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Abstract. Let r ∈ [0, 1]. A set A ⊆ ω is said to be coarsely computable at density r if
there is a computable function f such that {n | f(n) = A(n)} has lower density at least r.
Our main results are that A is coarsely computable at density 1/2 if A is computably
traceable or truth-table reducible to a 1-random set. In the other direction, we show that
if a degree a is hyperimmune or PA, then there is an a-computable set which is not coarsely
computable at any positive density.

1. Introduction. In recent years, a number of investigators have con-
sidered algorithms which frequently yield correct answers but may diverge
or yield wrong answers on some inputs. Here “frequently” is often measured
using (asymptotic) density or lower density, so we review the definitions of
these.

For A ⊆ ω and n > 0, define

ρn(A) =
|A ∩ {0, 1, . . . , n− 1}|

n
.

The upper density of A, denoted ρ(A), is defined as lim supn ρn(A), and the
lower density of A, denoted ρ(A), is defined as lim infn ρn(A). The density
of A, denoted ρ(A), is defined as limn ρn(A), provided that this limit exists.
By the strong law of large numbers, almost every set (in the usual coin-toss
measure on 2ω) has density 1/2. On the other hand, the sets A with ρ(A) = 0
and ρ(A) = 1 (and so ρ(A) undefined) are comeager in the usual topology
on 2ω.
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One major notion of frequent computability is generic computability.
This has been applied to analyze the complexity in the generic case of de-
cision problems in group theory (see, for example, [KMSS]). A set A ⊆ ω is
generically computable if there is a partial computable function ψ such that
ψ(n) = A(n) for all n in the domain of ψ, and this domain has asymptotic
density 1. Generic computability for subsets of ω is studied in [JS], and con-
nections between asymptotic density and computability theory are studied
in [DJS].

Suppose now that we wish to consider frequently correct algorithms
which always yield an output. Then we must allow the possibility of some
incorrect answers. A set A is coarsely computable if there is a (total) com-
putable function f such that {x | A(x) = f(x)} has density 1. Coarse
computability and generic computability are independent in the sense that
neither implies the other [JS, Theorems 2.15 and 2.26].

Weakenings of these notions have also been considered, where sets of
density 1 are replaced by sets whose lower density is at least a given number.

Definition 1.1. Let r be a real number in the interval [0, 1] and let
A ⊆ ω.

(i) [DJS, Definition 5.9] A is computable at density r if there is a partial
computable function ϕ such that ϕ(n) = A(n) for all n in the domain
of ϕ, and this domain has lower density at least r.

(ii) [HJMS] A is coarsely computable at density r if there is a total com-
putable function f such that {n | f(n) = A(n)} has lower density at
least r.

Note that we use lower density rather than upper density in these def-
initions since we wish our algorithms to function well from some point on,
rather than just infinitely often. Also note that a set A is generically com-
putable if and only if it is computable at density 1, and A is coarsely com-
putable if and only if it is coarsely computable at density 1.

These definitions suggest measuring the complexity of a set A by con-
sidering {r | A is computable at density r}, or the analogous set for coarse
computability at density r. As these sets are closed downward in the unit
interval, we instead just consider their sups.

Definition 1.2. Suppose A ⊆ ω.

(i) [DJS, Definition 6.9] The asymptotic computability bound of A is

α(A) := sup{r | A is computable at density r}.

(ii) [HJMS] The coarse computability bound of A is

γ(A) := sup{r | A is coarsely computable at density r}.
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As an example, note that if A is a 1-random set, then α(A) = 0 and
γ(A) = 1/2. In fact, to get α(A) = 0 it suffices to assume that A is weakly
1-random, and to get γ(A) = 1/2 it suffices to assume that A is Schnorr
random.

Note that if A is generically computable, then α(A) = 1, and if A is
coarsely computable, then γ(A) = 1. The converse of each statement fails.
(This is proved for α in [DJS, Observation 5.10], and the same argument
works for γ, since R(A), as defined there, is coarsely computable only when
A ≤T 0′ by [JS, Theorem 2.19].)

It is shown in [JS, Theorem 2.20] that every nonzero Turing degree con-
tains a set which is neither coarsely computable nor generically computable.
This suggests associating numbers with degrees a which calibrate the extent
to which all sets of degree at most a are approximable by frequently correct
algorithms. This turns out to be interesting only for coarse computability
since every nonzero Turing degree contains a set which fails to be generically
computable in a very strong sense, as explained in the next paragraph.

Myasnikov and Rybalov [MR1] defined a set A to be absolutely undecid-
able if every partial computable function ϕ such that ϕ(x) = A(x) for all x
in the domain of ϕ has a domain of density 0. (Note that this implies that
α(A) = 0, and it is easily seen that the converse fails.) Bienvenu, Day, and
Hölzl [BDH] proved that every nonzero degree contains an absolutely unde-
cidable set. Their proof uses an error-correcting code, the Walsh–Hadamard
code.

However, in this paper we attempt to demonstrate that it is interesting
to assign to each degree a a number Γ (a) which measures the extent to
which all a-computable functions approach being coarsely computable.

Definition 1.3. The coarse computability bound of a degree a is given
by

Γ (a) = inf{γ(A) | A is a-computable}.

As mentioned, it was shown in [JS, Theorem 2.20] that every nonzero
degree contains a set which is not coarsely computable. It is natural to
try to refine this by showing that Γ (a) is “small” in some sense for every
nonzero degree a. The next result, due to Hirschfeldt, Jockusch, McNicholl,
and Schupp, is a step in that direction.

Proposition 1.4 ([HJMS]). If a is a nonzero degree, then Γ (a) ≤ 1/2.

Proof. It suffices to show that for every noncomputable set A there is
a set B ≡T A such that γ(B) ≤ 1/2. The idea is to code each bit of A by
many bits of B so that an algorithm for B which is correct more than half
the time yields an algorithm for A which is correct with only finitely many
errors, by “majority vote.”
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For each n, let In = {k ∈ ω | n! ≤ k < (n+ 1)!}. For any set A, define

I(A) =
⋃
n∈A

In.

We claim that I(A) ≡T A and γ(I(A)) ≤ 1/2. The first statement is obvious.
To see that γ(I(A)) ≤ 1/2, assume for a contradiction that I(A) is coarsely
computable at some density greater than 1/2. Let f be a computable func-
tion such that {x | f(x) = I(A)(x)} has lower density greater than 1/2.
Then, for all sufficiently large n, we have f(x) = I(A)(x) for strictly more
than half of the elements of In. It follows that, for all sufficiently large n,
n belongs to A if and only if f(x) = 1 for at least half of the numbers x ∈ In.
Hence, A is computable, which is the desired contradiction. Consequently,
γ(I(A)) ≤ 1/2.

Let I(A) be as defined in the above proof. Note that, for every A, I(A)
is coarsely computable at density 1/2, since I(A) agrees with the set of even
numbers on a set of lower density at least 1/2. It follows that γ(I(A)) =
1/2 for all noncomputable sets A. Hence, the above proposition cannot be
improved without using a different construction. In the next few results, we
give some improvements for certain classes of degrees.

Definition 1.5 (S. A. Kurtz [K]). A set A is weakly 1-generic if A meets
every dense c.e. set of binary strings. (Here, if S is a set of binary strings,
S is called dense if every string has an extension in S, and A meets S if (the
characteristic function of) A extends some string in S.)

Proposition 1.6 ([HJMS]). If A is weakly 1-generic, then γ(A) = 0.

Proof. Let f be a computable function. We must show that the set
{k | f(k) = A(k)} has lower density 0. For each n, j > 0, define

Sn,j =

{
σ ∈ 2<ω

∣∣∣∣ |σ| ≥ j &
|{k < |σ| : σ(k) = f(k)}|

|σ|
<

1

n

}
.

Then each Sn,j is computable and dense, so A meets each Sn,j . It follows
that {k | f(k) = A(k)} has lower density 0.

Since Kurtz has shown [K, Corollary 2.10] that every hyperimmune set
computes a weakly 1-generic set, we have the following corollary:

Corollary 1.7. Every hyperimmune degree a satisfies Γ (a) = 0.

A degree a is called PA if every nonempty Π0
1 class P ⊆ 2ω has an

a-computable element. Many characterizations of the PA degrees can be
found in [DH, Section 2.21], for example.

Proposition 1.8. If a is PA, then Γ (a) = 0.
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Proof. Consider the Π0
1 class

{X | (∀e)(∀x ∈ Ie)[ϕe(x)↓ → X(x) 6= ϕe(x)]}

where Ie = [e!, (e + 1)!). It is easy to see that this class is nonempty, and
for every X in the class, γ(X) = 0. Hence this class has an a-computable
element.

Of course, it follows by well-known basis theorems that {a | Γ (a) = 0}
contains both hyperimmune-free and low degrees. This raises the question
of whether this class contains all nonzero degrees. A positive answer would
be a weak analogue of the Bienvenu–Day–Hölzl theorem [BDH] that every
nonzero degree contains an absolutely undecidable set. However, in this
paper, we obtain a negative answer to this question in two different ways,
and these are our main results. In fact, we prove that there is a degree a
such that Γ (a) = 1/2. The following definition, which is a uniform version
of being hyperimmune-free, plays a key role in our first main result. (The
uniformity lies in the fact that, in the definition, p must be independent of f .
If the definition were weakened to let p depend on f it would just define the
hyperimmune-free degrees.)

Definition 1.9 (Terwijn and Zambella [TZ]). The set A is computably
traceable if there is a computable function p such that for every function
f ≤T A there is a computable function g such that, for all n,

(i) f(n) ∈ Dg(n),
(ii) |Dg(n)| ≤ p(n).

Here Dz is the finite set with canonical index z.

If the above holds, we say that A is computably traceable via p. As shown
in [TZ], if A is computably traceable, then A is computably traceable via
every computable, nondecreasing, unbounded function h with h(0) > 0.
Note that the standard construction of a hyperimmune-free degree with
computable perfect trees, due to W. Miller and D. A. Martin [MM], produces
a set which is computably traceable via λn2n. As pointed out in [TZ], this
construction can easily be modified to show that there exist a continuum of
computably traceable sets. A degree a is called computably traceable if there
is a computably traceable set of degree a, in which case every set of degree a
is also computably traceable. The computably traceable sets have played an
important role in the study of algorithmic randomness, as explained in [DH,
Chapter 12].

Our first main result is the following:

Theorem 1.10. If the set A is computably traceable, then A is coarsely
computable at density 1/2.
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Corollary 1.11.

(i) If a is a nonzero computably traceable degree, then Γ (a) = 1/2.
(ii) There is a degree a such that a ≤ 0′′ and Γ (a) = 1/2.

(iii) There exist continuum many degrees a such that Γ (a) = 1/2.

Our second main result is the following:

Theorem 1.12. If the set X is 1-random and A is truth-table reducible
to X, then A is coarsely computable at density 1/2.

Corollary 1.13.

(i) If x is a hyperimmune-free 1-random degree, then Γ (x) = 1/2.
(ii) There is a DNC degree x ≤ 0′′ such that Γ (x) = 1/2.

Proof. For (i), let X be a 1-random set of degree x. By a result of
D. A. Martin (see [DH, Proposition 2.17.7]), if A ≤T X then A ≤tt X,
since x is hyperimmune-free. It follows from the theorem that Γ (x) ≥ 1/2,
and Γ (x) ≤ 1/2 by Proposition 1.4.

To prove (ii), let P ⊆ 2ω be a nonempty Π0
1 class such that every element

of P is a 1-random set. Then P has an elementX ≤T 0′′ of hyperimmune-free
degree, by the hyperimmune-free basis theorem (see [DH, Theorem 2.19.11])
and its proof. If x is the degree of X, then Γ (x) = 1/2 by part (i), and x
is DNC by Kučera’s theorem that every 1-random set computes a DNC
function (see [DH, Theorem 8.8.1]).

To summarize, we know that Γ (0) = 1, Γ (a) ≤ 1/2 for all a > 0,
Γ (a) = 0 for all degrees which are hyperimmune or PA, and Γ (a) = 1/2
for every degree a which is either nonzero and computably traceable or
hyperimmune-free and 1-random. We do not know whether Γ takes values
other than 0, 1/2, and 1.

2. Proof of Theorem 1.10. We start by partitioning the natural num-
bers into consecutive intervals J1, J2, . . . , where |Jn| = n for all n. If A is
computably traceable, we can effectively find a set Tn of n strings of length n
such that some string in Tn describes A�Jn. We use a combinatorial lemma
to show that there is a string βn which approximates all strings in Tn with
only slightly more than n/2 errors. Then concatenating these strings βn in
order yields a computable set B such that ρ({k | A(k) = B(k)}) ≥ 1/2 so

that A is coarsely computable at density 1/2.

We now give the details of the argument. In the Hamming space 2n, we
define the (normalized) distance between two strings σ and τ of length n
to be

d(σ, τ) = |{k < n | σ(k) 6= τ(k)}|/n.
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If σ ∈ 2n and T is a nonempty subset of 2n, we define the distance from σ
to T to be

d̂(σ, T ) = max{d(σ, τ) | τ ∈ T}.
Thus the distance between a string and a set of strings of the same length
is the greatest distance between the string and any string in the set.

Lemma 2.1. Let ε > 0. Then for all sufficiently large n, if T is a set
of n strings of length n, there exists σ ∈ 2n such that d̂(σ, T ) ≤ 1/2 + ε.

Intuitively, given any tolerance ε > 0, if n is sufficiently large, we can
“approximate” any n given strings of length n by a single string of length n
which is at distance at most 1/2 + ε from each of the given strings.

The lemma follows easily from a convergence bound (Chernoff’s inequal-
ity) for the weak law of large numbers. We will prove it below. In fact, we
will show by probabilistic reasoning that for any ε > 0 and any sufficiently
large n, for any set T of n strings of length n, “most” strings σ of length n
satisfy the conclusion of the lemma, because the probability of not satisfying
it is so small. Of course, such probabilistic arguments are frequently used in
combinatorics.

For now we assume Lemma 2.1 and use it to prove Theorem 1.10.

Proof of Theorem 1.10. Let A be a computably traceable set. We iden-
tify A with the infinite binary sequence A(0)A(1) . . . , where A(i) = 1 if and
only if i ∈ A. Let this sequence be decomposed as α1

_α2
_ . . . , where αi

is a binary string of length i. For example, α3 is the string A(3)A(4)A(5).
Since A is computably traceable, there are uniformly and canonically com-
putable finite sets T1, T2, . . . such that αn ∈ Tn and |Tn| ≤ n for all n > 0.
Here we may assume without loss of generality that each Tn is a set of n
strings of length n.

We now wish to define a computable set B such that {n | A(n) = B(n)}
has lower density at least 1/2. We define (using the same identifications as
for A) B = β1

_β2
_ . . . , where βn is a string of length n which is as close

to Tn as possible, that is, d̂(βn, Tn) ≤ d̂(β, Tn) for all β ∈ 2n. It is clear that
such a closest string exists and can be chosen effectively, so we may make B
computable by always picking the least candidate for βn. Thus we are mak-
ing B close to A by making each βn as close as possible to Tn, where αn ∈ Tn.

Let C = {k | B(k) = A(k)}. We claim that ρ(C) ≥ 1/2, so that A is
computable at density 1/2. Let tn be the nth triangular number n(n+ 1)/2,
so that tn is the length of β1

_ . . ._βn. If F is a nonempty finite set, define
the density of C on F , denoted ρ(C|F ), to be |C ∩ F |/|F |. We first consider
the density of C on the intervals Jn, where J1 = {0} and Jn = [tn−1, tn) for
n > 0, so |Jn| = n for all n.

Lemma 2.2. lim infn ρ(C|Jn) ≥ 1/2.
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Proof. Let ε > 0. We must show that ρ(C|Jn) ≥ 1/2−ε for all sufficiently
large n. By definition,

ρ(C|Jn) =
|{k ∈ Jn | A(k) = B(k)}|

n

=
|{k < n | αn(k) = βn(k)}|

n
= 1− d(αn, βn).

Also, for all sufficiently large n, d(βn, αn) ≤ d̂(βn, Tn) ≤ 1/2 + ε by Lem-
ma 2.1. Hence, as needed, ρ(C|Jn) ≥ 1/2− ε for all sufficiently large n.

We now consider the lower density of C on sets of the form
⋃
i≤n Ji

= [0, tn).

Lemma 2.3. lim infn ρtn(C) ≥ 1/2.

Proof. Let ε > 0 be given. We must show that ρtn(C) ≥ 1/2 − ε for all
sufficiently large n. By the previous lemma, we have ρ(C|Jn) ≥ 1/2−ε/2 for
all sufficiently large n. Hence, there is a finite set F such that ρ(C∪F |Jn) ≥
1/2−ε/2 for all n. Note that ρtn(C∪F ) is a weighted average of the numbers
ρ(C ∪ F |Ji) for i ≤ n. Since all the latter numbers are ≥ 1− ε/2, it follows
that ρtn(C ∪ F ) ≥ 1 − ε/2 for all n. Since F is finite, ρtn(F ) ≤ ε/2 for
sufficiently large n. Hence ρtn(C) ≥ 1/2− ε for all sufficiently large n, which
establishes the lemma.

We must now consider values of ρk(C) when k is not a triangular number.
These values are easily reduced to the previous case because the triangu-
lar numbers grow slowly, in the sense that limn tn+1/tn = 1. Specifically,
suppose that tn < k ≤ tn+1. Then

ρk(C) =
|C ∩ {0, 1, . . . , k − 1}|

k
≥ tn · ρtn(C)

tn+1
.

As k tends to infinity, so does n, and tn/tn+1 tends to 1, so

ρ(C) = lim inf
k

ρk(C) ≥ lim inf
n

ρtn(C) ≥ 1/2

as needed to complete the proof of Theorem 1.10.

We use a probabilistic argument to prove our combinatorial lemma,
Lemma 2.1. Our proof is considerably more detailed than is needed for
readers familiar with the Chernoff bound.

Suppose a fair coin is thrown n times. Let pn be the probability that
heads are obtained on at most 49% of the throws. Then, by the weak law
of large numbers, limn pn = 0. Of course, the same holds if we replace 49%
by any fixed real number less than 1/2. The key to proving Lemma 2.1 is
Chernoff’s inequality, which shows that pn goes to 0 exponentially fast. We
write P (A) for the probability of the event A when the intended probability
space is clear from context.
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Theorem 2.4 (Chernoff’s inequality; see [MR2, Theorem 4.2]). Let a
random variable S be binomially distributed with parameters n and p, so we
can think of S as the number of heads obtained in n independent tosses of
a possibly biased coin, where p is the probability of heads on each individual
toss. Let µ be the expected value of S, so µ = np. Suppose 0 ≤ δ ≤ 1. Then

P (S < (1− δ)µ) < e−µδ
2/2.

Proof of Lemma 2.1. Let ε > 0 be given and let T be a set of n bi-
nary strings of length n. To prove Lemma 2.1 we wish to show that if n
is sufficiently large (depending only on ε), there is a string σ ∈ 2n with

d̂(σ, T ) < 1/2 + ε, i.e., d(σ, τ) < 1/2 + ε for all τ ∈ T . Let 0n be the string
of length n consisting of all 0’s. Define

bn,ε = 2−n|{σ ∈ 2n | d(σ, 0n) < 1/2− ε}|.
Thus bn,ε represents the probability that a string σ ∈ 2n chosen uniformly at
random has fewer than n(1/2− ε) 1’s. By the homogeneity of the Hamming
space, bn,ε would have the same value if 0n were replaced in its definition by
any fixed string τ ∈ 2n. Thus, for each string τ ∈ 2n,

(2.1) P (d(σ, τ) < 1/2− ε) = bn,ε

for σ ∈ 2n chosen uniformly at random.
Now define a random variable Sn as the number of 1’s in a string σ ∈ 2n

chosen uniformly at random. Thus Sn = nd(σ, 0n), where σ is chosen uni-
formly at random. We can think of σ as determined by n tosses of a fair coin,
so Sn is a binomially distributed random variable with parameters n and 1/2
and µ = n/2. Then by Chernoff’s inequality applied to Sn with δ = 2ε,

P (Sn < n(1/2− ε)) = P (Sn < (1− 2ε)n/2) < e−(n/2)(2ε)
2/2.

Since P (Sn < (1− 2ε)n/2) = bn,ε by definition of bn,ε, we have

(2.2) bn,ε < e−nε
2
.

Fix τ ∈ 2n. Let τ be the string of length n which is complementary to τ ,
so τ(i) = 1 if and only if τ(i) = 0 for i < n. Note that, for every σ ∈ 2n,
d(σ, τ) = 1− d(σ, τ). Hence, if σ ∈ 2n is chosen uniformly at random, then

(2.3) P (d(σ, τ) > 1/2 + ε) = P (d(σ, τ) < 1/2− ε) = bn,ε

where the final equality uses equation (2.1).
Suppose again that σ is chosen uniformly at random from 2n. For each

fixed τ ∈ T , by (2.2) and (2.3), the probability that d(σ, τ) > 1/2 + ε is at

most e−nε
2
. Since |T | = n and the probability of a finite union of events is at

most the sum of their probabilities, the probability that there exists τ ∈ T
with d(σ, τ) > 1/2 + ε is at most ne−nε

2
. It follows that the probability that

d̂(σ, Tn) ≤ 1/2 + ε is at least 1− ne−nε2 . Since the latter approaches 1 as n
as approaches infinity, it is positive for all sufficiently large n. Hence, for
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all sufficiently large n, there exists σ ∈ 2n such that d̂(σ, Tn) ≤ 1/2 + ε, as
needed to prove Lemma 2.1.

3. Proof of Theorem 1.12. In this section we prove Theorem 1.12,
which asserts that if A is a set which is truth-table reducible to some 1-
random set, then A is coarsely computable at density 1/2. We use a char-
acterization of 1-randomness due to Solovay (see [DH, Theorem 6.2.8]).
Namely, a Solovay test is a sequence {Sn} of uniformly Σ0

1 subsets of 2ω such
that

∑
n µ(Sn) converges, where µ is Lebesgue measure. A set X passes this

test if X belongs to Sn for only finitely many n. Then X is 1-random if and
only if X passes every Solovay test.

Fix a truth-table functional Φ, i.e., Φ is a Turing functional, and ΦX is
total for every set X ⊆ ω. Assume that A= ΦY for some 1-random set Y .
Our goal is to give a Solovay test {Sn} such that ΦX is coarsely computable
at density 1/2 for every set X which passes the test. Since Y is 1-random,
it must pass the test {Sn} and hence ΦY = A is coarsely computable at
density 1/2. In fact, we give a computable set B (dependent only on Φ)
such that the lower density of {k | ΦX(k) = B(k)} is at least 1/2 for ev-
ery set X which passes the test. As in the proof of Theorem 1.10, we ob-
tain B as β1

_β2
_ . . . , where βn is a string of length n for each n. For each

set X, let ΦX be decomposed as αX1
_αX2

_ . . . , where each αXn is a string
of length n. Let ε1 = ε2 = 1/2 and εn = 1/log n for n ≥ 3. (These numbers
are chosen to be sufficiently small that limn εn = 0 and yet sufficiently large
that we can eventually use Chernoff’s inequality to show that our {Sn} is a
Solovay test.) We now choose βn so as to maximize the probability that βn
and αXn agree on at least n(1/2 − εn) arguments. In more detail, for each
string β of length n, let m(n, β) be the Lebesgue measure of the set of X
such that αXn and β agree on at least n(1/2 − εn) arguments. Note that m
is a computable function of n and β. Define βn so that m(n, βn) ≥ m(n, β)
for all β ∈ 2n. Then B = β1

_β2
_ . . . is a computable set.

Let Sn be the set of X such that αXn and βn disagree on more than
n(1/2 + εn) arguments. We will show that {Sn} is a Solovay test, but we
defer the proof of this for now.

Fix a set X which passes the test {Sn}, i.e., X belongs to Sn for only
finitely many n. Let A = ΦX and C = {k | A(k) = B(k)}. We will show
that C has lower density at least 1/2. The next lemma is a special case of
this. We continue to define tn and Jn as in Lemmas 2.2 and 2.3.

Lemma 3.1. lim infn ρt(n)(C) ≥ 1/2.

Proof. If ε > 0, we have ρ(C|Jn) ≥ 1/2 − ε for all sufficiently large n,
since ρ(C|Jn) ≥ 1/2 − εn for all sufficiently large n, and limn εn = 0. The
rest of the proof is identical to that of Lemma 2.3.
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It follows from this lemma that ρ(C) ≥ 1/2 by the same argument that
the corresponding fact is proved in the last paragraph of the proof of The-
orem 1.10.

Since every 1-random set passes every Solovay test, it remains to show
that {Sn} is a Solovay test. Clearly each Sn is a clopen set, uniformly effec-
tively in n. Thus we only need to show that

∑
n µ(Sn) is convergent. Note

that µ(Sn) = 1−m(n, βn).

As in the proof of Lemma 2.1, let bn,ε denote the probability that a
string σ chosen uniformly at random from the strings of length n has fewer
than n(1/2−ε) 1’s. By (2.2), for each τ ∈ 2n, bn,ε is also the probability that
a string σ chosen uniformly at random from 2n satisfies d(σ, τ) > 1/2 + ε.

If Φ were the identity functional, we would have m(n, σ) = 1 − bn,εn
for every string σ of length n, since the measure given by Φ would be the
uniform measure. Hence, in this special case, we would have µ(Sn) = bn,εn .
The next lemma will imply that, for a general Φ, there is some string σ ∈ 2n

with m(n, σ) ≥ 1− bn,εn and hence µ(Sn) ≤ bn,εn .

Lemma 3.2. Let n ∈ ω and ε > 0. Suppose we are given real numbers pσ
for each σ ∈ 2n such that

∑
σ∈2n pσ = 1. For each σ ∈ 2n, define

qσ =
∑
{pτ | d(τ, σ) ≤ 1/2 + ε}

where d is normalized Hamming distance. Then there exists β ∈ 2n such
that qβ ≥ 1− bn,ε.

Proof. We calculate the average value v of qσ over all σ ∈ 2n. We have

v = 2−n
∑
{qσ | σ ∈ 2n}.

Note that each summand is itself a sum of terms of the form pτ . Further,
each pτ occurs in 2n(1 − bn,ε) summands of v, where 2n(1 − bn,ε) does not
depend on τ so that

v = 2−n2n(1− bn,ε)
∑
τ∈2n

pτ = 1− bn,ε.

Clearly, there must exist some β ∈ 2n such that qβ is at least the average
value v = 1− bn,ε of these quantities.

We now apply the lemma with ε = εn and pσ = µ({X | αXn = σ}) for
each σ ∈ 2n. Let β be the resulting string with qβ ≥ 1 − bn,εn . For every
string σ ∈ 2n, we have m(n, σ) = qσ, so m(n, βn) ≥ m(n, β) = qβ ≥ 1−bn,εn .
It follows that µ(Sn) = 1−m(n, βn) ≤ bn,εn .

By (2.2),

bn,εn < e−nε
2
n = e−n/(logn)

2
.

Since
∑

n e
−n/(logn)2 converges, it follows that so does

∑
n bn,εn . Hence, by
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comparison,
∑

n µ(Sn) converges, and {Sn} is a Solovay test, which com-
pletes the proof of Theorem 1.12.

4. Open questions. Let C1 be the set of degrees a such that either a is
computably traceable or a is both 1-random and hyperimmune-free. Let C2

be the set of degrees which are neither hyperimmune nor PA. By the results
of this paper,

C1 ⊆ {a | Γ (a) ≥ 1/2} ⊆ C2.

Question 4.1. Can either of the two inclusions above be replaced by
equality (1)?

Note that {a | Γ (a) ≥ 1/2)} is downward closed, so that for this class
to equal Ci, where i ∈ {1, 2}, it is necessary that Ci be downward closed.
It is clear that C2 is downward closed. Demuth proved (see [DH, Theorem
8.6.1]) that every noncomputable set truth-table reducible to a 1-random
set has 1-random Turing degree. From this, it easily follows that C1 is also
downward closed.

Question 4.2. What is the range R of Γ?

We know only that {0, 1/2, 1} ⊆ R ⊆ [0, 1/2] ∪ {1}.

Question 4.3. If Γ (a) = 1/2, must every a-computable set be coarsely
computable at density 1/2?

Theorems 1.10 and 1.12 show that if a is computably traceable or 1-ran-
dom and hyperimmune-free, then every a-computable set is coarsely com-
putable at density 1/2, so these results do not suffice to answer this question.
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(1) Liang Yu (private communication) has recently shown that there is a degree a ∈ C2

such that Γ (a) = 0. It follows that the second inclusion above is proper. Subsequently this
was also proved by Benôıt Monin and André Nies [MN]. It is shown in the same paper
(using a new result of Kjos-Hanssen, Stephan, and Terwijn [KST]) that the first inclusion
is proper as well. [MN] also contains pleasing unifications and extensions of the results of
our paper.
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