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Lemma 4.5 in [2] is false. The correct result is the Lemma below. We
use the following conventions and notations: Γ is an ordered abelian group,
S ⊆ Γ ; we let [S] := {s1 + . . .+ sk : k ∈ N, s1, . . . , sk ∈ S} be the additive
monoid generated by S in Γ ; for a ∈ Γ , put S<a := {s ∈ S : s < a} and
define S≤a and S≥a similarly; if S is well-ordered, we let o(S) be its ordinal.
Also α, λ, µ are ordinals, and sums and products of ordinals are their natural
sums and natural products.

Lemma. Suppose S ⊆ Γ≥0 is well-ordered with o(S) ≤ µ. Then [S] is
well-ordered with o([S]) ≤ ωωµ.

Lemma 4.5 in [2] claims the sharper bound o([S]) ≤ ωµ. We will see
below that this is correct if µ < ε0, but incorrect for µ = ε0.

Replacing Lemma 4.5 in [2] by the lemma above does not affect any of
the main results of [2] but leads to minor changes in some proofs:

(1) In the proof of Lemma 4.6, replace “ωα” by “ωωα” and “ωσ” by
“ωωσ”.

(2) Lemma 4.10: in its statement and proof, replace “ω(ω+n)µ” by
“ωω(n+1)µ”, and in its proof replace “ωnµ” by “ωωnµ”.

(3) In the proofs of Proposition 4.11, Lemma 5.2 and Lemma 5.4, replace
“ω + 1” (occurring as a factor in some exponents) by “ω2”, and “2ω + 2”
by “ω4”.

Proof of Lemma. We proceed by induction on µ. The lemma holds triv-
ially for µ = 0 (S = ∅) and µ = 1, so let µ > 1, and assume inductively that
the desired result holds for smaller values.
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Case 1: µ is not additive. This means that µ = µ1 + µ2 for ordinals
µ1, µ2 < µ. Then S = S1 ∪ S2 with o(S1) ≤ µ1 and o(S2) ≤ µ2. Hence
[S] = [S1] + [S2], so

o([S]) ≤ o([S1]) · o([S2]) ≤ ωωµ1 · ωωµ2 = ωωµ.

Case 2: µ is additive. Then µ = ωλ, λ > 0. Let 0 < a ∈ S, 0 < n ∈ N.
It suffices to show that then [S]≤na < ωωµ, since the elements na are cofinal
in [S]. Note that [S]≤na ⊆ [S≤a] + (S ∪ {0}) + . . .+ (S ∪ {0}) where there
are n terms S ∪ {0}. Hence, with o(S≤a) = α < µ, and using the fact that
o(S ∪ {0}) ≤ µ = ωλ, we obtain

o([S]≤na) ≤ ωωαωλ . . . ωλ = ωωα+nλ.

Thus it remains to show that ωα + nλ < ωµ. To this end we write α in
Cantor normal form as α = ωα1n1 + . . . + ωαknk with λ > α1 > . . . > αk
and positive integers n1, . . . , nk. Then the Cantor normal form of ωα has
leading term ωα1+1n1, so ωα ≤ ωλ(n1 + 1) = (n1 + 1)µ. Hence ωα + nλ ≤
(n1 + 1)µ+ nµ = (n1 + 1 + n)µ < ωµ.

In trying to carry out a similar inductive proof with the bound ωµ (in-
stead of ωωµ), case 1 presents no problem, but case 2 leads to the inequality
α + nλ < µ (instead of ωα + nλ < ωµ). This inequality holds for λ < µ,
since µ is additive, but it fails when λ = µ, that is, when µ is an ε-number.
We conclude that the original Lemma 4.5 in [2] holds for µ < ε0.

Lemma 4.5 fails for µ = ε0: Let Γ = R, the additive ordered group of
real numbers, and take for S a well-ordered subset of the open interval (0, 1)
with o(S) = ε0. Then S ⊆ [S] and [S] has elements ≥ 1, so ε0 < o([S]).
Thus o([S]) > ωε0 = ε0.

The Remark following Lemma 4.5 is also incorrect. (It did not play
any further role in [2].) First, the assumption “S ⊆ K>0” in this Remark
should be replaced by “S ⊆ K≥1”. Then a correct bound follows by noting
that the semiring generated by S equals the additive monoid generated
by the multiplicative monoid generated by S. This multiplicative monoid
has ordinal at most ωωµ by our corrected lemma, and thus the semiring
generated by S has ordinal at most ωωω

ωµ

, which equals ωω
1+ωµ

. The Remark
gives instead the bound ωω

µ

. This last bound (with S ⊆ K≥1) is correct for
µ < ε0 (by the valid part of Lemma 4.5), but incorrect for µ = ε0 (by the
counterexample in the last paragraph).

Earlier results on o([S]) are by Carruth [1] and by Gonshor and Harkle-
road [4].

We take this opportunity to point out that part (3) of Lemma 4.2 in [2]
is immediate from Theorem 5.12 of [3].
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