilto
nlt) = ulto) | elt) = ()
t1 —to t1 —to
_ 2|z
O (T 3
t1 —to
and plugging this estimate into (5.2) yields
9k (to)
pllze +to(ye — 2P~ (lyk — 2kl = 2[l2ell/ (t1 = to))
If we impose the following constraints:

o (t1 —to)llyx — i > 20|z,

b tOHyk - ka > QCH%H, 1<i<n,
o tollyr — x| > C,

o tollyx — k|| > 2||zk,

t>ty—

in order to estimate (5.4]), we get
t>tg— Ay — Ay — A3,

where
4 1 to
LT p(1—1/C)la +to(yk—xk)||p*1||yk—$k|| p(C —1)P’
(3] to(n —1)
Ay = < ,
’ Z < pllok + to(yr — ze) 1P~ Hlye — zxl|(1 = 1/C) = p(C' —1)P
Ay = |\$k+t0( k=)l b1+ C)

p(1 =1/C)lyk —zk| = p(C —1)
Using these estimates we obtain
E>t0<1— L »nol 1+C>—t0-a
= pC—17 pC—1F pC—1)
If we choose C large enough so that o > (p — 1)/(2p) and define

el C 1 _
Z +—, =3,
|y —ka lyr — okl «

(5.5)

(5.6)

then ¢y and t; satisfy our constraints. Hence we can infer (5.5), and get 1 < ¢ < ¢ty < t1,

to = 2[|lzk||/llyx — zxl|. Thus B3) yields

Ful1) — fu(0) < Zt) — 9x(to)

t1 —to

3

(5.7)
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where tg,t; are defined in (&.). A straightforward computation shows that
gk (t1) — gk(to)
t1 —to
and plugging (B.0) into the latter estimate we obtain
gr(t1) — gr(to) (
t1 —to ~
Combining (57) with (.8) and recalling the definition of fj yields

< (trllyn — zillx + llzwllxn )P~ lye — zllx,

1+ lyr — 2ellx + Nzl x»)P " Hlye — znllx. (5.8)

|f(Z1, o 1, Tk Tt 15+ -5 Tn) — F(@15 0y Tty Yks Thot 1y -+ -5 Tn)|
S (U llyk = 2rllx + l2llx)P " Hlye — zllx. (5.9)
Using (B.9) inductively one can verify that

[f(2) = F)I < CUA+ [lzllxn + lyllx)" e = yllxn,

where C' depends only on n and p. =

Convolution operators on L% (R™). Let F and X be Banach spaces. A bounded
linear operator J : ' — X is a Dunford—Pettis operator if it is weak-to-norm sequentially
continuous, which means that whenever {e,}, C E converges to e weakly, then Te,
converges to T'e in norm (see Section [2).

THEOREM 5.2. Let E and X be Banach spaces and let J : E — X be a Dunford—Pettis
operator. With ¢ € S(R™) and ¢ € C°(R™) fized, define the kernel

K(z,y) = ¢(z —y)d(y), x,y eR™
Then if 1 < p < oo, the operator T : L% (R™) — LE (R™) given by

(Tw)(x) = - K(z,y)J(u(y)) dy

is Dunford—Pettis.

REMARK 5.3. Theorem remains valid if we replace Dunford—Pettis by compact, in
both the hypothesis on J and the conclusion for 7.
Proof of Theorem[53. Let € > 0 be fixed. First note that K € §(R™ x R™), hence
1 1
(14 [ +2 (1 + [yt
Let By denote the smallest cube centered at 0 such that
1

1+ |z

and let By denote the smallest cube centered at 0 such that
Y(y) =0 forall y ¢ Bs.

Choose n € C2°(R™) with 0 < n(z) < 1 for all z € R", n(z) = 1 for all € $ By, and
n(x) =0 if z ¢ By. Now we split K according to 1 into

K(z,y) = n(@)K(z,y) + (1 = n(2)) K (z,y) = Ki(z,y) + Ka(2,y)

K (2, y)| < Cn

(5.10)

<e forallz¢ ;B
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for all z,y € R™. Notice that

supp K1 C By x By and Ky(z,y) =0 forallz € %Bl, y € R™
We now define two nested collections & and 2 of cubes. We begin by setting &2y = {B1}
and 2y = {B>}. Assuming that we have already defined %,...,#; and Zy,...,Z2;,
we proceed in the following way. We split every P € &; respectively Q € Z; into 2"
subcubes having half the diameter of P respectively @ and collect those cubes in Py 1
respectively Zy11. Finally & = Uj Pjand 2 = Uj 2;. We define the o-algebra

?j:U({PxQ:PGWj,QEQj})
and the conditional expectation
E;(-) = E( | F5).

Associated to each direction § € {0,1}™\ {0} and cubes P € & and Q € 2, we define

: (%) (%)
Haar functions hp’ and hg® by

W = (h) @@ (hr,)’ and hgP® = (hy)" @ ® (hy,)",
where P =1y x «-- x I, with || =--- = |I,|, Q = J1 X -+ x J,, with |J1| = -+ = |Jy],
and we use the convention that (hx)? = 1x.

Recall that K; is smooth and supported on By x Ba, so E;(K;) — K; uniformly
in R™. Hence, for given § > 0 we may find an integer Ny > 0 such that
|K1(x,y)—(IENK1)(x,y)| S(s for all xvyean
for all N > Ngy. This allows us to choose N so that
swp [ |Ka(ey) — (B Ky do < e (5.11)
yeR™ J By
Note that supp K1 C B; x Bg as well as supp(Ey K1) C By X Bs.
Now let us define the approximating operator T : LI, (R™) — L& (R™) by

To)w) = [ (B K@ 0) I (wlw) d
With u € LT, (R™) fixed, we see that

[ i) - ©x K Gl

|Tu — Teull s, <

L%

; ‘ Ko () (uly)) dy

R™ L%
=A+B.

In order to estimate A we use the Minkowski inequality for integrals and Hélder’s in-
equality to find

s [ ([ 1K) - @ K@ P i) st ay

’

< < / ) ( / K (@) - (Ex K1><x,y>|pdx)p'/pdy)1/p | Tull s,
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where p’ denotes the Holder conjugate index to p. Recall that supp K1 C Bi X Bo,
supp(Ex K1) C By X Ba, and appeal to estimate (511)) to obtain
A < e|Bo| M| Tul|

In a similar fashion we estimate B, but using Ky(z,y) = 0 if x € %Bl, y € R™, and
estimate (.10) to find

p'/p 1/p’
e ([ ([, b)) g <l
n EBI c

where C' does not depend on ¢.
Considering our estimate for A and B and that J is a bounded map, we get
[T —Teull gy, < eCllullzs,
with C' not depending on e. Consequently,
|T. — T : L% (R™) — LE(R™)|| = 0 as ¢ tends to zero.

If we can show that T, is Dunford—Pettis for every € > 0, then one can easily verify that
T is Dunford—Pettis as well.

To this end, let € > 0, and choose B; and N according to our construction above. Let
um — 0 weakly in L (R™). Then certainly sup,, [[umllz < C for some C' > 0. For each

u € LE(R™), we split u into u = u) +u®, where u") = u - 1p, and u® = u - 1(p,)..
Since T us = 0, we may assume that u,, is supported in By, hence

=Y Y Y kO mier

6€{0,1}m j=0 Qe 2;

where hg) =0if Q # B, and hgz) = 1p,. Since u,, converges to 0 weakly in L% (R"),
one can verify that (u,,, hg)> — 0 weakly in F for all Q € £ and ¢ € {0,1}". This is
due to the fact that hg)e* € (L%(R™))* whenever e* € E*. Now since J : £ — X is
Dunford—Pettis, we deduce that ||J(<um,hg)>)||x — 0 asm — oo for all Q € £ and
de{0,1}™.

Since T.u,, is given by the finite sum

N—-1
) ) _ _
(Teum)@) = > S S (KL A @ B)T (. b VR ()| PI7HQIY,
,0€{0,1}n j=0 PeZ;
v,0€{0,1}" j ocz.

where hg,)) ® hg) =0if (P x Q) # (B x By) and h%,)l) ® hgz) =1p, ® 1p,, we infer that
[Tettm |z — 0 as m tends to oo, therefore 7. is Dunford-Pettis.
Finally, let us verify that 7 is Dunford-Pettis, too. Let u,, — 0 weakly in L%, (R")
and note that
1T uml Lz (rry < [ Tettmll Ly, mny + CI(T = Te) : LR(R™) — Ly (R™)]]
for all € > 0 and m, where sup,, ||un,| < C. Now with ¢ fixed, letting m — oo and T
being Dunford—Pettis implies that ||T:u.,|| — 0, and so we obtain

lim | Tup| g ) < CIT = T Ly (R") > Ly (RY)|
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for all £ > 0. We conclude the proof by recalling that || — T, : LY, (R") — L% (R™)|| = 0
ase — 0. m

Fourier multipliers on L% (R") and the Sobolev spaces Wy ”(R™). From now
onward the Banach space X has the UMD-property. We gather some facts contributing
to the proof of Theorem

THEOREM 5.4. Let X be a UMD-space, n > 1 and 1 < p < oo. If a € §(R™; C), define
ar(x) = alz/k) for all x € R™ and every positive integer k. Then there exists a constant
C > 0 such that

lakulw-1p@n,x) < Cllullw-10@n.x), (5.12)
0x(a)ull 1o ) < € - 2 lllw-sr e (513)
for allu € W=LP(R™; X)), k > 0. The constant C does not depend on k.
Proof. Note that in UMD-spaces

lullw—rn@nixy = 157 (€)™ Fu) zon i),
where () = (1 + |€|2)1/2 and F denotes the Fourier transform. Since

FH((6) T (aww) (2) = (2m) "/ /R e " F e () ()™ T, (F1((6) ' Fu)) (x) d,

where
T,y f =T Hmy(©)FF(&)),  my(&) = () E+m) " )™V,

we obtain

lekully =1 (e ) < [ Feuw(m) )™ [l nimy §£H§||Tm" (T T [| 1o (o)

Observe that (€ + n)(n) > ¢(&) for a constant ¢ > 0, hence |8§mn(§)| < A(&)~ 181 for all
multi-indices 5. Note that the constant A does not depend on 7, if N = N(3) is chosen
sufficiently large. Setting NV = n+ 2 will be good enough for our purposes. Thus we know
by [McC84, Theorem 1.1] that

T, - LP(R™; X) — LP(R™; X)|| < C,
where C' does not depend on 7, hence
laullw 10 @y < CllFar () )™ 2| L2 ey [T (€)™ Fu(€)) | o (rn . x)-
Since a € §(R™; C), one can check that
[Far(m)(m)™ (| 11 (grmy < Cas
thus we proved inequality (5.12).
Now we prove inequality (5I3) by using (512). Define § = 0;a, and Bi(x) = B(z/k)

for all x € R™ and every positive integers k. Then clearly 0;ay = % Bk, and since S is in
S(R™; C), we may use estimate (B12)) with o and «y, replaced by 8 and Sy, yielding

k”(aiak)unw—lvp(w;x) = ||5ku||w—1m(w;x) < C||u||W—1vP(R";X)

for all positive integers k. m
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THEOREM 5.5. Let E and X be Banach spaces, assume that X has the UMD-property,
and let J : E — X be a Dunford—Pettis operator. Let R; denote the Riesz transform with
respect to direction i, and let ¢ € C2°(R™). Then
Ri(¢ - Ju) = (RT1)(u) + To(FH(() 16 - F (¢ - Ju))) (5.14)

for all uw € LY, (R™), where

Ty : L% (R™) — L5 (R™) s Dunford—-Pettis, and

Ty : L% (R™) — L5 (R™) is bounded.
REMARK 5.6. Theorem remains valid if we replace Dunford—Pettis by compact, in
both the hypothesis on J and the conclusion for 7.

Proof of Theorem [543 If uw € LY (R™), then Ju = (z — J(u(z))) € L% (R™). Let us
choose a smooth cut-off function ¢ € C°(R™) such that 0 < ¢ <1, p(z) = 1if |2| < 1/2
and ¢(z) = 0 if |z| > 1. Observe that
Ri( - Ju) = FH&JE| ™ (v - Ju)
= RiI o T Ju) + (A = p(©)&lel ™ T - Ju))
= Ri(T (@) % (¥ Ju)) + T (1 = (&) E]7HE)E) T & - T(w - Ju))
= (RiT)(u) + T (T ()T &T (¥ - Ju))),

where
Ti)e) = [ T~ eIl iy, we TR
(Tov)(z) = F~1(m - Fv)(x), v e LE(R™).

The smooth function m is given by m(&) = (1 — p(£))(£)|¢]7! and satisfies
|0¢m(§)| < Aq (¢)~1el " for all multi-indices o and & € R™,

and is therefore a Fourier multiplier.

The representation of the operator T} fits the hypothesis of Theorem [5.2] from which
we deduce that Ty is Dunford—Pettis.

Since m satisfies the above differential inequalities, we know from [McC84, Theorem
1.1] that T» is bounded. =
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