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On universality of countable and weak products
of sigma hereditarily disconnected spaces

by

Taras Banakh (Lviv) and Robert Cauty (Paris)

Abstract. Suppose a metrizable separable space Y is sigma hereditarily discon-
nected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that
the countable power Xω of any subspace X ⊂ Y is not universal for the class A2 of
absolute Gδσ-sets; moreover, if Y is an absolute Fσδ-set, then Xω contains no closed
topological copy of the Nagata space N = W (I,P); if Y is an absolute Gδ-set, then Xω

contains no closed copy of the Smirnov space σ = W (I, 0).
On the other hand, the countable power Xω of any absolute retract of the first Baire

category contains a closed topological copy of each σ-compact space having a strongly
countable-dimensional completion.

We also prove that for a Polish space X and a subspace Y ⊂ X admitting an em-
bedding into a σ-compact sigma hereditarily disconnected space Z the weak product
W (X,Y ) = {(xi) ∈ Xω : almost all xi ∈ Y } ⊂ Xω is not universal for the class M3 of
absolute Gδσδ-sets; moreover, if the space Z is compact then W (X,Y ) is not universal for
the class M2 of absolute Fσδ-sets.

A topological space X is called C-universal, where C is a class of spaces,
if for every space C ∈ C there is a closed embedding f : C → X. It is
well known that the Hilbert cube Q = [0, 1]ω is M0-universal, whereas its
pseudointerior s = (0, 1)ω isM1-universal, whereM0 andM1 are the Borel
classes of compact and Polish spaces, respectively (all spaces considered
in this paper are metrizable and separable, all maps are continuous). Let
us remark that both Q and s are countable products of finite-dimensional
spaces. This raises the following question: can the countable power Xω of a
finite-dimensional space X be C-universal for a higher Borel class C? Taking
into account results of [BR] and [Ca1], it was conjectured in [Ba] that the
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countable power Xω of any finite-dimensional (resp. strongly countable-
dimensional) space X is not A1-universal (resp. A2-universal). Here A1 and
A2 are the Borel classes of σ-compact and absolute Gδσ-spaces, respectively.

In this paper we confirm this conjecture. We define a space X to be
sigma hereditarily disconnected provided X can be written as a countable
union X =

⋃∞
n=1Xn of hereditarily disconnected spaces. Recall that a space

X is hereditarily disconnected if it contains no connected subset containing
more than one point (see [En, 1.4.2]).

For a class C of spaces we denote by C(c.d.) and C(s.c.d.) the subclasses
of C consisting of countable-dimensional and strongly countable-dimensional
spaces C ∈ C, respectively. Let us remark that each strongly countable-
dimensional space is countable-dimensional and each countable-dimensional
space is sigma hereditarily disconnected.

Theorem 1. (1) If a space X has a sigma hereditarily disconnected com-
pletion, then the countable power Xω is not A1(s.c.d.)-universal.

(2) If a space X embeds into a sigma hereditarily disconnected absolute
Fσδ-space, then Xω is not A2(c.d.)-universal.

(3) If a space X is sigma hereditarily disconnected , then Xω is not A2-
universal.

For a class C of spaces let C(s.c.d.c.) denote the subclass of C consist-
ing of spaces with a strongly countable-dimensional completion. The class
A1(s.c.d.) from the first statement of Theorem 1 is the best possible in the
following sense.

Theorem 2. If X is an absolute retract of the first Baire category , then
the countable power Xω is A1(s.c.d.c.)-universal.

Clearly, there exist finite-dimensional σ-compact absolute retracts of the
first Baire category, for example the space X = D\E, where D is a dendrite
with a dense set E of end-points.

Countable powers are partial cases of weak products

W (X,A) = {(xi) ∈ Xω : xi ∈ A for all but finitely many indices i},
where A is a subset of a space X.

The most known and important weak products are the Smirnov space
σ = W (I, {0}) and the Nagata space N = W (I,P), where I = [0, 1] and P
is the set of irrational numbers in I. Note that both σ and N are subsets
of the Hilbert cube Q = Iω. It is well known that the Smirnov space σ
is A1(s.c.d.)-universal [Mo1] and the Nagata space N is A2(c.d.)-universal
[Mo2]. Let us remark that according to Theorem 1 the Smirnov space σ
admits no sigma hereditarily disconnected completion, while the Nagata
space N admits no embedding into a sigma hereditarily disconnected ab-
solute Fσδ-space. This answers Question 1.3 of [Mo2]. Recently T. Radul
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[Ra] (see also [BRZ, §4.1, Ex. 3]) has shown that the weak product W (Q,σ)
is universal for the additive Borel class A3 of absolute Fσδσ-spaces. Can
the weak product W (X,Y ) be C-universal for a higher Borel class, if Y
is finite-dimensional or strongly countable-dimensional? In particular, can
W (X,Y ) be universal for the multiplicative Borel classes M2 and M3 of
absolute Fσδ- and Gδσδ-spaces, respectively?

We recall that a space X is defined to be σ-complete if X can be written
as a countable union X =

⋃∞
i=1 Xi, where each Xi is complete-metrizable

and closed in X.

Theorem 3. Let Y be a subspace of a Polish space X.

(1) If Y has a sigma hereditarily disconnected completion, then the weak
product W (X,Y ) is not M2-universal ;

(2) If Y embeds into a σ-complete sigma hereditarily disconnected space,
then W (X,Y ) is not M3-universal.

The proofs of our theorems rely on simple homological arguments, so
we need to recall some standard notations from homology theory. For every
integer q ≥ 0 let Hq(X) denote the qth singular homology group of a space
X (reduced in dimension zero so that H0(X) = 0 if and only if X is path-
connected) and let H∗(X) =

⊕∞
q=0Hq(X). For closed subsets B ⊂ A of

the Hilbert cube Q we denote by jAB the homomorphism of H∗(Q \ A) into
H∗(Q \B) induced by inclusion. A closed subset A of Q is defined to be an
irreducible barrier for an element α ∈ Hq(Q \ A) if α 6= 0 but jAB(α) = 0
for any closed proper subset B ⊂ A; and A is an irreducible barrier in Q
if either A = Q or A is a closed irreducible barrier for some (non-trivial)
element α ∈ Hq(X \ A), q ≥ 0.

The following lemma plays a crucial role in the proof of Theorems 1, 3
and seems to have an independent value.

Main Lemma. For every countable cover {Xn}n∈N of an irreducible bar-
rier A in the Hilbert cube Q, one of the sets Xn contains a connected subset
C ⊂ Xn whose closure C is an irreducible barrier in Q.

Proof of Main Lemma. We need the following two homological lem-
mas proven in [Ca2].

Lemma 1. Suppose A is a closed subset of the Hilbert cube Q such that
Hq(Q \ A) 6= 0 for some q ≥ 0. Then A contains an irreducible barrier B
for some α ∈ Hq(Q \B).

Lemma 2. If A is an irreducible barrier in Q then for every closed subset
B ⊂ A separating A we have H∗(Q \B) 6= 0.



100 T. Banakh and R. Cauty

To prove the Main Lemma assume on the contrary that {Xn}∞n=1 is a
countable cover of an irreducible barrier A ⊂ Q such that no Xn contains
a connected subset C whose closure is an irreducible barrier in Q. To get a
contradiction we will construct a decreasing sequence A = A0 ⊃ A1 ⊃ . . .
of irreducible barriers in Q such that An ∩ Xn = ∅ for every n ≥ 1. Then
by compactness of A we will find a point a ∈ ⋂∞n=1 An ⊂ A that does not
belong to

⋃∞
n=1Xn ⊃ A, a contradiction.

The construction of {An} is inductive. Set A0 = A and suppose that for
an n ≥ 0 irreducible barriers A0 ⊃ . . . ⊃ An satisfying Ak ∩ Xk = ∅ for
1 ≤ k ≤ n have been constructed. By our hypothesis, An ∩ Xn+1 is either
disconnected or not dense in An. In both cases, one may easily construct
a closed subset B separating An and missing Xn+1. By Lemma 2, we have
H∗(Q \ B) 6= 0, and by Lemma 1, B contains an irreducible barrier An+1

in Q. Evidently, An+1 is as required because An+1 ∩Xn+1 = ∅.

Some auxiliary results. By a subcube of the Hilbert cube Q = Iω

we understand a subset of the form
∏
n∈ω In, where each In is a closed

non-degenerate interval in I and In = I for all but finitely many indices n.
We define a subsetX ofQ to be q-dense inQ, for a non-negative integer q,

if every map f : K → Q of an at most q-dimensional compactum K can be
uniformly approximated by maps into X; and X is ∞-dense if it is q-dense
in Q for every q ∈ N.

We will need another two homological lemmas proven in [Ca2] (Lemmas
3 and 4).

Lemma 3. If A ⊂ Q is an irreducible barrier for some α ∈ Hq(Q \ A),
then for any subcube P of Q whose interior meets A we have Hq(P \A) 6= 0.

Lemma 4. If A is an irreducible barrier in Q×Q and Y is an ∞-dense
subset in Q, then there is a point y ∈ Y such that A ∩ ({y} × Q) contains
an irreducible barrier B in {y} ×Q.

For any q ≥ 0 let Nq = {(ti)i∈ω ∈ Q : at most q coordinates ti are
rational} denote the analog of the Nöbeling space in the Hilbert cube. It is
easily seen that Nq is a Gδ-set in Q and N =

⋃∞
q=0Nq.

Lemma 5. For every q ≥ 0 the sets σ, s, Q \ s, N , and Nq are q-dense
in Q.

Proof. The q-density of σ, s, Q \ s in Q is easily seen and well known.
The q-density of Nq in Q can be proven by analogy with the proof of the
universality of the Nöbeling space (see [En, 1.11.5]). Finally, the q-density of
N in Q follows from the q-density of Nq in Q and the inclusion Nq ⊂ N .

Lemma 6. If A ⊂ Q is an irreducible barrier for some α ∈ Hq(Q \ A)
then A ∩X is dense in A for every (q + 1)-dense subset X ⊂ Q.
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Proof. Assume on the contrary that for some (q + 1)-dense set X ⊂ Q
the intersection A ∩X is not dense in A. Then there is an open set U ⊂ Q
such that U∩A 6= ∅ and U∩A∩X = ∅. Let B = A\U . Then B 6= A and thus
jAB(α) = 0. Fix a q-dimensional polyhedron K, a function f : K → Q \ A,
and an element β ∈ Hq(K) with f∗(β) = α. Since jAB(α) = 0, there exists a
(q+1)-dimensional polyhedron L containing K and a function g : L→ Q\B
such that g|K = f and i∗(β) = 0, where i is the embedding of K into L
(see [Ma, p. 293]). If h : L→ X is sufficiently near to g, then h(L) ⊂ Q \B
and h|K is homotopic to f in Q \ A. This yields f∗(β) = (h|K)∗(β) and
from h(L) ⊂ Q \ B, we get h(L) ∩ A ⊂ (A \ B) ∩ X = U ∩ A ∩ X = ∅.
Then in Hq(Q \ A) we have α = f∗(β) = (h|K)∗(β) = h∗ ◦ i∗(β) = 0, a
contradiction.

In what follows we will need the following modification of the Main
Lemma.

Lemma 7. Suppose X is an∞-dense Gδ-set in Q and A is an irreducible
barrier in Q. If {Xn}n∈N is a countable cover of the set A ∩ X, then one
of the sets Xn contains a connected subset C ⊂ Xn whose closure C is an
irreducible barrier in Q.

Proof. Since X is a Gδ-set in Q, we may write A \X =
⋃
n∈NAn, where

each An is compact. Then we have a countable cover {An,Xn}n∈N of the
irreducible barrier A. By the Main Lemma, there is a connected set C ⊂ Q
such that C is an irreducible barrier in Q and either C ⊂ An or C ⊂ Xn.
The case C ⊂ An is impossible. Indeed, by the compactness of An, C ⊂ An.
Thus C ∩X = ∅, a contradiction with Lemma 6.

Finally, we need the following particular case of [BRZ, 3.1.1]:

Lemma 8. Let X be a Polish space and Y ⊂ X.

(1) If Y is A2-universal , then there is an embedding ϕ : Qω → X such
that ϕ−1(Y ) = W (Q, s).

(2) If Y is M2-universal , then there is an embedding ϕ : Qω → X such
that ϕ−1(Y ) = Qω \W (Q, s).

(3) If Y is M3-universal , then there is an embedding ϕ : Qω → X such
that ϕ−1(Y ) = Qω \W (Q,σ).

Proof of Theorem 1. (1) Suppose Xω is A1(s.c.d.)-universal and X
has a sigma hereditarily disconnected completion Y . Since σ ∈ A1(s.c.d.),
we may fix a closed embedding ϕ : σ → Xω. By Lavrent’ev’s Theorem,
this embedding extends to an embedding ϕ : G → Y ω of some Gδ-set
G ⊂ Q containing σ. Since ϕ(σ) is closed in Xω and dense in ϕ(G), we have
ϕ−1(Xω) = σ. For m ≥ 0 denote by ϕm : G→ Y the composition of ϕ with
the coordinate projection prm : Y ω → Y .
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Using the fact that Y \ X and σ are sigma hereditarily disconnected,
write Y \X =

⋃∞
n=1 Yn and σ =

⋃∞
n=1 Zn, where Yn and Zn are hereditarily

disconnected. Write also Q\G =
⋃∞
n=1Gn, where each Gn is compact. Since

σ ⊂ G, we have σ ∩Gn = ∅ for n ≥ 1.
Thus, the Hilbert cube Q = σ ∪ (Q \ G) ∪ (G \ σ) has the countable

cover {Zn, Gn, ϕ−1
m (Yn)}n,m∈N. By the Main Lemma, there is a connected

set C ⊂ Q such that C is an irreducible barrier in Q and either C ⊂ Zn,
C ⊂ Gn, or C ⊂ ϕ−1

m (Yn) for some n,m ∈ N.
Since all Zn’s are hereditarily disconnected, no Zn can contain the (con-

nected) set C. Next, assuming that C ⊂ Gn for some n, we derive from the
compactness of Gn that C ⊂ Gn and thus C ∩ σ = ∅, a contradiction with
Lemmas 6 and 5.

Thus C ⊂ ϕ−1
m (Yn) for some n,m ∈ N. Then ϕm(C), being a connected

subset of a hereditarily disconnected space, is a single point y ∈ Yn ⊂ Y \X.
Since ϕ−1

m (y) is a closed subset in G missing σ, it follows that C is an
irreducible barrier in Q missing σ, contrary to Lemmas 6 and 5 again.

(2) Suppose Xω is A2(c.d.)-universal and X embeds into a sigma hered-
itarily disconnected Fσδ-space Y . Since N ∈ A2(c.d.), we may fix a closed
embedding ϕ : N → Xω. It follows easily from the Lavrent’ev Theorem
that this embedding extends to an embedding ϕ : G→ Y ω of some Fσδ-set
G ⊂ Q containing the Nagata space N . As in the preceding case, observe
that ϕ−1(Xω) = N . For m ≥ 0 let ϕm = prm ◦ϕ : G→ Y .

Using the fact that Y \ X and N are sigma hereditarily disconnected,
write Y \X =

⋃∞
n=1 Yn and N =

⋃∞
n=1 Zn, where Yn and Zn are hereditarily

disconnected. The complement Q \ G, being a Gδσ-subset of Qω, can be
written as Q\G =

⋃∞
n=1 Gn, where each Gn is a Gδ-set in Qω. Observe that

N ∩Gn = ∅ for n ≥ 1.
Thus, Q has the countable cover {Zn, Gn, ϕ−1

m (Yn)}n,m∈N. By the Main
Lemma, there is a connected set C ⊂ Q such that C is an irreducible barrier
for some non-trivial α ∈ Hq(Q \ C) and either C ⊂ Gn, C ⊂ Zn, or C ⊂
ϕ−1
m (Yn) for some n,m ∈ N.

As in the preceding case we can show that the last two inclusions are
impossible. Thus, C ⊂ Gn for some n ≥ 1. Since C is dense in C, we find
that C∩Gn is a dense Gδ-set in C. By Lemma 6, C∩Nq+1 is a dense Gδ-set
in C as well. Then by the Baire Theorem, C ∩Nq+1 ∩Gn is dense in C. But
Gn ∩ Nq+1 = ∅ by construction, a contradiction.

(3) SupposeX is sigma hereditarily disconnected andXω isA2-universal.
Let Y be any completion of X. By Lemma 8, there is a map ϕ : Qω → Y ω

such that ϕ−1(Xω) = W (Q, s).
For q0, . . . , qn ∈ Q let Q(q0, . . . , qn) = {(q0, . . . , qn)}×∏i>nQ ⊂ Qω and

s(q0, . . . , qn) = {(q0, . . . , qn)} ×∏i>n s ⊂ Qω. For n ≥ 0 let ϕn = prn ◦ϕ :
Qω → Y .
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By induction, for every n ≥ 0 we will construct points xn ∈ X, qn ∈ Q
and a closed subset An ⊂ Q(q0, . . . , qn) such that

(1) qn 6∈ s;
(2) An ⊃ An+1;
(3) An is an irreducible barrier in Q(q0, . . . , qn);
(4) ϕn(An) = {xn} ⊂ X.

To get a contradiction, observe that the point q = (qn)n≥0 ∈ Qω, being
the intersection of An’s, belongs to ϕ−1(Xω) = W (Q, s) by (4). On the
other hand, (1) implies q 6∈W (Q, s).

Inductive step. Let A−1 = Qω. Suppose that for some n ≥ −1 the points
q0, . . . , qn ∈ Q and the irreducible barrier An ⊂ Q(q0, . . . , qn) have been
constructed. Write X =

⋃∞
i=1 Xi, where Xi are hereditarily disconnected.

Observe that s(q0, . . . , qn) ⊂ W (Q, s) is a ∞-dense Gδ-set in Q(q0, . . . , qn).
Since the collection {An ∩ ϕ−1

n+1(Xi)}i∈N covers An ∩ s(q0, . . . , qn), we may
apply Lemma 7 to find an i ∈ N and a connected set C ⊂ An ∩ ϕ−1

n+1(Xi)
such that C is an irreducible barrier in Q(q0, . . . , qn). Since ϕn+1(C) is a con-
nected subset of the hereditarily disconnected space Xi, we have ϕn+1(C) =
{xn+1} for some xn+1 ∈ Xi ⊂ X. Then ϕn+1(C) = {xn+1} as well. By
Lemma 4, there is a qn+1 ∈ Q \ s such that C ∩ Q(q0, . . . , qn+1) contains
an irreducible barrier An+1 in Q(q0, . . . , qn+1). Evidently, the points xn+1,
qn+1, and the set An+1 satisfy the conditions (1)–(4).

Proof of Theorem 3. Let Y be a subspace of a Polish space X.
(1) Suppose Y has a sigma hereditarily disconnected completion Ŷ and

the weak product W (X,Y ) is M2-universal. By Lemma 8, there is an em-
bedding ϕ : Qω → Xω such that ϕ−1(W (X,Y )) = Qω \W (Q, s). For n ≥ 0
let ϕn : Qω → X be the composition of ϕ and the coordinate projection
prn : Xω → X.

By induction, for every n ≥ 0 we will construct a point qn ∈ Q and a
closed subset An ⊂ Q(q0, . . . , qn) such that

(1) An ⊃ An+1;
(2) An is an irreducible barrier in Q(q0, . . . , qn);
(3) either ϕn(An) ⊂ Y or ϕn(An) ⊂ X \ Y ;
(4) qn ∈ s if and only if ϕn(An) ⊂ Y .

To get a contradiction, observe that the point q = (qn)n≥0 ∈ Qω is the
intersection of the sets An. Let x = (xn)n≥0 = ϕ(q) ∈ Xω. By (3) and (4),
xn ∈ Y if and only if qn ∈ s. This yields ϕ(q) = (xn) ∈W (X,Y ) if and only
if q = (qn) ∈W (Q, s), contrary to ϕ−1(W (X,Y )) = Qω \W (Q, s).

Inductive step. Let A−1 = Qω. Suppose that for some n ≥ −1 the
points q0, . . . , qn ∈ Q and the irreducible barrier An ⊂ Q(q0, . . . , qn) have
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been constructed. According to the Lavrent’ev Theorem, we may assume Ŷ
to be a subspace of X. Write Ŷ =

⋃∞
i=1 Yi and X \ Ŷ =

⋃∞
i=1 Fi, where

for every i ≥ 1, Yi is a hereditarily disconnected set and Fi is closed in X.
Because the countable collection {ϕ−1

n+1(Yi), ϕ−1
n+1(Fi) : i ∈ N} covers the

irreducible barrier An, we may apply the Main Lemma to find a connected
set C ⊂ An such that C is an irreducible barrier in Q(q0, . . . , qn) and either
C ⊂ ϕ−1

n+1(Fi) or C ⊂ ϕ−1
n+1(Yi) for some i.

We claim that either ϕn+1(C) ⊂ X \ Y or ϕn+1(C) ⊂ Y . Indeed, if C ⊂
ϕ−1
n+1(Fi), then ϕn+1(C) ⊂ Fi ⊂ X \ Y (because Fi is closed in X). If C ⊂

ϕ−1
n+1(Yi), then because C is connected and Yi is hereditarily disconnected,

we deduce that ϕn+1(C) consists of a unique point y ∈ Yi. Then ϕn+1(C) =
{y} and hence ϕn+1(C) ⊂ Y if y ∈ Y and ϕn+1(C) ⊂ X \ Y otherwise.

By Lemma 4, there is a point qn+1 ∈ Q such that C ∩ Q(q0, . . . , qn+1)
contains an irreducible barrier An+1 in Q(q0, . . . , qn+1). Moreover, since s
and Q \ s are ∞-dense in Q the point qn+1 can be chosen so that qn+1 ∈ s
if and only if ϕn+1(C) ⊂ Y . Evidently, the point qn+1 and the set An+1

satisfy the conditions (1)–(4).
(2) Suppose Y embeds into a σ-complete sigma hereditarily disconnected

space Ŷ and the weak product W (X,Y ) isM3-universal. By Lemma 8, there
is an embedding ϕ : Qω → Xω such that ϕ−1(W (X,Y )) = Qω \W (Q,σ).
For n ≥ 0 let ϕn = prn ◦ϕ : Qω → X. Let also πn : Qω → Q be the
projection onto the nth coordinate.

According to the Lavrent’ev Theorem, we may assume Ŷ to be a subspace
of X. Write Ŷ =

⋃∞
k=1 Yk, where each Yk is an absolute Gδ-set closed in

Ŷ . Denote by Yk the closure of Yk in X. Write also σ =
⋃∞
k=1 Ik, where Ik

are compact subsets of Q. By induction for every k ≥ 0 we will construct a
partition of {0, . . . , k} into three subsets Hi(k), i = 1, 2, 3, so that

(1) for i = 1, 2, Hi(k) ⊂ Hi(k′) if k ≤ k′.
For every r ∈ ⋃k≥0 H1(k) ∪H2(k) we will construct a point qr ∈ Q and

for every k ≥ 0 we let

Pk =
⋂

r∈H1(k)∪H2(k)

π−1
r (qr) ⊂ Qω

and P−1 = Qω. By (1) we have Pk ⊃ Pk+1 for every k. We shall also
construct a subcube Rk of Pk and an irreducible barrier Ak in Rk such that
the following conditions are satisfied for every k:

(2) Ak ⊃ Ak+1;
(3) if r ∈ H1(k), then qr ∈ σ and ϕr(Ak) ⊂ Y ;
(4) if r ∈ H2(k), then qr ∈ Q \ σ and ϕr(Ak) ⊂ X \ Y ;
(5) if r ∈ H3(k), then Rk ∩ π−1

r (Ik) = ∅ and ϕr(Ak) ∩ Yk = ∅.
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To get a contradiction, observe that by (2) there exists a point z = (zr) ∈⋂
k≥0Ak. By (3)–(5), zr ∈ σ if and only if ϕr(z) ∈ Y . Thus z ∈ W (Q,σ) if

and only if ϕ(z) ∈W (X,Y ), contrary to ϕ−1(W (X,Y )) = Qω \W (Q,σ).

Inductive construction. Let R−1 = A−1 = Qω. Suppose k = 0 or k ≥ 1
and our objects are constructed up to order k − 1. Let k = r0, r1, . . . , rl
be the elements of the set {k} ∪ H3(k − 1). We shall construct two finite
decreasing sequences

Rk−1 = U−1 ⊃ U0 ⊃ . . . ⊃ Ul, Ak−1 = B−1 ⊃ B0 ⊃ . . . ⊃ Bl,
where Uj is a subcube in Rk−1 and Bj is an irreducible barrier in Uj for
j ≤ l. From the construction of these sets we will see to which of the sets
Hi(k) an element rj should be assigned (elements of {0, . . . , k}\{r0, . . . , rl}
belong to H1(k) or H2(k) according to (1)).

Suppose for j ≥ 0 the sets Uj−1 andBj−1 are constructed. We distinguish
two cases:

(a) ϕ−1
rj (X \ Yk) ∩ Bj−1 6= ∅. Then we can find a subcube Uj in Uj−1

whose interior in Uj−1 meets the barrier Bj−1 and Uj ⊂ ϕ−1
rj (X \ Yk). By

Lemmas 1 and 3, Bj−1 ∩ Uj contains an irreducible barrier Bj in Uj . We
assign rj to H3(k).

(b) ϕrj (Bj−1) ⊂ Yk. Since Yk is closed in Ŷ we get Yk ∩ Ŷ = Yk. Re-
calling that Yk is a sigma hereditarily disconnected absolute Gδ-set, write
Yk =

⋃∞
i=1 Di and Yk \ Ŷ = Yk \Yk =

⋃∞
i=1 Fi, where the sets Di are hered-

itarily disconnected and Fi are closed in X. Then the countable collection
{ϕ−1

rj (Di), ϕ−1
rj (Fi) : i ∈ N} covers the irreducible barrier Bj−1. By the Main

Lemma, there is a connected subset C ⊂ Bj−1 such that C is an irreducible
barrier in Bj−1 and either C ⊂ ϕ−1

rj (Fi) or C ⊂ ϕ−1
rj (Di) for some i. As in

the preceding proof, we have either ϕrj (C) ⊂ Y or ϕrj (C) ⊂ X \ Y . Let
Uj = Uj−1, Bj = C, and assign zj to H1(k) if ϕrj (Bj) ⊂ Y and to H2(k) if
ϕrj (Bj) ⊂ X \ Y .

Thus we constructed the sets Hi(k), i = 1, 2, 3. Since the complement
of the closed set

⋃
r∈H3(k) π

−1
r (Ik) is ∞-dense in Ul, we may find a subcube

K ⊂ Ul whose interior relative to Ul meets the barrier Bl and such that
K ∩ ⋃r∈H3(k) π

−1
r (Ik) = ∅ (see Lemma 6). By Lemma 1, the set Bl ∩ K

contains an irreducible barrier B in K.
Applying Lemma 4 find for every r ∈ H1(k)\H1(k−1) a point qr ∈ σ and

for every r ∈ H2(k) \H2(k− 1) a point qr ∈ Q \ s such that B ∩Pk contains
an irreducible barrier Ak in the subcube Rk = Pk ∩ K of Pk. Clearly, the
constructed objects satisfy the conditions (1)–(5).

Proof of Theorem 2. First we recall some definitions. Let 0 ≤ n ≤ ∞.
A subset A of a space X is called a Zn-set in X if A is closed in X and every
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map f : In → X of the n-dimensional cube can be uniformly approximated
by maps into X \A. A space X is called a σZn-space if X can be written as a
countable union X =

⋃∞
i=1 Xi of Zn-sets Xi in X. Note that each σZn-space

is a σZm-space for every m ≤ n. Observe also that a space X is of the first
Baire category if and only if X is a σZ0-space.

The following fact is proven in [BT].

Lemma 9. If an absolute retract X is a σZ0-space, then for every n ∈ N
its nth power Xn is a σZn−1-space.

In Lemma 5.4 of [DMM] T. Dobrowolski, W. Marciszewski, and J. Mogil-
ski have proven that if an absolute retract X is a σZ∞-space, then for every
σ-compact space A there is a proper map f : A → X. Modifying their
arguments and using results of [To] one may prove

Lemma 10. If for some n ≥ 0 an absolute retract X is a σZn-space,
then for every n-dimensional σ-compact space A there exists a proper map
f : A→ X.

For a class C of spaces and n ≥ 0 let C[n] = {C ∈ C : dim(C) ≤ n}. Let
us recall that a map f : A→ X is proper provided the preimage f−1(K) of
any compact subset K ⊂ X is compact.

Lemma 11. If X is an absolute retract of the first Baire category , then
for every n ∈ N its power X3n+2 is A1[n]-universal.

Proof. Fix n ∈ N and a σ-compact space A with dim(A) ≤ n. By Lem-
mas 9 and 10 there exists a proper map f : A → Xn+1. Since X, being an
absolute retract, contains a topological copy of the interval I, we can apply
the classical Menger–Nöbeling–Lefschetz Theorem [En, 1.11.4] to find an
embedding g : A→ X2n+1. Then e = (f, g) : A→ Xn+1 ×X2n+1 = X3n+2

is a closed embedding.

Proof of Theorem 2. By [To, 4.1, 2.4] the space X embeds into a comp-
lete-metrizable absolute retract X̃ so that X is homotopy dense in X̃. The
latter means that there is a homotopy h : X̃ × [0, 1]→ X̃ such that h(X̃ ×
(0, 1]) ⊂ X and h(x, 0) = x for every x ∈ X̃.

Let A ∈ A1(s.c.d.c.), i.e., A is a σ-compact space having a strongly
countable-dimensional completion C. By the Compactification Theorem
[En, 5.3.5] the space C has a strongly countable-dimensional metrizable
compactification K. Write K =

⋃∞
i=0 Ki, where each Ki ⊂ Ki+1 is a com-

pact finite-dimensional subspace of K.
By Lemma 11, the countable power Xω is A1[n]-universal for all n∈N.

Then Theorem 3.1.1 of [BRZ] implies that for every i there exists an embed-
ding fi : Kn → X̃ω with f−1

i (Xω) = Kn∩A. Since Xω is homotopy dense in
the absolute retract X̃ω, the map fi can be extended to a map f i : K → X̃ω
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such that f i(K \Ki) ⊂ Xω. Consider the map f = (f i)
∞
i=0 : K → (X̃ω)ω

and notice that it is an embedding with f−1((Xω)ω) = A. Thus the re-
striction f |A : A→ (Xω)ω is a closed embedding, i.e., the space Xω, being
homeomorphic to (Xω)ω, is A1(s.c.d.c.)-universal.

Some questions and comments. The exponent 3n+ 2 in Lemma 11
is not optimal. In fact, for every locally path-connected space X of the first
Baire category the power X2n+1 is A1[n]-universal for every n ≥ 0. The
proof of this statement requires more involved arguments and will be given
in another paper.

Question 1. For which Borel classes C is there an absolute retract A ∈
C[1] whose power An+1 is C[n]-universal for every n ∈ N?

Question 2. Suppose that X, Y are finite-dimensional σ-compact abso-
lute retracts of the first Baire category. Are their countable powers Xω and
Y ω homeomorphic?

Note that by Theorem 2 each of the spaces Xω, Y ω embeds as a closed
subset into the other. By Lemma 9 these spaces are σZn-spaces for every
n ∈ N. By Theorem 1 and Lemma 5.4 of [DMM], they are not σZ-spaces,
so that the standard technique of absorbing spaces (see [BRZ]) cannot be
applied to answer Question 2.

Let us remark that the second assertion of Theorem 3 generalizes [Ca3],
the first assertion of Theorem 1 generalizes a result of [BR], and the third
one generalizes [Ca1]. As mentioned in the introduction, the Nagata space
N admits no embedding into a sigma hereditarily disconnected absolute
Fσδ-space. In this context it would be interesting to know answers to the
following questions.

Question 3. Suppose F ⊃ N is an Fσδ-subset in Q containing the Na-
gata space N .

(a) Does F contain a Hilbert cube (cf. [En, 5.3.6])?
(b) Is F strongly infinite-dimensional?
(c) Does F \N contain an arc? Note that F \N is connected, moreover,

A ∩ (F \ N ) is connected for every irreducible barrier A in Q.
(d) Does F contain a copy I of [0, 1] such that I ∩ N is a countable

dense subset of I? Note that F always contains a copy K of the Cantor set
such that K ∩ N is countable and dense in K.

Question 4. Does there exist a countable-dimensional absolute Fσδ-
space containing a copy of each countable-dimensional compactum?

According to [En, 5.3.11 and 7.1.33], the Smirnov space σ contains a
copy of all Smirnov cubes. This shows that there are σ-compact strongly
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countable-dimensional spaces containing compacta of arbitrary high trans-
finite dimension ind.

The Main Lemma implies that irreducible barriers in Q are not sigma
hereditarily disconnected. In fact, every sigma hereditarily disconnected
compactum is weakly infinite-dimensional [Kr, §6]. It is not clear if the
converse is also true.

Question 5. Is every weakly infinite-dimensional compactum sigma
hereditarily disconnected?

It was remarked by R. Pol that this question is connected with the
known open problem on existence of a weakly infinite-dimensional com-
pactum whose square is strongly infinite-dimensional: such a compactum
cannot be sigma hereditarily disconnected. Observe that the example of
an uncountable-dimensional weakly infinite-dimensional compactum con-
structed by R. Pol [Po] is sigma hereditarily disconnected.
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