Two cases when d_{κ} and d_{κ}^{*} are equal

by

Ofer Shafir (Jerusalem)

Abstract

We deal with two cardinal invariants and give conditions on their equality using Shelah's pcf theory.

In [C] Ciesielski asked whether d_{c} and d_{c}^{*} (see definition below) are equal. His proof that this is the case if $c^{<c}=c$ appeared in [J]. Taking the line of [Sh675] we investigate the problem for any cardinal κ. Using pcf notions and results we give sufficient conditions for the equality for regular cardinals in Theorem 1. For example, when $\kappa=\lambda^{+}$we can relax the condition $2^{\lambda}=\lambda^{+}$ to $d_{\lambda}=\lambda^{+}$. In Theorem 2 we bound the value of d_{κ} for singular κ by d-numbers of smaller cardinals and by covering numbers. Also here we get a partial positive answer but actually we are doing much more than that: d_{κ} and d_{κ}^{*} are computed and shown to be equal to pp κ. On cov and pp see [Sh-g, Ch II]. Trivial properties of cov which we use freely throughout the paper are listed (usually without a proof) in observation 5.3 there. $\exists^{*} \theta<\lambda$ means "for unboundedly many θ below λ ".

Definition. For infinite cardinals κ :

$$
d_{\kappa}=\min \left\{|A|: A \subseteq{ }^{\kappa} \kappa, \forall f \in{ }^{\kappa} \kappa \exists g \in A(|\{i<\kappa: f(i)=g(i)\}|=\kappa)\right\},
$$

and
$d_{\kappa}^{*}=\min \left\{|A|: A \subseteq{ }^{\kappa} \kappa, \forall G \in\left[{ }^{\kappa} \kappa\right]^{\kappa} \exists g \in A \forall f \in G(|\{i<\kappa: f(i)=g(i)\}|=\kappa)\right\}$. d_{κ}^{s} is defined similarly to d_{κ} but f is allowed to be also just a partial function with domain in $[\kappa]^{\kappa}$.

Remark. It is easy to see that $d_{\kappa}^{s}=\operatorname{cov}\left([\kappa]^{\kappa}, \supseteq\right)$.
Theorem 1. For a (regular) infinite cardinal κ and for a sequence $\left\langle\alpha_{i}: i<\operatorname{cf} \kappa\right\rangle$ of ordinals increasing to κ, if every $\kappa_{i}=\left|\alpha_{i}\right|$ satisfies $d_{\kappa i}^{*}, \operatorname{cov}\left(\kappa, \kappa_{i}^{+}, \kappa_{i}^{+}, 2\right) \leq \kappa$, then $d_{\kappa}=d_{\kappa}^{*}$.

2000 Mathematics Subject Classification: Primary 26Axx, 03E05; Secondary 03E35, 03E50.

Proof. Represent κ as a disjoint union of intervals $\left\langle I_{i}: i<\kappa\right\rangle$ such that $\left|I_{i}\right|=\kappa_{j}$ if $i \in\left[\alpha_{j}, \alpha_{j+1}\right)$. For every $i<\operatorname{cf} \kappa$ fix a cofinal set for $\left([\kappa]^{\kappa_{i}}, \subset\right)$ of cardinality less than or equal to κ, call it H_{i}, and for every $i<\kappa$ and $A \in H_{j}$ where $i \in\left[\alpha_{j}, \alpha_{j+1}\right)$ let $R_{i, A} \subset{ }^{I_{i}} A$ witness that $d_{\kappa_{j}}^{*} \leq \kappa$. Let $R_{i}=\bigcup_{A \in H_{j}} R_{i, A}$ and fix a 1-1 function $F_{i}: R_{i} \rightarrow \kappa$. Let $G \subseteq{ }^{\kappa} \kappa$ of cardinality d_{κ} be a witness for the definition of that cardinal invariant. For any $g \in G$ define $\widehat{g} \in{ }^{\kappa} \kappa$ by $\widehat{g}=\bigcup\left\{F_{i}^{-1}(g(i)): g(i) \in \operatorname{rang} F_{i}\right\} \cup \bigcup\left\{0 \upharpoonright I_{i}\right.$: $\left.g(i) \notin \operatorname{rang} F_{i}\right\}$. We prove that $\{\widehat{g}: g \in G\}$ witnesses that $d_{\kappa}^{*} \leq|G|$. For any sequence $\left\langle f_{i}: i<\kappa\right\rangle \subseteq{ }^{\kappa} \kappa$ and for every $i<\kappa$, cover $\bigcup_{\varepsilon<\alpha_{j}} \operatorname{rang} f_{\varepsilon} \upharpoonright I_{i}$ where $i \in\left[\alpha_{j}, \alpha_{j+1}\right)$ by some $A_{i} \in H_{j}$ and guess the sequence $\left\langle f_{\varepsilon} \upharpoonright I_{i}: \varepsilon<\alpha_{j}\right\rangle$ by some $h_{i} \in R_{i}, A_{i}$. Define $h \in{ }^{\kappa} \kappa$ by $h(i)=F_{i}\left(h_{i}\right)$ and guess it by $g \in G$. Now \widehat{g} does the job, i.e. for every $i<\kappa,\left|\left\{\varepsilon<\kappa=\widehat{g}(\varepsilon)=f_{i}(\varepsilon)\right\}\right|=\kappa$.

Conclusion. (1) If an infinite cardinal κ satisfies $d_{\kappa}^{*}=\kappa^{+}$then $d_{\kappa^{+}}$ $=d_{\kappa^{+}}^{*}$.
(2) If κ is inaccessible and for any singular $\lambda<\kappa$ we have $\operatorname{pp}_{\sigma \text {-com }}(\lambda) \leq$ κ and $\operatorname{cf} \lambda=\aleph_{0} \rightarrow \operatorname{pp}(\lambda)<\lambda^{+\omega}$ and $\operatorname{cf} \lambda=\aleph_{1} \rightarrow \operatorname{pp}(\lambda)=\lambda^{+}$then $\exists^{*} \theta<\kappa\left(d_{\theta}^{*} \leq \kappa\right)$ implies that $d_{\kappa}=d_{\kappa}^{*}$.
(3) If κ is inaccessible and $0^{\#}$ does not exist then $\exists^{*} \theta<\kappa\left(d_{\theta}^{*} \leq \kappa\right)$ implies that $d_{\kappa}=d_{\kappa}^{*}$.
(4) If $2^{\aleph_{0}}<\kappa$ is inaccessible, $\exists^{*} \theta<\kappa\left(d_{\theta}^{*}+\sup _{\lambda<\kappa} \operatorname{pp}(\lambda \leq \kappa)\right.$ and $\exists \theta<\kappa \forall \lambda\left(\left|\left\{\mu<\kappa: \operatorname{pp}_{\theta}(\mu)>\lambda\right\}\right| \leq \theta\right)$ then $d_{\kappa}=d_{\kappa}^{*}$.

Proof. (1) We only need $\operatorname{cov}\left(\kappa^{+}, \kappa^{+}, \kappa^{+}, 2\right)=\kappa^{+}$, which is trivial.
(2) Trivially, $\sup _{\theta<\kappa} \operatorname{cov}\left(\kappa, \theta^{+}, \theta^{+}, 2\right)=\sup _{\theta<\lambda<\kappa} \operatorname{cov}\left(\lambda, \theta^{+}, \theta^{+}, 2\right)$. Now for $\theta<\lambda$,

$$
\operatorname{cov}\left(\lambda, \theta^{+}, \theta^{+}, 2\right) \leq \operatorname{cov}\left(\operatorname{cov}\left(\lambda, \theta^{+}, \theta^{+}, \aleph_{1}\right), \theta^{+}, \aleph_{1}, 2\right)
$$

By [Sh-g, Ch. II, S. 4],

$$
\operatorname{cov}\left(\lambda, \theta^{+}, \theta^{+}, \aleph_{1}\right) \leq \sup _{\theta<\chi \leq \lambda, \operatorname{cf} \chi>\aleph_{0}} \operatorname{pp}_{\sigma-\operatorname{com}}(\chi)
$$

which is $\leq \kappa$ by the assumption.
We continue:

$$
\sup _{\theta<\lambda<\kappa} \operatorname{cov}\left(\lambda, \theta^{+}, \theta^{+}, 2\right) \leq \sup _{\theta<\kappa} \operatorname{cov}\left(\kappa, \theta^{+}, \aleph_{1}, 2\right) \leq \sup _{\lambda<\kappa, \operatorname{cf} \lambda>\aleph_{0}} \operatorname{cov}\left(\lambda, \lambda, \aleph_{1}, 2\right)
$$

By [Sh-g, Ch. IX, 1.8] all these terms are equal to the respective $\mathrm{pp}(\lambda)$'s which are $\leq \kappa$. Now apply Theorem 1 .
(3) If $0^{\#}$ does not exist then $\forall \lambda\left(\operatorname{pp}(\lambda)=\lambda^{+}\right)$(see [Sh-g]). In fact, it is enough that there is no inner model with a measurable χ such that $\circ(\chi)=$ χ^{++}. Now use (2).
(4) By the proof of $[\operatorname{Sh} 420,6.4], \forall \lambda>2^{\aleph_{0}} \forall \theta \geq 2^{\aleph_{0}}+\operatorname{cf} \lambda\left(\operatorname{cov}\left(\lambda, \lambda, \theta^{+}, 2\right)\right.$ $=\operatorname{pp}_{\theta}(\lambda)$. If for some $\lambda, \theta \geq 2^{\aleph_{0}}$ we have $\mathrm{pp}_{\theta}(\lambda)>\kappa$ then for the minimal
such $\lambda, \operatorname{pp}(\lambda)=\operatorname{pp}_{\theta}(\lambda)([$ Sh-g, Ch. VIII, 1.6] $)$. Together we have

$$
\begin{aligned}
\sum_{\theta<\kappa} \operatorname{cov}\left(\kappa, \theta^{+}, \theta^{+}, 2\right) & =\sum_{\theta<\lambda<\kappa} \operatorname{cov}\left(\lambda, \lambda, \theta^{+} 2\right) \\
& =\sum_{\theta<\lambda<\kappa} \operatorname{pp}_{\theta}(\lambda)=\sum_{\lambda<\kappa} \operatorname{pp}(\lambda) \leq \kappa
\end{aligned}
$$

Now use Theorem 1.
REmARK. In all the known models of ZFC, for every inaccessible κ, $\sup _{\lambda<\kappa} \operatorname{pp}(\lambda)=\kappa$. Notice that in (1) above both the assumptions $\forall \lambda<\kappa$ $\left(\operatorname{pp}_{\sigma-\text { com }}(\lambda) \leq \kappa\right)$ and $\operatorname{cf} \lambda=\aleph_{1} \rightarrow \operatorname{pp}(\lambda)=\lambda^{+}$can hold even just from some point on. Also the assumption $\forall \theta \forall \lambda\left(\left|\left\{\mu: \operatorname{pp}_{\theta}(\mu)>\lambda\right\}\right| \leq \aleph_{0}\right)$ is not violated in any known model of ZFC.

THEOREM 2. If κ is a singular cardinal and $\left\langle\kappa_{i}: i<\operatorname{cf} \kappa\right\rangle$ increases to κ then for $\mu=\sup _{i<\mathrm{cf} \kappa}\left[d_{\kappa_{i}}+\operatorname{cov}\left(\kappa, \kappa_{i}^{+}, \kappa_{i}^{+}, 2\right)\right]$ and $\mu^{s}=\sup _{1<\mathrm{cf} \kappa}\left[d_{\kappa_{i}}^{s}+\right.$ $\left.\operatorname{cov}\left(\kappa, \kappa_{i}^{+}, \kappa_{i}^{+}, \kappa_{i}\right)\right]$ we have:
(1) $d_{\kappa} \leq \operatorname{cov}\left(\mu,(\operatorname{cf} \kappa)^{+},(\operatorname{cf} \kappa)^{+}, 2\right) d_{\mathrm{cf} \kappa}$.
(2) $d_{\kappa} \leq \operatorname{cov}\left(\mu,(\mathrm{cf} \kappa)^{+},(\mathrm{cf} \kappa)^{+}, \operatorname{cf} \kappa\right) d_{\mathrm{cf} \kappa}^{s}$.
(3) The claim of (1) and (2) holds for μ^{s} instead of μ if the κ_{i} 's are regular.
(4) $d_{\kappa}^{*} \leq \operatorname{cov}\left(\mu^{*},(\operatorname{cf} \kappa)^{+},(\operatorname{cf} \kappa)^{+}, 2\right) d_{\operatorname{cf} \kappa}$ where

$$
\mu^{*}=\sup _{i<\operatorname{cf} \kappa}\left[d_{\kappa_{i}}^{*}+\operatorname{cov}\left(\kappa, \kappa_{i}^{+}, \kappa_{i}^{+}, 2\right)\right]
$$

(5) $d_{\kappa}^{*} \leq \operatorname{cov}\left(\mu^{*},(\operatorname{cf} \kappa)^{+},(\operatorname{cf} \kappa)^{+}, \operatorname{cf} \kappa\right) d_{\mathrm{cf} \kappa}^{s}$.

Proof. (1) Represent κ as a disjoint union of intervals $\left\langle I_{i}: i<\operatorname{cf} \kappa\right\rangle$ such that $\left|I_{i}\right|=\kappa_{i}$. For every $i<\operatorname{cf} \kappa$ let H_{i} be cofinal in $\left([\kappa]^{\kappa_{i}}, \subseteq\right)$ of cardinality $\operatorname{cov}\left(\kappa, \kappa_{i}^{+}, \kappa_{i}^{+}, 2\right)$ and for every $A \in H_{i}$ let $R_{i, A} \subseteq{ }^{I_{i}} A$ be of cardinality $d_{\kappa_{i}}$ such that for every $f \in{ }^{I_{i}} A$ there is $g \in R_{i, A}$ for which $\left|\left\{\alpha \in I_{i}: f(\alpha)=g(\alpha)\right\}\right|=\kappa_{i}$. Define $R=\bigcup_{i<\operatorname{cf} \kappa} \bigcup_{A \in H_{i}} R_{i, A}$, let H be cofinal in $\left([R]^{\mathrm{cf}} \kappa, \subseteq\right)$ of cardinality $\operatorname{cov}\left(\mu,(\operatorname{cf} \kappa)^{+},(\operatorname{cf} \kappa)^{+}, 2\right)$ (notice that $|R|=\mu$) and for every $C \in H$ of cardinality $\mathrm{cf} \kappa$ fix an order ${<_{c}}$ on c of order type cf k. Let P be of cardinality $d_{\operatorname{cf} \kappa}$ such that for every $f \in{ }^{\operatorname{cf} \kappa} \operatorname{cf} \kappa$ there is $g \in P$ for which $|\{\alpha<\operatorname{cf} \kappa: f(a)=g(\alpha)\}|=\operatorname{cf} \kappa$.

It is enough to show that we can guess a function in ${ }^{\kappa} \kappa$ by the members of $G=\left\{f \in{ }^{\kappa} \kappa\right.$: for some $C \in H$ and $g \in P$ for every $i<\operatorname{cf} \kappa, f \upharpoonright I_{i}$ is the $g(i)$ th element in $\left.\left(C \cap{ }^{I_{i}} \kappa,<_{c}\right)\right\}$. For any function $f \in{ }^{\kappa} \kappa$ for any $i<\operatorname{cf} \kappa$, cover $f^{\prime \prime}\left[I_{i}\right]$ by a set from H_{i}, call it A_{i}, and guess $f\left\lceil I_{i}\right.$ as a function in ${ }^{I_{i}} A_{i}$ by some $g_{i} \in R_{i, A_{i}}$. Next cover $\left\{g_{i}: i<\operatorname{cf} \kappa\right\}$ by some $C \in H$ and guess f^{\prime}, which is defined as a function in ${ }^{\text {cf } \kappa} \operatorname{cf} \kappa$, by $f^{\prime}(i)=\operatorname{otp}\left(\left\{j \in C \cap{ }^{I_{i}} \kappa: j<_{c} g_{i}\right\},<_{c}\right)$ by some function $h \in P$. The function in G which is defined from C and h does the job.
(2) The only differences are that H is of cardinality $\operatorname{cov}\left(\mu,(\operatorname{cf} \kappa)^{+}\right.$, $\left.(\operatorname{cf} \kappa)^{+}, \operatorname{cf} \kappa\right)$ and only the sets of unions of less than $\mathrm{cf} \kappa$ elements from it are cofinal in $\left([R]^{\mathrm{cf} \kappa}, \subseteq\right)$, that P is now of cardinality $d_{\mathrm{cf} \kappa}^{s}$, that it guesses also partial functions in ${ }^{\text {cf } \kappa} \mathrm{cf} \kappa$ with domains of cardinality $\mathrm{cf} \kappa$ and that we define G by $G=\left\{f \in{ }^{\kappa} \kappa\right.$: for some $C \in H$ and a partial function $g \in P$, for every $i \in \operatorname{dom} g, f\left\lceil I_{i}\right.$ is the $g(i)$ th element in $\left.\left(C \cap{ }^{I_{i}} \kappa,<_{c}\right)\right\}$. For any function $f \in{ }^{\kappa} \kappa$ we get $\left\langle g_{i}: i<\operatorname{cf} \kappa\right\rangle$ as in (1). Next we cover this set by the union of less than $\mathrm{cf} \kappa$ elements from H and pick one of them, call it c, such that $\left|C \cap\left\langle g_{i}: i<\operatorname{cf} \kappa\right\rangle\right|=\operatorname{cf} \kappa$. Define the partial function of ${ }^{c f} \kappa \operatorname{cf} \kappa$ by $f^{\prime}(i)=\operatorname{otp}\left(\left\{j \in C \cap{ }^{I_{i}} \kappa: j<_{c} g_{i}\right\},<_{c}\right)$ if $g_{i} \in C$, and guess it by some $\kappa \in P$. The function in G which is defined from C and h does the job.
(3) is proved by repeating the argument from (2) cf κ many times for any $R_{i, A}, A \in H$.
(4), (5) Easy.

Conclusion. Let κ be a singular cardinal which is not a fixed point, i.e. $\kappa=\aleph_{\alpha+\beta}, \beta<\aleph_{\alpha}$, and $\left\langle\kappa_{i}: i<\operatorname{cf} \kappa\right\rangle$ an unbounded set of cardinals below it, $\aleph_{\alpha}<\kappa_{0}$. Then:
(1) If $\sum_{i<\operatorname{cf} \kappa} d_{\kappa_{i}} \leq \kappa^{|\beta|}$ then $d_{\kappa} \leq \kappa^{|\beta|}+d_{\text {cf } \kappa}$.
(2) If $\sum_{i<\operatorname{cf} \kappa} d_{\kappa_{i}}^{*} \leq \kappa^{|\beta|}$ then $d_{\kappa}^{*} \leq \kappa^{|\beta|}+d_{\text {cf } \kappa}$.
(3) If $2^{\text {cf } \kappa}, \sum_{i<\operatorname{cf} \kappa} d_{\kappa_{i}} \leq \operatorname{pp}(\kappa)$ and $\forall \kappa^{\prime}<\kappa\left(\operatorname{cf} \kappa^{\prime} \leq|\beta| \rightarrow \mathrm{pp}_{|\beta|}(\kappa)<\kappa\right)$ then $d_{\kappa}=\operatorname{pp}(\kappa)$.
(4) If in (3) also $\sum_{i<\mathrm{cf} \kappa} d_{\kappa_{i}}^{*} \leq \operatorname{pp}(\kappa)$ then $d_{\kappa}=d_{\kappa}^{*}=\operatorname{pp}(\kappa)$.
(5) If κ is below the first fixed point then in (3) we can replace $2^{\text {cf } \kappa}$ by $d_{\mathrm{cf} k}$.

Proof. (1) By [Sh-g, Ch. II, 3.6],

$$
\mu=\sup _{1<\operatorname{cf} \kappa}\left[d_{\kappa_{i}}+\operatorname{cov}\left(\kappa, \kappa_{i}^{+}, \kappa_{i}^{+}, 2\right)\right] \leq \kappa^{|\beta|}+\max \operatorname{pcf} \operatorname{Reg} \cap\left[\aleph_{\alpha}, \kappa\right) \leq \kappa^{|\beta|}
$$

As cf $\kappa \leq|\beta|$, we have $\operatorname{cov}\left(\mu,(\operatorname{cf} \kappa)^{+},(\operatorname{cf} \kappa)^{+}, 2\right) \leq \mu^{\mathrm{cf} \kappa}=\kappa^{|\beta|}$. Now use (1) of Theorem 2.
(2) Use (4) of Theorem 2.
(3) If κ_{0} is large enough below κ then $\mu \leq \operatorname{pp}_{|\beta|}(\kappa)+\max \operatorname{pcf} \operatorname{Reg} \cap\left[\kappa_{0}, \kappa\right)$ $=\mathrm{pp}_{|\beta|}(\kappa)$.

Now by [Sh-g, Ch. VIII, 1.6], $\mathrm{pp}_{|\beta|}(\kappa)=\mathrm{pp}(\kappa)$ and by [Sh-g, Ch. II, 5.4],

$$
\begin{aligned}
\operatorname{cov}\left(\mu,(\operatorname{cf} \kappa)^{+},(\operatorname{cf} \kappa)^{+}, \operatorname{cf} \kappa\right) & =\sup \{\operatorname{pp}(\theta): \theta \leq \mu, \operatorname{cf} \theta=\operatorname{cf} \kappa\} \\
& =\sup \{\operatorname{pp}(\theta): \theta \leq \kappa, \operatorname{cf} \theta=\operatorname{cf} \kappa\}=\operatorname{pp}(\kappa)
\end{aligned}
$$

(the second equality follows from $\operatorname{cf~} \mathrm{pp}(\kappa)>\operatorname{cf} \kappa$ and [Sh-g, Ch. II, 2.3(2)]). By (2) of Theorem $2, d_{\kappa} \leq \operatorname{pp}(\kappa)+d_{\mathrm{cf} \kappa}^{s}=\operatorname{pp}(\kappa)$. The inequality $d_{\kappa} \geq \operatorname{pp}(\kappa)$ holds by [Sh-g, Ch. VIII, 1.6] and [Sh675, 2.2(2)].
(4) Use (5) of Theorem 2, and the proof of (3) here to get $\mu^{*} \leq \operatorname{pp}(\kappa)$.
(5) In computing $\operatorname{cov}\left(\mu,(\operatorname{cf} \kappa)^{+},(\operatorname{cf} \kappa)^{+}, 2\right)$ we use [Sh-g, Ch. IX, 3.7) and then apply (1) of Theorem 2.

References

[C] K. Ciesielski, Set theoretic real analysis, J. Appl. Anal. 3 (1997), 143-190.
[J] F. Jordan, Cardinal invariants connected with adding real functions, Real Anal. Exchange 22 (1997), 91-94.
[Sh-g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Clarendon Press, 1994. [Sh420] -, Advances in Cardinal Arithmetic, in: N. W. Sauer et al. (eds.), Finite and Infinite Combinatorics in Sets and Logic, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 411, Kluwer, 1993, 355-383.
[Sh675] -, On Ciesielski's problems, J. Appl. Anal. 3 (1997), 191-209.
Institute of Mathematics
Hebrew University
Jerusalem 91904, Israel
E-mail: shafir@math.huji.ac.il

