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Compact covering mappings and
cofinal families of compact subsets of a Borel set

by

G. Debs and J. Saint Raymond (Paris)

Abstract. Among other results we prove that the topological statement “Any com-
pact covering mapping between two Π0

3 spaces is inductively perfect” is equivalent to the

set-theoretical statement “∀α ∈ ωω , ωL(α)
1 < ω1”; and that the statement “Any compact

covering mapping between two coanalytic spaces is inductively perfect” is equivalent to
“Analytic Determinacy”. We also prove that these statements are connected to some reg-
ularity properties of coanalytic cofinal sets in K(X), the hyperspace of all compact subsets
of a Borel set X.

This work is a continuation of [2] and [3] which were motivated by the
following topological problem:

Problem 1. Is any compact covering mapping f : X → Y between two
Borel spaces inductively perfect?

We recall some basic definitions:
The mapping f : X → Y is said to be compact covering if any compact

subset of Y is the image of some compact subset of X.
The mapping f : X → Y is said to be inductively perfect if there exists

in X a (necessarily closed) subset X ′ such that the restriction f ′ of f to
X ′ is a perfect mapping onto Y (i.e. the inverse image under f ′ of every
compact subset of Y is compact).

The spaces X and Y considered in Problem 1 are supposed to be metriz-
able and separable; and in this context, it is shown in [2] that one can reduce
the general case to the case where the spaces are zero-dimensional, hence
subsets of the Cantor space 2ω. Also in what follows a topological space
will always be viewed as a subset of 2ω endowed with the induced topology.
In particular by a “Borel space”, “coanalytic space” etc. we simply mean a
Borel or coanalytic subset of 2ω. For descriptive classes we follow standard

2000 Mathematics Subject Classification: Primary 03E15; Secondary 03E45, 54H05.

[213]



214 G. Debs and J. Saint Raymond

notations from Effective Set Theory (see Section 1.1 for more details). Notice
that since the ambient space is always assumed to be 2ω, the class Π0

2 = Gδ

is here the topological class of all zero-dimensional Polish spaces, and the
class Σ0

2 = Kσ is the topological class of all zero-dimensional σ-compact
spaces.

For a detailed discussion of Problem 1 we refer the reader to [3]. We list
here some of the basic results:

(a) Any compact covering mapping from a Π0
2 space onto any space is

inductively perfect.
(b) Any compact covering mapping from any space onto a Σ0

2 space is
inductively perfect.

(c) If we assume Det(Σ1
1) (Σ1

1 determinacy) then any compact covering
mapping from a Π1

1 space onto a Π1
1 space is inductively perfect.

(d) In Gödel’s universe L, there exists a compact covering mapping f :
X → Y between two Borel spaces which is not inductively perfect ; moreover
X can be chosen to be the intersection of a Π0

2 and a Σ0
2 set , and Y can be

chosen to be a Π0
2 set.

Property (a) was proved several years ago by Christensen [1] and by the
second author [9] independently, whereas (b) is a much more recent result
due to Ostrovskĭı [8] (also to Just and Wicke [5] in the particular case where
the range space is countable); (c) is from [2] and (d) is from [3]. In particular
this gives an example of a “natural” topological property of Borel sets which
is not decidable in ZFC.

More generally given two classes X and Y of spaces one can ask whether
any compact covering mapping from a space in X to a space in Y is induc-
tively perfect. Thus Problem 1 concerns the case X = Y = ∆1

1; but this
symmetrical hypothesis on X and Y is misleading, and as we shall see the
domain space and the range space play totally different roles in this problem.
Also for “reasonable” classes Y we have the following general property:

• If any compact covering mapping from a ∆1
1 space onto a space in Y

is inductively perfect , then the same holds for any mapping from a Π1
1

space onto a space in Y.

In fact this is proved in [3], Theorem 6.5, when Y = Π0
2, which was

the natural context of that work. However the argument is based on some
stability properties of the class Π0

2, which are also shared by each of the
following classes: Σ0

ξ , Π0
ξ, ∆1

1, Π1
1.

In particular it follows from this property that the natural setting for
our study is to consider mappings f : X → Y where X is a Π1

1 space and
Y is a ∆1

1 space.
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Another fundamental remark from [3] is that Problem 1 is intimately
related to the study of the hyperspace K(Y ) of all compact subsets of the
range space Y , endowed with the Hausdorff topology. To explain this, let us
first fix some terminology:

A subset A of a hyperspace K(Z) is called cofinal if it is cofinal for the
inclusion relation ⊂, that is, if

∀S ∈ K(Z), ∃T ∈ A, S ⊂ T.
A domination function for the cofinal set A is a mapping f : K(Z) → A
such that

∀S ∈ K(Z), f(S) ⊃ S.
By the Axiom of Choice any cofinal set A admits a domination function;
we say that A is continuously cofinal if it admits a continuous domination
function. In [3] we proved the following surprising result:

• Any analytic cofinal subset of K(Z) for Z Π0
2 is continuously cofinal.

Notice that if a hyperspace K(Z) contains an analytic cofinal subset A then
since we can write K(Z) = {S ∈ K(2ω) : ∃T ∈ A, S ⊂ T} it follows
that K(Z) is also analytic, hence by a basic result of Christensen and Saint
Raymond ([9] or [1]), Z is necessarily Π0

2; this result is the origin of property
(a) above.

When Z is a general Borel or coanalytic space the following problem
arises naturally:

Problem 2. Is any coanalytic cofinal subset of K(Z), for Z Borel , con-
tinuously cofinal?

We now explain the connection between these two problems:
Given any compact covering mapping f : X → Y one can code (see the

proof of [3], Theorem 6.4) the hyperspace K(X) by a cofinal subset A of
K(Y ) in such a way that:

• If A is continuously cofinal then f is inductively perfect.

Conversely given any cofinal subset A of K(Z) if we consider the set
H = {(S, T ) ∈ K(Z) × A : S ⊂ T} then the mapping f : H → K(Z)
obtained by restricting to H the canonical projection on the first factor
(f(S, T ) = S) is compact covering; moreover one can easily prove that:

• If f is inductively perfect then f admits a domination function of the
first Baire class,

but one cannot ensure by general arguments the existence of a continuous
domination function.

However for mappings with values in a Π0
2 space we proved in [3]:
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Theorem A. The following are equivalent :

(i) For all α ∈ ωω the set ωω ∩ L(α) is ≤?-bounded in ωω.
(ii) Any compact covering mapping from a Π1

1 space onto a Π0
2 space is

inductively perfect.
(iii) Any Π1

1 cofinal subset of K(Z) in a Π0
2 space Z is continuously

cofinal.
(iv) Any Π1

1 cofinal subset of K(ωω) admits a Borel domination function.

Here ≤? denotes the relation of eventual domination of sequences in ωω.

In this paper we prove similar equivalences for mappings with values in
a Π0

3 space, or in a Π1
1 space:

Theorem B. The following are equivalent :

(i) For all α ∈ ωω the set ωω ∩ L(α) is countable.
(ii) Any compact covering mapping from a Π1

1 space onto a Π0
3 space is

inductively perfect.
(iii) Any compact covering mapping from a Π0

3 space onto a Π0
3 space is

inductively perfect.

Theorem C. The following are equivalent :

(i) Det(Σ1
1).

(ii) Any compact covering mapping from a Π1
1 space onto a Π1

1 space is
inductively perfect.

(iii) Any Π1
1 cofinal subset of K(Z) in any Π1

1 space Z is continuously
cofinal.

(iv) Any Π1
1 cofinal subset of K(Q) admits a Borel domination function,

where Q denotes a copy of the set of all rational numbers.

In particular, Problems 1 and 2 get affirmative answers under analytic
determinacy.

As one sees, the analogy between Theorems C and A is more complete
than between Theorems B and A. The main reason behind this fact is a
closure property of the classes Π0

2 and Π1
1: If a space X is in one of these

classes then the hyperspace K(X) is also in the same class. This is not
satisfied by the class Π0

3, and for this specific reason the proof of Theorem
B is much more delicate than that of Theorem C.

These results are proved in Section 7. For both theorems the proof de-
composes in two main parts, which we now briefly comment on:

(I) Proving that (i) is sufficient to ensure the other conditions.
(II) Proving that (i) is necessary to ensure the other conditions.

In the case of Theorem C, part (I) follows essentially from previous results
of [2] and [3]. In the case of Theorem B we proceed similarly to the proof
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of Theorem A in [2], by proving first some “continuous lifting property”
over Π0

3 sets; and for this we introduce a Borel game adapted to the new
situation. However the arguments make use of totally new ideas. In fact in
both situations (Theorems A and B) one is reduced to constructing, from
some strategy σ in the game, a “large” compact set K included in a given
Borel set Y . Controlling such a construction when Y is Π0

2 is quite stan-
dard, but totally nontrivial when Y is Π0

3. In general in such situations
one parametrizes the Borel set Y as the projection of some Π0

2 set Y ′, and
constructs the compact set K as the projection of a compact subset K ′ of
Y ′. But, for deep reasons, in the present situation this procedure is strictly
impossible to realize, and one has to ensure “by hand” the condition K ⊂ Y
when Y is Π0

3. The construction relies on a very technical analysis of the
strategy σ. Also to explain partly this analysis, we shall first treat in Section
4 the simpler case when Y is Σ0

2 and for which the corresponding “lifting
property” can be proved in ZFC, without any extra assumption. The case
when Y is Π0

3 is developed in Section 5, which constitutes the heart of
this work. This section makes substantial use of Effective Descriptive Set
Theory.

Part (II) is nontrivial in Theorem B and in Theorem C, but the proof
in both cases follows the same scheme, and makes use of the fact that in
each case condition (i) is equivalent to some regularity property for Π1

1 sets
(see Theorems 1.2 and 1.3 for more details). The second ingredient of this
part is a construction which assigns to any Π1

1 non-Borel set A ⊂ 2ω a co-
final subset A of K(Q) which is a kind of replica of A. Then in each case
one has to derive from a continuous domination function for A the cor-
responding regularity property for the Π1

1 set A. The construction of the
replica A ⊂ K(Q) of A ⊂ 2ω is independent of the rest of the paper and is
presented in Section 6.

As for Theorem A in [3], one can prove effective (lightface) versions of
all these results. In Section 1 we present briefly the main nonelementary
descriptive results that we use in this work. However we assume the reader
to be familiar with Classical and Effective Descriptive Set Theory as well as
basic results on the universe L, for example as presented in [7].

1. Descriptive set theory

1.1. Descriptive classes. We follow standard notations from Effective
Descriptive Set Theory: Σ0

ξ and Π0
ξ for the additive and multiplicative Borel

classes; ∆1
1 for the class of all Borel sets; Σ1

1 for the class of all analytic sets;
Π1

1 for the class of all coanalytic sets; Σ1
2 for the class of all projections of

coanalytic sets; and Σ0
ξ , Π0

ξ , ∆1
1, Σ1

1 , Π1
1 , Σ1

2 for the effective versions of
the previous classes.
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We shall also consider the following two classes:

Pσ = {A = B ∩ C : B ∈ Π0
2 and C ∈ Σ0

2},
P̌σ = {A = B ∪ C : B ∈ Π0

2 and C ∈ Σ0
2},

which will play a major role. Obviously P̌σ is the class of all complements
of sets in Pσ, and both classes lie between the Borel classes Π0

2 ⊂ Π0
3.

The class Pσ is also sometimes denoted by D2(Σ0
2). The notation Pσ was

introduced in [2] where spaces in Pσ are called σ-Polish. A typical set in Pσ

and not in P̌σ is the product space Q×ωω as a subset of 2ω×2ω (since both
Q and ωω embed in 2ω). These classes appear naturally as “limit classes”
in several properties of the hyperspace K(X) for X Borel. For example the
following two results, which we shall not use in this work, can be found in
[10] and [6]:

• The Borel Effros structure of K(X) is standard iff X is in P̌σ.
• The σ-ideal K(X) is generated by a Borel subset iff X is in Pσ.

We shall see in Section 7 that the classes Pσ and P̌σ are also “limit classes”
for two instances of Problem 1 above.

We shall use the following basic and classical result of Solovay [13]:

1.2. Theorem (Solovay). For any α ∈ ωω the following are equivalent :

(i) ωω ∩ L(α) is countable.
(ii) Any uncountable Π1

1 (α) set contains a perfect set.

We shall commonly write condition (i) in the equivalent form “ωL(α)
1 <

ω1”. Notice that these statements are equiconsistent with ZFC, unlike those
in the following theorem.

The other basic result we need is a combination of two deep theorems due
to Martin and Harrington. Before we state them we recall some standard
terminology. A reduction of a set A ⊂ 2ω to a set B ⊂ 2ω is a function
f : 2ω → 2ω such that A = f−1(B); we also say that A is reducible to B by
f . If F is a family of functions from 2ω to 2ω and Γ is a class of subsets of
2ω, let us say that a set A0 in Γ is Γ -complete under F-reductions if any
A in Γ is reducible to A0 by a function f ∈ F ; when F is the set of all
continuous functions, we simply say that A0 is Γ -complete.

1.3. Theorem (Martin–Harrington). For any α ∈ ωω the following are
equivalent :

(i) Det(Σ1
1(α)).

(ii) Any Π1
1 (α) non-Borel set is Π1

1 (α)-complete (under continuous re-
ductions).

(iii) Any Π1
1 (α) non-Borel set is Π1

1 (α)-complete under Borel reductions.
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The only known proof of this theorem is through the following scheme:

(i)⇒ (ii)⇒ (iii)⇒ (i)

Aside the middle implication which is trivial, the other two implications
are very deep results. The first implication is based on a result of Martin
ensuring that analytic determinacy implies the determinacy of games which
are differences of analytic sets, hence of Wadge games. The last implication
is a theorem of Harrington [4] for which we mention a recent “simple” proof
by R. Labib Sami [11] avoiding the use of Steel’s forcing as in Harrington’s
initial proof.

In this work we shall make use of the last implication, that is, Harring-
ton’s Theorem. However we shall also use other results and remarks from
[2] and [3] which already used Martin’s Theorem which is the core of the
proof of the first implication.

2. Sequential spaces

2.1. General notations. For any set X we denote by Seq(X) =
⋃
nX

n

the set of all finite sequences in X, and by ≺ the extension relation. If s ∈ Xn

we denote as usual by

• |s| the length of the sequence s,
• s|m the restriction of s to m ≤ |s|,

and if s is nonempty by

• s∗ the sequence obtained by deleting from s the last element, so that
s∗ = s||s|−1.

When working in product spaces we shall very often make obvious identi-
fications such as (X×Y )×Z = X×Y ×Z or Seq(X × Y )⊂Seq(X)×Seq(Y ).
For example if u = (s, t) ∈ Xn × Y n then we write u|m for (s|m, t|m).

2.2. Lexicographical ordering on Seq(X). If (X,<) is a wellordered
space, denote for each n ∈ ω by <n the lexicographical ordering of the
product space Xn. One can extend these orderings to a unique ordering
that we shall also denote by < in the following way: for any s, t ∈ Seq(X)
set

s < t ⇔ [|s| < |t| or (|s| = |t| = n and s <n t)].

It is clear that Seq(X) is then also wellordered by <. In particular one can
iterate the previous procedure inductively to endow the sets Seq(Seq(X)),
Seq(Seq(Seq(X))) . . . with canonical wellorderings that will all be denoted
by <.

In this paper we consider the wellorder thus obtained on the space
Seq(Seq(κ)) where κ is some ordinal, and to which we refer as the canonical
wellordering of Seq(Seq(κ)).
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2.3. Convergence in Seq(X). If (sn)n∈ω is an infinite sequence in Seq(X)
(that is, sn ∈ Seq(X) for each n), we say that the sequence (sn)n∈ω is
converging if there exists some α ∈ Xω such that:

(1) limn |sn| =∞,
(2) sn(k) = α(k) for all k ∈ ω and all n large enough.

It is clear that this α is unique; we say that (sn) converges to α and write
α = limn sn. Notice that from condition (1) it follows that if k ∈ ω is fixed
then sn(k) is defined for n large enough.

One can easily interpret this convergence notion as a real topological
convergence in some product space. We shall not do this but list simply
some elementary properties that we will use later.

2.4. Remarks. (a) If there exists some increasing sequence (kn)n∈ω in
ω such that sn|kn ≺ α for all n, then (sn) converges to α. Conversely, if
(sn) converges to α then for any increasing sequence (kn)n∈ω in ω, we can
extract from (sn) a subsequence (s′n) (converging to α) satisfying sn|kn ≺ α
for all n.

(b) Suppose that α = limn sn; if all the sn’s are in some tree S ⊂ Seq(X)
then α ∈ [S].

(c) Suppose that X is wellordered by <. If the sequence (sn) is such that
for all m < n:

(1) |sm| < |sn|,
(2) the restriction of sn to |sm| is smaller than sm (lexicographically

in X |sm|),

then for all k the sequence (sn(k))n is eventually nonincreasing, hence sta-
tionary; and (sn) is convergent.

Finally we shall make wide use of the following compactness property:

2.5. Lemma. Let (sn) be an infinite sequence in Seq(X) such that |sn| →
∞, and suppose that for any k ∈ ω the set {sn(k) : n such that |sn| > k} is
finite. Then one can extract from (sn) an infinite converging subsequence.

Proof. Starting from the initial sequence σ(0) = (s(0)
n ) = (sn) one con-

structs inductively subsequences σ(j) = (s(j)
n ) such that for all j, σ(j+1) is a

subsequence of σ(j) and the sequence (s(j)
n (j)) is constant in n. Then it is

clear that the diagonal subsequence (s′n) = (s(n)
n ) is converging.

3. The games of type Γ (T ). For the proofs of the main results of
the next two sections we introduce two different games, each adapted to a
particular hypothesis, but both of the same type. Also to avoid repetitions
we describe in this section the general form of these games and fix some
notations and conventions that we will respect in what follows.
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Set Σ = Seq(ω1) and let T be a tree on {0, 1} × Σ. By a game of type
Γ (T ) we mean a game in which at each move:

• Player I chooses some element in {0, 1},
• Player II chooses an element in {0, 1} ×Σ.

We identify an infinite run in such a game with a triple (y, z, θ) ∈ 2ω× 2ω×
Σω; we say that y and z are the reals constructed in the run by Player I
and by Player II, and we shall refer to the θ(n)’s as the ordinal moves of
Player II in the run.

Rules. To be legal in the game, the run (y, z, θ) should satisfy for all
n ≥ 0 the following two rules:

(R1) |θ(n)| ≤ n+ 1.
(R2) If |θ(n)| = m then (z|m, θ(n)) ∈ T .

Notice that both rules concern Player II; in particular any move is legal
for Player I. In fact in the games that we shall consider later we shall add
more rules but they will again concern only Player II. We do not require
any particular form for the win condition, which will be specifed in each
particular game. Notice that if (rn) is a sequence of legal finite runs in the
game which is converging (in the sense of 2.3) then by Remark 2.4(b) the
limit limn rn is an infinite run in which the same rules are satisfied.

Finite runs. We always identify a finite run in the game with a triple

(s, t, θ) ∈ Seq(2)×Seq(2)×Seq(Σ)

where s represents the moves of Player I in the run, and (t, θ) represents the
moves of Player II in the run. We always have |t| = |θ|, and |s| = |t|+ 1 or
|t| depending on whether the last move in the run is played by Player I or
by Player II.

Positions. By a position for Player II in the game we mean a couple

(t, θ) ∈ Seq(2)×Seq(Σ)

which can be realized as the moves of Player II in some run:

(s, t, θ) ∈ Seq(2)×Seq(2)×Seq(Σ)

where all rules are satisfied (not only (R1) and (R2)).
One can also define similarly a position for Player I; but since we never

deal with this notion in what follows, by “position” we always mean “posi-
tion for Player II”. The empty set is a position corresponding to the empty
run, or to a run with one move made by Player I.

If σ is some fixed strategy for Player I in the game, we say that the
position u = (t, θ) is compatible with σ if we can find a run r = (s, t, θ) com-
patible with σ. By convention we also require that in this run Player I makes
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the last move, so that r is uniquely determined by u, and the correspondence
between u and r is one-to-one. The position ∅ is always compatible with σ
and corresponds to the run with one move σ(∅).

Notations. For any position u = (t, θ) we set

π(u) = t, λ(u) = θ.

If moreover u is compatible with some strategy σ and is realized by the run
(s, t, θ) with |s| = |t|+ 1 then we write

σ(u) = s.

Notice that |σ(∅)| = 1 and σ(u) is never empty.

4. Continuous liftings over Σ0
2 spaces

4.1. Theorem. Let R and Y ×Z be two subsets of 2ω × 2ω satisfying :

(a) Y is Σ0
2, Z is Σ1

2, R is ∆1
1,

(b) for every compact K ⊂ Y, there exists z ∈ Z such that K×{z} ⊂ R.

Then there exists a continuous mapping f : 2ω → 2ω such that f |Y ⊂
R ∩ (Y × Z) where f |Y denotes the graph of the restriction of f to Y .

The proof of this theorem is easy if Z is assumed to be Borel, but in the
general case the problem is to keep the game Borel.

To prove this result we introduce a game of type Γ (T ) for some tree T
such that:

(1) If Player II has a winning strategy then the conclusion of the theorem
holds.

(2) If Player I has a winning strategy then there is a compact set K
negating hypothesis (b) of the Theorem.

Ensuring (1) will be straightforward from the win condition of the game,
and the main point will be to prove (2). In fact given an arbitrary strategy
σ for Player I we shall define a compact subset K of 2ω such that if σ is
winning then K negates hypothesis (b).

4.2. Index of an ω-sequence of trees. Let S = (Sk)k∈ω be an ω-sequence
of trees on {0, 1}. The index of S is the mapping k : Seq(2)→ ω defined by

k(s) =
{

min{k < |s| : s ∈ Sk} if s ∈ ⋃k<|s| Sk,
|s| if not.

Notice that if s ≺ s′ then k(s) ≤ k(s′). In particular if s 6= ∅ then k(s∗) ≤
k(s); and we say that s is critical if k(s∗) < k(s).

It is clear that for any x ∈ 2ω we have

x 6∈
⋃

k∈ω
[Sk] ⇔ lim

n
k(x|n) =∞ ⇔ lim sup

n
k(x|n) =∞.
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4.3. The game G′. Since Z is Σ1
2 we can fix a tree T on 2 × ω1 such

Z is the projection of [T ] on the first factor (see [7], p. 84). We also fix a
sequence (Sk)k∈ω of trees on 2 such that Y =

⋃
k[Sk] and denote by k the

associated index.
We now consider the game G′ of type Γ (T ) in which rule (R2) is un-

changed whereas (R1) is replaced by the following rule:

(R′1) If (s, t, θ) is a run with |s| = |t| = |θ| = n+ 1 then
{
θ(n) � θ(n− 1) and |θ(n)| = |θ(n− 1)|+ 1 if k(s) = k(s∗),
θ(n) = ∅ if k(s) > k(s∗).

It is easy to check that this rule is stronger than (R1).

Win condition. Player II wins the infinite run (y, z, θ) in the game G′ if

y 6∈ Y or (y, z) ∈ R.
All game-theoretical notions considered in this section are relative to the

game G′.

4.4. Lemma. If Player II has a winning strategy then there exists a
continuous mapping f : 2ω → 2ω such that f |Y ⊂ R ∩ (Y × Z).

Proof. A winning strategy τ for Player II defines a Lipschitz mapping
y 7→ (f(y), g(y)) from 2ω into 2ω ×Σω where each (y, f(y), g(y)) = (y, z, θ)
is an infinite run compatible with τ , hence won by Player II.

Fix y ∈ Y ; it follows from the win condition that (y, f(y)) ∈ R and all
we have to prove is that f(y) ∈ Z. Set

k0 = min{k ∈ ω : y ∈ [Sk]}.
It follows from the definition of the index k that there exists some n such
that k(y|m) = k0 for all m ≥ n. Let n0 be the least such n; then by rule
(R′1) there exists a unique γ ∈ ωω1 such that γ|k = θ(n0 + k) for all k, and
since by rule (R2) we have (z|k, γ|k) ∈ T for all k, it follows that (z, γ) ∈ [T ]
and z = f(y) ∈ Z.

We now fix a strategy σ for Player I in the game. All runs and positions
considered from now on will implicitly be assumed to be compatible with σ.

Our next goal is to define from σ a compact set K with the properties
announced above. The definition of K will rely on an analysis of the strategy
σ for which we need to introduce the following notions.

Minimal positions. We say that a position u is minimal if for any posi-
tion v the following implication holds:

(σ(v) = σ(u) and π(v) = π(u)) ⇒ λ(u) ≤ λ(v)

where as always≤ refers to the canonical lexicographical ordering on Seq(Σ).
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Given any position v it is clear that there exists a unique minimal posi-
tion u with σ(v) = σ(u) and π(v) = π(u); we denote this u by µ(v).

4.5. Lemma. If u is a minimal position and v is a position extending
u then µ(v) is also an extension of u.

Proof. Let u′ denote the position obtained by restriction of µ(v) to |u|.
If λ(u) < λ(u′) then we would also have λ(v) < λ(µ(v)), which is impossible
by the minimality of µ(v). Hence λ(u) = λ(u′) and since π(u) = π(u′), we
have u = u′ and so µ(v) � u′ = u.

Good positions. We say that a position u is good if for any subposition
v � u the following implication holds:

σ(v) is critical ⇒ v is minimal

where “critical” refers to the index k associated with the fixed sequence
(Sk)k∈ω. Set

S = {σ(u) : u a good position} ∪ {∅}.
Since any subposition of a good position is clearly good, S is a tree on {0, 1}
and we can define the compact set

K = [S].

We say that the strategy σ takes its values in Y if in any infinite run
(y, z, θ) compatible with σ the real y constructed by Player I belongs to Y .
It follows from the win condition of the game that any winning strategy
takes its values in Y .

4.6. Lemma. If σ takes its values in Y then K ⊂ Y .

Proof. Fix y ∈ K = [S]. For each n the sequence sn = y|n+1 is in S, so
we can find a good position un = (tn, θn) such that |un| = n and sn = σ(un).

Fix n such that sn is critical. We can find t ∈ 2n such that tm|n = t for
infinitely many m’s. Now if we fix such an m, since um is a good position
and σ(um|n) = sn is critical, the position um|n is minimal and hence there
exists θ ∈ Σn uniquely determined by sn and t such that θm|n = θ. Thus if
sn is critical then there exists a position v = (t, θ) such that σ(v) = sn and
um|n = v for infinitely many m’s.

Suppose now by contradiction that y 6∈ Y . Then the set N = {n ∈ ω :
sn is critical} is infinite, and applying inductively the previous observations
one can construct a family (vn)n∈N of increasing positions (vn ≺ vn′ if
n < n′) such that σ(vn) = sn ≺ y for all n ∈ N . This clearly defines
a unique infinite run compatible with σ in which the real constructed by
Player I is precisely y; and since y 6∈ Y this contradicts the hypothesis of
the lemma.
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4.7. Lemma. If σ takes its values in Y then for any z ∈ Z there exists
an infinite run (y, z, θ) (compatible with σ) such that y ∈ K.

Proof. We say that a position u is critical if σ(u) ∈ Seq(2) is critical
with respect to the index k.

Fix z in Z and let U = Uz denote the set of all positions u satisfying
π(u) ≺ z. We shall construct a finite sequence (uk)k≤n in U satisfying for
all k ≤ n:

(1) uk−1 ≺ uk,
(2) uk is a good position,
(3) uk is critical,
(4) any extension of un in U is noncritical.

Set u0 =∅. Assume that we have constructed in U a sequence (u0, . . . , um)
satisfying (1)–(3) for all k ≤ m. We distinguish the following two alterna-
tives:

(i) Any extension of um in U is noncritical. In this case we define n = m
so that condition (4) is realized, and the construction is finished.

(ii) There exists a critical extension of um in U . In this case we fix such
an extension v of minimal length, and define um+1 = µ(v). Thus σ(um+1) =
σ(v) is critical and by Lemma 4.5 we have um ≺ um+1. Finally since v was
chosen of minimal length there is no critical subposition w between um and
um+1, and since um is a good position, it is clear that so is um+1. Hence
um+1 satisfies (1)–(3).

Notice that in (ii) one can repeat again the previous arguments starting
from (u0, . . . , um, um+1). If when applying this procedure inductively alter-
native (i) never occurs then we would obtain an infinite sequence (uk)k∈ω
satisfying (3) for all k, in particular we would have k(σ(uk−1)) < k(σ(uk))
for all k. This clearly defines an infinite run in the game in which the real
y constructed by Player I satisfies lim k(y|n) =∞, hence y is not in Y , and
this contradicts the assumption of the lemma. Thus after finitely many steps
alternative (i) occurs, and this finishes the construction.

Set u = un and p = |u|, and let r denote the finite run determined by u.
Fix some γ ∈ ωω1 such that (z, γ) ∈ [T ] and consider the unique infinite
run (y, z, θ) compatible with σ, extending r with θ(p + n) = γ|n for all
n ≥ 0. It follows easily from (3) and (4) that rule (R′1) is satisfied, and since
(z, γ) ∈ [T ], rule (R′2) is also satisfied. Finally notice that it follows from (2)
and (4) that any extension of u in U is again a good position; in particular
for all n we have y|n+1 = σ(z|n, θ|n) ∈ S, and so y ∈ [S] = K.

Proof of Theorem 4.1. By Lemma 4.4 it is enough to prove that Player II
has a winning strategy in the game G′. So suppose otherwise. Since the game
is clearly Borel and so determined, Player I has a winning strategy σ. Let
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K be the compact set defined above; then by Lemma 4.6, K is a compact
subset of Y , and by hypothesis (b) of the theorem applied to K we can find
z ∈ Z such that K × {z} ⊂ R. Applying Lemma 4.7 to this z we obtain an
infinite run (y, z, θ) compatible with σ and such that y ∈ K; hence (y, z) ∈ R
and Player II wins this run, and this is impossible since σ is winning.

5. Continuous liftings over Π0
3 spaces

5.1. Theorem. Assume that “∀α ∈ ωω, ωL(α)
1 < ω1”. Let R and Y ×Z

be two subsets of 2ω × 2ω satisfying :

(a) Y is Π0
3, Z is Σ1

2, R is ∆1
1,

(b) for every compact K ⊂ Y , there exists z ∈ Z such that K×{z} ⊂ R.

Then there exists a continuous mapping f : 2ω → 2ω such that f |Y ⊂
R ∩ (Y × Z) where f |Y denotes the graph of the restriction of f to Y .

As in Theorem 4.1, the proof is easy if Z is Borel. But in the general
case we have to keep the game Borel.

Precisely we shall prove the following:

5.2. Theorem. Fix α ∈ ωω, and assume that “ωL(α)
1 < ω1”. Let R and

Y × Z be two subsets of 2ω × 2ω satisfying :

(a) Y is Π0
3 (α), Z is Σ1

2(α), R is ∆1
1(α),

(b) for every compact K ⊂ Y , there exists z ∈ Z such that K×{z} ⊂ R.

Then there exists a continuous mapping f : 2ω → 2ω such that f |Y ⊂
R ∩ (Y × Z).

Warning. All the rest of this section is devoted to the proof of Theorem
5.2. For simplicity we give the proof for α = 0; the reader can easily check
that all the arguments are uniform. The proof follows a scheme completely
similar to the proof of Theorem 4.1: We introduce some adapted game G′′,
and as in the Σ0

2 case we derive from some given strategy σ for Player I
in the game a compact set K with the desired properties. Here also the
definition of K is based on the analysis of the strategy σ; and for this we
need to consider some particular classes of positions in the game G′′.

We use the same terminology as in 4.1 and define “minimal positions”,
“good positions”, etc. But we warn the reader that the content of these
notions will here be different from the previous case. In fact since the rules
of the games are different the comparison of two such notions is meaningless.
The reason for this choice is first a matter of simplicity, but also to emphasize
the common structure of the proofs for Theorem 4.1 and Theorem 5.1. We
also introduce a new notion of “very good positions” which has no analog in
the previous case, and which heavily relies on the assumption “ωL1 < ω1”.
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5.3. Index of an ω2-sequence of trees. Let S = (Sjk)(j,k)∈ω×ω be an ω2-
sequence of trees on {0, 1}. As in 4.2 we denote for each j by k(j) the index
of the ω-sequence (Sjk)k∈ω; thus k(j) : Seq(2)→ ω with

k(j)(s) =
{

min{k < |s| : s ∈ Sjk} if there is k < |s| such that s ∈ Sjk,
|s| if not.

The index of S is the mapping k : Seq(2) → Seq(ω) defined inductively as
follows: k(∅) = ∅ and for s 6= ∅ if k(s∗) is defined with p = |k(s∗)|, set
m = min{j ≤ p : k(j)(s) > k(j)(s∗)} if k(j)(s) > k(j)(s∗) for some j ≤ p and
m = p if not, and define

k(s) =
{

k(s∗)|m if m < p,
k(s∗)_k(p)(s) if m ≥ p.

Notice that always either k(s) ≺ k(s∗) or k(s) � k(s∗); moreover in the last
case |k(s)| = |k(s∗)|+ 1. Since k(∅) = ∅ it follows that |k(s)| ≤ |s| for all s.

5.4. Lemma. For any x ∈ 2ω we have

x ∈
⋂

j

⋃

k

[Sjk] ⇔ lim
n
|k(x|n)| =∞.

Proof. Set X =
⋂
j

⋃
k[Sjk] and assume x ∈ X; then there exists α ∈ ωω

such that x ∈ [Sjα(j)] for all j. We shall construct inductively β ∈ ωω and
an increasing sequence nj of integers such that

∀n > nj , β|j � k(x|n),

which will show that limn→∞ |k(x|n)| =∞.
Set n0 = 0 and notice that β|0 = ∅. Assume nj and β|j are already

defined. Since x ∈ [Sjα(j)], the sequence (k(j)(x|n))n is nondecreasing and
bounded by α(j), so it is eventually constant. Hence there exist nj+1 > nj
and β(j) ≤ α(j) such that k(j)(x|n) = β(j) for n ≥ nj+1. Then for any
n > nj+1 and s = x|n we have

β|j � k(s), β|j � k(s∗), k(j)(s) = k(j)(s∗) = β(j).

It now follows from the definition of k that β|j � k(s), which completes the
inductive construction.

Conversely, assume that limn→∞ |k(x|n)| =∞. For all j, there exists nj
such that |k(x|n)| ≥ j+ 1 for all n ≥ nj . Then by definition of k(s) we have

k(x|n)|j+1 = k(x|nj )|j+1

for n ≥ nj , hence x|n ∈ Sjk for k = k(x|nj )(j), and thus x ∈ ⋃k∈ω[Sjk]. Since
this holds for every j, we have x ∈ X.
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5.5. The game G′′. As for the game G′, we fix a tree T on {0, 1} × ω1

such that Z is the projection of [T ] on the first factor. We also fix an ω2-
sequence S = (Sjk) of trees on {0, 1} such that Y =

⋂
j

⋃
k[Sjk] and denote

by k the associated index. Since Z and Y are lightface, we can choose S to
be recursive and T in L (see [7], p. 537).

Let G′′ be the game of type Γ (T ) in which rule (R2) is unchanged and
(R1) is replaced by

(R′′1) If (s, t, θ) is any finite run with |s| = |t| = |θ| = n+ 1 then
{
θ(n) = θ(n− 1)|m if m = |k(s)| ≤ |θ(n− 1)|,
θ(n) � θ(n− 1) and |θ(n)| ≤ |θ(n− 1)|+ 1 if not.

It is easy to check that in such a run (in which Player II makes the last
move) we have |θ(n)| ≤ |k(s)|. Formally, the comparison of (R′′1) and (R′1)
is meaningless. However one should think intuitively of (R′′1) as being less
restrictive than (R′1): one of the main possibilities offered to Player II by
(R′′1) (and totally forbidden by (R′1)) is to “pass” for the ordinal move at
any time by playing θ(n) = θ(n− 1). This novelty will play a major role in
the arguments.

Win condition. Player II wins the infinite run (y, z, θ) in G′′ if

y 6∈ Y or [(y, z) ∈ R and lim
n
θ(n) exists in ωω1 ].

All game-theoretical notions considered in this section are relative to the
game G′′.

5.6. Lemma. If Player II has a winning strategy then there exists a
continuous mapping f : 2ω → 2ω such that f |Y ⊂ R ∩ (Y × Z).

Proof. Notice that if an infinite run (y, z, θ) in the game is won by
Player II with y ∈ Y , then γ = limn θ(n) ∈ ωω1 exists and it follows from
rule (R2) that (z, γ) ∈ [T ].

The rest of the argument is completely similar to Lemma 4.4: A winning
strategy for Player II in this game defines canonically a continuous function
f : 2ω → 2ω such that f |Y ⊂ R ∩ (Y × Z).

5.7. Lemma. For any infinite run (y, z, θ) in the game, the following
are equivalent :

(i) limn θ(n) exists in ωω1 ,
(ii) limn |θ(n)| =∞,
(iii) y ∈ Y and the sequence (|θ(n)|)n∈ω of integers is not stationary.

Proof. (iii)⇒(ii). Define α and β ∈ ωω by α(n) = |k(y|n)| and β(n) =
|θ(n)|. It follows from (R′′1) that for all n:
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(1) β(n) ≤ α(n),
(2) β(n) < β(n− 1) ⇒ β(n) = α(n).

Set M = {n > 0 : β(n) < β(n− 1)}; we distinguish two cases:

Case 1: M is finite. In this case the sequence β of integers is eventually
nondecreasing, and since it is not stationary, we have limn β(n) =∞.

Case 2: M is infinite. Since y ∈ Y , by Lemma 5.4 in this case we have
limn α(n) =∞; and we now show that limn β(n) =∞.

Fix an arbitrary p and then fix n0 such that α(n) ≥ p for all n ≥ n0.
It follows from condition (2) that for any m ∈ M with m ≥ n0 we have
β(m) = α(m) ≥ p; moreover if m′ denotes the first element of M greater
than m then on the interval [m,m′[ the sequence β is nondecreasing, hence
for all n ∈ [m,m′[ we have β(n) ≥ β(m) ≥ p. It follows that if we fix any
m0 ∈M with m0 ≥ n0 then β(n) ≥ p for all n ≥ m0. This proves (ii).

(ii)⇒(i). Fix an infinite sequence (nk) such that |θ(n)| ≥ k for all n ≥ nk.
It follows from (R′′1) that for all m,n ≥ nk we necessarily have θ(n)|k =
θ(m)|k, which proves (i).

(i)⇒(iii). If limn θ(n) exists in ωω1 then necessarily limn |θ(n)| = ∞,
hence y ∈ Y by Lemma 5.4; and obviously (|θ(n)|)n∈ω is not station-
ary.

The win condition clearly defines a Borel subset of 2ω × 2ω × Σω and
so the game G′′ is determined. Moreover we have the following absoluteness
property:

5.8. Lemma. The winning player in the game G′′ has a winning strategy
in L.

Proof. Consider the game G̃ in which, at each of their moves, Player I
chooses as in G′′ an element in {0, 1}, whereas Player II chooses an element
in ω × {0, 1} × Σ. Similarly to G′′ identify a run in G̃ with a quadruple
(r, s, t, θ). The rules in G̃ are (R′′1), (R2) and the additional trivial rule:

(R3) r(n) = |θ(n)|.
Also we identify an infinite run in Γ̃ with a quadruple (x, y, z, θ) ∈ ωω ×
2ω × 2ω ×Σω; and Player II wins this run if

y 6∈ Y or [(y, z) ∈ R and lim
n
x(n) =∞].

By Lemma 5.7 the games G′′ and G̃ are equivalent. Moreover any winning
strategy σ̃ for one of the players in G̃ determines a winning strategy σ for
the same player in G′′, in a trivially definable way; in particular σ ∈ L(σ̃).

Thus it is enough to prove the lemma for the game G̃ instead of G′′. For
this, notice that the set of all infinite runs won by Player II in G̃ is of the
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form (B ×Σω)∩ [T ] with B a ∆1
1 subset of ωω × 2ω × 2ω and T a tree in L

on ω × 2× 2×Σ determined by the rules of the game; then the conclusion
of the lemma follows from [3], Proposition 4.3.

We now fix a strategy σ for Player I in the game and we suppose that
σ ∈ L. All runs and positions considered from now on will implicitly be
assumed to be compatible with σ.

Notations. We recall previous notations and fix new ones. If u = (t, θ) ∈
2n × Σn is a position in the game (compatible with σ) and (s, t, θ) is the
unique run associated to u with |s| = n+ 1 and |t| = |θ| = n, we set:

σ(u) = s ∈ 2n+1,

π(u) = t ∈ 2n,

λ(u) = θ(n− 1) ∈ Σ,
λ(u) = 〈θ(0), . . . , θ(n− 1)〉 = θ ∈ Σn,

`(u) = 〈|θ(0)|, . . . , |θ(n− 1)|〉 ∈ ωn,
`m(u) = |θ(m)| ∈ ω for all m < n,

ϕ(u) = (σ(u), π(u), `(u)).

The mapping ϕ will play a fundamental role in the proof. One should
think of the triple ϕ(u) = (σ(u), π(u), `(u)) as a shadow of the run (σ(u),
π(u), λ(u)). To analyze the strategy σ we first reduce the information con-
tained in such a run to the shadow ϕ(u) and to the last ordinal move λ(u)
(instead of λ(u)). The main property of the shadow is to admit only count-
ably many possible values, but it still contains some information from the
real run. In fact for technical reasons we need to deal with a more precise
shadow, to be introduced later, which again admits only countably many
possible values but contains more information about the run.

Special extensions. Let u and v two positions with |u| ≤ |v| (but we do
not suppose that u � v). We say that v is λ-compatible with u if

|λ(v|m)| ≥ |λ(u)| for all m ∈ [|u|, |v|].
If moreover v is an extension of u it follows from rule (R′′1) that the following
stronger property holds:

λ(v|m) � λ(u) for all m ∈ [|u|, |v|]
and we then say that v is a λ-compatible extension of u.

We now discuss more particular types of extensions. Let v be an extension
of u.

We say that v is a monotone extension of u if

λ(v|m) � λ(v|m−1) for all m ∈ ]|u|, |v|],
that is, v|m is λ-compatible with v|m−1 for all m ∈ ]|u|, |v|].
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We say that v is a trivial extension of u if

λ(v|m) = λ(u) for all m ∈ ]|u|, |v|].
Minimal positions. We shall say that a position u is minimal if for any

position v the following implication holds:

(ϕ(v) = ϕ(u) and λ(v) = λ(u)) ⇒ λ(u) ≤ λ(v)

where as always≤ refers to the canonical lexicographical ordering on Seq(Σ).
Again given any position v it is clear that there exists a unique minimal

position u with ϕ(v) = ϕ(u) and λ(v) = λ(u), and we shall denote by µ(v)
this unique position u.

The µ operator gives a simple way to construct minimal positions; we
now give another (more constructive) way to do this:

5.9. Lemma. If u is a minimal position and v is a monotone extension
of u then v is minimal.

Proof. Let v′ be a position with ϕ(v′) = ϕ(v) and λ(v′) = λ(v) and
denote by u′ the restriction of v′ to |u|. Obviously ϕ(u′) = ϕ(u). Moreover
since v is a monotone extension of u, it follows that v′ is also a mono-
tone extension of u′; hence λ(u′) = λ(u) and by the minimality of u we
have λ(u) ≤ λ(u′) and a fortiori λ(v) ≤ λ(v′); this proves that v is mini-
mal.

The equivalence relation ≡ on Σ. We recall that the shadow of a position
u is a triple

ϕ(u) ∈ Seq(2)×Seq(2)×Seq(ω) .

We now define a more precise shadow which will be a quadruple

ϕ̃(u) = (ϕ(u), ε(u)) ∈ Seq(2)×Seq(2)×Seq(ω)×Seq(2)

where ε(u) is the characteristic function of the set {m ≤ |u| : u|m is a
minimal position}.

Now for any % ∈ Σ set

Φ(%) = {ϕ̃(u) : u a position with λ(u) = %}
and define the equivalence relation ≡ on Σ by

% ≡ %′ ⇔ Φ(%) = Φ(%′).

5.10. Lemma. If ωL1 < ω1 then there mapping N : Σ → ω satisfying :

(N0) N(∅) = 0,
(N1) N(%) = N(%′) ⇒ % ≡ %′,
(N2) % ≺ %′ ⇒ N(%) ≤ N(%′).
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Proof. Set E = Seq(2)×Seq(2)×Seq(ω)×Seq(2). For any % ∈ Σ, the
set Φ(%) is a subset of E; and this defines a mapping Φ : Σ → P(E).

We recall that the strategy σ and the tree T were chosen in L. Moreover
all the parameters S,k, . . . implicitly involved in the definition of ϕ are also
in L since they are recursive; and since the lexicographical ordering of Σ
is in L, the relation “u|m is a minimal position” (with argument (u,m))
is also in L. Hence the function Φ is definable in L, and Φ(λ) ∈ L for all
λ ∈ Σ.

On the other hand the set E is countable in L, and if we assume that
ωL1 < ω1 then the set P(E) ∩ L is countable in V . This shows that the
range of Φ is countable in V ; hence the equivalence relation ≡ on Σ has
countably many classes. The existence of the required mapping N is then
straightforward.

From now on we assume that ωL1 < ω1 and fix a mapping N : Σ → ω
with properties (N0)–(N2) above.

Pseudo-extension. Let u and v be two minimal positions; we shall say
that v is is a pseudo-extension of u, and write u C v, if there exists an
extension v′ of u with v = µ(v′); such a position v′ is not unique.

It is fundamental to observe that on the set of all minimal positions the
relation C is not transitive. However, as we shall see, it has enough transitive
consequences.

5.11. Lemma. Let u and v be two minimal positions.

(a) If u ≺ v then u C v.
(b) If u C v and u′ ≺ u is minimal , then u′ C v.
(c) If u C v then ϕ(u) ≺ ϕ(v).
(d) If u C v and m ≤ |u| then λ(v|m) ≤ λ(u|m).

Proof. (a) and (b) are straightforward. For (c) and (d) fix v′ such that
v = µ(v′) and u ≺ v′; notice that ϕ(u) ≺ ϕ(v′) = ϕ(v) and λ(v) ≤ λ(v′),
hence

λ(v|m) = λ(v)|m ≤ λ(v′)|m = λ(u)|m = λ(u|m).

More fundamental is the following converse of property (a) above.

5.12. Lemma. Let u and v be two minimal λ-compatible positions. If
u C v then u ≺ v.

Proof. As above fix v′ such that v = µ(v′) and u ≺ v′, and set m = |u|.
Then ϕ(u) = ϕ(v|m); and since `(v) = `(v′), it follows that v′ is a λ-
compatible extension of u and λ(u) = λ(v′)|m = λ(v)|m = λ(v|m). Then by
the minimality of u we have λ(u) ≤ λ(v|m) and a fortiori λ(v′) ≤ λ(v); and
the minimality of v shows that v′ = v, hence u ≺ v.
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Good and very good chains. We say that a sequence u = (u(0), . . . , u(m),
. . . , u(n)) is a good chain of positions if for all m ≤ n:

(1) u(m) is a minimal position,
(2) |u(m)| = |u(m−1)|+ 1,
(3) u(m−1) C u(m);

and we say that u is a very good chain if moreover

(4) N(λ(u(m))) ≤ |u(m)|.

Good and very good positions. We shall say that a position u is good
(resp. very good) if there exists a good (resp. very good) chain u = (u(0), . . . ,
u(m), . . . , u(n)) with u(0) = ∅ and u(n) = u.

Such a chain u is not unique. By condition (2) for each m we have
|u(m)| = m and obviously each u(m) is then also a good (resp. very good)
position. We say that u(m) is a good (resp. very good) minimal version for
u|m. Notice that by Lemma 5.11(c), ϕ(u|m) = ϕ(u(m)), but λ(u|m) and
λ(u(m)) might be different, and therefore u(m) is not equal to µ(u|m) in
general. Still we shall see that this will be the case in many situations.

5.13. Examples. (a) By property (N0) of Lemma 5.10 the empty se-
quence ∅ is a very good position.

(b) If u is any minimal position and v is a monotone extension of u, then
it follows from Lemmas 5.9 and 5.11(a) that the sequence

v = (v|m)|u|≤m≤|v|

is a good chain of positions. Hence if u is a good position then so is v.
Moreover if u is a very good position and v is a trivial extension of u

then it is clear that condition (4) is fulfilled and v is a very good chain,
hence v is a very good position.

We now come to the crucial property of good positions. To evaluate
this property, recall that the restriction of a minimal (and even of a good)
position is not minimal in general.

5.14. Lemma. Let v be a (very) good position. If v is a λ-compatible
extension of u then u is a (very) good position; in particular u is minimal.

Proof. Set m = |u| and fix a good chain (v(k))k≤n with v(0) = ∅ and
v(n) = v. We prove by induction on k ∈ [m,n] that v(m) � v(k).

This is obvious for k = m. Suppose that v(m) � v(k); since v(k) C
v(k+1), Lemma 5.11(b), (c) yields v(m) C v(k+1) and ϕ(v(m)) ≺ ϕ(v(k+1)). In
particular v(k+1) is λ-compatible with v(m), hence v(m) ≺ v(k+1) by Lemma
5.12.
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In particular v(m) ≺ v(n) = v, and since |v(m)| = m, we have v(m) =
v|m = u and u is a good position. Moreover if v is a very good position then
so is u = v|m.

Definition of the compact set K. Let u be a very good position. We recall
that the restriction u|m of u is not a good position in general. However if
u(m) is a very good version of u|m (in some very good chain) then σ(u|m) =
σ(u(m)) � σ(u). It follows that the set

S = {σ(u) : u a very good position} ∪ {∅}
is a tree on {0, 1} and we can define the compact set

K = [S].

5.15. Lemma. If σ takes its values in Y then K ⊂ Y .

Proof. Fix y ∈ K. For each n, since sn = y|n+1 ∈ S, fix a very good
position un = (tn, θn) such that |un| = n and sn = σ(un), and set α(n) =
|k(sn)|.

It follows from rule (R′′1) that `m(un) ≤ α(m) for all m < n. Hence by
Lemma 2.5 we can extract from (un) a subsequence (vn) such that the limit

lim(σ(un), π(un), `(un)) = (y, z, β) ∈ 2ω × 2ω × ωω

exists; and by the previous observations we then have β(n) ≤ α(n) for all n.
Suppose that y 6∈ Y . Then by Lemma 5.4 we would have

p = lim inf
n

β(n) ≤ lim inf
n

α(n) <∞.

Set
m0 = min{m ∈ ω : β(m− 1) = p and ∀n ≥ m,β(n) ≥ p}

and let (mn)n∈ω be the increasing enumeration of the set

M = {m ≥ m0 : β(m− 1) = p}.
Replacing (vn) by some subsequence if necessary we can suppose that for
all n,

|vn| ≥ mn and ϕ(vn)|mn ≺ (y, z, β).

Let wn be a minimal very good version for vn|mn and set %n = λ(wn).
Then `(wn) ≺ β for all n. It follows from the definition of M that for all
k < n, the position wn is a λ-compatible extension of w(n,k) = wn|mk (the
restriction of wn to mk), hence by Lemma 5.14, w(n,k) is a very good position
and since λ(w(n,k)) = %n we have N(%n) ≤ mk.

In particular for k = 0 we obtain N(%n) ≤ m0, and replacing (vn) by
some subsequence if necessary we can assume that the sequence (N(%n)) is
constant; hence by property (N1) of N all the %n’s are equivalent to some
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fixed % ∈ Σ. Applying then the definition of the equivalence relation ≡ we
can find for all n a position w′n with

ϕ̃(w′n) = ϕ̃(wn) and λ(w′n) = %.

Again fix k < n and set as above w′(n,k) = w′n|mk . Since w(n,k) is minimal,
it follows from the equality ε(w′n) = ε(wn) that w′(n,k) is also minimal. It
also follows from the equality ϕ(w′n) = ϕ(wn) that

ϕ(w′(n,k)) = ϕ(w(n,k)) = ϕ(w′k) and λ(w′(n,k)) = λ(w′n) = λ(w′k) = %.

Hence by the minimality of both positions w′(n,k) and w′k we conclude that
w′k = w′(n,k) ≺ w′n.

Thus the sequence (w′n) defines a unique infinite run in the game in
which the real constructed by Player I is clearly y, and this contradicts the
hypothesis of the lemma since y 6∈ Y .

5.16. Lemma. If σ takes its values in Y then for any z ∈ Z there exists
an infinite run (y, z, θ) (compatible with σ) such that y ∈ K and limn θ(n)
exists.

Proof. Fix z in Z and γ ∈ Σω such that (z, γ) ∈ [T ]. Let V = V(z,γ)
denote the set of all positions u such that (π(u), λ(u)) ≺ (z, γ).

We first construct an infinite sequence (uk)k∈ω in V satisfying the fol-
lowing conditions for all k ∈ ω:

(1) uk is a very good position,
(2) uk−1 C uk,
(3) |λ(uk)| 6= |λ(uk−1)|.

Set u0 = ∅ ∈ V , which obviously satisfies (1). Assume that v = uk−1 is a
given very good position in V ; we shall define w = uk ∈ V satisfying (1)–(3).

Set m = |v| and p = |λ(v)|. For all n ≥ m let vn denote the unique
trivial extension of length n of v such that π(vn) = z|n, which is in V (in
particular vm = v), and set qn = |k(σ(vn))|.

Say that an extension v′ of v is critical if |k(σ(v′))| < |λ(v)|. We distin-
guish the following two alternatives (i) and (ii):

(i) Any trivial extension of v in V is noncritical. Since by the definition
of k we have qj 6= qj−1 for all j, we can find n ≥ N(γ|p+1) such that qn > p.
We fix such an n and define

w = vn
_(z(n), γ|p+1),

which is a legal position by rule (R′′2). Notice that by Lemma 5.9 both vn
and w are minimal, hence vn C w.

(ii) There exists a trivial extension of v in V which is critical. Let n be
the least j ≥ m such that qj < p and set q = qn. Then vn

_(z(n), γ|q) is a
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legal position by rule (R′′2); then we define

w = µ(vn_(z(n), γ|q)).
Notice that again by Lemma 5.9, vn is minimal; moreover w is also minimal
and vn C w. By Example 5.13(b) the sequence v = (vm, vm+1, . . . , vn−1, vn)
is a good chain; since vn C w with |w| = |vn|+ 1, also w = (vm, vm+1, . . . ,
vn−1, vn, w) is a good chain; since v is very good, for all k ∈ [m,n] we have

N(λ(w|k)) = N(γ|p) ≤ |v| ≤ k.
Moreover in case (i) by the choice of the integer n we have

N(λ(w)) = N(γ|p+1) ≤ n ≤ |w|,
and in case (ii) by property (N2) of the mapping N (see Lemma 5.10) we
have

N(λ(w)) = N(γ|q) ≤ N(γ|p) ≤ |v| ≤ |w|.
Hence in both cases w is a very good chain, and since v = vm, the first
element of the sequence w, is a very good position, w is also very good.
Moreover since v ≺ vn C w, by Lemma 5.11(b) we have v C w; and clearly
|λ(w)| 6= |λ(v)|. This finishes the construction of the sequence (uk).

It now follows from Lemma 5.11(d) that for all j < k if n = |uj | then
λ(uj) ≥ λ(uk|n), hence by Remarks 2.4(b), (c), limk λ(uk) = θ ∈ Σω exists
and (y, z, θ) is an infinite run in the game compatible with σ, and it follows
from condition (1) that y ∈ [S] = K.

On the other hand Lemma 5.11(c) shows that if j < k and n < |uj | < |uk|
then `n(uj) = `n(uk), hence |θ(n)| = limk `n(uk) = `n(uk). In particular for
nk = |uk| − 1 we have |θ(nk)| = |λ(uk)| and condition (3) yields that the
sequence (|θ(n)|)n is not stationary. Finally since by the hypothesis of the
lemma, σ takes its values in Y , we have y ∈ Y and it follows from Lemma
5.7 that limn θ(n) exists in (ω1)ω.

Proof of Theorem 5.2. The argument is totally similar to 4.1, and we
leave the details to the reader. Notice only that by Lemma 5.8 we can
choose σ, the supposed winning strategy for Player I, in L.

6. Cofinal embedding of Π1
1-sets in K(Q). Throughout this section

we denote by Q the countable dense-in-itself subset of 2ω defined by

Q = {α ∈ 2ω : ∃m ∀n > m, α(n) = 0}.
We denote by 0 the null sequence (0(p) = 0 for all p), and for all n ∈ ω by
en the characteristic function of {n} (en(p) = 1⇔ p = n); obviously 0 and
all the en’s are elements of Q, and 0 = limn en.

It is a well known and basic fact that the Π1
1 set K(Q) is Π1

1-complete,
in particular non-Borel. Thus for any Π1

1 set W ⊂ 2ω there exists a con-
tinuous mapping g : 2ω → K(2ω) which reduces W to K(Q), that is,
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W = g−1(K(Q)). One can even assume that g is a homeomorphic embed-
ding. In fact if g : 2ω → K(2ω) is any continuous reduction of W to K(Q)
and if we define h from 2ω into K({0, 1} × 2ω) ≈ K(2ω) by

h(α) = ({1} × g(α)) ∪ {0} ∪ {en+1 : α(n) = 1}
then one easily checks that h is a homeomorphic embedding which also
reduces W to K(Q). In particular:

6.1. Lemma. Any Borel space is homeomorphic to a relatively closed
subset of K(Q).

But for our purpose we need more: we would like the set A = h(W ) to
be cofinal in K(Q). As mentioned in the introduction, this is impossible if W
is Borel, since K(Q) is not analytic. But even if W is non-Borel one cannot
in general ensure the cofinality condition on A. However we shall prove the
following substitute:

6.2. Theorem. For any Π1
1 subset W of 2ω there exists a homeomor-

phism h : G → G from a Gδ subset G of 2ω × ωω onto a Gδ subset G of
K(2ω) satisfying :

(1) W × ωω ⊂ G ⊂ 2ω × ωω,
(2) W × ωω = h−1(K(Q)),
(3) if W is non-Borel then h(W × ωω) is cofinal in K(Q).

We start by some general lemmas, some of which might be well known;
we give the proofs for completeness.

6.3. Lemma. Let E be a perfect subset of 2ω, D a countable dense subset
of E and a ∈ D. Then there exists a homeomorphism ϕ from E onto 2ω

such that ϕ(D) = Q and ϕ(a) = 0.

Proof. Let (an) be an enumeration of D with a0 = a. We construct
inductively, for every s ∈ 2<ω, a nonempty clopen subset Es of E and a
point xs ∈ Es ∩D such that:

(i) E∅ = E,
(ii) Es = Es_0 ∪Es_1,

(iii) Es_0 ∩ Es_1 = ∅,
(iv) ∀x, y ∈ Es ∀n < |s|, x(n) = y(n),
(v) x∅ = a,

(vi) xs_0 = xs,
(vii) xs_1 = an for n = min{m : am ∈ Es_1}.
If Es is chosen for |s| = k − 1, then it is perfect; hence it is pos-

sible to partition it into two clopen nonempty subsets E ′s and E′′s such
that the kth coordinate is constant on each of them. Since xs ∈ Es we
can, up to interchanging E′s and E′′s , assume that xs ∈ E′s. We then put
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Es_0 = E′s, Es_1 = E′′s , xs_0 = xs and xs_1 = am for the least m such
that am ∈ E′′s .

Then for every x ∈ E there exists a unique α = ϕ(x) ∈ 2ω such that

∀s ∈ 2<ω, x ∈ Es ⇔ s ≺ α.
It follows from condition (vi) that ϕ(xs) = s_0 for every s ∈ 2<ω. The
function ϕ is continuous since the Es’s are clopen, and bijective since (ii)
and (iii) hold. Thus ϕ is a homeomorphism because E is compact. Moreover
ϕ(xs) = s_0, hence ϕ(D) ⊃ Q.

Finally, let d denote the standard metric on 2ω: d(α, β) = sup{2−n :
α(n) 6= β(n)}. If ϕ(an) 6∈ Q and 2−k < minj<n d(an, aj), then there exists
s ∈ 2<ω such that |s| ≥ k and s_1 ≺ ϕ(an). Then by condition (iv) none of
the aj ’s for j < n belongs to Es_1. But since an ∈ Es_1, we have xs_1 = an
and ϕ(an) = s_1_0 ∈ Q. This contradiction completes the proof.

6.4. Lemma. Let S and T be two compact subsets of Q. If f is a
homeomorphism from S onto T , then there exists a homeomorphism f̃ :
2ω → 2ω extending f such that f̃(Q) = Q.

Proof. Let d denote as before the standard metric on 2ω. If S and T
are finite then there exists a finite partition of 2ω into clopen sets each
containing exactly one point of S (resp. T ); and it follows from the previous
lemma that if U and V are clopen neighborhoods of a ∈ S and b ∈ T
there exists a homeomorphism fU from U to V such that fU (a) = b and
fU (U ∩Q) = V ∩Q.

If S and T are infinite, denote by S′ and T ′ their Cantor derivatives. Let
(an) be an enumeration of the set S \S′ of isolated points of S. Since f is a
homeomorphism and d(an, S′)→ 0, we have T ′=f(S′) and d(f(an), T ′)→0.
For n ∈ ω define

Bn = {x ∈ 2ω \ S′ : inf
p∈ω

d(x, ap) = d(x, an) < inf
j<n

d(x, aj)}.

It is easy to see that the Bn’s are clopen in 2ω and pairwise disjoint, an ∈ Bn,
and

⋃
nBn = 2ω\S′. Moreover diam(Bn)→ 0: if not there would exist δ > 0,

an increasing sequence (ni) of integers and a sequence (xi) in 2ω such that
xi ∈ Bni and d(xi, ani) ≥ δ. Without loss of generality, one could assume
that (xi) converges to some x ∈ 2ω. If x 6∈ S′, there would be some m such
that x ∈ Bm, and we would have xi ∈ Bm, hence ni = m, for i large enough.
Thus x ∈ S′, and there is some p such that d(x, ap) < δ/2; hence for large
i, d(xi, ap) < δ/2 and ni > p. This would imply that

δ ≤ d(xi, ani) < inf
j<ni

d(xi, aj) ≤ d(xi, ap) < δ/2,

a contradiction. Since Bn ∩Q is countable and dense in the perfect set Bn,
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there exists by Lemma 6.3 a homeomorphism ϕn : Bn → 2ω such that
ϕn(Bn ∩Q) = Q and ϕn(an) = 0.

Similarly, the sets

Cn = {x ∈ 2ω \ T ′ : inf
p∈ω

d(x, f(ap)) = d(x, f(an)) < inf
j<n

d(x, f(aj))}

are clopen in 2ω, pairwise disjoint, cover 2ω \ T ′ and diam(Cn) → 0. Thus
there exists a homeomorphism ψn : Cn → 2ω such that ψn(Cn ∩ Q) = Q
and ψn(f(an)) = 0. Then fn = ψ−1

n ◦ϕn is a homeomorphism from Bn onto
Cn such that fn(Bn ∩Q) = Cn ∩Q and fn(an) = f(an).

Then if we define f̃ by

f̃(y) =
{
f(y) if y ∈ S′,
fn(y) if y ∈ Bn,

it is not hard to check that f̃ is a homeomorphism from 2ω to itself extending
f , and f̃(Q) = Q.

6.5. Lemma. Let W be a coanalytic subset of 2ω. Then there exists a
continuous function ϕ : 2ω → K(2ω) such that

w ∈W ⇔ ϕ(w) ⊂ Q ⇔ ϕ(w) is countable.

Proof. Let T be the set of trees on ω, endowed with the topology induced
by 2(ω<ω). It is well known that the set WF = {T ∈ T : T is well founded}
is Π1

1-complete in T . Thus there exists a continuous mapping w 7→ Tw from
2ω to T such that w ∈W ⇔ Tw ∈ WF .

For any s = (n0, n1, . . . , nk) ∈ ω<ω consider the point qs ∈ Q with all
coordinates zero except those of indices n0, n0 +n1 + 1, . . . , n0 +n1 + . . .+
nk + k. Then we put

ϕ0(w) = {qs : s ∈ Tw}.
If w ∈ W , then ϕ0(w) ⊂ Q. Indeed, if β ∈ ϕ0(w) \ Q, there is a sequence
(si) in Tw such that qsi → β and there is an infinite sequence α = (nk) such
that the nonzero coordinates of β are those of indices n0, n0 + n1 + 1, . . . ,
n0 + n1 + . . . + nk + k, . . . For each integer k we have α|k ≺ si for i large
enough, hence α|k ∈ Tw; this means that α ∈ [T ], so T 6∈ WF and this is a
contradiction with w ∈W .

Conversely, if w 6∈ W , then Tw 6∈ WF and there exists α ∈ [T ]. If
q(k) = qα|k, then q(k) ∈ ϕ0(w) and the sequence (q(k)) converges to some
point β ∈ 2ω \Q. Then β ∈ ϕ0(w) \Q and ϕ0(w) 6⊂ Q.

For every open subset U of 2ω, if ϕ0(w) ∩ U 6= ∅, there exists s ∈ Tw
such that qs ∈ U . Then N = {y : s ∈ Ty} is a clopen neighborhood of w,
and ϕ0(y)∩U 6= ∅ for every y ∈ N ; hence {w ∈ 2ω : ϕ0(w)∩U 6= ∅} is open.

If F is a closed subset of 2ω, we now prove that Z = {w : ϕ0(w)∩F 6= ∅}
is closed. Assume (wi) is a sequence in Z which converges to some w. For
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each i we can choose βi ∈ F ∩ ϕ0(wi), and extracting a subsequence if
necessary, we assume that βi → β ∈ F . And there are si ∈ Twi such that
qsi → β.

Then there are two possibilities:

• β ∈ Q: in this case β = qs and s ≺ si for i large enough. This implies
that s ∈ Twi , thus s ∈ Tw = limi→∞ Twi ; that means β = qs ∈ ϕ0(w) ∩ F ,
hence w ∈ Z.
• β 6∈ Q: in this case there is an infinite sequence α = (nk) such that the

nonzero coordinates of β are those of indices n0, n0+n1+1, . . . , n0+n1+. . .+
nk + k, . . . For each integer k we have α|k ≺ si, hence α|k ∈ Twi for i large
enough, which means α|k ∈ Tw = limi→∞ Twi and β = limk→∞ qα|k ∈ F .
Thus w ∈ Z.

This completes the proof of the continuity of ϕ0 : 2ω → K(2ω).
We endow 2ω with the order ≤ defined by β ≤ β′ ⇔ ∀n, β(n) ≤ β′(n),

and define the mapping ϕ : 2ω → K(2ω) by

β ∈ ϕ(w) ⇔ ∃β′ ∈ ϕ0(w), β ≤ β′.
Clearly ϕ(w) is a compact subset of 2ω for every w ∈ 2ω. Moreover if w ∈W
and β ∈ ϕ(w) then there is β′ ∈ ϕ0(w) such that β ≤ β′. Since β′ ∈ Q,
there is some n such that β′(p) = 0 for p > n; and thus β(p) ≤ β′(p) = 0
for p > n. Hence β ∈ Q. This shows that ϕ(w) ⊂ Q for w ∈W .

On the other hand, if w 6∈ W , there exists β′ ∈ ϕ0(w) \ Q. Since β′ has
infinitely many nonzero coordinates, {β : β ≤ β ′} is uncountable, and so is
ϕ(w).

We conclude that

w ∈W ⇔ ϕ(w) ⊂ Q ⇔ ϕ(w) is countable.

We now show that ϕ is continuous. Let F be a closed subset of 2ω; we
want to prove that Z = {w : ϕ(w) ∩ F 6= ∅} is closed. But, if F ′ is the
compact set {β′ : ∃β ∈ F, β ≤ β′}, we have

Z = {w : ϕ0(w) ∩ F ′ 6= ∅},
which is closed since ϕ0 is continuous.

Similarly, if U is an open subset of 2ω, it is easily checked that

U ′ = {β′ : ∃β ∈ U, β ≤ β′} =
⋃

β∈U∩Q
{β′ : β ≤ β′}

is open since {β′ : β ≤ β′} is open for β ∈ Q. Hence we deduce as above
that {w : ϕ(w) ∩ U 6= ∅} = {w : ϕ0(w) ∩ U ′ 6= ∅} is open.

6.6. Lemma. There exists a homeomorphic embedding Φ : K(Q)×2ω →
K(Q) such that S ⊂ Φ(S, ε) for all ε ∈ 2ω and all S ∈ K(Q).
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Proof. This is exactly the same mapping as the one constructed in [3],
Fact 6.3.1, although the statements are not the same. We give the simple
argument for completeness.

Let (Un) be an increasing sequence of clopen subsets of Q which covers
Q (one can assume U0 = ∅). For all n, choose in Vn = Un+1 \Un a point an,
and a sequence (an,p)p converging to an.

For n ∈ ω and β ∈ 2ω define the compact set

Kn(β) = {an} ∪ {an,p : β(p) = 1}.
It is clear that the function Kn is continuous from 2ω into K(Q) and one-
to-one; so it is a homeomorphism onto its range. Now define

Φ(S, β) = S ∪Kn(β) if S ⊂ Un and S ∩ Vn−1 6= ∅.
Let Sn = {S : S ⊂ Un and S ∩ Vn−1 6= ∅}. Since (Sn)n is a partition
of K(Q) into clopen subsets, we see that Φ is continuous, one-to-one and
satisfies Φ(S, β) ⊃ S.

Furthermore, if S′ = Φ(S, β) and n = min{k : S′ ⊂ Uk+1}, we have
S′ ∈ Sn+1, S = S′ ∩Un and Kn(β) = S′ ∩ Vn; and this shows that n, S and
β depend continuously on S′, that is, Φ−1 is continuous on its domain.

Proof of Theorem 6.2. Let C denote the space of all continuous functions
from 2ω into itself equipped with the metric of uniform convergence, and let
H ′ be the group of homeomorphisms of 2ω preserving Q. By means of the
mapping f 7→ (f, f−1) we identify H ′ with the set

H = {(f, g) ∈ C × C : f ◦ g = g ◦ f = Id and f(Q) = g(Q) = Q}.
One easily checks that H is a Π0

3 subset of the Polish space C ×C. Moreover
H is a topological group acting on K(Q) and it follows from Lemma 6.4
that H is uncountable since so is the set of images under H of any infinite
compact subset of Q. Thus the uncountable topological group H has only
condensation points, and by a classical result of Sierpiński [12], it is a one-
to-one continuous image of ωω.

Fix θ : ωω → H and % : 2ω × 2ω → 2ω with θ a continuous bijection
and % a homeomorphic embedding. For any (w,α) ∈ W × ωω with θ(α) =
(f, g) ∈ H set

h(w,α) = Φ(g(ϕ(w)), %(w,α))

where Φ is as in Lemma 6.6 and ϕ as in Lemma 6.5.
Then h clearly defines a one-to-one and continuous mapping fromW×ωω

into K(Q). Moreover if h(w,α) = S′ then (g(ϕ(w)), %(w,α)) = (S, β) =
Φ−1(S′) and (w,α) = %−1(β), which shows that h−1 is continuous on its
domain.
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Since h is a homeomorphism from W ×ωω onto its range, it extends to a
homeomorphism (which we also denote by h) from a Gδ subset G of 2ω×ωω
onto some Gδ subset G of K(2ω).

From the definition of h we have immediately h(W × ωω) ⊂ K(Q). On
the other hand notice that for any (w,α) ∈W × ωω with θ(α) = (f, g) ∈ H
Lemma 6.6 yields h(w,α) ⊃ g(ϕ(w)), hence by the continuity of h this also
holds for any (w,α) ∈ G. Thus for any (w,α) ∈ G with θ(α) = (f, g) ∈ H,
if w 6∈ W then ϕ(w) 6⊂ Q by Lemma 6.5, and since Q is invariant under f
we have g(ϕ(w)) 6⊂ Q, hence by the previous observations also h(w,α) 6⊂ Q.
Thus we also have the converse inclusion h(G \W × ωω) ⊂ K(2ω) \ K(Q),
and this proves (2).

To prove (3) notice first that since the Cantor rank γ is a Π1
1-norm on

the set Kω(2ω) of countable compact subsets of 2ω, and since ϕ reduces W
to Kω(2ω) by Lemma 6.5, γ ◦ ϕ is also a Π1

1-norm on W .
Thus if W is not Borel, this Π1

1-norm is not bounded on W :

∀ξ < ω1, ∃w ∈W, γ ◦ ϕ(w) > ξ.

In particular for any S ∈ K(Q) there exists w ∈ W such that γ(ϕ(w)) >
γ(S). Hence S is homeomorphic to a compact subset T of ϕ(w), and by
Lemma 6.4, there exists a homeomorphism f from 2ω to itself such that
f(Q) = Q and T = f(S). If α is such that θ(α) = (f, f−1) = (f, g) ∈ H
then

S = g(T ) ⊂ g(ϕ(w)) ⊂ h(w,α) = S′,

which proves (3).

7. Applications. We first state a more complete version of Theorem
A which follows from the results proved in [3]:

7.1. Theorem. The following are equivalent :

(i) For all α ∈ ωω the set ωω ∩ L(α) is ≤?-bounded in ωω.
(ii) Any compact covering mapping from a Π1

1 space onto a Π0
2 space is

inductively perfect.
(iii) Any compact covering mapping from a Π1

1 space onto a Pσ space is
inductively perfect.

(iv) In any Π0
2 space X, any Π1

1 cofinal subset of K(X) is continuously
cofinal.

(v) Any Π1
1 cofinal subset of K(ωω) admits a Borel domination function.

We now prove our first main result:

7.2. Theorem. The following are equivalent :

(i) For all α ∈ ωω the set ωω ∩ L(α) is countable.
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(ii) Any compact covering mapping from a Π0
3 space (onto any space) is

inductively perfect.
(iii) Any compact covering mapping from a Π0

3 space onto a Π0
3 space is

inductively perfect.
(iv) Any compact covering mapping from a Π1

1 space onto a Π0
3 space is

inductively perfect.
(v) Any compact covering mapping from a Π1

1 space onto a P̌σ space is
inductively perfect.

Proof. (ii)⇒(iii) and (iv)⇒(v) are obvious.
(i)⇒(ii). Let f : X → Y be a compact covering mapping defined on a Π0

3
space X. By standard arguments (see Theorem 3.1 of [2]) one can reduce the
general case to the case where X ⊂ 2ω × 2ω and Y = π(X) ⊂ 2ω, where π
denotes the canonical projection mapping from 2ω×2ω onto the first factor,
and f = πX is the restriction of π to X.

We recall that by [2], Theorem 8.8, under assumption (i), the image
under a compact covering mapping of a Borel space is also Borel and of the
same additive or multiplicative class; hence Y is also Π0

3. Set

C = K(2ω × 2ω), Z = K(X) ⊂ C, R = {(y,H) ∈ 2ω × C : y ∈ π(H)}.
Then clearly R is a closed subset of 2ω ×C, and Z is Π1

1. Identifying then C
with 2ω one can easily check that the hypotheses of Theorem 5.1 are satisfied.
Hence there is a continuous mapping F : 2ω → C such that F (y) ⊂ X and
y ∈ π(F (y)) for all y ∈ Y .

Then the set H = {(y, z) ∈ 2ω × 2ω : (y, z) ∈ F (y)} is compact and
π(H) ⊃ Y ; since for any y ∈ Y we have H ∩ ({y}× 2ω) ⊂ X, the restriction
of π to X ′ = H ∩ (Y × 2ω) ⊂ X is a perfect mapping from X ′ onto Y .

(iii)⇒(iv). This implication follows from the proof of Theorem 6.5 in [3]
where given any mapping f : X → Y defined on a Π1

1 space X we construct
a mapping f̃ : X̃ → Ỹ with the following properties:

• X̃ is a Boolean combination of Π0
2 sets and sets homeomorphic to Y .

• Ỹ is the union of Y and some discrete countable set.
• If f is compact covering then f̃ is compact covering.
• If f̃ is inductively perfect then f is inductively perfect.

In particular if Y is Π0
3 then it is clear that both spaces X̃ and Ỹ are also

Π0
3, and one can easily derive (iv) from (iii).

(v)⇒(i). Fix an arbitrary Π1
1 subset W in 2ω. Let h : G → G be the

homeomorphism given by Theorem 6.2 and set Z∗ = h(W × ωω) ⊂ K(Q).
Fix in K(Q) a relatively closed subset Y ∗ which is P̌σ but not Pσ; this is
possible by Lemma 6.1. Then the set X∗ = {(S, T ) ∈ Y ∗ × Z∗ : S ⊂ T}
is also Π1

1. For simplicity we work in 2ω rather than in K(2ω). For this fix
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some homeomorphim ψ : K(2ω)→ 2ω and set

Y = ψ(Y ∗) ⊂ 2ω, Z = ψ(Z∗) ⊂ 2ω, X = (ψ × ψ)(X∗) ⊂ Y × Z,
and let πX denote the canonical projection from X onto Y .

Fact 1. If W is non-Borel then πX is compact covering.

Proof. Since W is non-Borel, Z∗ is a cofinal subset of K(Q) by Theorem
6.2. Let K be a compact subset of Y . Then H = ψ−1(K) is a compact subset
of Y ∗ ⊂ K(Q), hence S =

⋃H is a compact subset of Q, and we can find
T ∈ Z∗ such that S ⊂ T . Set z = ψ(T ) ∈ Z; if y ∈ K then ψ−1(y) ∈ H,
hence ψ−1(y) ⊂ S ⊂ T , and so (y, z) ∈ X. This shows that K × {z} ⊂ X
and obviously π(K × {z}) = K.

Recall that a set is said to be thin if it contains no perfect nonempty
subset.

Fact 2. If W is thin then πX is not inductively perfect.

Proof. Suppose πX is inductively perfect and let H be a closed subset of
2ω × 2ω such that π(X ∩H) = Y and H ∩ ({y} × 2ω) ⊂ X for every y ∈ Y .
Replacing H by H ∩X if necessary, we can assume that H ∩X is dense in
H. Since ψ−1(y) ⊂ ψ−1(z) for all (y, z) ∈ X, this holds for all (y, z) ∈ H.

Recall that, for two topological spaces Y and X, a mapping Ψ : Y →
K(X) is said to be upper semicontinuous if for any open subset O of X, the
set

Ψ−(O) := {y ∈ Y : Ψ(y) ⊂ O}
is open. In particular, if ψ is a function Y → X, the mapping Ψ : y 7→ {ψ(y)}
is upper semicontinuous if and only if ψ is continuous.

The mapping y 7→ H(y) = {z : (y, z) ∈ H} is then upper semicontinuous
from 2ω to K(2ω); furthermore, if y ∈ Y then H(y) ⊂ ψ(Z∗) ⊂ ψ(G). Since
the set Γ := ψ(G) is Gδ, the set

B = {β ∈ Y : H(β) ⊂ Γ}
is also Gδ and contains Y .

Consider the set-valued mapping M : β 7→ h−1 ◦ ψ−1(H(β)) defined
on B. Clearly M is u.s.c. with nonempty compact values in G; moreover
M(y) ⊂W×ωω for all y ∈ Y sinceH(y) ⊂ ψ(Z∗). It follows that {(w,α, y) ∈
2ω×ωω×Y : (w,α) ∈M(y)} is a closed subset of 2ω×ωω×Y contained in
W ×ωω×Y . Hence its projection D on the first factor is an analytic subset
of W ; and since W is thin, D is countable. Fix some enumeration (wk) of
D, and set, for all k,

Bk = {β ∈ B : M(β) ∩ ({wk} × 2ω) 6= ∅}.
Since M is u.s.c., each Bk is closed in B. If y ∈ Y then M(y) is nonempty
and contained in D; hence Y ⊂ ⋃k Bk.
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Conversely, if β ∈ B \ Y then since Y ∗ is a closed subset of K(Q), we
have ψ−1(β) ∈ Y ∗ \Y ∗ ⊂ K(2ω) \K(Q). For each z such that (β, z) ∈ H we
have ψ−1(z) ⊃ ψ−1(β), thus ψ−1(z) 6⊂ Q, and since W × ωω = h−1(K(Q)),
it follows that (w,α) = h−1 ◦ψ−1(z) 6∈W ×ωω. But (w,α) ∈ 2ω×ωω, hence
w 6∈W and w 6∈ D. We conclude that β 6∈ ⋃Bk if β ∈ B \ Y .

This proves that Y =
⋃
k Bk is Fσ in the Polish space B, hence Y is Pσ;

and this is impossible since Y is homeomorphic to Y ∗ which is not Pσ.

Thus if W is any Π1
1 non-Borel set, then by Fact 1, πX is a compact

covering mapping from the Π1
1 space X onto the P̌σ space Y , hence by (v),

πX is inductively perfect, and from Fact 2 we derive that W is not thin. By
Theorem 1.2 this proves (i), and finishes the proof of the theorem.

7.3. Theorem. The following are equivalent :

(i) Det(Σ1
1).

(ii) Any compact covering mapping from a Π1
1 space onto a Π1

1 space is
inductively perfect.

(iii) In any Π1
1 space X, any Π1

1 cofinal subset of K(X) is continuously
cofinal.

(iv) Any Π1
1 cofinal subset of K(Q) admits a Borel domination function.

Proof. The implications (i)⇒(iii)⇒(ii) follow from the remarks in Sec-
tion 7 of [3].

(ii)⇒(iv). If A is a Π1
1 cofinal subset of K(Q) consider the set

X∗ = {(S, T ) ∈ K(Q)×A : S ⊂ T}.
Then as in the proof of Fact 1 in Theorem 7.2 one easily checks that the
canonical projection to the first factor from X onto K(Q) is compact cover-
ing, hence by assumption (ii) its restriction to some relatively closed subset
P of X is perfect and onto. Then by classical results P admits a first Baire
class section, that is, a function f : K(Q)→ A of the first Baire class whose
graph lies in P , thus satisfying S ⊂ f(S) for all S ∈ K(Q), which shows that
f is a domination function for A.

(iv)⇒(i). Asuming (iv) we shall prove that any Π1
1 non-Borel set is Π1

1-
complete by Borel reductions, which will prove (i) by Harrington’s result
quoted in Section 1 (see Theorem 1.3).

So fix a Π1
1 non-Borel subset W of 2ω and let h be the homeomorphism

given by Theorem 6.2. Since W is not Borel, the set A = h(W × ωω) is
a Π1

1 cofinal subset of K(Q). Hence by (iv) there exists a Borel function
f : K(Q)→ A such that S ⊂ f(S) for all S ∈ K(Q). Then h−1 ◦ f defines a
Borel mapping from K(Q) into W × ωω which extends to a Borel mapping
g : B → 2ω × ωω defined on a Borel subset B containing K(Q).
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Let g0 : B → 2ω denote the first coordinate function of g. Since S ⊂
f(S) = h ◦ g(S) for all S ∈ K(Q), the set B′ = {S ∈ B : S ⊂ h ◦ g(S)} is
Borel and contains K(Q); and for all S ∈ B′:
• if S ⊂ Q, then g(S) ∈W × ωω and g0(S) ∈W ,
• if S 6⊂ Q, then h◦g(S) ⊃ S and h◦g(S) 6∈ K(Q), hence g(S) 6∈W ×ωω

and g0(S) 6∈W .

This proves that K(Q) = g−1
0 (W ), hence g0 is a Borel reduction of K(Q) to

W , and since K(Q) is Π1
1 complete, this proves that W is Π1

1-complete by
Borel reductions.

We finish with some variations of the previous results. In the next two
results π denotes the canonical projection from 2ω × 2ω onto the first fac-
tor; we also identify any mapping f : A → B with its graph and write
f ⊂ A×B.

7.4. Theorem. Assume that “∀α ∈ ωω, ωL(α)
1 < ω1”. Let X ⊂ 2ω × 2ω

be a Π1
1 set such that Y = π(X) is Π0

3. If for any compact set K ⊂ Y there
exists a continuous mapping fK : K → 2ω such that fK ⊂ X then there
exists a continuous mapping f : Y → 2ω such that f ⊂ X.

Proof. The argument is similar to the proof of (i)⇒(ii) in Theorem 7.2
and we sketch it briefly: apply Theorem 5.1 with R as in the proof of (i)⇒(ii)
in Theorem 7.2 above and

Z = {H ∈ K(2ω × 2ω) : H ⊂ X and H is a graph}.
Notice that the condition “H is a graph” is Borel (in fact Π0

2), hence Z is
Π1

1; and one easily checks that hypothesis (b) of Theorem 5.1 holds. Then
the conclusion of this theorem provides a continuous mapping F : Y → Z
with graph contained in R. Then the set H0 := {(y, z) : (y, z) ∈ F (y)} is
the graph of some function f̃ : 2ω → 2ω, which is continuous since H0 is
compact. Then f = f̃ |Y : Y → 2ω is continuous and f ⊂ X.

By similar arguments one can prove:

7.5. Theorem. Assume “Det(Σ1
1)”. Let X ⊂ 2ω × 2ω be a Π1

1 set
such that Y = π(X) is Π1

1. If for any compact set K ⊂ Y there exists a
continuous mapping fK : K → 2ω such that fK ⊂ X then there exists a
continuous mapping f : Y → 2ω such that f ⊂ X.

7.6. Extensions and remarks. We now give some variations and exten-
sions of the previous results. The proofs that we omit use essentially either
the same arguments or some complementary ideas from [2] and [3].

1) All the results clearly have effective versions. Notice however that
in Theorem 5.1 the function f of the conclusion is only continuous and not
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recursive. Similarly the continuous or Borel domination functions considered
in Theorem 7.3 are not effective.

2) Examining the arguments of Theorem 7.2 one easily sees that the
converse of Theorem 7.4 holds, that is, one can derive the assumption
“∀α ∈ ωω, ωL(α)

1 < ω1” from the rest of the statement. This is also true for
Theorem 7.5.

3) One can add to the list of equivalent propositions in Theorem 7.2 the
following analog of statement (iv) of Theorem 7.1 and of statement (iii) of
Theorem 7.3:

• In any Π1
1 space X (or in X = Q), for any Π1

1 cofinal subset A of
K(X) and any Π0

3 subset B of K(X) there exists a continuous mapping
f : B → A satisfying f(S) ⊃ S for all S ∈ B.

But one cannot, as in the other theorems, replace here “continuous” by
“Borel”. Also one cannot replace the cofinality hypothesis on A by the more
natural but weaker hypothesis “∀S ∈ B, ∃T ∈ A, S ⊂ T”.

4) For simplicity we focused on Π1
1 cofinal subsets of K(X). In fact all the

previous results are still valid for Σ1
2 cofinal subsets. This can be seen either

by slight modifications in the arguments, or by using the homeomorphic
embedding Φ : K(X)×2ω → K(X) constructed in Lemma 6.6, which enables
one to reduce the study of Σ1

2 cofinal subsets to the study of Π1
1 cofinal

subsets (see the proof of Theorem 5.2 in [3]).
But in Theorems 7.4 and 7.5, one cannot replace the hypothesis “X Π1

1”
by “X Σ1

2”.

5) Most of the classes considered in this work are Wadge classes. We
recall that Y is a Wadge class if there exists Y0 in Y such that any space Y
in Y is of the form Y = ϕ−1(Y0) for some continuous mapping ϕ : 2ω → 2ω;
but then the mapping ψ : Y → Y0, obtained by restricting the domain and
the range of ϕ, is clearly perfect. For example one can take

Y0 = ωω, Q× ωω, (2ω × 2ω) \ (Q× ωω), Qω, K(Q)

if
Y = Π0

2, Pσ, P̌σ, Π0
3, Π1

1.

If we now consider any mapping f : X → Y it is straightforward to check
the following properties:

• If f is compact covering then ψ ◦ f is compact covering.
• If ψ ◦ f is inductively perfect then f is inductively perfect.

It then follows that for a given space X:

• If any compact covering mapping from X onto Y0 is inductively perfect
then the same holds for any mapping from X onto any space in Y.
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Applying this observation to the particular classes considered in Theorems
7.1–7.3, one obtains new equivalent statements in these theorems.

6) It is interesting to compare the following statements:

(a) Any compact covering mapping f : X → Y with X Borel and Y Σ0
2

is inductively perfect.
(A) Any compact covering mapping f : X → Y with X Borel and Y Π0

2
is inductively perfect.

(b) Any compact covering mapping f : X → Y with X Π0
2 is inductively

perfect.
(B) Any compact covering mapping f : X → Y with X Π0

3 is inductively
perfect.

As mentioned in the introduction, (a) and (b) are theorems in ZFC;
whereas by Theorem 7.1, (A) is equivalent to “∀α ∈ ωω, ωω ∩ L is ≤∗-
bounded”; and by Theorem 7.2, (B) is equivalent to “∀α ∈ ωω, ωω ∩ L is
countable”.

7) The results of this paper give strong evidence for the following

Conjecture. Assume that “∀α ∈ ωω, ω
L(α)
1 < ω1”. Then any com-

pact covering mapping f : X → Y between two Borel spaces X and Y is
inductively perfect.

Proving this would solve Problem 1 completely, since by statements (ii)
and (iii) of Theorem 7.2 the assumption “∀α ∈ ωω, ωL(α)

1 < ω1” is necessary
even if one restricts the conjecture to mappings between Π0

3 spaces.
Notice that, as in the proof of Theorem 7.2, one obtains an equivalent

form of this conjecture if the hypothesis “X and Y are Borel” is replaced
by one of the following alternative hypotheses:

• “X is Π1
1 and Y is Borel”,

• “X is Borel” (with no assumption on Y ).

Other equivalent forms can be obtained in terms of Π1
1 cofinal subsets

of K(X) as in Remark 3 above, where B would now be any Borel (or even
analytic) subset of K(X).

8) Finally we recall that inductively perfect mappings preserve Borel
(additive or multiplicative) classes (see [2]); and as mentioned in the proof
of Theorem 7.2 this property extends to compact covering mappings if one
assumes that “∀α ∈ ωω, ωL(α)

1 < ω1”.
But the following problem, raised by Ostrovskĭı [8], is still open in ZFC:

Problem. Is the image of a Borel space under a compact covering map-
ping also Borel?
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