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A López-Escobar theorem for metric structures,
and the topological Vaught conjecture

by

Samuel Coskey (Boise, ID) and Martino Lupini (Wien)

Abstract. We show that a version of López-Escobar’s theorem holds in the setting
of model theory for metric structures. More precisely, let U denote the Urysohn sphere
and let Mod(L,U) be the space of metric L-structures supported on U. Then for any
Iso(U)-invariant Borel function f : Mod(L,U) → [0, 1], there exists a sentence φ of Lω1ω

such that for all M ∈ Mod(L,U) we have f(M) = φM . This answers a question of Ivanov
and Majcher-Iwanow. We prove several consequences, for example every orbit equivalence
relation of a Polish group action is Borel isomorphic to the isomorphism relation on the
set of models of a given Lω1ω-sentence that are supported on the Urysohn sphere. This in
turn provides a model-theoretic reformulation of the topological Vaught conjecture.

1. Background and statement of main result. A well-known theo-
rem of López-Escobar [LE] says roughly that every Borel class of countable
structures can be axiomatized by a sentence in the logic where countable
conjunctions and disjunctions are allowed. The theorem has been general-
ized to apply to wider classes of structures, using sentences from a variety
of logics (see for example [T, V]).

To state López-Escobar’s theorem more precisely, let L be a countable
first-order language consisting of the relational symbols {Ri} where each Ri
has arity ni. The space Mod(L) of countably infinite L-structures is given
by

Mod(L) =
∏
P(Nni),

and we note it is compact in the product topology. The space carries a
natural S∞-action by left translation on each factor, and the S∞-orbits are
precisely the isomorphism classes.
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Next, recall that Lω1ω denotes the extension of first-order logic in which
countable conjunctions and disjunctions are allowed (formulas are still only
allowed to have finitely many free variables). If φ is a sentence of Lω1ω

then the subset Mod(φ) ⊂ Mod(L) consisting just of the models of φ is
clearly S∞-invariant (isomorphism invariant), and it is easy to see that it
is Borel. López-Escobar’s theorem states that the converse holds, that is, if
A ⊂ Mod(L) is Borel and S∞-invariant, then there exists a sentence φ of
Lω1ω such that A = Mod(φ).

López-Escobar’s theorem has numerous applications. For instance, the
Vaught conjecture for Lω1ω states that any set Mod(φ) contains either just
countably many nonisomorphic structures or perfectly many nonisomorphic
structures (we will make this precise in the next section). More generally,
the topological Vaught conjecture for S∞ states that any Borel action of
S∞ has either countably or perfectly many orbits. It follows from López-
Escobar’s theorem together with some standard facts about Polish group
actions that the topological Vaught conjecture for S∞ is equivalent to the
Vaught conjecture for Lω1ω.

In [IMI], the authors generalize numerous properties of the space of
countable discrete structures to spaces of separable complete metric struc-
tures. They ask whether a version of López-Escobar’s theorem holds in the
metric context. In this article we confirm that the natural generalization
of López-Escobar’s theorem to spaces of metric structures supported on the
Urysohn sphere holds. We use this result to derive several corollaries, includ-
ing an equivalence between the topological Vaught conjecture and a Vaught
conjecture for metric structures.

Before stating our result precisely, we begin with a brief introduction
to logic for metric structures. For a full account of this fruitful area, we
refer the reader to [BYBHU]. As in first-order logic, in logic for metric
structures a language L consists of function symbols f and relation sym-
bols R, each with a finite arity nf or nR. Additionally, to each function
symbol f or relation symbol R there is a corresponding modulus of conti-
nuity $f or $R : R+ → R+ which is continuous and vanishes at 0. Now,
an L-structure M consists of a support, which is a complete metric space
(also denoted M), together with interpretations of the function and rela-
tion symbols of L. That is, for each function symbol f we have a function
fM : Mnf → M which is uniformly continuous with modulus of continu-
ity $f :

d(fM (ā), fM (b̄)) ≤ $f (d(ā, b̄)).

(Here, as with all finite products, we consider the maximum metric on Mnf .)
Similarly, for each relation symbol R we have a function RM : MnR → [0, 1]
which is uniformly continuous with modulus $R.
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We now briefly discuss the syntax of logic for metric structures. Given a
language L, we define the formulas of L as follows. The terms and atomic
formulas are defined in the usual way, except that instead of the = symbol,
we include a binary function symbol d which is always interpreted as the
metric. The connectives are continuous functions h : [0, 1]n → [0, 1], so if
φ0, . . . , φn−1 are formulas and h is such a function then h(φ0, . . . , φn−1) is
a formula. The quantifiers are sup and inf, so if φ is a formula and x is a
variable, then infx φ and supx φ are formulas.

For our generalization of López-Escobar’s theorem, we will use the infini-
tary language Lω1ω in the metric setting as defined in [BYI, Theorem 1.1].
(Other infinitary logics for metric structures are studied in [E] and [S].) Here,
if φn is a sequence of Lω1ω-formulas (with finitely many free variables be-
tween them all), then infn φn and supn φn are Lω1ω-formulas provided that
the sequence of uniform continuity moduli is itself uniformly bounded. Ev-
ery Lω1ω-formula φ has a corresponding modulus of continuity $φ, defined
by recursion on the complexity of φ.

Note that if φ is a sentence of Lω1ω and M is an L-structure, then φM

is naturally interpreted as an element of [0, 1]. Intuitively the value 0 means
that φ is certainly true in M , and larger values give shades of grey truth.
Thus the evaluation map M 7→ φM is an example of a grey set.

Grey sets, originally named graded sets, were introduced in [BYM] and
used extensively in [IMI]. If X is a topological space then A is said to be
a grey subset of X, written A v X, if A is a function X → [0, 1]. The sets
A<r = {x ∈ X | A(x) < r} and A≤r = {x ∈ X | A(x) ≤ r} are called the
level sets of A. The terminology of grey set arises from the idea that asking
whether x ∈ A<r is not a black-and-white question but rather one which
depends on the parameter r ∈ [0, 1].

It is possible to generalize a number of concepts from point-set topology
and descriptive set theory to grey sets. For example, A v X is said to be
open if A<r is open for all r (A is upper semicontinuous), and closed if A≤r
is closed for all r (A is lower semicontinuous); see [BYM, Definition 1.4].
More generally, one can define the Borel classes Σ0

α and Π0
α of Borel grey

subsets of X by induction on α ∈ ω1 as in [IMI, Section 2.1]:

• A ∈ Σ0
1 iff A is an open grey subset of X;

• A ∈ Π0
α iff 1−A ∈ Σ0

α; and
• A ∈ Σ0

α iff A = infnAn where An ∈
⋃
β<α Π0

β.

We then say A v X is Borel if it belongs to Σ0
α for some α < ω1, and

by [K, Theorem 24.3] A is Borel iff it is Borel as a function X → [0, 1].
Continuing up the projective hierarchy, a grey subset A of X is analytic if
there is a Borel grey subset B v X × Y for some Polish space Y such that
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A = infy B, i.e., for every x ∈ X,

A(x) = inf
y∈Y

B(x, y).

It is not difficult to verify that A is analytic iff the level sets A<r are analytic
for all r ∈ Q. Similarly, A is coanalytic iff 1−B is analytic, or equivalently
B≤r is coanalytic for every r ∈ Q.

We now return to our motivating example of the evaluation map for a
given sentence. Fix a separable complete metric space Y , and denote by
Iso(Y ) the group of isometries of Y (it is a Polish group with respect to the
topology of pointwise convergence). As with countable discrete structures,
there is naturally a space Mod(L, Y ) of L-structures having Y as support:

Mod(L, Y ) =
∏

Unif$f (Y nf , Y )×
∏

Unif$R(Y nR , [0, 1]).

Here Unif$(A,B) denotes the space of $-uniformly continuous functions
from A to B with the topology of pointwise convergence. Then Mod(L, Y )
is easily seen to be a Polish Iso(Y )-space with respect to the natural action
of Iso(Y ). Now if φ is an Lω1ω-sentence we can define the evaluation map
Eφ v Mod(L, Y ) by

Eφ(M) = φM .

More generally, if φ(x̄) is an Lω1ω-formula with n free variables we can define
the evaluation map Eφ v Mod(L, Y )× Y n by

Eφ(M,u) = φM (u).

It is not difficult to verify that the evaluation function Eφ for a formula of
Lω1ω is always Borel (see Proposition 3.1).

This brings us to our main result, which asserts that any grey subset of
Mod(L,U) which is Borel and Iso(U)-invariant arises as an evaluation Eφ.
Here U denotes the Urysohn sphere, which is the unique metric space that
is separable, complete, ultrahomogeneous, with metric bounded by 1, and
which contains an isometric copy of any other separable metric space with
metric bounded by 1. A survey of the remarkable properties of the Urysohn
sphere can be found in [M3].

Theorem 1.1. For every Iso(U)-invariant Borel grey subset A of
Mod(L,U) there exists a sentence φ of Lω1ω such that for all M ∈ Mod(L,U)
we have A(M) = φM .

As an immediate consequence of Theorem 1.1, we obtain a López-Esco-
bar theorem for black-and-white sets as well. Let us say that an Lω1ω-
sentence φ is {0, 1}-valued if φM ∈ {0, 1} for every M ∈ Mod(L,U). For
such sentences φ we define Mod(L,U, φ) to be the set of M ∈ Mod(L,U)
such that φM = 0.
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Corollary 1.2. For every Iso(U)-invariant Borel subset A of
Mod(L,U) there exists a sentence φ of Lω1ω such that φ is {0, 1}-valued
and A = Mod(L,U, φ).

It is natural to ask whether the results hold with the Urysohn sphere
replaced by another space Y . We remark that our proof applies if Y is any
approximately ultrahomogeneous, complete, separable metric space with a
dense sequence pn satisfying the property: For every n, the Iso(Y )-orbit of
(p0, . . . , pn−1) is definable in Y n in the sense of [BYBHU, Definition 9.16].
To see this, note that one can use [BYBHU, Proposition 9.19] to prove a
suitable modification of Lemma 3.3.

After the first version of this paper had been posted on the arXiv,
a López-Escobar theorem for metric structures was also announced by Ben
Yaacov, Nies, and Tsankov [BYNT]. While we work in the parametrization
of L-structures supported on U considered in [IMI], and for which the ques-
tion of Ivanov and Majcher-Iwanow was formulated, the authors of [BYNT]
consider a different parametrization of arbitrary separable L-structures with
a distinguished countable dense subset, which are coded by the sequences
of values of all the predicates on such a subset.

This article is organized as follows. In Section 2 we present several con-
sequences of Theorem 1.1 and Corollary 1.2. For example, we show that
the topological Vaught conjecture is equivalent to the natural formulation
of the model-theoretic Vaught conjecture in the context of model theory for
metric structures. In Section 3 we introduce some technical components of
the proof, and state a theorem that is stronger than the main result. Finally,
in Section 4 we prove this stronger theorem.

2. Consequences of the main result. In this section we show that
several standard applications of López-Escobar’s theorem can be generalized
to the setting of logic and model theory for metric structures.

Our first corollary is the existence of a Scott sentence that axiomatizes a
single isomorphism class of structures (see for instance [G, Theorem 12.1.8],
or [S, Theorem 4.2] for a metric version). Since the orbits of a Polish group
action are always Borel (see [G, Proposition 3.1.10]), the following result is
an immediate consequence of Corollary 1.2.

Corollary 2.1. For every L-structure M in Mod(L,U) there is a sen-
tence φ of Lω1ω such that φ is {0, 1}-valued, and for any N ∈ Mod(L, U)
we have

φN = 0 ⇔ M ∼= N.

Next, recall that in Section 1 we observed that if φ is an Lω1ω-sentence
then the evaluation function Eφ is an Iso(U)-invariant Borel grey subset of
Mod(L,U). In particular the subspace Mod(L,U, φ) of Mod(L,U) consisting



60 S. Coskey and M. Lupini

of just those M with φM = 0 is a standard Borel Iso(U)-space. The next
theorem will say that any standard Borel Iso(U)-space is isomorphic to an
Iso(U)-space of this form.

First recall that if E,F are equivalence relations on standard Borel spaces
X,Y , then E is Borel reducible to F if there is a Borel function f : X → Y
such that for x, x′ ∈ X,

x E x′ ⇔ f(x) F f(x′).

If moreover such an f can be taken to be a Borel isomorphism from X to Y ,
then the equivalence relations E and F are said to be Borel isomorphic.

The following result implies that every orbit equivalence relation of a
Polish group action is Borel isomorphic to the isomorphism relation on some
Mod(L,U, φ). In the statement, we say that a functional or relational symbol
is 1-Lipschitz if its modulus of continuity is (bounded above by) the function
f(t) = t.

Theorem 2.2. Let L be a relational countable language for continuous
logic containing 1-Lipschitz symbols of unbounded arity. Suppose that G is
a Polish group. If X is a standard Borel G-space then there exists an Lω1ω-
sentence φ, a continuous group monomorphism Φ : G→ Iso(U), and a Borel
injection f : X → Mod(L,U) such that:

• φ is {0, 1}-valued;
• rng(f) = Mod(L,U, φ);
• f maps distinct G-orbits into distinct Iso(U)-orbits; and
• f is Φ-equivariant, that is, for all x ∈ X and g ∈ G we have f(gx) =
Φ(g)f(x).

Proof. Arguing as in the proof of [BK, Theorem 2.7.1(a)] we can assume
without loss of generality that L is the language containing, for every n ∈ ω,
infinitely many 1-Lipschitz symbols (Rni )i∈ω of arity n. (This can be done
by replacing some 1-Lipschitz symbols with 1-Lipschitz symbols of higher
arity that do not depend on the extra coordinates.)

We now claim that we can suppose without loss of generality that G =
Iso(U) and X = F (G)ω. Here, F (G) denotes the space of closed subsets of
G endowed with the Effros Borel structure [K, Section 12.C], and G acts
coordinatewise on X by the left shift. This claim follows from the following
well-known facts:

• (Uspenskĭı [U1, U2]) G is isomorphic to a closed subgroup of Iso(U).
• (Mackey–Hjorth [G, Theorem 3.5.2]) If G is a closed subgroup of the

Polish group H, then every Polish G-space X can be extended to a
Polish H-space X̃ in such a way that every H-orbit of X̃ contains
exactly one G-orbit of X.
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• (Becker–Kechris [G, Theorem 3.3.4]) If X is a Polish G-space then
there is an equivariant embedding from X into F (G)ω.

Next note that we can regard G = Iso(U) as a subspace of Uω by fixing a
countable dense subset (dn)n∈ω in U and identifying each g with the sequence
(g(dn))n∈ω. Then it is easy to check that the map that sends a closed subset
F ⊂ Iso(U) to its closure F ⊂ Uω is a Borel embedding of Iso(U)-spaces.
Hence we can suppose without loss of generality that X = F (Uω)ω. For each
sequence F = (Fi)i∈ω ∈ X we will construct an element MF ∈ Mod(L,U)
that codes (Fi)i∈ω as follows. First for each i we define a sequence of sets
Ani ⊂ Un by

Ani = {ȳ ∈ Un | for every nbd W of ȳ we have (W × Uω) ∩ Fi 6= ∅}.
It is easy to see that the sets Ani are closed. Moreover for each i the sets Ani
form the levels of a tree which codes Fi in the sense that x ∈ Fi iff x|n ∈ Ani
for all n. Now we define the structure MF by interpreting the symbol Rni as
the function

(Rni )MF (ȳ) = d(ȳ, Ani ).

It is straightforward to verify, as in the proof of [G, Theorem 3.6.1], that
the function f : F 7→ MF is a Borel embedding of Iso(U)-spaces from X
to Mod(L, U). By [K, Corollary 15.2] the range of f is a Borel subset of
Mod(L,U). It therefore follows from Corollary 1.2 that there is an Lω1ω-
sentence φ with the desired properties.

A similar construction has been carried out with different methods in
[IMI, Proposition 1.3]. Theorem 2.2 gives further confirmation for the in-
tuition that U and Iso(U) play the same roles in model theory for metric
structures as ω and S∞ play in first-order model theory (for more examples
see for instance the main results of [E+] and [IMI]).

We now give an application of Theorem 2.2 to the topological Vaught
conjecture, which is the assertion that for every Polish group G and standard
Borel G-space X, either X has just countably many orbits or it has perfectly
many orbits (see [BK, Section 6.2]). Here, X is said to have perfectly many
orbits if there is an injective Borel reduction from the equality relation of
R to the orbit equivalence relation of G on X. In the following result, the
implication (1)⇒(2) is obvious, and (2)⇒(1) is an immediate consequence
of Theorem 2.2.

Corollary 2.3. Let L denote a relational countable language for con-
tinuous logic containing 1-Lipschitz symbols of unbounded arity. The follow-
ing statements are equivalent:

(1) The topological Vaught conjecture holds.
(2) If φ is any Lω1ω-sentence then Mod(L,U, φ) has either countably

many or perfectly many isomorphism classes.
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Finally, we consider an application to infinitary logic. In López-Escobar’s
original work, he was interested foremost in establishing an interpolation
property for the logic Lω1ω. What we have called López-Escobar’s theorem
is in fact equivalent to this interpolation result. We will now show that a
similar phenomenon holds in the setting of logic for metric structures. First
we need an analog of the Luzin separation theorem [G, Theorem 1.6.1] for
grey sets.

Proposition 2.4.

(1) Let X be a Polish space, and suppose that A,B are grey subsets of X,
A is analytic, B is coanalytic, and A ≥ B. Then there is a Borel grey
subset C v X such that A ≥ C ≥ B.

(2) Let X be a Polish G-space, A,B as above, and suppose additionally
that A,B are G-invariant. Then there is a G-invariant Borel grey
subset C v X such that A ≥ C ≥ B.

Proof. (a) Fix r ∈ Q ∩ [0, 1] and observe that A<r ⊂ B≤r, where A<r
is analytic and B≤r is coanalytic. Therefore by [G, Theorem 1.6.1] there is
P (r) ⊂ X Borel such that A<r ⊂ P (r) ⊂ B≤r. Now let C @ X be the grey
subset defined by

C(x) = inf{r ∈ Q ∩ [0, 1] | x ∈ P (r)}.

It is straightforward to verify that C is Borel and A ≥ C ≥ B.

(b) By part (a) there is a Borel grey subset D of X such that A ≥ D ≥ B.
Define the grey subset C of X by C(x) ≤ r if and only if ∀∗g ∈ G, D(gx) ≤ r.
It is not difficult to verify by induction on the Borel rank of D that C is
a Borel G-invariant subset of X (see also Proposition 3.1). It is clear that
A ≥ C ≥ B, which concludes the proof.

We are now ready to prove the interpolation theorem for Lω1ω. In the
following, if L and R are possibly distinct languages, φ is an Lω1ω-sentence,
and ρ is an Rω1ω-sentence, then we write φ |= ρ iff φM ≥ ρM for every
M ∈ Mod(L ∪R,U).

Corollary 2.5. The logic Lω1ω has the following interpolation prop-
erty: Suppose that L,R,S are pairwise disjoint countable languages, φ is a
sentence in (L ∪ R)ω1ω and ρ is a sentence in (L ∪ S)ω1ω. If φ |= ρ, then
there is an Lω1ω-sentence τ such that φ |= τ and τ |= ρ.

Proof. We can canonically identify Mod(L ∪ S,U) with Mod(L,U) ×
Mod(S,U) and Mod(L ∪R,U) with Mod(L, U)×Mod(R,U). Define A to
be the analytic subset of Mod(L,U) given by

A = infM∈Mod(S,U)Eφ,
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where Eφ v Mod(L,U)×Mod(S,U). Similarly define B to be the coanalytic
subset of Mod(L,U) given by

B = supM∈Mod(S,U)Eρ.

Observe that A ≥ B since φ |= ρ. Therefore by Proposition 2.4 there is a
Iso(U)-invariant Borel grey subset C of Mod(L,U) such that A ≥ C ≥ B. By
Theorem 1.1 there is an Lω1ω-sentence τ such that C = Eτ . It is immediate
to verify that A ≥ Eτ ≥ B implies that φ |= τ and τ |= ρ.

3. Further notions and a strengthening of the main result. In
this section we formulate a statement that is stronger than Theorem 1.1
and handles the case when A is a grey subset that is not invariant. Our
motivation for this proof strategy comes from Vaught’s dynamical proof of
López-Escobar’s theorem (see [V] or [K, Theorem 7.8]).

In order to state the stronger result, we will need to introduce the follow-
ing category quantifiers for grey sets. These generalize the classical category
quantifiers ∃∗ and ∀∗ as defined for instance in [K, Section 8.J]. If X,Y are
Polish spaces, U ⊂ Y is open, and B is a grey subset of X × Y , then we
define the grey subsets inf∗y∈U B and sup∗y∈U B of X by the properties:

(inf∗y∈U B)(x) < r ⇔ ∃∗y ∈ U such that B(x, y) < r,

(sup∗y∈U B)(x) > r ⇔ ∃∗y ∈ U such that B(x, y) > r.

The next proposition lists some of the basic properties of these set-
theoretic category quantifiers. They can be proved with the same arguments
as [G, Propositions 3.2.5, 3.2.6, and Theorem 3.2.7] (there, the space Y of
Proposition 3.1 appears as a Polish group G acting on X). Note that in the
statement, as in the rest of this article, all the usual arithmetic operations
in fact denote their truncated versions to the interval [0, 1]. For example if
a, b ∈ R then a+ b stands for

max{0,min{1, a+ b}},
and similarly for the other operations.

Proposition 3.1. Let X,Y be Polish, U ⊂ Y open, and B a grey subset
of X × Y . Then:

(1) inf∗y∈U (q −B) = q − sup∗y∈U B for any q ∈ [0, 1].

(2) sup∗y∈U B = supn∈ω inf∗y∈Wn∩U B, where Wn enumerates a basis

for Y .
(3) If Bn is a sequence of grey subsets of X × Y , then infn inf∗y Bn =

inf∗y infnBn and sup∗y∈U supnBn = supn sup∗y∈U Bn.

(4) If B is open then inf∗y∈U B is open.

(5) If B is Σ0
α then inf∗y∈U B is Σ0

α.

(6) If B is Π0
α then sup∗y∈U B is Π0

α.
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Although we will refrain from using the notation in our proof, it is worth
remarking that the category quantifiers can be used to define a version of
the Vaught transforms in the grey setting. (The grey Vaught transforms
were first introduced in [IMI, Section 2.1].) If X is a Polish G-space, A v X
is Borel, and U v G is open, then

A∗U (x) = sup∗g∈G(A(gx)− U(g)),

A4U (x) = inf∗g∈G(A(gx) + U(g)).

The basic properties of the Vaught transforms listed in [IMI, Lemma 2.4]
can easily be obtained as a consequence of Proposition 3.1.

We will also need some notation for a family of “basic” open graded
subsets of Iso(U). We fix once and for all an enumeration p = (pn)n∈ω of
a dense subset of U. For any u ∈ Uk we define the open grey subset [u] of
Iso(U) by

[u](g) = d(g−1p|k, u).

(Here as usual d denotes the maximum metric on Uk.) We also let O(p|k)
be the orbit of p|k under the action of Iso(U), which coincides with the set
of realizations of the type of the k-tuple p|k. The level sets [u]<r, where
u ∈ O(p|k) and r > 0, form an open basis for the topology of Iso(U).

We are now ready to state our strengthening of Theorem 1.1. Roughly
speaking, the result accommodates Borel graded sets that are not invariant,
at the cost of taking a Vaught transform and allowing parameters in the
formula φ. In the statement, we say that a formula φ is N -Lipschitz if its
modulus of continuity is bounded above by the function f(t) = Nt.

Theorem 3.2. Suppose that L is a countable language for continuous
logic, p is as above, and k ∈ N. For any Borel grey subset A v Mod(L,U)
and any N ∈ N there exists an N -Lipschitz Lω1ω-formula φ with k free
variables such that for every M ∈ Mod(L,U) and u ∈ Uk, we have

sup∗g∈Iso(U)[A(gM)−Nd(g−1p|k, u)] = φM (u).

Theorem 1.1 follows as the special case when k = 0 and N = 1. Indeed,
if A is an Iso(U)-invariant grey subset of Mod(L,U), then

A(M) = sup∗g∈Iso(U)A(gM).

Therefore Theorem 3.2 yields a sentence φ such that A(M) = φM for M in
Mod(L,U).

In the proof of the theorem we will need the following perturbation result,
which is similar to [IMI, Lemma 2.3]. In the statement, we denote by τk(x̄, ȳ)
the quantifier-free formula with 2k free variables given by

max
i,j∈k
|d(xi, xj)− d(yi, yj)|.
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Observe that τ(x̄,p|k) can be regarded as a quantifier-free formula with k
variables.

Lemma 3.3. For all ε > 0, if u,w ∈ Uk are such that τk(u,w) < ε, then
there is g ∈ Iso(Y ) such that d(u, gw) < 3ε.

Proof. Consider the metric space Z obtained from the disjoint union of
{ui : i ∈ k} and {wi : i ∈ k} as in [P, Example 56], where

d(ui, wj) = min
n∈k

(d(ui, un) + ε+ d(wn, wj)).

By the finite injectivity of Urysohn space [M2] the isometric embedding of
{ui : i ∈ k} in U extends to an isometric embedding of Z into U. This gives
w̃ = (w̃j)j∈k ∈ Uk such that

d(w̃, u) < 3ε and d(w̃i, w̃j) = d(wi, wj) for i, j ∈ k.

Since U is ultrahomogeneous, there is an isometry g ∈ Iso(U) such that
gw = w̃ and hence d(gw, u) < 3ε.

We remark that Lemma 3.3 together with [BYBHU, Proposition 9.19]
implies that O(p|k) is a definable subset of Uk in the sense of [BYBHU,
Definition 9.16].

4. The proof. In this section, we prove Theorem 3.2. To begin, we let
B denote the family of Borel grey subsets of Mod(L,U) which satisfy the
conclusion of Theorem 3.2 for all k ∈ N. Our strategy will be to show that
B has the following properties:

(1) If A ∈ B then q −A ∈ B for every q ∈ [0, 1] (Section 4.1).
(2) For every n ∈ N and every quantifier-free Lωω-formula φ(x̄) with n

free variables the grey subset Eφ,p|n of Mod(L, Y ) defined by

Eφ,p|n(M) = φM (p|n)

is in B (Section 4.2).
(3) If A,B ∈ B and λ, µ ∈ [0, 1], then λA+ µB ∈ B (Section 4.3).
(4) If An ∈ B for every n ∈ ω, then infnAn ∈ B and supnAn ∈ B

(Section 4.4).

We once again remind the reader that in (3), as everywhere, the arith-
metic operations denote their truncated versions.

We now show that these facts ensure that the family B contains all
Borel grey subsets of Mod(L,U). For this we need the following lemma. In
the statement, recall that a family of functions separates the points of X if
for any distinct x, y ∈ X there is f in the family such that f(x) 6= f(y).
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Lemma 4.1. Suppose that X is a standard Borel space, F is a family of
Borel grey sets of X, and F0 ⊂ F is a countable subfamily that separates
the points of X. Assume further that F has the following closure properties:

(1) If A ∈ F , then q −A ∈ F for every q ∈ [0, 1].
(2) Every constant function belongs to F .
(3) If A,B ∈ F and λ, µ ∈ [0, 1], then λA+ µB ∈ F .
(4) If An ∈ F for every n ∈ ω, then infnAn ∈ F and supnAn ∈ F .

Then F contains all Borel grey sets.

Proof. By induction it follows from (3) that F is closed under arbitrary
finite linear combinations with coefficients in [0, 1]. Moreover one can deduce
from (4) that F is closed under pointwise limits. Arguing as in the proof
of [K, Theorem 11.6] one can show that any Borel grey set is a pointwise
limit of linear combinations of {0, 1}-valued Borel grey sets. Therefore it is
enough to show that for every Borel subset U of X, the zero-indicator 0U
of U lies in F . (Here the zero indicator 0U is the function constantly equal
to 0 on U and constantly equal to 1 on X r U ; see [BYM, Notation 1.2].)

For this, let U denote the family of Borel subsets U of X such that
0U ∈ F . Also let U0 denote the family of level sets A≤q for A ∈ F0 and
q ∈ Q ∩ [0, 1]. It follows from (1) and (4) that U is a σ-algebra of Borel
subsets of X. Moreover since F0 separates the points of X, U0 is a countable
family of Borel sets that separate the points of X. By [M1, Theorem 3.3] in
order to show that U contains all Borel sets it is enough to prove that U0
is contained in U . For this, observe that for each A ∈ F0 and q ∈ Q ∩ [0, 1]
the indicator function 0A≤q of the level set A≤q is supm∈Nm(A− q). By (2)
and (3) we have m(A−q) ∈ F for every m ∈ N, and hence 0A≤q ∈ F by (4).
Therefore A≤q ∈ U , as claimed.

We may now give the conclusion of the proof of the main theorem.

Proof of Theorem 3.2. By Lemmas 4.4, 4.7, 4.9, and 4.10 below, the
family B of grey sets satisfying the conclusion of the theorem satisfies hy-
potheses (1)–(4) of Lemma 4.1. Let B0 denote the family of grey subsets of
Mod(L,U) of the form

M 7→ RM (pi0 , . . . , pin−1), or

M 7→ d(fM (pi0 , . . . , pin−1), pin),

where i0, . . . , in ∈ N and f,R are n-ary symbols of L. It is straightforward to
verify that B0 separates the points of Mod(L,U). Moreover, by Lemma 4.7,
B0 is contained in B. It therefore follows from Lemma 4.1 that B contains
all Borel grey sets, as desired.

We now proceed to verify each of the closure properties outlined at the
beginning of this section.
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4.1. Negation. Recall that O(p|k) for k ∈ ω denotes the orbit of p|k
under the action Iso(U) y Uk.

Lemma 4.2. Suppose that A is a grey subset of Mod(L,U), k,N ∈ ω
with N ≥ 1, and u ∈ Uk. For any t ∈ [0, 1], the following statements are
equivalent:

(1) inf∗g∈Iso(U)[A(gM) +Nd(u, g−1p|k)] < t.

(2) There are k̃ ≥ k, Ñ ≥ N , and ũ ∈ O(p|k̃) such that

Nd(ũ|k, u) + sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)] < t.

(3) There are t0 < t, k̃ ≥ k, and Ñ ≥ N such that for every m ≥ 1 there

is ũ ∈ Uk̃ such that

mτ
k̃
(ũ,p|k̃) +Nd(ũ|k, u) + sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)] < t0.

Proof. (1)⇒(2). Suppose that

inf∗g∈Iso(U)[A(gM) +Nd(u, g−1p|k)] < t.

Thus there are s, r ∈ [0, 1] such that s + r < t and ∃∗g ∈ Iso(U) such that
A(gM) < r and Nd(u, g−1p|k) < s. In particular there is a nonempty open
U ⊂ [u]<sN−1 such that ∀∗g ∈ U , A(gM) < r. Pick g0 ∈ U and observe that

Nd(u, g−10 p|k) < s. Choose k̃ ≥ k and Ñ ≥ N such that if g ∈ Iso(U) is

such that Ñd(g−1p|k̃, g
−1
0 p|k̃) < 1 then g ∈ U . Define ũ = g−10 p|k̃ ∈ O(p|k̃).

Observe that

Nd(ũ|k, u) = Nd(g−10 p|k, u) < s.

Moreover, ∀∗g ∈ [ũ]
<Ñ−1 ,

A(gM) < r ≤ r + Ñd(ũ, g−1p|k̃).

Therefore

sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)] ≤ r,

and hence

Nd(ũ|k, u) + sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)] ≤ r + s < t.

(2)⇒(3). This is obvious, since ũ ∈ O(p|k) implies τ
k̃
(ũ,p|k̃) = 0.

(3)⇒(2). By hypothesis there are t0 < t, k̃ ≥ k, and Ñ ≥ N such that

for every m ≥ 1 there is ũ ∈ Uk̃ such that

mτ
k̃
(ũ,p|k̃) +Nd(ũ|k, u) + sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)] < t0.

Fix m ∈ N such that t0 + 6Ñ/m < t. Let ũ ∈ Uk̃ be such that

mτ
k̃
(ũ,p|k̃) +Nd(ũ|k, u) + sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)] < t0.
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Since τ
k̃
(ũ,p|k̃) < 1/m, by Lemma 3.3 there is g0 ∈ Iso(U) such that

d(ṽ, ũ) < 3/m, where ṽ = g−10 p|k̃ ∈ O(p|k̃). Observe now that

Nd(ṽ|k, u) + sup∗g∈Iso (U)[A(gM)− Ñd(ṽ, g−1p|k̃)]

≤ Nd(ũ|k, u) + sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)] + 2Ñd(ṽ, ũ)

≤ t0 + 6Ñ/m < t.

(2)⇒(1). By hypothesis there are k̃ ≥ k, Ñ ≥ N , and ũ ∈ O(p|k̃) such

that

Nd(ũ|k, u) + sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)] < t.

Define s = Nd(ũ|k, u) and

r = sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)].

Fix δ > 0 such that s + r + 2δ < t. Observe that since ũ ∈ O(p
k̃
) we

have [ũ]
<δÑ−1 6= ∅. Moreover [ũ]

<δÑ−1 ⊂ [u]<(s+δ)N−1 . In fact suppose that

g ∈ [ũ]
<δÑ−1 and hence Ñd(g−1p|k̃, ũ) < δ. Thus we have

Nd(g−1p|k, u) ≤ Nd(ũ|k, u) +Nd(ũ|k, g
−1p|k)

≤ s+ Ñd(ũ, g−1p|k̃) ≤ s+ δ.

Moreover, ∀∗g ∈ [ũ]
<δÑ−1 ,

A(gM) ≤ r + Ñd(ũ, g−1p|k̃) < r + δ.

It follows that [u]<(s+δ)N−1 6= ∅ and ∃∗g ∈ [u]<(s+δ)N−1 such that A(gM) <
r + δ. Therefore

inf∗g∈Iso(U)[A(gM) +Nd(u, g−1p|k)] ≤ s+ δ + r + δ < t.

Lemma 4.3. If A is a grey subset of Mod(L,U), then A ∈ B if and only
if for every k,N ∈ ω with N ≥ 1 there is an N -Lipschitz formula ϕ such
that, for every M ∈ Mod(L,U),

(1) inf∗g∈Iso(U)[A(gM) +Nd(g−1p|k, u)] = ϕM (u).

Proof. Suppose that A ∈ B. For every k̃, Ñ ∈ ω such that Ñ ≥ 1 there
is a formula ψ

k̃,Ñ
in k̃ free variables such that

sup∗g∈Iso(U)[A(gM)− Ñd(u, g−1p|k̃)] = ψM
k̃,Ñ

(u).

Fix k,N ∈ ω with N ≥ 1. Observe that for every Ñ ,m, k ∈ ω,

inf
y0,...,yk̃−1

[mτ
k̃
(ȳ,p|k̃) +Nd(ȳ|k, x̄) + ψ

k̃,Ñ
(ȳ)]

is an N -Lipschitz formula in the k free variables x̄. Therefore
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inf
Ñ≥N

inf
k̃≥k

sup
m≥1

inf
y0,...,yk̃−1

[mτ
k̃
(ȳ,p|k̃) +Nd(ȳ|k, x̄) + ψ

k̃,Ñ
(ȳ)]

is also an N -Lipschitz formula ϕ(x̄) in the k free variables x̄. Moreover it
follows from Lemma 4.2 that equation (1) holds. Conversely suppose that
for every k,N ∈ ω with N ≥ 1 there exists an N -Lipschitz formula ϕ such
that equation (1) holds. Performing the substitution x 7→ 1− x in each side
of (1) shows that 1−A ∈ B. By the proof above applied to 1−A we conclude
that for every k,N ∈ ω with N ≥ 1 there is an N -Lipschitz formula ψ such
that

inf∗g∈Iso(U)[(1−A)(gM) +Nd(g−1p|k, u)] = ψM (u).

Performing again the substitution x 7→ 1− x gives

sup∗g∈Iso(U)[A(gM)−Nd(g−1p|k, u)] = (1− ψ)M (u).

Therefore the formula 1− ψ witnesses the fact that A ∈ B.

With a similar argument as in the proof of Lemma 4.3 one can prove the
following lemma.

Lemma 4.4. Suppose that A is a grey subset of Mod(L,U) and q ∈ [0, 1].
Then A ∈ B if and only if q −A ∈ B.

4.2. The base case. The proofs of Lemmas 4.5 and 4.6 are analogous
to the proof of Lemma 4.2, and are omitted. The key point is that one can
perturb an element of Uk for which τk(w,p|k) is small to an element in the
orbit O(p|k) of p|k using Lemma 3.3.

Lemma 4.5. Suppose that n, k ∈ ω, φ is a quantifier-free Lωω-formula
with n free variables, and u ∈ Uk. If n < k and t ∈ [0, 1], then the following
statements are equivalent:

(1) inf∗g∈Iso(U)[φ
M (g−1p|n) +Nd(g−1p|k, u)] < t.

(2) There is w ∈ O(p|k) such that φM (w|n) +Nd(w, u) < t.

(3) There is t0 < t such that for every m ≥ 1 there exists w ∈ Uk such
that φM (w|n) +Nd(w, u) +mτk(w,p|k) < t0.

Lemma 4.6. Suppose that n, k ∈ ω, φ is a quantifier-free Lωω-formula
with n free variables, and u ∈ Uk. If k ≤ n and t ∈ [0, 1], then the following
statements are equivalent:

(1) inf∗g∈Iso(U)[φ
M (g−1p|n) +Nd(g−1p|k, u)] < t.

(2) There is w ∈ O(p|n) such that φM (w) +Nd(w|k, u) < t.
(3) There is t0 < t such that for every m ≥ 1 there is w ∈ Un such that

φM (w) +Nd(w|k, u) +mτn(w,p|n) < t0.

Lemma 4.7. If φ is a quantifier-free Lωω-formula with n free variables,
then the grey subset M 7→ φM (g−1p|n) of Mod(L,U) belongs to B.



70 S. Coskey and M. Lupini

Proof. By Lemma 4.3 it is enough to show that for every N, k ∈ ω with
N ≥ 1 there is an N -Lipschitz Lω1ω-formula ψ with k free variables such
that

inf∗g∈Iso(U)[φ
M (g−1p|n) +Nd(g−1p|k, u)] = ψM (u)

for every M ∈ Mod(L,U) and u ∈ Uk. Let us distinguish the cases when
n < k and n ≥ k. If n < k, define the N -Lipschitz formula ψ(x̄) in the k
free variables x̄ by

sup
m≥1

inf
y0,...,yk−1

[mτk(ȳ,p|k) +Nd(ȳ, x̄) + φ(ȳ|n)].

It follows from Lemma 4.5 that for every M ∈ Mod(L,U) and u ∈ Uk,

inf∗g∈Iso(U)[φ
M (g−1p|n) +Nd(g−1p|k, u)] = ψM (u).

If n ≥ k then define ψ(x̄) to be the N -Lipschitz formula in the k free
variables x̄ given by

sup
m≥1

inf
y0,...,yn−1

[mτn(ȳ,p|n) +Nd(x̄, ȳ|k) + φ(ȳ)].

It follows from Lemma 4.6 that for every M ∈ Mod(L,U) and u ∈ Uk,

inf∗g∈Iso(U)[φ
M (g−1p|n) +Nd(g−1p|k, u)] = ψM (u),

which concludes the proof.

4.3. Linear combinations. The proof of Lemma 4.8 below is analogous
to the proofs of Lemmas 4.2, 4.5, and 4.6, and it is again omitted.

Lemma 4.8. Suppose that A and B are grey subsets of Mod(L,U),
k,N ∈ ω with N ≥ 1, and λ, µ ∈ [0, 1]. For any t ∈ [0, 1], u ∈ Uk, and
M ∈ Mod(L,U), the following statements are equivalent:

(1) inf∗g∈Iso(U)[(λA+ µB)(gM) +Nd(g−1p|k, u)] < t.

(2) There are k̃ ≥ k and Ñ ≥ N and ũ ∈ O(p|k̃) such that

Nd(ũ|k, u) + λ sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)]

+ µ sup∗g∈Iso(U)[B(gM)− Ñd(ũ, g−1p|k̃)] < t.

(3) There are t0 < t, k̃ ≥ k, and Ñ ≥ Ñ such that for every m ≥ 1 there

is ũ ∈ Uk̃ such that

Nd(ũ|k, u) + λ sup∗g∈Iso(U)[A(gM)− Ñd(ũ, g−1p|k̃)]

+ µ sup∗g∈Iso(U)[B(gM)− Ñd(ũ, g−1p|k̃)] +mτ
k̃
(ũ,p|k̃) < t0.

Lemma 4.9. Suppose that A,B are grey subsets of Mod(L,U) that be-
long to B. If λ, µ ∈ [0, 1], then λA+ µB belongs to B.
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Proof. Since A,B ∈ B, for every k̃, Ñ ∈ ω with Ñ ≥ 1 there are
Ñ -Lipschitz formulas ψ

A,k̃,Ñ
and ψ

B,k̃,Ñ
in k̃ free variables such that

sup∗g∈Iso(U)A[(gM)− Ñd(ũ, g−1p|k̃)] = ψM
A,k̃,Ñ

(ũ),

and similarly for B. Fix k,N ∈ ω with N ≥ 1, and define the N -Lipschitz
formula ϕ(x̄) in the k free variables x̄ to be

inf
Ñ≥N

inf
k̃≥k

sup
m≥1

inf
y0,...,yk̃−1

[mτ
k̃
(ȳ,p|k̃) +Nd(ȳ|k, x̄) + λψ

A,k̃,Ñ
(ȳ) + µψ

B,k̃,Ñ
(ȳ)].

By Lemma 4.8 for M ∈ Mod(L,U) and u ∈ Uk,
inf∗g∈Iso(U)[(λA+ µB)(gM) +Nd(g−1p|k, u)] = ϕM (u).

In view of Lemma 4.3 this concludes the proof that λA+ µB ∈ B.

4.4. Infima and suprema

Lemma 4.10. If (An)n∈ω is a sequence of grey subsets of Mod(L,U)
that belong to B, then infnAn and supnAn belong to B.

Proof. By Lemma 4.4 it is enough to show that supnAn ∈ B. Fix k,N ∈
ω with N ≥ 1. For every n ∈ ω, since An ∈ B there is an N -Lipschitz
formula ϕn such that for every M ∈ Mod(L,U) and u ∈ Uk,

sup∗g∈Iso(U)[An(gM)−Nd(u, g−1p|k)] = ϕMn (u).

It follows from Proposition 3.1(3) that

sup∗g∈Iso(U)

[
sup
n
An(gM)−Nd(u, g−1p|k)

]
= sup

n
sup∗g∈Iso(U)[An(gM)−Nd(u, g−1p|k)] =

(
sup
n
ϕn

)M
(u).

Since supn ϕn is an N -Lipschitz formula, this shows that supnAn ∈ B.
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