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Two cases when dκ and d∗κ are equal

by

Ofer Shafir (Jerusalem)

Abstract. We deal with two cardinal invariants and give conditions on their equality
using Shelah’s pcf theory.

In [C] Ciesielski asked whether dc and d∗c (see definition below) are equal.
His proof that this is the case if c<c = c appeared in [J]. Taking the line of
[Sh675] we investigate the problem for any cardinal κ. Using pcf notions and
results we give sufficient conditions for the equality for regular cardinals in
Theorem 1. For example, when κ = λ+ we can relax the condition 2λ = λ+

to dλ = λ+. In Theorem 2 we bound the value of dκ for singular κ by
d-numbers of smaller cardinals and by covering numbers. Also here we get
a partial positive answer but actually we are doing much more than that:
dκ and d∗κ are computed and shown to be equal to ppκ. On cov and pp see
[Sh-g, Ch II]. Trivial properties of cov which we use freely throughout the
paper are listed (usually without a proof) in observation 5.3 there. ∃∗θ < λ
means “for unboundedly many θ below λ”.

Definition. For infinite cardinals κ:

dκ = min{|A| : A ⊆ κκ, ∀f ∈ κκ∃g ∈ A(|{i < κ : f(i) = g(i)}| = κ)},
and
d∗κ=min{|A| : A ⊆ κκ, ∀G∈ [κκ]κ∃g∈A∀f ∈ G(|{i < κ : f(i) = g(i)}|=κ)}.
dsκ is defined similarly to dκ but f is allowed to be also just a partial function
with domain in [κ]κ.

Remark. It is easy to see that dsκ = cov([κ]κ,⊇).

Theorem 1. For a (regular) infinite cardinal κ and for a sequence
〈αi : i < cf κ〉 of ordinals increasing to κ, if every κi = |αi| satisfies
d∗κi , cov(κ, κ+

i , κ
+
i , 2) ≤ κ, then dκ = d∗κ.
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Proof. Represent κ as a disjoint union of intervals 〈Ii : i < κ〉 such
that |Ii| = κj if i ∈ [αj , αj+1). For every i < cf κ fix a cofinal set for
([κ]κi ,⊂) of cardinality less than or equal to κ, call it Hi, and for every
i < κ and A ∈ Hj where i ∈ [αj , αj+1) let Ri,A ⊂ IiA witness that d∗κj ≤ κ.
Let Ri =

⋃
A∈Hj Ri,A and fix a 1-1 function Fi : Ri → κ. Let G ⊆ κκ of

cardinality dκ be a witness for the definition of that cardinal invariant. For
any g ∈ G define ĝ ∈ κκ by ĝ =

⋃{F−1
i (g(i)) : g(i) ∈ rangFi} ∪

⋃{0�Ii :
g(i) 6∈ rangFi}. We prove that {ĝ : g ∈ G} witnesses that d∗κ ≤ |G|. For any
sequence 〈fi : i < κ〉 ⊆ κκ and for every i < κ, cover

⋃
ε<αj

rang fε�Ii where
i ∈ [αj , αj+1) by some Ai ∈ Hj and guess the sequence 〈fε�Ii : ε < αj〉 by
some hi ∈ Ri, Ai. Define h ∈ κκ by h(i) = Fi(hi) and guess it by g ∈ G.
Now ĝ does the job, i.e. for every i < κ, |{ε < κ = ĝ(ε) = fi(ε)}| = κ.

Conclusion. (1) If an infinite cardinal κ satisfies d∗κ = κ+ then dκ+

= d∗κ+ .
(2) If κ is inaccessible and for any singular λ < κ we have ppσ-com(λ) ≤

κ and cf λ = ℵ0 → pp(λ) < λ+ω and cf λ = ℵ1 → pp(λ) = λ+ then
∃∗θ < κ(d∗θ ≤ κ) implies that dκ = d∗κ.

(3) If κ is inaccessible and 0# does not exist then ∃∗θ < κ(d∗θ ≤ κ)
implies that dκ = d∗κ.

(4) If 2ℵ0 < κ is inaccessible, ∃∗θ < κ(d∗θ + supλ<κ pp(λ ≤ κ) and
∃θ < κ∀λ(|{µ < κ : ppθ(µ) > λ}| ≤ θ) then dκ = d∗κ.

Proof. (1) We only need cov(κ+, κ+, κ+, 2) = κ+, which is trivial.
(2) Trivially, supθ<κ cov(κ, θ+, θ+, 2) = supθ<λ<κ cov(λ, θ+, θ+, 2). Now

for θ < λ,

cov(λ, θ+, θ+, 2) ≤ cov(cov(λ, θ+, θ+,ℵ1), θ+,ℵ1, 2).

By [Sh-g, Ch. II, S. 4],

cov(λ, θ+, θ+,ℵ1) ≤ sup
θ<χ≤λ, cf χ>ℵ0

ppσ-com(χ),

which is ≤ κ by the assumption.
We continue:

sup
θ<λ<κ

cov(λ, θ+, θ+, 2) ≤ sup
θ<κ

cov(κ, θ+,ℵ1, 2) ≤ sup
λ<κ, cf λ>ℵ0

cov(λ, λ,ℵ1, 2).

By [Sh-g, Ch. IX, 1.8] all these terms are equal to the respective pp(λ)’s
which are ≤ κ. Now apply Theorem 1.

(3) If 0# does not exist then ∀λ(pp(λ) = λ+) (see [Sh-g]). In fact, it is
enough that there is no inner model with a measurable χ such that ◦(χ) =
χ++. Now use (2).

(4) By the proof of [Sh420, 6.4], ∀λ > 2ℵ0∀θ ≥ 2ℵ0 + cf λ(cov(λ, λ, θ+, 2)
= ppθ(λ)). If for some λ, θ ≥ 2ℵ0 we have ppθ(λ) > κ then for the minimal
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such λ, pp(λ) = ppθ(λ) ([Sh-g, Ch. VIII, 1.6]). Together we have
∑

θ<κ

cov(κ, θ+, θ+, 2) =
∑

θ<λ<κ

cov(λ, λ, θ+2)

=
∑

θ<λ<κ

ppθ(λ) =
∑

λ<κ

pp(λ) ≤ κ.

Now use Theorem 1.

Remark. In all the known models of ZFC, for every inaccessible κ,
supλ<κ pp(λ) = κ. Notice that in (1) above both the assumptions ∀λ < κ
(ppσ-com(λ) ≤ κ) and cf λ = ℵ1 → pp(λ) = λ+ can hold even just from
some point on. Also the assumption ∀θ∀λ(|{µ : ppθ(µ) > λ}| ≤ ℵ0) is not
violated in any known model of ZFC.

Theorem 2. If κ is a singular cardinal and 〈κi : i < cf κ〉 increases to
κ then for µ = supi<cf κ[dκi + cov(κ, κ+

i , κ
+
i , 2)] and µs = sup1<cf κ[dsκi +

cov(κ, κ+
i , κ

+
i , κi)] we have:

(1) dκ ≤ cov(µ, (cf κ)+, (cf κ)+, 2)dcf κ.
(2) dκ ≤ cov(µ, (cf κ)+, (cf κ)+, cf κ)dscf κ.
(3) The claim of (1) and (2) holds for µs instead of µ if the κi’s are

regular.
(4) d∗κ ≤ cov(µ∗, (cf κ)+, (cf κ)+, 2)dcf κ where

µ∗ = sup
i<cf κ

[d∗κi + cov(κ, κ+
i , κ

+
i , 2)].

(5) d∗κ ≤ cov(µ∗, (cf κ)+, (cf κ)+, cf κ)dscf κ.

Proof. (1) Represent κ as a disjoint union of intervals 〈Ii : i < cf κ〉
such that |Ii| = κi. For every i < cf κ let Hi be cofinal in ([κ]κi ,⊆) of
cardinality cov(κ, κ+

i , κ
+
i , 2) and for every A ∈ Hi let Ri,A ⊆ IiA be of

cardinality dκi such that for every f ∈ IiA there is g ∈ Ri,A for which
|{α ∈ Ii : f(α) = g(α)}| = κi. Define R =

⋃
i<cf κ

⋃
A∈Hi Ri,A, let H

be cofinal in ([R]cf κ,⊆) of cardinality cov(µ, (cf κ)+, (cf κ)+, 2) (notice that
|R| = µ) and for every C ∈ H of cardinality cf κ fix an order <c on c of
order type cf k. Let P be of cardinality dcf κ such that for every f ∈ cf κ cf κ
there is g ∈ P for which |{α < cf κ : f(a) = g(α)}| = cf κ.

It is enough to show that we can guess a function in κκ by the members of
G = {f ∈ κκ: for some C ∈ H and g ∈ P for every i < cf κ, f�Ii is the g(i)th
element in (C ∩ Iiκ,<c)}. For any function f ∈ κκ for any i < cf κ, cover
f ′′[Ii] by a set fromHi, call it Ai, and guess f�Ii as a function in IiAi by some
gi ∈ Ri,Ai . Next cover {gi : i < cf κ} by some C ∈ H and guess f ′, which is
defined as a function in cf κ cf κ, by f ′(i) = otp({j ∈ C ∩ Iiκ : j <c gi}, <c)
by some function h ∈ P . The function in G which is defined from C and h
does the job.
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(2) The only differences are that H is of cardinality cov(µ, (cf κ)+,
(cf κ)+, cf κ) and only the sets of unions of less than cf κ elements from
it are cofinal in ([R]cf κ,⊆), that P is now of cardinality dscf κ, that it guesses
also partial functions in cf κ cf κ with domains of cardinality cf κ and that
we define G by G = {f ∈ κκ : for some C ∈ H and a partial function g ∈ P ,
for every i ∈ dom g, f�Ii is the g(i)th element in (C ∩ Iiκ,<c)}. For any
function f ∈ κκ we get 〈gi : i < cf κ〉 as in (1). Next we cover this set by
the union of less than cf κ elements from H and pick one of them, call it c,
such that |C ∩ 〈gi : i < cf κ〉| = cf κ. Define the partial function of cf κ cf κ
by f ′(i) = otp({j ∈ C ∩ Iiκ : j <c gi}, <c) if gi ∈ C, and guess it by some
κ ∈ P . The function in G which is defined from C and h does the job.

(3) is proved by repeating the argument from (2) cf κ many times for
any Ri,A, A ∈ H.

(4), (5) Easy.

Conclusion. Let κ be a singular cardinal which is not a fixed point ,
i.e. κ = ℵα+β, β < ℵα, and 〈κi : i < cf κ〉 an unbounded set of cardinals
below it , ℵα < κ0. Then:

(1) If
∑
i<cf κ dκi ≤ κ|β| then dκ ≤ κ|β| + dcf κ.

(2) If
∑
i<cf κ d

∗
κi ≤ κ|β| then d∗κ ≤ κ|β| + dcf κ.

(3) If 2cf κ,
∑
i<cf κ dκi ≤ pp(κ) and ∀κ′ < κ(cf κ′ ≤ |β| → pp|β|(κ) < κ)

then dκ = pp(κ).
(4) If in (3) also

∑
i<cf κ d

∗
κi ≤ pp(κ) then dκ = d∗κ = pp(κ).

(5) If κ is below the first fixed point then in (3) we can replace 2cf κ by
dcf k.

Proof. (1) By [Sh-g, Ch. II, 3.6],

µ = sup
1<cf κ

[dκi + cov(κ, κ+
i , κ

+
i , 2)] ≤ κ|β| + max pcf Reg∩ [ℵα, κ) ≤ κ|β|.

As cf κ ≤ |β|, we have cov(µ, (cf κ)+, (cf κ)+, 2) ≤ µcf κ = κ|β|. Now use (1)
of Theorem 2.

(2) Use (4) of Theorem 2.
(3) If κ0 is large enough below κ then µ ≤ pp|β|(κ)+max pcf Reg ∩[κ0, κ)

= pp|β|(κ).
Now by [Sh-g, Ch. VIII, 1.6], pp|β|(κ) = pp(κ) and by [Sh-g, Ch. II, 5.4],

cov(µ, (cf κ)+, (cf κ)+, cf κ) = sup{pp(θ) : θ ≤ µ, cf θ = cf κ}
= sup{pp(θ) : θ ≤ κ, cf θ = cf κ} = pp(κ)

(the second equality follows from cf pp(κ) > cf κ and [Sh-g, Ch. II, 2.3(2)]).
By (2) of Theorem 2, dκ ≤ pp(κ)+dscf κ = pp(κ). The inequality dκ ≥ pp(κ)
holds by [Sh-g, Ch. VIII, 1.6] and [Sh675, 2.2(2)].

(4) Use (5) of Theorem 2, and the proof of (3) here to get µ∗ ≤ pp(κ).
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(5) In computing cov(µ, (cf κ)+, (cf κ)+, 2) we use [Sh-g, Ch. IX, 3.7) and
then apply (1) of Theorem 2.
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