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Expansions of o-minimal structures by sparse sets

by

Harvey Friedman and Chris Miller (Columbus, OH)

Abstract. Given an o-minimal expansion R of the ordered additive group of real
numbers and E ⊆ R, we consider the extent to which basic metric and topological prop-
erties of subsets of R definable in the expansion (R, E) are inherited by the subsets of
R definable in certain expansions of (R, E). In particular, suppose that f(Em) has no
interior for each m ∈ N and f : Rm → R definable in R, and that every subset of R
definable in (R, E) has interior or is nowhere dense. Then every subset of R definable in
(R, (S)) has interior or is nowhere dense, where S ranges over all nonempty subsets of all
cartesian products Ek (k ≥ 1). The same holds true with “nowhere dense” replaced by
any of “null” (in the sense of Lebesgue), “countable”, “a finite union of discrete sets”, or
“discrete”. We use this (together with a result of L. van den Dries) to give an example
of an expansion of the real field that defines an isomorphic copy of the ordered ring of
integers, yet does not define Z.

Given a first-order expansion R of the real line and E ⊆ R, let (R, E)#

denote the structure (R, (S)), where S ranges over all nonempty subsets of
all cartesian products Ek (k ranging over all positive integers). Here is the
main technical result of this paper:

Theorem A. Let R be an o-minimal expansion of (R, <,+). Let E ⊆ R
be such that , for every m ∈ N and f : Rm → R definable in R, the closure
of f(Em) is nowhere dense. Then every subset of R definable in (R, E)#

either has interior or is nowhere dense. The same holds true with “nowhere
dense” replaced (uniformly) by any of “null” (in the sense of Lebesgue),
“countable”, “a finite union of discrete sets”, or “discrete”.

(Throughout, “definable” means “definable with parameters” in the
structure under consideration. An expansion of the real line (R, <) is
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o-minimal if every definable subset of R is a finite union of points and
open intervals. A subset of R is discrete if every point of the set is isolated.)
Of course, when considering the “nowhere dense” version of Theorem A, the
phrase “the closure of” can be deleted. An extra assumption on E ensures
that many basic metric and topological properties of subsets of R definable
in (R, E)# are determined by the properties of the subsets of R definable in
(R, E).

Definition. Given an expansion R of the real line, a set E ⊆ R is
R-sparse (or sparse with respect to R) if, for each n ∈ N and definable
f : Rn → R, the image f(En) has no interior.

Obviously, if E has cardinality less than that of the continuum, then E
is sparse with respect to every expansion of the real line, but there are more
exotic examples. (After the proof of Theorem A, there is a brief discussion
of sparseness.)

Theorem B. Let R be an o-minimal expansion of (R, <,+) and E ⊆ R
be R-sparse. If every subset of R definable in (R, E) has interior or is
nowhere dense, then every subset of R definable in (R, E)# has interior or
is nowhere dense. The same holds true with “nowhere dense” replaced by
any of “null”, “countable”, “a finite union of discrete sets”, or “discrete”.

Proof. Suppose that every subset of R definable in (R, E) has interior
or is nowhere dense. Since E is R-sparse, f(Em) is nowhere dense for every
m ∈ N and function f : Rm → R definable in R. Now apply Theorem A. We
do one other version, and leave the rest to the reader. Suppose that every
subset of R definable in (R, E) has interior or is null. Then every subset of
R definable in (R, E) has interior or is nowhere dense. (If A ⊆ R is dense
in some open interval I, then at most one of I ∩ A, I \ A is null.) Hence,
cl(f(Em)) has no interior—and thus is null—for every m ∈ N and function
f : Rm → R definable in R. Now apply Theorem A.

Remark. For any expansion of (R, <), the condition that every defin-
able subset of R has interior or is meager (in the sense of Baire) is equivalent
to the condition that every definable subset of R has interior or is nowhere
dense. (If A ⊆ R is dense in some open interval I, then at most one of I ∩A,
I \A is meager.)

Example. For any expansion R of (R, <), the condition that every de-
finable subset of R be the union of an open set and a discrete set is equivalent
to the condition that R be locally o-minimal , that is, given any definable
A ⊆ R and x ∈ R, there is an open interval I containing x such I ∩A is a fi-
nite union of points and open intervals. As an application of Theorem A, we
deduce that the structure (R, <,+,Z)# is locally o-minimal. To see this, let
f : Rn → R be definable in (R, <,+). Then f is semilinear, and there is a fi-
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nite partition C1, . . . , Cl of Rn and maps T1, . . . , Tl ∈ R+
∑n

i=1Qxi such that
f |Ci = Ti|Ci for i = 1, . . . , l. The image of Zn under any T ∈ R+

∑n
i=1Qxi

is closed and discrete. A finite union of closed discrete sets is closed and
discrete, so f(Zn) is closed and discrete. Apply Theorem A.

Example. Put 2Z = {2k : k ∈ Z}. In [1], van den Dries shows that every
subset of R definable in (R,+, ·, 2Z) is the union of an open set and finitely
many discrete sets, and that Th(R,+, ·, 2Z) is decidable. By Theorem B,
every subset of R definable in (R,+, ·, 2Z)# is the union of an open set
and finitely many discrete sets; hence, the same is true of the structure
(R,+, ·,X), with X = {(2j , 2k, 2jk) : j, k ∈ Z}. Now, X is the graph of the
restriction to 2Z × 2Z of the function

(x, y) 7→ 2(log2 x)(log2 y) : (0,∞)× (0,∞)→ R
so (R,+, ·,X) defines an isomorphic copy of (Z, <,+, ·, 0, 1). Hence, although
the topology of reducts of (R,+, ·, 2Z)# is uniformly controlled, so to speak,
by that of (R,+, ·, 2Z), the model theory of reducts of (R,+, ·, 2Z)# can be
much wilder than that of (R,+, ·, 2Z). Note also that Q is not definable in
(R,+, ·, 2Z)#, hence neither is Z.

Example. Let Fib denote the set of all Fibonacci numbers {an : n ≥ 1}.
Recall that for every n ≥ 1, we have

an =
{

(ϕn − ϕ−n)/
√

5 if n is even,
(ϕn + ϕ−n)/

√
5 if n is odd,

where ϕ = (1 +
√

5)/2. Hence, Fib is definable in (R,+, ·, ϕZ). (We thank
R. Dougherty for pointing this out.) Again by [1], every subset of R definable
in (R,+, ·, ϕZ) is the union of an open set and finitely many discrete sets, so
the same is true of (R,+, ·,Fib). By Theorem B, every subset of R definable
in (R,+, ·,Fib)#, as well as every subset of R definable in (R,+, ·, ϕZ)#, is
the union of an open set and finitely many discrete sets.

Acknowledgements. The results in this paper grew out of Miller’s par-
ticipation in the Model Theory of Fields program at the Mathematical Sci-
ences Research Institute (Berkeley) during the Spring of 1998. He thanks the
Institute for its support and hospitality. In an e-mail communication (Au-
gust, 1998) to Miller, Friedman introduced a method of infinitary quantifier
elimination that established the “nowhere dense” and “countable” versions
of the statement of Theorem A, and the corresponding “card(E) < card(R)”
versions of Theorem B. The proof presented in this paper is an adaptation
of the method.

Throughout the rest of this paper, R denotes a fixed, but arbitrary,
o-minimal expansion of (R, <,+) and E denotes a fixed subset of R. To
avoid trivialites, we assume that E is infinite.
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Proof of Theorem A. We shall establish an a priori stronger result,
namely, that the statement of Theorem A holds for a certain expansion (in
the sense of definability) of (R, E)#. We outline the structure of the proof
now. For each n ∈ N, we introduce collections Sn and Tn of subsets of Rn.
(We regard R0 as the one-point space {0}, and a function f : R0 → R as the
corresponding constant f(0).) We postpone their definitions, but list here
their relevant properties, and then immediately deduce Theorem A.

(a) Tn is a boolean algebra, containing every subset of Rn definable
in R, as well as every set of the form F−1(P ), where m ∈ N, P ⊆ Em, and
F : Rn → Rm is definable in R. (b) Every element of Tn is a finite union of
elements of Sn. (c) For every A ∈ Sn+1, the projection of A on the first n
coordinates belongs to Tn. (d) For every A ∈ S1, if A has no interior, then
there exist m ∈ N and a function f : Rm → R definable in R such that
A ⊆ cl(f(Em)).

Remark. Property (d) is trivial if R defines a bijection between a
bounded and an unbounded interval—in particular, if R expands the field—
and some function f : Rm → R such that f(Em) is somewhere dense.

Proof of Theorem A. Consider the structure (R, (Y )) where Y ranges
over all elements of all Sk, k ≥ 1. By Properties (a), (b) and (c), for every
n ∈ N, every subset of Rn definable in (R, E)# is definable in (R, (Y )), and
every subset of Rn definable in (R, (Y )) is a finite union of elements of Sn.
Hence, every subset of R definable in (R, E)# is a finite union of elements of
S1. Now apply (d). (Note that finite unions of closed discrete sets are closed
and discrete.)

We now work toward the establishment of Properties (a) through (d).
The variables j, k, l,m, n range over N. We identify Rm × Rn with Rm+n

whenever convenient. For X ⊆ Rm+n and u ∈ Rm, Xu denotes the fiber
{x ∈ Rn : (u, x) ∈ X}. (It should be clear from context when subscripts
indicate taking fibers, and when they are used as indices.) Given A ⊆ Rl×Rn
and B ⊆ Rm × Rn, put

A �B = {(x, y, z) ∈ Rl+m+n : (x, z) ∈ A & (y, z) ∈ B}.
(Strictly speaking, we should write something like �l,m,n to reflect the de-
pendence; we will rely upon context instead.) The � operation generalizes
both intersection and cartesian products: If A,B ⊆ Rn, then, regarding A,B
as subsets of R0 × Rn, we have A � B = A ∩ B; if A ⊆ Rm and B ⊆ Rn,
then, regarding A as a subset of Rm×R0 and B as a subset of Rn×R0, we
have A �B = A×B.

Definition. Given A ⊆ Rn, A ∈ Tn if and only if there exist m ∈ N,
X ⊆ Rm+n definable in R, and an indexed family (Pα)α∈I of subsets of Em
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such that A =
⋃
α∈I

⋂
u∈Pα Xu.

Every subset of Rn definable in R belongs to Tn. Moreover, given any
m, P ⊆ Em and functions f1, . . . , fm : Rn → R definable in R, the set

{x ∈ Rn : (f1(x), . . . , fm(x)) ∈ P}
belongs to Tn, since it is the union of all sets of the form

{x ∈ Rn : f1(x) = u1 & . . . & fm(x) = um}
where (u1, . . . , um) ranges over P .

Claim. Tn is a boolean algebra.

Proof. We show that Tn is closed under complementation and intersec-
tion. Let A ∈ Tn. Then there exist m, X ⊆ Rm+n, and a family (Pα)α∈I of
subsets of Em such that A =

⋃
α∈I

⋂
u∈Pα Xu. Hence,

Rn \ A =
⋂

α∈I

⋃

u∈Pα
(Rm+n \X)u

and there exists K ⊆ ∏α∈I Pα such that

Rn \A =
⋃

γ∈K

⋂

u∈γ(I)

(Rm+n \X)u.

Let moreover B ∈ Tn. Then there exist l, Y ⊆ Rl+n definable in R, and a
family (Qβ)β∈J of subsets of El such that B =

⋃
β∈I

⋂
v∈Qβ Yv. Then

A ∩B =
⋃

(α,β)∈I×J

⋂

(u,v)∈Pα×Qβ
(X � Y )(u,v).

(We have established Property (a).)

Remarks. • In the argument above, note how crucial it is that we allow
arbitrary index sets on the unions; there are yet more blatant manifestations
of this coming up. • Suppose that E is dense in some interval I. Then, for
every n, every subset of In belongs to Tn. • In general, we do not understand
well the relation between the subsets of Rn definable in (R, E)# and the
sets in Tn. In particular, we do not know if there are sets in T1 that are not
definable in (R, E)#.

Before defining the collections Sn, we give some motivation for the defini-
tion. (Here, the reader is assumed to be familiar with the cell decomposition
theorem for o-minimal structures; see e.g. [3, Ch. 3] for the statement.) Since
R is o-minimal, every element of Tn is of the form

⋃

α∈I

⋂

u∈Pα
(C1 ∪ . . . ∪ Ck)u
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where C1, . . . , Ck are cells in Rm+n definable in R, and m, (Pα)α∈I are as
usual. We would like to assert that every element of Tn is a finite union of
such sets, but with k = 1. We do not know if this assertion is true; cells are,
in general, poorly behaved with respect to boolean operations and permu-
tations of coordinates. So, for present purposes, we loosen the notion of cell.

Definition. A weak cell (with respect to R) in Rn+1 is a set of one of
the following forms:

(i) B × R, (ii) {(x, t) ∈ Rn+1 : x ∈ B & f(x) = t}, (iii) {(x, t) ∈
Rn+1 : x ∈ B & f(x) < t}, (iv) {(x, t) ∈ Rn+1 : x ∈ B & t < g(x)},

(v) {(x, t) ∈ Rn+1 : x ∈ B & f(x) < t < g(x)},
where B ⊆ Rn is definable in R and f, g : Rn → R are definable in R.

Clearly, every cell is a weak cell.

Lemma 1. Let A,B ⊆ Rm × Rn+1 be weak cells. Then A � B is a weak
cell in R2m+n+1.

We leave the proof of the above to the reader. (Just check all the possible
combinations.)

Definition. For A ⊆ Rn+1, A ∈ Sn+1 if and only if there exist m ∈ N,
a weak cell C ⊆ Rm+n+1 and an indexed family (Pα)α∈I of subsets of Em

such that A =
⋃
α∈I

⋂
u∈Pα Cu. (Put S0 := {R0, ∅}.) We will refer to the

sets in Sn+1 arising from each of the five forms of weak cells as being of
types (i) through (v) respectively.

Next, we state an elementary (but somewhat tedious) technical result,
the verification of which we leave to the reader.

Lemma 2. Let C1, . . . , Ck+1 ⊆ Rm × Rn and (Pα)α∈I be a family of
subsets of Rm. Then

⋃
α∈I

⋂
u∈Pα (C1 ∪ . . . ∪ Ck+1)u is equal to the union

of the three sets⋃

α∈I

⋂

u∈Pα
(C1 ∪ . . . ∪ Ck)u,

⋃

α∈I

⋂

u∈Pα
(Ck+1)u,

⋃

α∈I

⋃

{Pα,1,Pα,2}

⋂

(v,w)∈Pα,1×Pα,2
((C1 � Ck+1) ∪ . . . ∪ (Ck � Ck+1))(v,w)

where, for α ∈ I, {Pα,1, Pα,2} ranges over all 2-element partitions of Pα.

We are now ready to establish Property (b).

Claim. Every element of Tn is a finite union of elements of Sn.

Proof. Use Lemmas 1 and 2 to show the following by induction on k ≥ 1:
If m ∈ N, C1, . . . , Ck ⊆ Rm+n+1 are weak cells in Rm+n+1, and (Pα)α∈I is a
family of subsets of Em, then

⋃
α∈I

⋂
u∈Pα(C1∪ . . .∪Ck)u is a finite union of

elements of Sn+1. The result then follows from cell decomposition (in R).
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Remark. We have not yet used that we are working over the ordered
additive group of real numbers.

Next, we record two easy, but crucial, observations about sets of real
numbers. We omit the proofs.

Lemma 3. Let ∅ 6= S ⊆ R. Then:

• supS <∞ if and only if there exists s ∈ S such that s′ < s+ 1 for all
s′ ∈ S. • inf S > −∞ if and only if there exists s ∈ S such that s < s′+1 for
all s′ ∈ S. • inf S > 0 if and only if there exists s ∈ S such that 0 < s < 2s′

for all s′ ∈ S.

Lemma 4. Let ∅ 6= A,B ⊆ R. The following are equivalent :

• There exists t ∈ R such that a < t < b for all a ∈ A and b ∈ B. •
a < b for all a ∈ A and b ∈ B; moreover , maxA does not exist , or minB
does not exist , or there exist a ∈ A and b ∈ B such that b − a < 2(b′ − a′)
for all a′ ∈ A and b′ ∈ B.

We are now ready to establish Property (c).

Claim. The projection on the first n variables of an element of Sn+1

belongs to Tn.

Proof. Let A =
⋃
α∈I

⋂
u∈Pα Cu where C ⊆ Rm+n+1 is a weak cell and

(Pα)α∈I is a family of subsets of Em. We must exhibit A′ ∈ Tn such that for
all x ∈ Rn we have x ∈ A′ if and only if there exists t ∈ R with (x, t) ∈ A.
We adopt the following notation: For any set Y , we write

∨
y∈Y instead of

∃y ∈ Y , and
∧
y∈Y instead of ∀y ∈ Y . If A is of type (i), then C = B × R

for some B ⊆ Rm+n definable in R. Then A = (
⋃
α∈I

⋂
u∈Pα Bu) × R, and

the result is clear. We sketch the rest of the proof, leaving routine details to
the reader. Fix x ∈ Rn.

Suppose A is of type (ii). Then
∨

t∈R

∨

α∈I

∧

u∈Pα
[(u, x) ∈ B & f(u, x) = t]

⇔
∨

α∈I

∨

v∈Pα

∧

u∈Pα
[(u, x) ∈ B & f(u, x) = f(v, x)].

Suppose A is of type (iii). Let α ∈ I. By Lemma 3,

sup f(Pα × {x}) <∞ ⇔
∨

v∈Pα

∧

u∈Pα
[f(u, x) < f(v, x) + 1].

Hence∨

t∈R

∨

α∈I

∧

u∈Pα
[(u, x) ∈ B & f(u, x) < t]



62 H. Friedman and C. Miller

⇔
∨

α∈I

∨

v∈Pα

∧

u∈Pα
[(u, x) ∈ B & f(u, x) < f(v, x) + 1].

(The type (iv) case is similar.) Suppose that A is of type (v). Let α ∈ I. By
Lemma 4, we have

∨

t∈R

∧

u∈Pα
[f(u, x) < t < g(u, x)]

if and only if ∧

u,v∈Pα
f(u, x) < g(v, x)

and at least one of the following holds:
∧

u∈Pα

∨

v∈Pα
[f(u, x) < f(v, x)],

∧

u∈Pα

∨

v∈Pα
[g(v, x) < g(u, x)],

∨

u,v∈Pα

∧

u′,v′∈Pα
[g(v, x)− f(u, x) < 2(g(v′, x)− f(u′, x))].

Finish as in the earlier cases (using also the fact that Tn is a boolean alge-
bra).

We establish a stronger version of Property (d) that we hope will be
helpful in future investigations.

Claim. Let A ∈ Sn+1. Suppose that , for every x ∈ Rn, Ax has no
interior. Then there exist m and f : Rm+n → R, definable in R, such that
for every x ∈ Rn we have Ax ⊆ cl(f(Em × {x})).

(Property (d) is just the case n = 0.)

Proof. Let ∅ 6= A ∈ Sn+1 be such that Ax has no interior for every
x ∈ Rn; then A must be of type (ii) or of type (v). Suppose A is of type (ii).
Then there exist m and f : Rm+n → R definable in R such that for each
x ∈ Rn, either Ax = ∅ or Ax = f(P × {x}) for some P (depending on x)
contained in Em. Suppose A is of type (v). Then there exist m, B ⊆ Rm+n,
and functions f, g : Rm+n → R definable in R such that for all x ∈ Rn, we
have

Ax =
⋃

α∈I

⋂

u∈Pα
{t ∈ R : (u, x) ∈ B & f(u, x) < t < g(u, x)}.

Let x ∈ Rn. Since Ax has no interior, each set
⋂

u∈Pα
{t ∈ R : (u, x) ∈ B & f(u, x) < t < g(u, x)}
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has no interior. Hence,

Ax ⊆ {sup f(Pα × {x}) : α ∈ I} ∩ R ⊆ cl(f(Em)× {x}).
(This ends the proof of Theorem A.)

Some remarks on sparseness. We noted previously that every sub-
set of R having cardinality less than that of R is sparse with respect to
every expansion of the real line. We discuss here some other examples (and
counterexamples).

1. There are subsets of R having the cardinality of the continuum that
are sparse with respect to every o-minimal expansion of (R, <,+). First,
let E ⊆ R be such that, for every positive integer n, En has Hausdorff
dimension 0. We show that E is sparse with respect to every o-minimal
expansion of (R, <,+). To see this, let f : Rn → R be such that (R, <,+, f)
is o-minimal. By Peterzil et al. [5], (R,+, ·, f) is o-minimal. By C1 cell
decomposition [3, Ch. 7], there is a finite partition C of Rn into locally closed
sets such that each restriction f |C : C → R (C ∈ C) is C1. Each En ∩ C
has Hausdorff dimension 0, and f |C is Lipschitz on compact subsets of C,
so each f(En ∩C) has Hausdorff dimension 0. Hence, f(En) has Hausdorff
dimension 0 (and thus has no interior). Now we need only exhibit E ⊆ R
such that E has the cardinality of the continuum and each power En has
Hausdorff dimension 0. Such sets are easily obtained by using infinite series
methods; for example, let E0 be the set of all real numbers of the form∑∞
m=1 am2−m! with each am ∈ {0, 1} (cf. Oxtoby’s treatment of Liouville

numbers [4, Chapter 2]).

Remark. We do not know if (R,+, ·, E0) satisfies the “interior or no-
where dense” condition on its definable sets.

2. In contrast to the above, there are compact, nowhere dense, null
subsets of R that are not sparse with respect to any expansion of (R, <,+):
the classic middle-thirds Cantor set is an example (its difference set has
interior).

3. If E is R-sparse and has the Baire property, then E is meager (other-
wise, the difference set has interior; see e.g. [4, Thm. 4.8]). Similarly, if E is
measurable and R-sparse, then E is null.

4. It is easy to see that every proper Q-linear subspace of R, as well
as every Q-linear basis of R, is sparse with respect to (R, <,+). (Hence,
in contrast to items 1 and 3 above, there are “large” sparse sets.) More
generally, if E is the underlying set of a proper elementary substructure of
R, then E is R-sparse; see [2, Lemma 4.1].
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5. We think that the assumption of sparseness is necessary in Theo-
rem B, that is, we conjecture that there exist A ⊆ B ⊆ R such that B is
nowhere dense, every subset of R definable in (R,+, ·, B) has interior or is
nowhere dense, and (R,+, ·, A) defines dense, codense subsets of R. (Candi-
dates for B include suitably randomized fat Cantor sets.)

References

[1] L. van den Dries, The field of reals with a predicate for the powers of two, Manu-
scripta Math. 54 (1985), 187–195.

[2] —, Dense pairs of o-minimal structures, Fund. Math. 157 (1998), 61–78.
[3] —, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser.

248, Cambridge Univ. Press, Cambridge, 1998.
[4] J. Oxtoby, Measure and Category , Grad. Texts in Math. 2, Springer, New York, 2nd

ed., 1980.
[5] Y. Peterzil, P. Speissegger and S. Starchenko, Adding multiplication to an o-minimal

expansion of the additive group of real numbers, in: Logic Colloquium ’98, Lecture
Notes in Logic 13, A. K. Peters, Natick, MA, 2000, 357–362.

Department of Mathematics
The Ohio State University
231 West 18th Avenue
Columbus, OH 43210, U.S.A.
E-mail: friedman@math.ohio-state.edu

miller@math.ohio-state.edu

Received 7 September 1999;
in revised form 22 August 2000


