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Stable derived functors, the Steenrod algebra and
homological algebra in the category of functors

by

Stanisław Betley (Warszawa)

Abstract. We present a very short way of calculating additively the stable (co)-
homology of Eilenberg–MacLane spaces K(Z/p, n). Our method depends only on homo-
logical algebra in appropriate categories of functors.

Introduction. In the present paper we compute the stable homology
of the Eilenberg–MacLane space K(Z/p, n). Of course the answer has been
known for years and not the answer but the method is important here.
We start our calculation from the point where the problem was approached
classically—from the homotopical equality K(Z, n) = SP∞Sn and its mod p
version. This leads to the interpretation of the stable homology of K(Z/p, n)
in terms of stable derived functors in the sense of Dold–Puppe of symmet-
ric power functors (also very classical). But then we use a more modern
interpretation of these stable derived functors as Tor groups in the abelian
category of functors from sets to Z/p-vector spaces. Then surprisingly the
main result is derived from the properties of Koszul and de Rham sequences
relating symmetric and exterior power functors.

There are several reasons for writing this note. First of all we present a
very short “stable” calculation of the stable homology of K(Z/p, n). Clas-
sically calculations followed the following route: first one had to do them
unstably for all n and then to analyse the stabilization process to check
which classes survive. It was always lengthy and complicated. Here we skip
the unstable part. It seems to us that this point of view on the Steenrod
algebra can be fruitful and we are going to explore it in further papers.
Secondly we show that the “shape” of the Steenrod algebra (dimensions of
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nontrivial groups and their gradation) is determined directly by the exis-
tence of the Frobenius morphism, that is, by the fact that raising to the pth
power is additive. This has an interesting philosophical meaning that “all”
special properties of theories over fields of finite characteristic are encoded
in the existence of the Frobenius morphism. The same point of view was
promoted in [BS] where we studied the behaviour of the Goodwillie tower
of the identity functor at the prime p.

In [B1] and [B2] Bousfield studied the stable derived functors of symmet-
ric powers and the algebra structure induced on them by the composition
multiplication of the functor

∑∞
i=1 SPi (here SPi is the ith symmetric power

functor). The main motivation for our work was to understand these two
preprints and their relations to the Steenrod algebra. Our paper gives only
an additive calculation of Hst

∗ (K(Z/p, n),Z/p) but in the last section we
show how to approach the multiplicative structure of the Steenrod algebra
using our methods. We hope to get Adem relations using similar arguments.
Then we will be in a position to study the Steenrod algebra by a new method.

The paper is written in the homological setting mostly because it grew
out of an attempt to understand [B1] and [B2] which were written “homo-
logically”. On the other hand switching to cohomology is not complicated:
see 4.13.

1. Stable homology of K(Z/p, n) and stable derived functors. In
this section we are perhaps a little sketchy but most of the material here is
“classical” and can be found in [DP], [DT], [B1], [B2] or related papers. Let
T : R-modules → R-modules be a functor; we shall use the same letter for
the degreewise extension of T to the simplicial R-modules. Dold and Puppe
[DP] defined the ith stable derived functor Lst

i T (·) of T by the formula

Lst
i T (A) = lim

n
πi+nT (R̃[Sn]⊗ P∗)

where Sn denotes any simplicial model for the n-dimensional sphere, P∗ is
a projective resolution of A in R-modules, the limit is taken with respect to
the suspension of spheres, and R̃[Sn] = R[Sn]/R[∗].

Let Vp denote the category of vector spaces over Z/p. For a functor
T : Vp → Vp we have the formula

Lst
i T (Z/p) = lim

n
πi+nT (Z̃/p[Sn])

and these groups are often called (see [P]) the stable homotopy of the functor
T ◦ Z̃/p[·] which is defined on the category of simplicial sets and takes values
in simplicial objects over Vp.

Let SPi : Vp → Vp be the ith symmetric power functor and write SP∗ =∑∞
i=1 SPi. Then SP∗ is the ordinary polynomial algebra functor. If we divide

it by the ideal generated by the image of the Frobenius morphism SP1 →
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SPp given by raising to the pth power then we obtain a graded functor
SP∗p =

∑∞
i=1 SPip which we call reduced symmetric powers.

We need one more piece of notation. Let H st
i (K(Z),Z/p) denote the

group limnHi+n(K(Z, n),Z/p) where the limit is taken in the ordinary way
which gives the stable homology of an Eilenberg–MacLane space. Similarly

Hst
i (K(Z/p),Z/p) = lim

n
Hi+n(K(Z/p, n),Z/p).

1.1. Lemma. We have the following formulas:

Lst
∗ SP∗(Z/p) = Hst

∗ (K(Z),Z/p),
Lst
∗ SP∗p(Z/p) = Hst

∗ (K(Z/p),Z/p).

Proof. By the famous Dold–Thom theorem from [DT] we can use SP∞Sn

as a model for the space K(Z, n). Let us remind the reader that we work in
the category of simplicial sets and SP∞Sn denotes the infinite symmetric
product of the simplicial model of the n-dimensional sphere. Then we have
an isomorphism of simplicial abelian groups

(1.2) Z̃/p[SP∞Sn] '
∞∑

i=1

SPi(Z̃/p[Sn])

which we obtain by working directly with bases of both groups (both groups
are free over Z/p). The homotopy groups of the left hand side give us the
homology of K(Z, n) with Z/p coefficients. It is easy to see that the iso-
morphism 1.2 commutes with the suspension map. This follows from the
fact that 1.2 can be stated in the form Z̃/p[SP∞X] ' ∑∞i=1 SPi(Z̃/p[X])
for any simplicial set X and this isomorphism is natural in X. Hence after
stabilization we get the first formula of our lemma.

The proof for reduced symmetric powers SPip goes similarly. Let X be a
pointed set with base point e. For x ∈ SP∞X define xi1,...,ik as the point in
SP∞X obtained from x by putting e on coordinates i1, . . . , ik.

Define the reduced infinite symmetric product of X as

SP∞p X = SP∞X/∼
where x ∼ y if for x = (x1, x2, . . .) and y = (y1, y2, . . .) we have i1, . . . , ip
and j1, . . . , jp such that xia = xib for a, b = 1, . . . , p, the same is true for y
on coordinates j1, . . . , jp, and xi1,...,ip = yj1,...,jp . In other words we identify
x as above with the point which has e on coordinates i1, . . . , ip. Observe
that SP∞p X is an abelian p torsion group for any set X. This observation
extends to simplicial sets and one gets a simplicial abelian p-torsion group
associated with any simplicial set.

Claim. SP∞p X ' Z̃/p[X].
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Proof. If we write an element of SP∞p X as a tuple (xi11 , . . . , x
in
n ) by writ-

ing (x, . . . , x, y1, . . .) as (xi, y1, . . .) and skipping e from the notation then
we see that the map

(xi11 , . . . , x
in
n ) 7→ i1 · x1 + . . .+ in · xn

is a group isomorphism. The proof of 1.1 is finished by the observation
that Z̃/p[Sn] = K(Z/p, n), the isomorphism from the claim commutes with
suspension and we can proceed as in 1.2 with reduced powers and reduced
symmetric products.

1.3. Remark. From the definition of stable derived functors we also get

Hst
∗ (K(Z),Z/p) = Lst

∗ (Z̃/p[·])(Z)

and
Hst
∗ (K(Z/p),Z/p) = Lst

∗ (Z̃/p[·])(Z/p)
where we treat Z̃/p[·] as a functor Ab→ Ab. In the theory of stable derived
functors we have the universal coefficients theorem which gives the exact
sequence for any abelian group A:

0→ Lst
i T (Z)⊗A→ Lst

i T (A)→ Tor(Lst
i−1T (Z), A)→ 0.

So we know that Lst
∗ (Z̃/p[·])(Z) = Lst

∗ (Z̃/p[·])(Z) ⊗ Z/p embeds into
Lst
∗ (Z̃/p[·])(Z/p) = Hst

∗ (K(Z/p),Z/p). It is easy to see that this embed-
ding is induced by the quotient map SP∗ → SP∗p. We will return to this
point later.

2. Stable derived functors and homological algebra in the cate-
gory of functors. Let Γ denote the category of functors from finite pointed
sets to Vp. Following Pirashvili [P] we denote by t∗ the functor X 7→ Z̃/p[X]
and by t its dual. As previously we use the same letter for the functor and
its standard degreewise extension to simplicial sets. Moreover if T : Vp → Vp
is a functor then we use the same letter for T ◦ t∗ as an element of Γ . We
have:

2.1. Lemma ([P, Proposition 2.2]). If T : Vp → Vp then

Lst
i T (Z/p) = TorΓi (t, T ).

This means that trying to calculate Lst
i SP∗ we are forced to calculate

Tor groups in the category of functors. Before turning to calculations we
give some simple lemmas which make such calculations easier.

2.2. Lemma ([P, Lemma 4.2]). Let S ∈ Γ and T ∈ Γ satisfy S(∗) =
T (∗) = 0, where ∗ denotes the one-point set. Then TorΓ∗ (t, S ⊗ T ) = 0.

Proof. This follows immediately from the Eilenberg–Zilber and Künneth
formulas.
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2.3. Lemma.

TorΓ0 (t, t∗) = Z/p, TorΓi (t, t∗) = 0 for i > 0.

Proof. By 2.1 we know that TorΓi (t, t∗) = Lst
i Id(Z/p). By the definition

of stable derived functors it follows that the groups TorΓ∗ (t, t∗) are the same
as the stable homotopy groups of the Eilenberg–MacLane space K(Z/p, n).

2.4. Lemma. The Frobenius F : SPp
i → SPp

i+1

induces a trivial map
TorΓi (t,SPp

i

)→ TorΓi (t,SPp
i+1

).

Proof. The lemma follows immediately from 2.2 and the fact that the
natural transformation of functors F : SPp

i → SPp
i+1

factors through
(SPp

i

)⊗p. This we achieve by the following simple observation. If Id :
Vp → Vp denotes the identity functor then we have a natural transformation
(embedding) ψ : Id→ Id⊗k for any natural k. Here we treat Id and Id⊗k as
objects of Γ . We define this natural transformation on basis elements by the
formula x 7→ x⊗k and then extend by linearity. Warning: ψ is not a natural
transformation of functors Vp → Vp.

2.5. Lemma. Let K denote the kernel of the quotient morphism SPp
i →

SPp
i

p . Then the Frobenius SPp
i−1 → SPp

i

factors uniquely through K and the
resulting map g : SPp

i−1 → K induces an isomorphism TorΓ∗ (t,SPp
i−1

) →
TorΓi (t,K).

Proof. The first part is obvious. The image of the Frobenius certainly
goes to zero in SPp

i

p so the map g exists and is unique from the definition
of K. But we have more functors with natural maps to K. For any j =
0, . . . , pi−1 − 1 we have a map Lj := SPp

i−1−j ⊗ SPjp → SPp
i

given by

multiplication of the Frobenius on SPp
i−1−j and the identity on SPjp. The

image of Lj is obviously contained in K. Let Kj be the image of L0 ⊕
L1 ⊕ . . .⊕ Lj in K. Then the Kj ’s form a filtration in K with the property

that Ks/Ks−1 ' SPp
i−1−s ⊗ SPspp , K0 = SPp

i−1

and Kpi−1−1 = K. The
embedding Ks → Ks+1 induces an isomorphism on the corresponding Tor
groups by 2.2 so the proof is finished.

3. Preliminary calculations. As the main tool for our calculations
we shall use Koszul and de Rham sequences and their properties ([FLS,
Section 3]). Let F denote the category of functors Vp → Vp. We have the
Koszul exact sequence in F for any n:

0→ Λn → Λn−1 ⊗ SP1 → . . .→ SPn → 0

and the de Rham sequence

0← Λn ← Λn−1 ⊗ SP1 ← . . .← SPn ← 0
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which in case n = pk has as homology the functors appearing in the sequence

0← Λk ← Λk−1 ⊗ SP1 ← . . .← SPk ← 0

with SPk giving homology at the place corresponding to SPn.

3.1. Lemma. If n is not a power of p then TorΓ∗ (t,SPn) = 0.

Proof (see [FLS, Proposition 6.1]). Observe that if n is not a power of p
then there exist two natural numbers a and b such that a + b = n and the
index of Σa ×Σb in Σn is not divisible by p. But then SPn is contained as
a direct summand in SPa ⊗ SPb and we can use 2.2.

Hence we are really interested only in the functors SPn and SPnp for
n = pk. In this section we only deal with the case k = 1.

3.2. Proposition. The groups TorΓ∗ (t,SPp) are Z/p in dimensions
2i(p − 1) and 2i(p − 1) + 1 for i = 1, 2, . . . and are trivial in other di-
mensions. The groups TorΓ∗ (t,SPpp) are Z/p in dimensions 1, 2i(p− 1) and
2i(p− 1) + 1 and are trivial in other dimensions.

Proof. We first deal with the functor SPp. Let K denote the Koszul
sequence

0→ Λp → Λp−1 ⊗ SP1 → . . .→ SPp → 0

and R the de Rham sequence

0← Λp ← Λp−1 ⊗ SP1 ← . . .← SPp ← 0.

We calculate the hyperhomology spectral sequences jEr,s(K) and jEr,s(R)
for the functor t⊗Γ (·) with coefficients in the Koszul and de Rham complexes
respectively. The numbers j = 1, 2 denote here which filtration is taken into
account: 1 says that we first take homology in the direction of the coefficients
and then vertically, while 2 stands for the opposite.

The sequences jEr,s(K) converge to 0 because the Koszul sequence is
exact. Then 2Er,s(K) and 2.2 give us the formula

(3.3) TorΓi (t, Λp) = TorΓi+p−1(t,SPp).

Observe that the homology of R is nontrivial only in dimensions p−1 and
p and nontrivial functors are equal to Id = SP1 by the general properties of
de Rham complexes. Hence by 2.3 the spectral sequence 1E2

r,s(R) has only
two nonzero groups at (p − 1, 0) and (p, 0) and all differentials are trivial
for dimensional reasons. So 2Er,s(R) converges to two groups isomorphic to
TorΓ0 (t, t∗) = Z/p which appear in dimensions p− 1 and p. Observe that by
2.2, 2E1

r,s(R) has only two possibly nontrivial columns and we have

2E1
0,s(R) = TorΓs (t, Λp), 2E1

p,s(R) = TorΓs (t,SPp).
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Then by 3.3 and 1Er,s(R)-calculations we get

TorΓp−1(t, Λp) = TorΓp (t, Λp) = Z/p,
which implies (again by 3.3) that

TorΓ2(p−1)(t,SPp) = TorΓ2p−1(t,SPp) = Z/p.
Then we easily get our conclusion from the fact that we know to which
groups 2Er,s(R) converges.

Now observe that we have the following exact sequence of functors:

(3.4) 0→ Id→ SPp → SPpp → 0.

Taking Tor groups converts a short exact sequence of functors into a long
exact sequence of Tor groups. Hence we get our result on SPpp from the
SPp-case using 2.4.

3.5. Remark. It is not difficult to show using [B2] that the elements
obtained from TorΓi (t,SPpp) correspond to the ordinary generators of the
Steenrod algebra (or rather their duals).

4. General calculations. Actually we have to confess that the spectral
sequence machinery in Section 3 was not necessary and was used for two
secondary reasons. First of all we were very much stimulated by [FLS] and
this machinery was the main tool there. Secondly, spectral sequences used
in the proof of 3.2 are very simple, contain a lot of zeros and it is easy to see
their limits. On the other hand for higher powers of p it is easier to proceed
through a more careful analysis of de Rham complexes. But first recall that
we want to calculate all groups TorΓi (t,SPp

n

p ) for any n. We get an inductive
formula for them below. Until 4.12 we assume that p 6= 2.

4.1. Lemma.

TorΓi (t,SPp
n

p ) = TorΓi (t,SPp
n

)⊕ TorΓi−1(t,SPp
n−1

).

Proof. This follows immediately from 2.5 and the exact sequence

0→ K → SPp
n → SPp

n

p → 0.

Hence it is enough to get our formula for TorΓi (t,SPp
n

).

4.2. Lemma.
TorΓi (t, Λp

n

) = TorΓi+pn−1(t,SPp
n

).

Proof. This follows immediately from the exactness of the Koszul se-
quence relating Λp

n

and SPp
n

(compare 3.3).

4.3. Lemma.

TorΓi (t, Λp
n

)

= TorΓi−pn+1(t,SPp
n

)⊕ TorΓi−pn(t,SPp
n−1

)⊕ TorΓi−pn+pn−1(t, Λp
n−1

).



286 S. Betley

Before proving 4.3 we give some consequences of this crucial lemma. It
allows us to calculate the groups TorΓi (t,SPp

n

) inductively.

4.4. Proposition.

TorΓi (t,SPp
n

) =
n⊕

k=0

TorΓi−2pn+2(t,SPp
k

)⊕
n⊕

k=0

TorΓi−2pn+1(t,SPp
k−1

).

Proof. From the Koszul exact sequence relating Λp
n

and SPp
n

we get
TorΓi (t, Λp

n

) = TorΓi+pn−1(t,SPp
n

). From this we observe that to make our
calculation we have to subtract pn − 1 from the indices on the right hand
side of 4.3. Then we apply 4.3 again and again for the last summand (the
group TorΓ∗ (t, Λk)). On every step we lower the exterior power by 1 and
we produce two new Tor groups with symmetric powers inside. When we
achieve k = 0 we get precisely the desired formula.

4.5. Remark. Observe that formula 4.4 gives us the expected result. By
1.1, 1.2 and 2.1 we know that Hst

∗ (K(Z),Z/p) =
⊕∞

i=0 TorΓ∗ (t,SPp
i

). On the
other hand by Milnor’s calculations we know that additively

(4.6)
∞⊕

i=0

TorΓ∗ (t,SPp
i

) = Z/p[ξ1, ξ2, . . .]⊗ Λ(τ1, τ2, . . .)

where ξi and τi have degrees 2pi − 2 and 2pi − 1 respectively for i > 0. Let
Bn = Z/p[ξ1, . . . , ξn] ⊗ Λ(τ1, . . . , τn) and Cn =

⊕n
i=0 TorΓ∗ (t,SPp

i

). Then
the Bn (resp. Cn) form filtrations of the right (resp. left) hand side of 4.6.
We show that Cn ' Bn as graded vector spaces over Z/p. To see this observe
that for the ith gradation Bin of Bn we have the following formula:

Bin = Bin−1 ⊕Bi−2pn+2
n ⊕Bi−2pn+1

n−1

where the second term on the right stands for the elements which are multi-
plied by ξn and the third is formed by the elements which are contained in
Z/p[ξ1, . . . , ξn−1]⊗Λ(τ1, . . . , τn). But from 4.4 we see that the same formula
holds for Cn. Moreover 3.2 tells us that B1 = TorΓ∗ (t,SPp) = C1.

Proof of 4.3. We now have to look a little more carefully on the de Rham
complex

0→ SPp
n → SPp

n−1 ⊗ Λ1 → . . .→ Λp
n

.

Let di denote the differential issuing from SPp
n−i ⊗ Λi. Let K =

ker dpn−1 , I = im d0 and L = im dpn−1−1.

4.7. Claim.
Tori(t, Λp

n

) = Tori−pn+pn−1(t,K).
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Indeed, by a general formula for the homology of the de Rham complex
we know that the sequence

0→ K → SPp
n−pn−1 ⊗ Λpn−1 → . . .→ Λp

n → 0

is exact and we can use 2.2 again to obtain 4.7.

4.8. Claim.
Tori(t, L) = Tori−pn−1+1(t, I).

Let us look at the sequence

0→ I → SPp
n−1 ⊗ Λ1 → . . .→ SPp

n−pn−1+1 ⊗ Λpn−1−1 → L→ 0.

The argument here is similar to the proof of 4.7. Of course now the sequence
under consideration is not exact. On the other hand all functors F appearing
as its homology give trivial TorΓ∗ (t, F ) groups by 2.2.

4.9. Claim.

Tori(t,K) = Tori(t, L)⊕ Tori(t, Λp
n−1

).

We have an exact sequence

0→ L→ K → Λp
n−1 → 0

by the general description of the homology of the de Rham complex. So it
is enough to show (for example) that the epimorphism K → Λp

n−1
splits.

We have a natural morphism of functors (defined on finite pointed sets)

f : Λp
n−1 → SPp

n−pn−1 ⊗ Λpn−1

given on basis elements by

x1 ∧ x2 ∧ . . . ∧ xpn−1 7→ xp
n−1−1

1 xp
n−1−1

2 . . . xp
n−1−1
pn−1 ⊗ x1 ∧ x2 ∧ . . . ∧ xpn−1 .

The differential d in the de Rham complex is given by comultiplication
on the symmetric part followed by multiplication on the exterior part. Hence
we have the following formula for d : SPk ⊗Λj → SPk−1 ⊗Λj+1 in terms of
bases:

(∗) d(x1 · . . . · xk ⊗ w) =
k∑

i=1

(( ∏

s∈Ii
xs

)
⊗ xi ∧ w

)

where w is an arbitrary exterior element and Ii denotes the set {1, . . . , k}
with i removed. From this formula one sees immediately that the image of
f is contained in K because the exterior product of an element by itself
vanishes. So it is enough to show that the intersection of the image of f and
L is 0. We show that none of the basis vectors

a = xp
n−1−1

1 xp
n−1−1

2 . . . xp
n−1−1
pn−1 ⊗ x1 ∧ x2 ∧ . . . ∧ xpn−1
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is contained in the image of d. The simple generalization of the argument to
linear combinations is left to the reader. Observe that if b is a basis vector
then d(b) is a linear combination of basis vectors which are built up from
the same variables as b was. Hence if a is in the image of d then there exists
a basis vector b such that one of the pieces of the sum expansion of d(b) is a
scalar multiple of a. So a and b are written in terms of the same variables.
From the formula (∗) we find that up to multiplication by a scalar and
reordering the variables, b must be of the form

b = xp
n−1

1 xp
n−1−1

2 . . . xp
n−1−1
pn−1 ⊗ x2 ∧ . . . ∧ xpn−1 .

But this is impossible because by (∗) we see that for such a b, d(b) = 0.

4.10. Claim.

Tori(t, I) = Tori(t,SPp
n

)⊕ Tori−1(t,SPp
n−1

).

Again by the general formula for the homology of de Rham complexes
we have an exact sequence

0→ SPp
n−1 → SPp

n → I → 0

where the first map is Frobenius. Then by 2.4 we get the desired formula.

Now the proof of 4.3 consists of inserting 4.8, 4.9, 4.10 into formula 4.7.

4.11. Remark. It is easy to see that formula 4.4 gives us the full calcu-
lation of spectral sequences related to the de Rham complex. If we denote by
Rn the de Rham complex of length pn then (in the notation of Section 3) we
see that 1Er,s(Rn) has all differentials zero while in 2Er,s(Rn) all possibly
nontrivial differentials are embeddings.

4.12. Remark (on the case p = 2). If p = 2 the situation is simpler than
the one described above and the answer is slightly different, as is known from
the classical results on the Steenrod algebra. Using the exact sequence (see
[FLS, Section 2])

0→ SP2n−1 → SP2n → SP2n−1 ⊗ SP1 → . . .→ SP2n−i ⊗ SPi →
. . .→ SP2n → 0

with the first map being the Frobenius one gets the formula

TorΓj (t,SP2n) = TorΓj−2n+1(t,SP2n)⊕ TorΓj−2n(t,SP2n−1

)

and the rest of the calculation is left to the reader.

4.13. Remark (on cohomology). One can do similar calculations for
the stable cohomology of K(Z/p, n). In this case, according to [P, Propo-
sition 2.2], one has to calculate the groups ExtjΓ (t, (

⊕
SPi)∗). But from

Koszul complexes one sees easily that for given j only a finite number of i’s
have to be taken into account and hence, eventually, one has to compute
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the groups ExtjΓ (t, (SPp
i

)∗). This can be done in precisely the same way as
Tor calculations were obtained.

5. Remarks on the multiplicative structure. In [B2] Bousfield cal-
culated the algebra structure on Lst

∗ (SP∗(Z/p)) obtained from the compo-
sition multiplication of symmetric powers SPn ◦ SPm → SPnm. We want to
understand how his algebra structure is related to the Steenrod algebra or
its dual and this is the main subject of this section.

Let T : Vp → Vp be a covariant functor. Following [B2] we say that T is a
unital functor algebra if it comes equipped with two natural transformations
m : T ◦ T → T and i : Id→ T satisfying:

(i) (Associativity) The diagram

T ◦ T ◦ T T ◦ T

T ◦ T T

id ◦m
��

m◦id //

m

��
m //

commutes.
(ii) (Unity) The compositions

Id ◦ T i◦id−→ T ◦ T m−→ T, T ◦ Id id◦i−→ T ◦ T m−→ T

are identities.

If i does not exist then we talk about nonunital algebras. Similarly we
define a functor coalgebra with c : T → T ◦ T by reversing all the arrows
in the definition above. Observe that if T is a functor algebra then we have
the following product structure (we will call it composition multiplication
following Bousfield):

πn(T (Z̃/p[Sm]))× πm(T (Z̃/p[Si]))→ πn(T (Z̃/p[Si])).

The product takes x ∈ πn(T (R̃[Sm])) and y ∈ πm(T (R̃[Si])) to m∗(T (y)◦x).
Here we use the fact that if A is any simplicial Z/p-vector space then a
pointed simplicial map Sn → A can be uniquely extended to a homomor-
phism Z̃/p[Sn]→ A.

If T (0) = 0 then we can apply the stabilization procedure to get a prod-
uct structure on the stable homotopy groups of T . Working with functor
coalgebras we get a product structure on cohomotopy groups where by the
mth cohomotopy group of T (Z̃/p[Sn]), πm(T (Z̃/p[Sn])), we mean the ho-
motopy classes of homomorphisms T (Z̃/p[Sn])→ Z̃/p[Sn].

5.1. Example. The functor Z/p[·] has a coalgebra structure. The map
i : T → Id is induced by the map Z/p[M ]→M which takes the formal sum
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to the sum in M . The map c is induced by the extension of rx 7→ r(1 · x).
The same is true for the reduced functor.

5.2. Proposition. The composition multiplication obtained on the coal-
gebra Z̃/p[·] induces the standard multiplication of cohomology operations.

Proof. Let us write Kn for the Eilenberg–MacLane space K(Z/p, n). We
shall use Z̃/p[Sn] as a model for Kn and all (co)homology groups will have
coefficients in Z/p if not specified otherwise. Every cohomology operation is
determined by an element in H∗(Kn) for some n and hence by the homotopy
class of maps Kn → Km. Multiplication of cohomology operations is equiva-
lent to composition of maps. A map f : Kn → Km induces a homomorphism
Z/p(f) : Z̃/p[Kn]→ Km and the homotopy class of f is uniquely determined
by it. Let f : Kn → Km and g : Kt → Kn. We want to express Z/p(g ◦ f)
in terms of Z/p(f) and Z/p(g). It is easy to check working on generators
that the homomorphism Z/p(g ◦ f) is the same as Z/p(f) ◦ Z/p[Z/p(g)] ◦ c
(the composition product of [f ] and [g] coming from the coalgebra functor
Z̃/p[·]).

Observe that the functor Z/p[·] has a nonunital algebra structure. It is
given essentially by the augmentation map Z/p[A] → A to which we apply
Z/p[·] for any A ∈ AR. We show:

5.3. Proposition. There are two algebra structures on both graded
groups Hst

∗ (K(Z),Z/p) and Hst
∗ (K(Z/p),Z/p). One comes from the algebra

stucture of Z/p[·] and the other from composition of symmetric (reduced)
powers and 1.1. These two structures are equivalent.

The main ingredient of the proof is Lemma 5.4 below. But before we
formulate it we want to recall certain observations which go back to [S]
and [DT]. Let X be a simplicial set. Then SP∞X is a free simplicial abelian
semigroup generated byX. The free simplicial abelian group Z[X] associated
with X can be treated as a group coming from the previous semigroup. The
natural map q : SP∞(X)→ Z̃[X] is a homotopy equivalence.

5.4. Lemma. For any simplicial set X the following diagram is homotopy
commutative:

Z̃/p[Z̃/p[Z̃/p[X]]] Z̃/p[Z̃/p[X]]
⊕∞

k=1 SPkpZ̃/p[X]

Z̃/p[Z̃[Z̃[X]]] Z̃/p[Z̃[X]]

Z̃/p[SP∞(SP∞X)] Z̃/p[SP∞X]
⊕∞

k=1 SPkZ̃/p[X]

i3 // ���������

���������

pr1

OO

i2 //

pr2

OO OO

q3

OO

i1 //

q4

OO

q5 //
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where qi is a general notation for the homotopy equivalence coming from
1.2 or q : SP∞(X) → Z[X], prj denotes the maps coming from the natural
projection Z→ Z/p, and the horizontal maps ij are essentially given by some
version of the augmentation (the same which gives the algebra structure on
Z/p[·]).

The proof of 5.4 is obvious from the definitions. We also have maps

q1 :
∞⊕

i=1

SPi
( ∞⊕

j=1

SPjZ̃/p[X]
)
→

∞⊕

i=1

SPi(Z̃/p[SP∞(X)])

and

g2 :
∞⊕

i=1

SPi(Z̃/p[SP∞(X)])→ Z̃/p[SP∞(SP∞X)]

which are defined the same way as the q-maps were defined before. Let now
X be a sphere of arbitrary dimension. Observe that q5 ◦ i1 ◦ q2 ◦ q1 is a
map which gives us Bousfield’s composition multiplication for

∑∞
i=1 SPi.

The map i3 induces the algebra structure on Z/p[·] and hence the algebra
structure on Hst

∗ (K(Z/p),Z/p). The map pr2 considered on stable homotopy
gives us the embedding Hst

∗ (K(Z),Z/p)→ Hst
∗ (K(Z/p),Z/p) from 1.3. The

maps induced by pr on unstable and stable homotopy give us the desired
comparison of the two algebra structures. A similar argument works for
reduced symmetric powers.

As Bousfield calculated, the algebra structure from 5.3 is not equivalent
to Milnor’s dual to the Steenrod algebra. We are not going to do his calcula-
tions in our stable setting because we want to do them in the cohomological
framework in another paper. Let us only mention some result on generators
of the algebra structure.

5.5. Lemma. For any i, SPp
i

is a direct summand in SPp ◦ SPp
i−1

. The
same is true for SPp

i

p .

Proof. There is a unique map f : SPrm → SPr ◦ SPm which makes the
following diagram commute:

SPrm SPr ◦ SPm

Id⊗rm Id⊗r ◦ Id⊗m

t

��

f //

t◦t
��

//

where t : SPi → Id⊗i is the standard map

t(x1 · . . . · xi) =
∑

τ∈Σi
xτ(1) ⊗ . . .⊗ xτ(i)
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and the lower horizontal map is given by inserting parentheses. The map
f is essentially given by sending a monomial of degree rm to the sum of
monomials of degree r in the variables given by all possible divisions of the
set {i, . . . , rm} into sets of cardinality m each. Now let r = p and m = pi−1.
Then f composed with the multiplication map SPp ◦ SPp

i−1 → SPp
i

is an
isomorphism. This is true because the number of monomials in the image
of a monomial under f is prime to p.

Lemma 5.5 is essentially contained in [B2, Section 8] though it is not
stated separately. As an immediate corollary of 5.5 we obtain:

5.6. Corollary. The algebra Lst
∗ SP∗(Z/p) with composition multipli-

cation is generated by Lst
∗ SPp(Z/p). Similarly , Lst

∗ SP∗p(Z/p) is generated by
Lst
∗ SPpp(Z/p).

5.7. Final Remark. Let Di denote the ith divided power algebra func-
tor. We know that Di(V ) = (SPi(V ∗))∗ for a finite-dimensional vector space
V and hence (SPi ◦ t∗)∗ = Di ◦ t as functors of finite sets. It is easy to see
that when we dualize c from 5.2 we get a map of contravariant functors
c∗ : (t∗ ◦ t∗)∗ → t which after applying both sides to the space K(Z, n) is
equivalent to the map obtained from composition multiplication of divided
power functors composed with t. So we can express multiplication of Steen-
rod operations in terms of the composition multiplication of divided powers.
But of course it remains to get Adem relations in our stable framework. This
problem will be addressed in a forthcoming paper.
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