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by

Krzysztof Ciesielski (Morgantown, WV),
Kandasamy Muthuvel (Oshkosh, WI) and

Andrzej Nowik (Sopot and Gdańsk)

Abstract. A function f : R → {0, 1} is weakly symmetric (resp. weakly symmetri-
cally continuous) at x ∈ R provided there is a sequence hn → 0 such that f(x + hn) =
f(x − hn) = f(x) (resp. f(x + hn) = f(x − hn)) for every n. We characterize the sets
S(f) of all points at which f fails to be weakly symmetrically continuous and show that f
must be weakly symmetric at some x ∈ R \ S(f). In particular, there is no f : R→ {0, 1}
which is nowhere weakly symmetric.

It is also shown that if at each point x we ignore some countable set from which we
can choose the sequence hn, then there exists a function f : R→ {0, 1} which is nowhere
weakly symmetric in this weaker sense if and only if the continuum hypothesis holds.

1. Introduction. The terminology of this note is standard and fol-
lows [5].

Recall that a function f : R→ R is symmetrically continuous provided

(1) lim
h→0

[f(x+ h)− f(x− h)] = 0

for every x ∈ R. A “total negation” of the condition (1) leads to the notion
of nowhere weakly symmetrically continuous function (1), that is,

(2) lim
n→∞

[f(x+ hn)− f(x− hn)] 6= 0

for every sequence hn ↘ 0 and all x ∈ R. It is easy to see that if the range
of f is discrete then (2) is equivalent to: “f(x + hn) 6= f(x − hn) for all
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(1) This terminology comes from a monograph by Thomson [12]. Ciesielski and Lar-
son [7] and most other papers on this subject call such a function uniformly antisymmetric.
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but finitely many n.” In particular, if f : R → N then f is not weakly
symmetrically continuous at x ∈ R provided f(x + h) 6= f(x − h) for all
h > 0 small enough, that is, when there exists an εx > 0 such that the
interval (0, εx) is disjoint from the set

Sx = {h > 0 : f(x− h) = f(x+ h)}.
In [7] Ciesielski and Larson constructed a nowhere weakly symmetrically

continuous function f : R → N for which each set Sx is finite. (See also [5,
Cor. 7.4.2].) They also show there that there is no nowhere weakly sym-
metrically continuous function with two-element range. The latter fact was
proved earlier by Kostyrko [10].

Nowhere weakly symmetrically continuous functions have been studied
by many authors. Komjáth and Shelah [9] investigated under what set the-
oretical assumptions the sizes of all sets Sx can be bounded by a fixed num-
ber. (See also [4].) In [2] Ciesielski proved that there is no nowhere weakly
symmetrically continuous function with three-element range and in [3] he
showed that the technique of [2] cannot be used to prove that there is no
nowhere weakly symmetrically continuous function with four-element range.
It is still an open question (see [7, Problem 1(a)], [6, Problem 2(a)], or [12])
whether there exists a nowhere weakly symmetrically continuous function
with finite range, though Ciesielski and Shelah [8] constructed a nowhere
weakly symmetrically continuous function with bounded countable range.

For f : R → R let S(f) denote the set of all points at which f is not
weakly symmetrically continuous, that is,

S(f) = {x ∈ R : f is not weakly symmetrically continuous at x}.
We say that a set A ⊂ R is locally symmetric provided for every x ∈ A there
exists an εx > 0 such that

x− h ∈ A ⇔ x+ h ∈ A for every h ∈ (0, εx).

Our first theorem characterizes the family of all sets S(f) with f :
R→ {0, 1}.

Theorem 1. (a) If f : R → {0, 1} then the set S(f) is countable and
locally symmetric.

(b) For every countable and locally symmetric subset A of R there exists
an f : R→ {0, 1} such that S(f) = A.

A notion dual to weakly symmetrically continuous function is that of a
symmetric function: a function f : R→ R is symmetric provided

(3) lim
h→0

[f(x+ h) + f(x− h)− 2f(x)] = 0

for every x ∈ R. The “total negation” of (3) parallel to that done for the case
of symmetrically continuous function leads to the notion of nowhere weakly
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symmetric function and was introduced by Ciesielski in [3] (2). We will be
interested in this notion only for functions f : R→ S when S ⊂ N contains
no arithmetic progression of length three. In this particular case it is more
convenient to adopt a simpler equivalent definition: a function f : R→ S is
nowhere weakly symmetric provided for every x ∈ R there exists an εx > 0
such that the interval (0, εx) is disjoint from the set

Tx = {h > 0 : f(x− h) = f(x) = f(x+ h)}.
The paper [3] contains also a construction of a nowhere weakly symmetric
function f : R → S ⊂ N for which Tx = ∅ for every x ∈ R. It also contains
the question whether there exists a nowhere weakly symmetric function with
two-element range. One of the goals of this paper is to answer this question
in the negative:

Theorem 2. There is no nowhere weakly symmetric function f :
R→ {0, 1}.

In the second part of the paper we will consider the variations of weak
symmetric continuity and weak symmetry associated with any ideal I on R
in the following way: for every x ∈ R we choose an exceptional set Ex ∈ I,
and for this x we consider only the sequences hn disjoint from Ex. Investi-
gation of these notions for the ideal of countable subsets of R leads to the
following theorem.

Theorem 3. The following conditions are equivalent.

(i) The Continuum Hypothesis.
(ii) There exists a function f : R→ {0, 1} such that |Sx| ≤ ω for every

x ∈ R.
(iii) There exists a function f : R → {0, 1} such that for every x ∈ R

there exists an εx > 0 such that |Sx ∩ (0, εx)| ≤ ω.
(iv) There exists a function f : R→ {0, 1} such that |Tx| ≤ ω for every

x ∈ R.
(v) There exists a function f : R → {0, 1} such that for every x ∈ R

there exists an εx > 0 such that |Tx ∩ (0, εx)| ≤ ω.

It should be pointed out here that the equivalences (i)⇔(ii)⇔(iii) are
known and were proved in [7]. (See also [5, Thm. 7.4.4].)

We also show (Theorems 9 and 10) that for the ideal of meager subsets
of R a similar theorem cannot be proved.

(2) Ciesielski [3] calls such functions anti-Schwartz , while current terminology follows
Thomson [12].
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2. Every function with two-element range is somewhere weakly
symmetric

Proof of Theorem 1(a). We first show that S(f) is countable. For
0 < n < ω let

Sn(f) = {x ∈ R : (0, 1/n) ∩ Sx = ∅}.
Then clearly

S(f) =
⋃

0<n<ω

Sn(f).

We will show that each Sn(f) is discrete, so countable.
Fix an n < ω, n > 0. We will show that if a, b ∈ Sn(f) are such that

0 < b− a < 1/n then the points a and b are isolated in Sn(f). This clearly
implies that Sn(f) is discrete.

So take a, b ∈ Sn(f) such that 0 < b− a < 1/n and consider the set

Z =
(
b− 1

n
, a+

1
n

)
\ {a, b}.

We will show that Z ∩ Sn(f) = ∅, so that a and b are isolated in Sn(f).
Thus, take any z ∈ Z. Since the diameter of {a, b, z} is less than 1/n we

have
f(2a− z) = 1− f(z) = f(2b− z).

But the mid point (a+ b) − z of 2a − z and 2b − z is at distance less than
1/n from {2a− z, 2b− z}. So (a+ b)− z 6∈ Sn(f).

This implies that the set Z = (a + b) − Z is disjoint from Sn(f), as
required.

It is also easy to see that if x ∈ S(f) and εx > 0 is such that (0, εx)∩Sx
= ∅ then

x− h ∈ S(f) ⇔ x+ h ∈ S(f) for every h ∈ (0, εx).

Thus, S(f) is locally symmetric.

Proof of Theorem 1(b). The proof presented here is an elaboration of
that for [9, Thm. 1], where it is proved that for any countable subset A of
R there exists an f : R→ {0, 1} with A ⊂ S(f).

Let {an : 0 < n < ω} be an enumeration of A and {dn : 0 < n < ω} be
an enumeration of G(A) \ A, where G(A) is the additive group generated
by A. Following [9] for every n < ω we define inductively a finite collection
In = {Iγ : γ ∈ Γn} of open intervals such that ∅ = Γ0 ⊆ Γ1 ⊆ . . . , each Iγ
is of the form (bγ − hγ , bγ + hγ), and the following properties hold for any
γ, γ′ ∈ Γn:

(1) If γ 6= γ′, then either Iγ ∩ Iγ′ = ∅ or one of the intervals Iγ and Iγ′

is a subset of the other.
(2) If Iγ′ ⊆ Iγ , then either Iγ′ ⊆ (bγ − hγ , bγ) or Iγ′ ⊆ (bγ , bγ + hγ).
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(3) {a1, . . . , an} ⊆ Bn ⊆ A, where Bn = {bγ : γ ∈ Γn}.
(4) bγ ± hγ 6∈ A.
(5) If Iγ′ ⊆ Iγ , then ϕγ [Iγ′ ] ∈ In, where ϕγ : Iγ → Iγ is the reflection

with respect to bγ , that is, ϕγ(x) = 2bγ − x.
(6) If x ∈ Iγ then x ∈ A if and only if ϕγ(x) ∈ A.
(7) If Iγ 6∈ In−1 then dn 6∈ Iγ .

Conditions (1)–(5) are present in the proof of [9, Thm. 1], while (6) and (7)
are specific to our construction.

The construction is pretty much a repetition of that in [9]. We start with
Γ0 = I0 = ∅. If In−1 is already constructed, we construct In as follows. If
an ∈ Bn−1 we put In = In−1. So assume that an 6∈ Bn−1 and notice
that the set B of all (well defined) numbers ϕγ1 ◦ . . . ◦ ϕγr(an) has at most
2|In−1| elements and that an ∈ B ⊂ A \Bn−1. Find an h > 0 small enough
that for every b ∈ B the interval (b − h, b + h) is disjoint from the set
{d1, . . . , dn}∪Bn∪{bγ±hγ : γ ∈ Γn−1} and that A∩(b−h, b+h) is symmetric
with respect to b. Moreover, decreasing h if necessary, we also require that
{b ± h : b ∈ B} is disjoint from A. We define In as In−1 ∪ {(b − h, b + h) :
b ∈ B}. It is easy to see that In is as desired.

In what follows we will write y = ϕγ1 ◦ . . .◦ϕγr (x) only when all γi’s are
from Γ =

⋃
n<ω Γn and the value of the composition is well defined. Note

also that if y = ϕγ1 ◦ϕγ2(x) and Iγ1 ( Iγ2 then we also have y = ϕγ2 ◦ϕγ′1(x),
where bγ′1 = ϕγ2(bγ1). From this and the fact that ϕγ ◦ ϕγ(z) = z for every
z we can conclude that

(∗) If y = ϕγ′1 ◦ . . . ◦ ϕγ′s(x) there exists an r ≤ s of the same parity as s
and γ1, . . . , γr ∈ Γ such that y = ϕγ1 ◦. . .◦ϕγr (x) and Iγ1 ) . . . ) Iγr .

Notice also the following two facts:

(A) If y = ϕγ1 ◦ . . . ◦ ϕγr (x) and r is odd then y 6= x.

Indeed, by (∗) we can assume that Iγ1 ) . . . ) Iγr . But this means that
x and y are on opposite sides of bγ1 , so they are not equal.

(B) For every x0 ∈ R \ A there exists a δ = δx > 0 such that for every
x ∈ (x0 − δ, x0 + δ) if y = ϕγ1 ◦ . . . ◦ ϕγr(x) and r is odd then
y 6= 2x0 − x.

To see this, first notice that

(4) y = ϕγ1 ◦ . . . ◦ ϕγr (x) = −x− 2
r∑

i=1

(−1)ibqi .

Now, if 2x0 − x = y = ϕγ1 ◦ . . . ◦ϕγr(x) then x0 = −∑r
i=1(−1)ibqi ∈ G(A).

In particular, if x0 6∈ G(A) then (B) holds for any δ > 0. Thus, we can
assume that x0 ∈ G(A) \A, that is, x0 = dn for some n < ω. Note also that



124 K. Ciesielski et al.

if x0 does not belong to any Iγ then y stays on the same side of x0 that x
does and, once again, any δ > 0 works. So we can assume that x0 belongs
to some Iγ which, by (7), must belong to In−1.

Let Iγ be the unique shortest interval such that x0 ∈ Iγ and let δ > 0
be such that (x0 − δ, x0 + δ) ⊂ (bγ − hγ , bγ + hγ) \ {bγ}. We will show that
this δ satisfies (B).

Assume, by way of contradiction, that there is an x ∈ (x0 − δ, x0 + δ)
such that 2x0 − x = y = ϕγ1 ◦ . . . ◦ ϕγr (x) and r is odd. By (∗) we can also
assume that Iγ1 ) . . . ) Iγr .

Since bq1 stays on one side of each Iqi , 1 < i ≤ r, the points x and ϕγ2 ◦
. . .◦ϕγr(x) are on the same side of bq1 . So x and 2x0−x = ϕγ1 ◦ . . .◦ϕγr(x)
are on opposite sides of bq1 . But x, 2x0− x ∈ (x0− δ, x0 + δ) ⊂ Iγ , implying
that bq1 ∈ (x0 − δ, x0 + δ) ⊂ Iγ . So, Iγ1 ( Iγ . However, x and 2x0 − x = y
also belong to Iγ1 , and so does x0, which is between x and 2x0 − x. This
gives x0 ∈ Iγ1 ( Iγ , contradicting the choice of Iγ . This completes the proof
of (B).

With (A) and (B) in hand, we can construct the desired function f .
For this, consider R as vertices of an infinite graph with numbers x and y
connected by an edge provided y = ϕγ(x) for some γ ∈ Γ . Also, for each
x ∈ R let Cx stand for all y ∈ R such that there exists a path from x to y,
that is, y = ϕγ1 ◦ . . . ◦ ϕγr (x) for some γ1, . . . , γr ∈ Γ .

Note that condition (A) says that our graph has no odd cycles, so we can
color it by two colors, 0 and 1, such that no connected vertices have the same
color. In fact, if we color each component Cx that way, then the resulting
coloring, a function f : R → {0, 1}, will have this property. It is easy to
see that for any such f we will have A ⊂ S(f). To see that we can find
such an f with A = S(f), first note that, by (4), if y ∈ Cx then y belongs
to the group generated by A ∪ {x}. Thus each component Cx is at most
countable. We color components Cx by transfinite induction. We enumerate
(R \ A) × ω as 〈〈xξ, nξ〉 : ξ < c〉. Next, at each stage ξ < c we choose and
color two new components Cξ and C ′ξ in the following way. First we choose
x ∈ (xξ, xξ + δxξ/2

nξ) such that neither x nor 2xξ − x is in the previously
chosen components. Then we choose components Cξ and C ′ξ containing x
and 2xξ − x, respectively, and color each in such a way that both x and
2xξ − x get the same color. Such a coloring can obviously be chosen if the
components Cξ and C ′ξ are not equal. However, if Cξ = C ′ξ then, by (B), x
and 2xξ − x must get the same color automatically.

It is easy to see that the coloring function f defined that way is as
desired.

The characterization given in Theorem 1 does not hold for functions with
a 3-element range. This follows from the fact that, by [3, Thm. 2], for every
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Hamel basis H ⊂ R there exists an f : R → {0, 1, 2} such that H ⊂ S(f).
Since a Hamel basis can be a Bernstein set (see e.g. [5, Cor. 7.3.7]) the set
S(f) for such an f needs to be neither meager nor of measure zero.

With Theorem 1 in hand we are ready to prove our second theorem.

Proof of Theorem 2. By way of contradiction assume that f is nowhere
weakly symmetric.

From Theorem 1 we know that |S(f)| ≤ ω. Translating f if necessary,
we can assume that 0 6∈ S(f). Let V be an uncountable linear subspace of R
over Q disjoint from S(f). We will obtain a contradiction with [7, Thm. 2.1]
by showing that the restriction function

f�V : V → {0, 1}
is nowhere weakly symmetrically continuous.

So, fix an x ∈ V . Since f is not weakly symmetric at x there exists an
ε > 0 such that (0, ε) ∩ Tx = ∅. We will show that this implies that we also
have (0, ε) ∩ Sx ∩ V = ∅. We assume that

f(x) = 0,

the argument for f(x) = 1 being essentially the same.
By way of contradiction assume that there is an h ∈ (0, ε)∩Sx∩V . Then

f(x− h) = f(x+ h) is not equal to f(x) = 0 since h 6∈ Tx. In particular,

f(x− h) = f(x+ h) = 1.

Since f is not weakly symmetric at x + h and at x − h we can find a
δ ∈ (0, ε− h) such that (Tx−h ∪ Tx+h) ∩ (0, δ) = ∅.

Since x−h ∈ V ⊂ R \S(f) there exists a t ∈ (0, δ)∩ (0, h)∩Sx−h. Then
f((x− h)− t) = f((x− h) + t) 6= f(x−h) = 1, since t ∈ Sx−h \Tx−h. Thus,

f((x− h)− t) = f((x− h) + t) = 0.

Since h+ t ∈ (0, ε) ⊂ R \Tx and f((x−h)− t) = f(x) = 0 we conclude that

f((x+ h) + t) = 1.

Similarly h− t ∈ (0, ε) ⊂ R \ Tx and f((x− h) + t) = f(x) = 0 imply that

f((x+ h)− t) = 1.

Thus f((x+ h) + t) = f((x+ h)− t) = f(x+ h) = 1, contradicting the fact
that t 6∈ Tx+h.

Now for f : R → R let T (f) be the set of all x ∈ R such that f is not
weakly symmetric at x. In this notation Theorem 2 says that T (f) 6= R for
every function f : R → {0, 1}. One might suspect that a characterization
similar to that from Theorem 1 may also be true for T (f). This, however,
is not true.
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Example 4. There exists an f : R→ {0, 1} such that T (f) is not mea-
ger.

Proof. Let f0 : R→ N be the function from [7, Cor. 1.2]. For this function
none of the level sets f−1

0 (n) contains an arithmetic progression of length 3.
Let n ∈ N be such that f−1

0 (n) is not meager and let f be the characteristic
function of the set f−1

0 (n). It is easy to see that f−1
0 (n) ⊂ T (f).

Clearly, the same argument also gives a function f : R→ {0, 1} for which
the set T (f) is not of measure zero.

The following fact is also worth mentioning here.

Proposition 5 (Szyszkowski [11]). For every B ⊂ R there exists an
f : R→ N for which S(f) = B.

We do not know whether its weakly symmetric analog is also true. There-
fore the following question remains open.

Problem 6. Is it true that for every B ⊂ R there exists an f : R → N
for which T (f) = B?

3. Nowhere almost weakly symmetric function with two-ele-
ment range. We start this section with the proof of Theorem 3. Since
the equivalences (i)⇔(ii)⇔(iii) are known it remains to show (i)⇔(iv)⇔(v).
This follows immediately from the following theorem.

Theorem 7. Let κ be an infinite cardinal number and let W be a linear
subspace of R over Q. The following conditions are equivalent.

(i) |W | ≤ κ+.
(ii) There exists a function f : R → {0, 1} such that |Tx ∩W | ≤ κ for

every x ∈W .
(iii) There exists a function f : R → {0, 1} such that for every x ∈ W

there exists an εx > 0 such that |Tx ∩W ∩ (0, εx)| ≤ κ.

We will prove Theorem 7 only for κ = ω which is enough to get Theo-
rem 3. The proof of the general case is essentially the same. (Though it also
requires a simple generalization of the first part of Theorem 3.) So, in the
rest of the argument we assume that κ = ω.

Since Tx ⊂ Sx, the implication (i)⇒(ii) follows from the first part of
Theorem 3. Clearly (ii) implies (iii). Thus, it is enough to prove that (iii)
implies (i).

In the proof we will need the following lemma.

Lemma 8. Let f : R → {0, 1} and let V be a linear subspace of R
over Q. If Z = {x ∈ V : ∃ε > 0 (|Sx ∩ V ∩ (0, ε)| ≤ ω)} then |Z| ≤ ω1.
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Proof. The proof is essentially identical to that for (iii)⇒(i) from Theo-
rem 3 as presented in [5, Thm. 7.4.4]. Just assume, by way of contradiction,
that |Z| > ω1 and choose B ⊂ Z of cardinality ω2 which is linearly indepen-
dent over Q. For this choice of B the intact proof presented in [5, Thm. 7.4.4]
gives the desired contradiction.

Proof of Theorem 7. Let f be as in (iii) and, by way of contradiction,
assume that |W | ≥ ω2. Let Z0 be as in Lemma 8 with V = W . By shifting
the domain of f if necessary, we can assume that 0 6∈ Z0. Let V be a linear
subspace of W over Q such that |V | ≥ ω2 and V ∩ Z0 = ∅. Apply again
Lemma 8 to get a set Z working for f and this V . Then |V \ Z| ≥ ω2.

Fix an x ∈ V \Z. By (iii) we can choose an ε > 0 with the property that
|Tx∩W ∩(0, 2ε)| ≤ ω. Since x 6∈ Z we can also find an h ∈ (0, ε)∩Sx∩V \Tx.
In particular f(x− h) = f(x+ h). Next, assume that

f(x) = 0,

the argument for f(x) = 1 being essentially the same. Then

f(x− h) = f(x+ h) = 1,

since h 6∈ Tx. Let δ ∈ (0, h) be such that the set T = (Tx−h∪Tx+h)∩W∩(0, δ)
is countable. Since x − h ∈ V ⊂ W \ Z0, the set Sx−h ∩ W ∩ (0, δ) is
uncountable. In particular, there exists a t ∈ Sx−h∩W ∩ (0, δ)\T such that

h+ t, h− t ∈ (0, 2ε) \ Tx.
Then f((x− h)− t) = f((x− h) + t) 6= f(x− h) = 1, since t ∈ Sx−h \ Tx−h.
Thus,

f((x− h)− t) = f((x− h) + t) = 0.

Since h+ t 6∈ Tx and f((x− h)− t) = f(x) = 0 we conclude that

f((x+ h) + t) = 1.

Similarly h− t 6∈ Tx and f((x− h) + t) = f(x) = 0 imply that

f((x+ h)− t) = 1.

Thus f((x+ h) + t) = f((x+ h)− t) = f(x+ h) = 1, contradicting the fact
that t 6∈ Tx+h.

Let us finish with a remark that Theorem 7 can be proved with W being
replaced by any additive subgroup of R.

The above theorems show that, under CH, for a function f : R→ {0, 1}
the sets Sx and Tx can be countable. Can we make them any smaller? Can
they all be, for example, nowhere dense? The following two theorems show
that this is not possible. In what followsM0 andM will stand for the ideals
of nowhere dense and meager subsets of R, respectively.
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Theorem 9. Let f : R → {0, 1}, M ∈ M, and V be a linear subspace
of R over Q. If SMx = {h ∈ Sx ∩ V : h 6∈ ±(x−M)} and

Z = {x ∈ V : ∃ε > 0 (SMx ∩ (0, ε) ∈ M0)}
then Z ∈ M.

Proof. By way of contradiction assume that Z 6∈ M. So, we also have
V 6∈ M. For every x ∈ Z let nx ∈ N be such that the set

Cx = SMx ∩ (0, 1/nx)

is nowhere dense. The sets Zn = {x ∈ Z \M : nx = n} form a countable
partition of Z \M 6∈ M, so there exists an n ∈ N such that Zn 6∈ M. Let U
be an open interval of length less than 1/n such that the set L = Zn ∩ U is
nowhere meager in U . Note that nx = n for all x ∈ L. Moreover, if

C∗x = Cx ∪ ±(x−M) ∈ M
then Sx ∩ V ∩ (0, 1/n) ⊂ C∗x so that

(5) f(x− h) 6= f(x+ h) for x ∈ L and h ∈ (0, 1/n) ∩ V \ C∗x,
and

|x− y| < 1/n for every x, y ∈ L.
Let x = t0 ∈ L and let {tm : 0 < m < ω} be a dense subset of L\(x±C∗x).

Moreover, let K be an additive subgroup generated by {tm : m < ω} and
choose a

(6) z ∈ L \
⋃

i<ω

(K ± C∗ti),

z 6= x. Moreover, choose y = tm 6∈ {x, z} such that

(7) y 6∈ x± Cz.
Such a choice is possible since Cz is nowhere dense and tm’s are dense in U .
Next define

a = x− y + z, b = x+ y − z, c = −x+ y + z.

Then (a+ b)/2 = x, (b+ c)/2 = y, and (c+ a)/2 = z. We show that

(8) f(a) 6= f(b), f(b) 6= f(c), f(c) 6= f(a),

which gives us the desired contradiction, since the points a, b, and c are
distinct and f admits only two values. But (8) follows immediately from (5)
and

(9) |a− x| 6∈ C∗x, |b− y| 6∈ C∗y , |c− z| 6∈ C∗z ,
since we obviously have |a−x|, |b− y|, |c− z| ∈ (0, 1/n)∩V . But (9) follows
easily from (6) and (7):
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|a − x| 6∈ C∗x, since otherwise we would have z − y = a − x ∈ ±C∗x and
z ∈ y ± C∗x, contradicting (6).
|b − y| 6∈ C∗y , since otherwise we would have z − x = y − b ∈ ±C∗y and

z ∈ x± C∗y , again contradicting (6).
|c− z| 6∈ C∗z , since otherwise the point y−x = c− z would belong to the

set ±C∗z = ±[Cz∪±(z−M)]. However, y−x ∈ ±Cz implies that y ∈ x±Cz,
contradicting (7). On the other hand if y−x ∈ ±(z−M), then z ∈ K +M ,
contradicting (6).

Theorem 10. Let f : R→ {0, 1}. If

U = {x ∈ R : ∃ε > 0 (Tx ∩ (0, ε) ∈ M0)}
then R \ U 6∈ M.

Proof. The proof is quite similar to that for Theorem 7. By way of
contradiction assume that U c = R\U ∈ M. Let Z0 ∈ M be from Theorem 9
used with V = R and M = ∅. Then apply again Theorem 9 with V = R
and M = Z0 ∪ U c to get a set Z ∈ M.

Next fix an x ∈ R \ (Z ∪ U c). We assume that

f(x) = 0,

the argument for f(x) = 1 being essentially the same. Since x ∈ U we can
choose an ε > 0 such that Tx∩ (0, ε) ∈ M0. Since x 6∈ Z we have SMx ∩ (0, ε)
6∈ M0. Thus, there exists a non-empty open interval J0 ⊂ (0, ε) \ Tx inter-
secting SMx = Sx \ ±(x−M). Let h ∈ SMx ∩ J0. Then

f(x− h) = f(x+ h) = 1,

since h ∈ Sx\Tx. Since h 6∈ ±(x−M) we have x±h ∈ R\M = U\Z0. So there
exists a δ > 0 such that the set T = (Tx−h∪Tx+h)∩ (0, δ) is nowhere dense.
Decreasing δ if necessary, we can also assume that J = (h− δ, h+ δ) ⊂ J0.
Next, since x− h 6∈ Z0, we can find a t ∈ Sx−h ∩ (0, δ) \ T .

Then f((x−h)−t) = f((x−h)+t) 6= f(x−h) = 1, since t ∈ Sx−h\Tx−h.
Thus,

f((x− h)− t) = f((x− h) + t) = 0.

But h± t ∈ J ⊂ J0 ⊂ (0, ε) \ Tx and f(x− (h± t)) = f(x) = 0 imply that

f(x+ (h± t)) = 1.

Thus f((x+ h)± t) = f(x+ h) = 1, contradicting the fact that t 6∈ Tx+h.
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