Two cases when d_{κ} and d_{κ}^* are equal

by

Ofer Shafir (Jerusalem)

Abstract. We deal with two cardinal invariants and give conditions on their equality using Shelah's pcf theory.

In [C] Ciesielski asked whether d_c and d_c^* (see definition below) are equal. His proof that this is the case if $c^{< c} = c$ appeared in [J]. Taking the line of [Sh675] we investigate the problem for any cardinal κ . Using pcf notions and results we give sufficient conditions for the equality for regular cardinals in Theorem 1. For example, when $\kappa = \lambda^+$ we can relax the condition $2^{\lambda} = \lambda^+$ to $d_{\lambda} = \lambda^+$. In Theorem 2 we bound the value of d_{κ} for singular κ by d-numbers of smaller cardinals and by covering numbers. Also here we get a partial positive answer but actually we are doing much more than that: d_{κ} and d_{κ}^* are computed and shown to be equal to pp κ . On cov and pp see [Sh-g, Ch II]. Trivial properties of cov which we use freely throughout the paper are listed (usually without a proof) in observation 5.3 there. $\exists^* \theta < \lambda$ means "for unboundedly many θ below λ ".

Definition. For infinite cardinals κ :

$$d_{\kappa} = \min\{|A| : A \subseteq {}^{\kappa}\kappa, \ \forall f \in {}^{\kappa}\kappa \exists g \in A(|\{i < \kappa : f(i) = g(i)\}| = \kappa)\},$$
 and
$$d_{\kappa}^{*} = \min\{|A| : A \subseteq {}^{\kappa}\kappa, \ \forall G \in [{}^{\kappa}\kappa]^{\kappa} \exists g \in A \ \forall f \in G(|\{i < \kappa : f(i) = g(i)\}| = \kappa)\}.$$

$$d_{\kappa}^{s} \text{ is defined similarly to } d_{\kappa} \text{ but } f \text{ is allowed to be also just a partial function with domain in } [\kappa]^{\kappa}.$$

REMARK. It is easy to see that $d_{\kappa}^{s} = \text{cov}([\kappa]^{\kappa}, \supseteq)$.

THEOREM 1. For a (regular) infinite cardinal κ and for a sequence $\langle \alpha_i : i < \operatorname{cf} \kappa \rangle$ of ordinals increasing to κ , if every $\kappa_i = |\alpha_i|$ satisfies $d_{\kappa_i}^*, \operatorname{cov}(\kappa, \kappa_i^+, \kappa_i^+, 2) \leq \kappa$, then $d_{\kappa} = d_{\kappa}^*$.

 $^{2000\} Mathematics\ Subject\ Classification:$ Primary 26Axx, 03E05; Secondary 03E35, 03E50.

18 O. Shafir

Proof. Represent κ as a disjoint union of intervals $\langle I_i : i < \kappa \rangle$ such that $|I_i| = \kappa_j$ if $i \in [\alpha_j, \alpha_{j+1})$. For every $i < \operatorname{cf} \kappa$ fix a cofinal set for $([\kappa]^{\kappa_i}, \subset)$ of cardinality less than or equal to κ , call it H_i , and for every $i < \kappa$ and $A \in H_j$ where $i \in [\alpha_j, \alpha_{j+1})$ let $R_{i,A} \subset {}^{I_i}A$ witness that $d_{\kappa_j}^* \le \kappa$. Let $R_i = \bigcup_{A \in H_j} R_{i,A}$ and fix a 1-1 function $F_i : R_i \to \kappa$. Let $G \subseteq {}^{\kappa}\kappa$ of cardinality d_{κ} be a witness for the definition of that cardinal invariant. For any $g \in G$ define $\widehat{g} \in {}^{\kappa}\kappa$ by $\widehat{g} = \bigcup \{F_i^{-1}(g(i)) : g(i) \in \operatorname{rang} F_i\} \cup \bigcup \{0 \upharpoonright I_i : g(i) \not\in \operatorname{rang} F_i\}$. We prove that $\{\widehat{g} : g \in G\}$ witnesses that $d_{\kappa}^* \le |G|$. For any sequence $\langle f_i : i < \kappa \rangle \subseteq {}^{\kappa}\kappa$ and for every $i < \kappa$, cover $\bigcup_{\varepsilon < \alpha_j} \operatorname{rang} f_{\varepsilon} \upharpoonright I_i$ where $i \in [\alpha_j, \alpha_{j+1})$ by some $A_i \in H_j$ and guess the sequence $\langle f_{\varepsilon} \upharpoonright I_i : \varepsilon < \alpha_j \rangle$ by some $h_i \in R_i$, A_i . Define $h \in {}^{\kappa}\kappa$ by $h(i) = F_i(h_i)$ and guess it by $g \in G$. Now \widehat{g} does the job, i.e. for every $i < \kappa$, $|\{\varepsilon < \kappa = \widehat{g}(\varepsilon) = f_i(\varepsilon)\}| = \kappa$.

Conclusion. (1) If an infinite cardinal κ satisfies $d_{\kappa}^* = \kappa^+$ then $d_{\kappa^+} = d_{\kappa^+}^*$.

- (2) If κ is inaccessible and for any singular $\lambda < \kappa$ we have $\operatorname{pp}_{\sigma\text{-}\operatorname{com}}(\lambda) \leq \kappa$ and $\operatorname{cf} \lambda = \aleph_0 \to \operatorname{pp}(\lambda) < \lambda^{+\omega}$ and $\operatorname{cf} \lambda = \aleph_1 \to \operatorname{pp}(\lambda) = \lambda^+$ then $\exists^* \theta < \kappa(d_{\theta}^* \leq \kappa)$ implies that $d_{\kappa} = d_{\kappa}^*$.
- (3) If κ is inaccessible and $0^{\#}$ does not exist then $\exists^* \theta < \kappa(d_{\theta}^* \leq \kappa)$ implies that $d_{\kappa} = d_{\kappa}^*$.
- (4) If $2^{\aleph_0} < \kappa$ is inaccessible, $\exists^* \theta < \kappa (d_{\theta}^* + \sup_{\lambda < \kappa} \operatorname{pp}(\lambda \leq \kappa)$ and $\exists \theta < \kappa \forall \lambda (|\{\mu < \kappa : \operatorname{pp}_{\theta}(\mu) > \lambda\}| \leq \theta)$ then $d_{\kappa} = d_{\kappa}^*$.

Proof. (1) We only need $cov(\kappa^+, \kappa^+, \kappa^+, 2) = \kappa^+$, which is trivial.

(2) Trivially, $\sup_{\theta < \kappa} \operatorname{cov}(\kappa, \theta^+, \theta^+, 2) = \sup_{\theta < \lambda < \kappa} \operatorname{cov}(\lambda, \theta^+, \theta^+, 2)$. Now for $\theta < \lambda$,

$$cov(\lambda, \theta^+, \theta^+, 2) \le cov(cov(\lambda, \theta^+, \theta^+, \aleph_1), \theta^+, \aleph_1, 2).$$

By [Sh-g, Ch. II, S. 4],

$$\mathrm{cov}(\lambda, \theta^+, \theta^+, \aleph_1) \leq \sup_{\theta < \chi \leq \lambda, \, \mathrm{cf} \, \chi > \aleph_0} \mathrm{pp}_{\sigma\text{-}\mathrm{com}}(\chi),$$

which is $\leq \kappa$ by the assumption.

We continue:

$$\sup_{\theta < \lambda < \kappa} \operatorname{cov}(\lambda, \theta^+, \theta^+, 2) \le \sup_{\theta < \kappa} \operatorname{cov}(\kappa, \theta^+, \aleph_1, 2) \le \sup_{\lambda < \kappa, \text{ cf } \lambda > \aleph_0} \operatorname{cov}(\lambda, \lambda, \aleph_1, 2).$$

By [Sh-g, Ch. IX, 1.8] all these terms are equal to the respective $pp(\lambda)$'s which are $\leq \kappa$. Now apply Theorem 1.

- (3) If $0^{\#}$ does not exist then $\forall \lambda(\operatorname{pp}(\lambda) = \lambda^{+})$ (see [Sh-g]). In fact, it is enough that there is no inner model with a measurable χ such that $\circ(\chi) = \chi^{++}$. Now use (2).
- (4) By the proof of [Sh420, 6.4], $\forall \lambda > 2^{\aleph_0} \forall \theta \geq 2^{\aleph_0} + \text{cf } \lambda(\text{cov}(\lambda, \lambda, \theta^+, 2)) = \text{pp}_{\theta}(\lambda)$. If for some $\lambda, \theta \geq 2^{\aleph_0}$ we have $\text{pp}_{\theta}(\lambda) > \kappa$ then for the minimal

such λ , $pp(\lambda) = pp_{\theta}(\lambda)$ ([Sh-g, Ch. VIII, 1.6]). Together we have

$$\sum_{\theta < \kappa} \operatorname{cov}(\kappa, \theta^+, \theta^+, 2) = \sum_{\theta < \lambda < \kappa} \operatorname{cov}(\lambda, \lambda, \theta^+ 2)$$
$$= \sum_{\theta < \lambda < \kappa} \operatorname{pp}_{\theta}(\lambda) = \sum_{\lambda < \kappa} \operatorname{pp}(\lambda) \le \kappa.$$

Now use Theorem 1.

REMARK. In all the known models of ZFC, for every inaccessible κ , $\sup_{\lambda<\kappa}\operatorname{pp}(\lambda)=\kappa$. Notice that in (1) above both the assumptions $\forall \lambda<\kappa$ ($\operatorname{pp}_{\sigma\text{-com}}(\lambda)\leq\kappa$) and cf $\lambda=\aleph_1\to\operatorname{pp}(\lambda)=\lambda^+$ can hold even just from some point on. Also the assumption $\forall\theta\forall\lambda(|\{\mu:\operatorname{pp}_{\theta}(\mu)>\lambda\}|\leq\aleph_0)$ is not violated in any known model of ZFC.

THEOREM 2. If κ is a singular cardinal and $\langle \kappa_i : i < \operatorname{cf} \kappa \rangle$ increases to κ then for $\mu = \sup_{i < \operatorname{cf} \kappa} [d_{\kappa_i} + \operatorname{cov}(\kappa, \kappa_i^+, \kappa_i^+, 2)]$ and $\mu^s = \sup_{1 < \operatorname{cf} \kappa} [d_{\kappa_i}^s + \operatorname{cov}(\kappa, \kappa_i^+, \kappa_i^+, \kappa_i)]$ we have:

- (1) $d_{\kappa} \leq \operatorname{cov}(\mu, (\operatorname{cf} \kappa)^+, (\operatorname{cf} \kappa)^+, 2) d_{\operatorname{cf} \kappa}$.
- (2) $d_{\kappa} \leq \operatorname{cov}(\mu, (\operatorname{cf} \kappa)^+, (\operatorname{cf} \kappa)^+, \operatorname{cf} \kappa) d_{\operatorname{cf} \kappa}^s$.
- (3) The claim of (1) and (2) holds for μ^s instead of μ if the κ_i 's are regular.

(4)
$$d_{\kappa}^* \leq \text{cov}(\mu^*, (\text{cf }\kappa)^+, (\text{cf }\kappa)^+, 2) d_{\text{cf }\kappa} \text{ where}$$

$$\mu^* = \sup_{i < \text{cf }\kappa} [d_{\kappa_i}^* + \text{cov}(\kappa, \kappa_i^+, \kappa_i^+, 2)].$$

(5)
$$d_{\kappa}^* \leq \operatorname{cov}(\mu^*, (\operatorname{cf} \kappa)^+, (\operatorname{cf} \kappa)^+, \operatorname{cf} \kappa) d_{\operatorname{cf} \kappa}^s$$
.

Proof. (1) Represent κ as a disjoint union of intervals $\langle I_i : i < \operatorname{cf} \kappa \rangle$ such that $|I_i| = \kappa_i$. For every $i < \operatorname{cf} \kappa$ let H_i be cofinal in $([\kappa]^{\kappa_i}, \subseteq)$ of cardinality $\operatorname{cov}(\kappa, \kappa_i^+, \kappa_i^+, 2)$ and for every $A \in H_i$ let $R_{i,A} \subseteq {}^{I_i}A$ be of cardinality d_{κ_i} such that for every $f \in {}^{I_i}A$ there is $g \in R_{i,A}$ for which $|\{\alpha \in I_i : f(\alpha) = g(\alpha)\}| = \kappa_i$. Define $R = \bigcup_{i < \operatorname{cf} \kappa} \bigcup_{A \in H_i} R_{i,A}$, let H be cofinal in $([R]^{\operatorname{cf} \kappa, \subseteq})$ of cardinality $\operatorname{cov}(\mu, (\operatorname{cf} \kappa)^+, (\operatorname{cf} \kappa)^+, 2)$ (notice that $|R| = \mu$) and for every $C \in H$ of cardinality $\operatorname{cf} \kappa$ fix an order $<_c$ on c of order type of k. Let P be of cardinality $d_{\operatorname{cf} \kappa}$ such that for every $f \in {}^{\operatorname{cf} \kappa} \operatorname{cf} \kappa$ there is $g \in P$ for which $|\{\alpha < \operatorname{cf} \kappa : f(a) = g(\alpha)\}| = \operatorname{cf} \kappa$.

It is enough to show that we can guess a function in ${}^{\kappa}\kappa$ by the members of $G = \{ f \in {}^{\kappa}\kappa$: for some $C \in H$ and $g \in P$ for every $i < \operatorname{cf} \kappa$, $f \upharpoonright I_i$ is the g(i)th element in $(C \cap {}^{I_i}\kappa, <_c)\}$. For any function $f \in {}^{\kappa}\kappa$ for any $i < \operatorname{cf} \kappa$, cover $f''[I_i]$ by a set from H_i , call it A_i , and guess $f \upharpoonright I_i$ as a function in ${}^{I_i}A_i$ by some $g_i \in R_{i,A_i}$. Next cover $\{g_i : i < \operatorname{cf} \kappa\}$ by some $C \in H$ and guess f', which is defined as a function in ${}^{\operatorname{cf} \kappa}\operatorname{cf} \kappa$, by $f'(i) = \operatorname{otp}(\{j \in C \cap {}^{I_i}\kappa : j <_c g_i\}, <_c)$ by some function $h \in P$. The function in G which is defined from C and h does the job.

20 O. Shafir

- (2) The only differences are that H is of cardinality $cov(\mu, (cf \kappa)^+,$ $(\operatorname{cf} \kappa)^+, \operatorname{cf} \kappa$ and only the sets of unions of less than $\operatorname{cf} \kappa$ elements from it are cofinal in $([R]^{\operatorname{cf} \kappa}, \subseteq)$, that P is now of cardinality $d_{\operatorname{cf} \kappa}^s$, that it guesses also partial functions in $\operatorname{cf} \kappa$ cf κ with domains of cardinality cf κ and that we define G by $G = \{ f \in {}^{\kappa}\kappa : \text{for some } C \in H \text{ and a partial function } g \in P, \}$ for every $i \in \text{dom } g$, $f \upharpoonright I_i$ is the g(i)th element in $(C \cap I_i \kappa, <_c)$. For any function $f \in {}^{\kappa}\kappa$ we get $\langle g_i : i < \operatorname{cf} \kappa \rangle$ as in (1). Next we cover this set by the union of less than cf κ elements from H and pick one of them, call it c, such that $|C \cap \langle g_i : i < \operatorname{cf} \kappa \rangle| = \operatorname{cf} \kappa$. Define the partial function of $\operatorname{cf} \kappa$ cf κ by $f'(i) = \text{otp}(\{j \in C \cap I_i \kappa : j <_c g_i\}, <_c)$ if $g_i \in C$, and guess it by some $\kappa \in P$. The function in G which is defined from C and h does the job.
- (3) is proved by repeating the argument from (2) cf κ many times for any $R_{i,A}, A \in H$.
 - (4), (5) Easy.

Conclusion. Let κ be a singular cardinal which is not a fixed point, i.e. $\kappa = \aleph_{\alpha+\beta}$, $\beta < \aleph_{\alpha}$, and $\langle \kappa_i : i < \operatorname{cf} \kappa \rangle$ an unbounded set of cardinals below it, $\aleph_{\alpha} < \kappa_0$. Then:

- (1) If $\sum_{i < \operatorname{cf} \kappa} d_{\kappa_i} \le \kappa^{|\beta|}$ then $d_{\kappa} \le \kappa^{|\beta|} + d_{\operatorname{cf} \kappa}$.
- (2) If $\sum_{i < \operatorname{cf} \kappa} d_{\kappa_i}^* \le \kappa^{|\beta|}$ then $d_{\kappa}^* \le \kappa^{|\beta|} + d_{\operatorname{cf} \kappa}$. (3) If $2^{\operatorname{cf} \kappa}$, $\sum_{i < \operatorname{cf} \kappa} d_{\kappa_i} \le \operatorname{pp}(\kappa)$ and $\forall \kappa' < \kappa(\operatorname{cf} \kappa' \le |\beta| \to \operatorname{pp}_{|\beta|}(\kappa) < \kappa)$ then $d_{\kappa} = pp(\kappa)$.
 - (4) If in (3) also $\sum_{i < cf \kappa} d_{\kappa_i}^* \le pp(\kappa)$ then $d_{\kappa} = d_{\kappa}^* = pp(\kappa)$.
- (5) If κ is below the first fixed point then in (3) we can replace $2^{\operatorname{cf} \kappa}$ by $d_{\operatorname{cf} k}$.

$$\mu = \sup_{1 < \operatorname{cf} \kappa} [d_{\kappa_i} + \operatorname{cov}(\kappa, \kappa_i^+, \kappa_i^+, 2)] \le \kappa^{|\beta|} + \max \operatorname{pcf} \operatorname{Reg} \cap [\aleph_\alpha, \kappa) \le \kappa^{|\beta|}.$$

As cf $\kappa \leq |\beta|$, we have $cov(\mu, (cf \kappa)^+, (cf \kappa)^+, 2) \leq \mu^{cf \kappa} = \kappa^{|\beta|}$. Now use (1) of Theorem 2.

- (2) Use (4) of Theorem 2.
- (3) If κ_0 is large enough below κ then $\mu \leq \operatorname{pp}_{|\beta|}(\kappa) + \max \operatorname{pcf} \operatorname{Reg} \cap [\kappa_0, \kappa)$ $= \mathrm{pp}_{|\beta|}(\kappa).$

Now by [Sh-g, Ch. VIII, 1.6], $pp_{|\beta|}(\kappa) = pp(\kappa)$ and by [Sh-g, Ch. II, 5.4],

$$cov(\mu, (cf \kappa)^+, (cf \kappa)^+, cf \kappa) = \sup\{pp(\theta) : \theta \le \mu, cf \theta = cf \kappa\}$$
$$= \sup\{pp(\theta) : \theta \le \kappa, cf \theta = cf \kappa\} = pp(\kappa)$$

(the second equality follows from cf pp(κ) > cf κ and [Sh-g, Ch. II, 2.3(2)]). By (2) of Theorem 2, $d_{\kappa} \leq \operatorname{pp}(\kappa) + d_{\operatorname{cf} \kappa}^s = \operatorname{pp}(\kappa)$. The inequality $d_{\kappa} \geq \operatorname{pp}(\kappa)$ holds by [Sh-g, Ch. VIII, 1.6] and [Sh675, 2.2(2)].

(4) Use (5) of Theorem 2, and the proof of (3) here to get $\mu^* \leq pp(\kappa)$.

(5) In computing $cov(\mu, (cf \kappa)^+, (cf \kappa)^+, 2)$ we use [Sh-g, Ch. IX, 3.7) and then apply (1) of Theorem 2.

References

[C] K. Ciesielski, Set theoretic real analysis, J. Appl. Anal. 3 (1997), 143–190.

 [J] F. Jordan, Cardinal invariants connected with adding real functions, Real Anal. Exchange 22 (1997), 91–94.

[Sh-g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Clarendon Press, 1994.

[Sh420] —, Advances in Cardinal Arithmetic, in: N. W. Sauer et al. (eds.), Finite and Infinite Combinatorics in Sets and Logic, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 411, Kluwer, 1993, 355–383.

[Sh675] —, On Ciesielski's problems, J. Appl. Anal. 3 (1997), 191–209.

Institute of Mathematics Hebrew University Jerusalem 91904, Israel E-mail: shafir@math.huji.ac.il

> Received 20 January 1999; in revised form 12 June 2000