Erratum to "Fields of surreal numbers and exponentiation"

(Fund. Math. 167 (2001), 173-188)

by

Lou van den Dries (Urbana, IL) and Philip Ehrlich (Athens, OH)

Lemma 4.5 in [2] is false. The correct result is the Lemma below. We use the following conventions and notations: Γ is an ordered abelian group, $S \subseteq \Gamma$; we let $[S] := \{s_1 + \ldots + s_k : k \in \mathbb{N}, s_1, \ldots, s_k \in S\}$ be the additive monoid generated by S in Γ ; for $a \in \Gamma$, put $S^{\leq a} := \{s \in S : s < a\}$ and define $S^{\leq a}$ and $S^{\geq a}$ similarly; if S is well-ordered, we let o(S) be its ordinal. Also α, λ, μ are ordinals, and sums and products of ordinals are their natural sums and natural products.

LEMMA. Suppose $S \subseteq \Gamma^{\geq 0}$ is well-ordered with $o(S) \leq \mu$. Then [S] is well-ordered with $o([S]) \leq \omega^{\omega\mu}$.

Lemma 4.5 in [2] claims the sharper bound $o([S]) \leq \omega^{\mu}$. We will see below that this is correct if $\mu < \varepsilon_0$, but incorrect for $\mu = \varepsilon_0$.

Replacing Lemma 4.5 in [2] by the lemma above does not affect any of the main results of [2] but leads to minor changes in some proofs:

(1) In the proof of Lemma 4.6, replace " ω^{α} " by " $\omega^{\omega\alpha}$ " and " ω^{σ} " by " $\omega^{\omega\sigma}$ ".

(2) Lemma 4.10: in its statement and proof, replace " $\omega^{(\omega+n)\mu}$ " by " $\omega^{\omega(n+1)\mu}$ ", and in its proof replace " $\omega^{n\mu}$ " by " $\omega^{\omega n\mu}$ ".

(3) In the proofs of Proposition 4.11, Lemma 5.2 and Lemma 5.4, replace " $\omega + 1$ " (occurring as a factor in some exponents) by " $\omega 2$ ", and " $2\omega + 2$ " by " $\omega 4$ ".

Proof of Lemma. We proceed by induction on μ . The lemma holds trivially for $\mu = 0$ $(S = \emptyset)$ and $\mu = 1$, so let $\mu > 1$, and assume inductively that the desired result holds for smaller values.

CASE 1: μ is not additive. This means that $\mu = \mu_1 + \mu_2$ for ordinals $\mu_1, \mu_2 < \mu$. Then $S = S_1 \cup S_2$ with $o(S_1) \leq \mu_1$ and $o(S_2) \leq \mu_2$. Hence $[S] = [S_1] + [S_2]$, so

$$o([S]) \le o([S_1]) \cdot o([S_2]) \le \omega^{\omega \mu_1} \cdot \omega^{\omega \mu_2} = \omega^{\omega \mu}.$$

CASE 2: μ is additive. Then $\mu = \omega^{\lambda}$, $\lambda > 0$. Let $0 < a \in S$, $0 < n \in \mathbb{N}$. It suffices to show that then $[S]^{\leq na} < \omega^{\omega\mu}$, since the elements na are cofinal in [S]. Note that $[S]^{\leq na} \subseteq [S^{\leq a}] + (S \cup \{0\}) + \ldots + (S \cup \{0\})$ where there are n terms $S \cup \{0\}$. Hence, with $o(S^{\leq a}) = \alpha < \mu$, and using the fact that $o(S \cup \{0\}) \leq \mu = \omega^{\lambda}$, we obtain

$$o([S]^{\leq na}) \leq \omega^{\omega\alpha} \omega^{\lambda} \dots \omega^{\lambda} = \omega^{\omega\alpha + n\lambda}.$$

Thus it remains to show that $\omega \alpha + n\lambda < \omega \mu$. To this end we write α in Cantor normal form as $\alpha = \omega^{\alpha_1} n_1 + \ldots + \omega^{\alpha_k} n_k$ with $\lambda > \alpha_1 > \ldots > \alpha_k$ and positive integers n_1, \ldots, n_k . Then the Cantor normal form of $\omega \alpha$ has leading term $\omega^{\alpha_1+1} n_1$, so $\omega \alpha \leq \omega^{\lambda} (n_1+1) = (n_1+1)\mu$. Hence $\omega \alpha + n\lambda \leq (n_1+1)\mu + n\mu = (n_1+1+n)\mu < \omega \mu$.

In trying to carry out a similar inductive proof with the bound ω^{μ} (instead of $\omega^{\omega\mu}$), case 1 presents no problem, but case 2 leads to the inequality $\alpha + n\lambda < \mu$ (instead of $\omega\alpha + n\lambda < \omega\mu$). This inequality holds for $\lambda < \mu$, since μ is additive, but it fails when $\lambda = \mu$, that is, when μ is an ε -number. We conclude that the original Lemma 4.5 in [2] holds for $\mu < \varepsilon_0$.

Lemma 4.5 fails for $\mu = \varepsilon_0$: Let $\Gamma = \mathbb{R}$, the additive ordered group of real numbers, and take for S a well-ordered subset of the open interval (0,1)with $o(S) = \varepsilon_0$. Then $S \subseteq [S]$ and [S] has elements ≥ 1 , so $\varepsilon_0 < o([S])$. Thus $o([S]) > \omega^{\varepsilon_0} = \varepsilon_0$.

The *Remark* following Lemma 4.5 is also incorrect. (It did not play any further role in [2].) First, the assumption " $S \subseteq K^{>0}$ " in this *Remark* should be replaced by " $S \subseteq K^{\geq 1}$ ". Then a correct bound follows by noting that the semiring generated by S equals the additive monoid generated by the multiplicative monoid generated by S. This multiplicative monoid has ordinal at most $\omega^{\omega\mu}$ by our corrected lemma, and thus the semiring generated by S has ordinal at most $\omega^{\omega\omega^{\omega\mu}}$, which equals $\omega^{\omega^{1+\omega\mu}}$. The *Remark* gives instead the bound $\omega^{\omega^{\mu}}$. This last bound (with $S \subseteq K^{\geq 1}$) is correct for $\mu < \varepsilon_0$ (by the valid part of Lemma 4.5), but incorrect for $\mu = \varepsilon_0$ (by the counterexample in the last paragraph).

Earlier results on o([S]) are by Carruth [1] and by Gonshor and Harkleroad [4].

We take this opportunity to point out that part (3) of Lemma 4.2 in [2] is immediate from Theorem 5.12 of [3].

References

- P. Carruth, Arithmetic of ordinals with applications to ordered Abelian groups, Bull. Amer. Math. Soc. 48 (1942), 262–271.
- [2] L. van den Dries and P. Ehrlich, Fields of surreal numbers and exponentiation, Fund. Math. 167 (2001), 173–188.
- [3] H. Gonshor, An Introduction to the Theory of Surreal Numbers, London Math. Soc. Lecture Note Ser. 110, Cambridge Univ. Press, 1986.
- [4] L. Harkleroad and H. Gonshor, The ordinality of additively generated sets, Algebra Universalis 27 (1990), 507–510.

Department of Mathematics University of Illinois Urbana, IL 61801, U.S.A. E-mail: vddries@math.uiuc.edu Department of Philosophy Ohio University Athens, OH 45701, U.S.A. E-mail: ehrlich@ohiou.edu

Received 8 April 2001