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Two cases when d,, and d;, are equal
by

Ofer Shafir (Jerusalem)

Abstract. We deal with two cardinal invariants and give conditions on their equality
using Shelah’s pcf theory.

In [C] Ciesielski asked whether d. and d} (see definition below) are equal.
His proof that this is the case if ¢<¢ = ¢ appeared in [J]. Taking the line of
[Sh675] we investigate the problem for any cardinal . Using pcf notions and
results we give sufficient conditions for the equality for regular cardinals in
Theorem 1. For example, when x = At we can relax the condition 2* = A\t
to dy = A*. In Theorem 2 we bound the value of d, for singular x by
d-numbers of smaller cardinals and by covering numbers. Also here we get
a partial positive answer but actually we are doing much more than that:
d,, and d} are computed and shown to be equal to pp x. On cov and pp see
[Sh-g, Ch II]. Trivial properties of cov which we use freely throughout the
paper are listed (usually without a proof) in observation 5.3 there. 30 < A
means “for unboundedly many 6 below \”.

DEFINITION. For infinite cardinals «:

de =min{|A|: AC "k, Vfewdge A({i <r: f(i) =9(@)}| =r)},
and
di =min{|A| : A C "k, VG€[k|"Ige AVf e G([{i < K : f(i) =g(i)}=r)}.

d;, is defined similarly to d,, but f is allowed to be also just a partial function

with domain in [k]".

REMARK. It is easy to see that df = cov([k]", D).

THEOREM 1. For a (regular) infinite cardinal k and for a sequence
(aj =1 < cfk) of ordinals increasing to k, if every k; = |a;| satisfies
dr  cov(k, k7, k7, 2) < K, then d,, = dy.
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Proof. Represent k as a disjoint union of intervals (I; : i < k) such
that |I;| = w; if i € [aj,a;41). For every i < cfr fix a cofinal set for
([£]", C) of cardinality less than or equal to k, call it H;, and for every
i <rand A € H; where i € [aj,aj11) let R; 4 C TiA witness that d* < k.
LetR—UAeH ZAandﬁxallfunctlonF R; — k. LetGC k of
cardinality d be a witness for the deﬁmtlon of that cardinal invariant. For
any g € G define g € " by § = U{F; *(g9(3)) : g(i) € rang F;} U J{0[;
g(1) & rang F; }. We prove that {g: g € G} witnesses that d’ < |G|. For any
sequence (f; : 4 < k) C "x and for every i < r, cover (J_ <a, TANg fe11; where
i € [, a41) by some A; € H; and guess the sequence (f:[1; : € < o) by
some h; € R;, A;. Define h € "k by h(i) = F;(h;) and guess it by g € G.
Now g does the job, i.e. for every i < k, |{e <k =g(e) = fi(e)}| = k.

ConNcLUSION. (1) If an infinite cardinal k satisfies df = k™ then d,.+
—dr,.

(2) If K is inaccessible and for any singular A < Kk we have PP, com (A) <
k and cfX = Vg — pp(A) < AT and f X = Ry — pp(\) = AT then
3*0 < k(dj < k) implies that d,, = d,.

(3) If k is inaccessible and 0% does not exist then 3*0 < r(d; < k)
implies that d,, = d,.

(4) If 2% < g is inaccessible, 3*0 < r(d} + supy.,.pp(A < k) and
30 < kVA({p < K : ppe(p) > A} < 0) then d,, = dj,.

Proof. (1) We only need cov(k™,x™,k*,2) = kT, which is trivial.
(2) Trivially, supy.,. cov(k,0,07,2) = supy_ ., cov(\, 07,07, 2). Now
for 6 < A,
cov(\, 0F,0%,2) < cov(cov(A, 07,07, Ry), 07, Ry, 2).
By [Sh-g, Ch. IL, S. 4],
COV()‘7 9+7 9+7 Nl) < sup PPs-com (X)v
O<x<A\,cf x>V

which is < k by the assumption.
We continue:
sup cov(\,01,07,2) < supcov(k,0T,N,2) < sup  cov(A, A\, Ny, 2).
<A<k 0<k A<k, cf A>RNg
By [Sh-g, Ch. IX, 1.8] all these terms are equal to the respective pp(\)’s
which are < k. Now apply Theorem 1.

(3) If 07 does not exist then YA(pp(\) = A1) (see [Sh-g]). In fact, it is
enough that there is no inner model with a measurable y such that o(x) =
X T. Now use (2).

(4) By the proof of [Sh420, 6.4], YA > 280V > 280 4 cf A\(cov(A, ), 61, 2)
= ppy(N)). If for some ), 6 > 2% we have ppy()\) > « then for the minimal
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such A\, pp(A) = ppg(N) ([Sh-g, Ch. VIII, 1.6]). Together we have
Zcov(n, 0t,07,2) = Z cov(\, A, 072)

<k <A<k
= > ppe(N) = _pp(N) <k
<A<k A<k

Now use Theorem 1.

REMARK. In all the known models of ZFC, for every inaccessible k,
supy <, PP(A) = k. Notice that in (1) above both the assumptions VA <
(PPo-com(A) < k) and cf A = Ry — pp(A) = AT can hold even just from
some point on. Also the assumption YOVA(|{x : ppg(p) > A} < Rp) is not
violated in any known model of ZFC.

THEOREM 2. If k is a singular cardinal and (k; : i < cf k) increases to
K then for p = sup;_c¢ . ldi, + cov(r, k), k7,2)] and p® = supy g, [ds, +

) ) 7 )
cov(k, ki, k5, k)] we have:

(1) d < cov(p, (cfr)T, (cfr)T,2)det -
(2) dy < cov(p, (cfr)t, (cfr)T, cfr)d ..

(3) The claim of (1) and (2) holds for p® instead of w if the k;’s are
regular.

(4) d¥ < cov(u*, (cfr)T, (cf k)T, 2)des where

p* = sup [d + cov(k, k], K5, 2)].
i<cfk
(5) d:; < COV(:U’*v (Cf R)—i_? (Cf R)+7 cf H)dgfn'

Proof. (1) Represent x as a disjoint union of intervals (I; : ¢ < cfk)
such that |I;| = k;. For every i < cfr let H; be cofinal in ([x]",C) of
cardinality cov(k, /ij_,liz—-’—,2) and for every A € H; let R; 4 C 1A be of
cardinality d,, such that for every f € TiA there is ¢ € R; 4 for which
{a € I : fla) = g(a)}| = ki Define R = Ut Uscy, Ria, let H
be cofinal in ([R]**<) of cardinality cov(u, (cf k), (cfx)*,2) (notice that
|R| = p) and for every C' € H of cardinality cf x fix an order <. on ¢ of
order type cf k. Let P be of cardinality de¢,. such that for every f € t#cf
there is g € P for which |[{a < cfk: f(a) = g(a)}| = cf k.

It is enough to show that we can guess a function in “k by the members of
G ={f € "k: for some C € H and g € P for every i < cf k, f[I; is the g(i)th
element in (C'N ik, <.)}. For any function f € "k for any i < cf k, cover
f"[I;] by aset from H;, call it A;, and guess f[I; as a function in ©/A; by some
gi € R; a,. Next cover {g; : i < cfk} by some C € H and guess f’, which is
defined as a function in % cf k, by f/(i) = otp({j € C N Tk : j <. gi}, <c)
by some function h € P. The function in G which is defined from C and h
does the job.
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(2) The only differences are that H is of cardinality cov(u, (cfx)™,
(cf k)T, cf k) and only the sets of unions of less than cf x elements from
it are cofinal in ([R]<t*, C), that P is now of cardinality d5; ., that it guesses
also partial functions in /% cf k with domains of cardinality cf x and that
we define G by G = {f € "x : for some C' € H and a partial function g € P,
for every i € domg, fII; is the g(i)th element in (C N fik, <.)}. For any
function f € "k we get (g; : ¢ < cf k) as in (1). Next we cover this set by
the union of less than cf k elements from H and pick one of them, call it ¢,
such that |C' N (g; : i < cf k)| = cf k. Define the partial function of “t* cf k
by f'(i) = otp({j € CNtik : j <. g;},<c) if g; € C, and guess it by some
k € P. The function in GG which is defined from C and h does the job.

(3) is proved by repeating the argument from (2) cf x many times for
any R; 4, A€ H.

(4), (5) Easy.

CONCLUSION. Let k be a singular cardinal which is not a fixed point,
i.e. kK = Roig, B < Ny, and (k; 1 @ < cf k) an unbounded set of cardinals
below it, N, < ko. Then:

(1) If 3icerr duy < 618 then dy < 6181+ dog .

(2) If Yicerndi, < kP then & < w1P1 + deg .

(3) If 2507, 3. ot diy < PP(K) and VK < k(cf &' < |B] — PP (k) < k)
then d,, = pp(k)

(4) If in (3) also Y, ¢, di, < pp(k) then d, = dj, = pp(k).

(5) If K is below the first fived point then in (3) we can replace 2<% by
def .

Proof. (1) By [Sh-g, Ch. II, 3.6],

p= sup [de, +cov(k, k1, k7, 2)] <kl + maxpef Reg N [Ry, &) < &7,
1<cfr

As cf k < | 8|, we have cov(u, (cf k)T, (cf K)t,2) < pf* = k!B, Now use (1)
of Theorem 2.

(2) Use (4) of Theorem 2.

(3) If Ko is large enough below r then u < pp g (x)+max pef Reg Nko, k)
= pp\m(fi)~

Now by [Sh-g, Ch. VIII, 1.6], pp|/(x) = pp(x) and by [Sh-g, Ch. II, 5.4],

cov(p, (cf k)T, (cf k)T, cf k) = sup{pp() : 0 < p,cf = cf k}
= sup{pp(#) : 0 < K,cfd = cf K} = pp(k)
(the second equality follows from cf pp(x) > cf k and [Sh-g, Ch. II, 2.3(2)]).
By (2) of Theorem 2, d,; < pp(k)+d?;,. = pp(k). The inequality d,, > pp(k)

holds by [Sh-g, Ch. VIII, 1.6] and [Sh675, 2.2(2)].
(4) Use (5) of Theorem 2, and the proof of (3) here to get u* < pp(k).
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(5) In computing cov(y, (cf k)1, (cf k)T, 2) we use [Sh-g, Ch. IX, 3.7) and
then apply (1) of Theorem 2.
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