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C1-maps having hyperbolic periodic points

by

Nobuo Aoki (Tokyo), Kazumine Moriyasu (Tokushima)
and Naoya Sumi (Tokyo)

Abstract. We show that the C1-interior of the set of maps satisfying the following
conditions:

(i) periodic points are hyperbolic,
(ii) singular points belonging to the nonwandering set are sinks,

coincides with the set of Axiom A maps having the no cycle property.

1. Introduction. LetM be a closed C∞-manifold, ‖·‖ be a Riemannian
metric on M and π : TM → M be the tangent bundle. Let C1(M) be
the space of C1-differentiable maps from M into itself endowed with the
C1-topology. Then C1(M) contains the set Diff1(M) of C1-diffeomorphisms
and this subset is open in C1(M).

The C1-stability conjecture on Diff1(M) of Palis and Smale was solved
by Mańẽ [12] as follows: if a C1-diffeomorphism f is structurally stable, then
f satisfies Axiom A and the strong transversality. By using the techniques
obtained in proving the conjecture, Palis [18] showed that if there exists a
nonempty open subset U of Diff1(M) such that all periodic points of each
g ∈ U are hyperbolic, then every diffeomorphism belonging to U can be
approximated by Axiom A diffeomorphisms with no cycles. Next it was
checked in [1] that U consists of Axiom A diffeomorphisms with no cycles.
We remark here that the methods of Liao [7] which proved the C1-stability
in the 2-dimensional case were also useful in the higher dimensional case
(the 2-dimensional case was also proved in Sannami [22]).

In this paper we shall discuss the problem of whether stability of C1-
differentiable maps implies Axiom A and no cycles.

Concerning this problem Przytycki proved the following remarkable re-
sults: Anosov differentiable maps which are not diffeomorphisms or expand-
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ings do not satisfy C1-structural stability [20], and if a differentiable map f
satisfies Axiom A and has no singular points in the nonwandering set, then
f is C1 Ω-stable if and only if f satisfies strong Axiom A and has no cycles
[21]. On the other hand, we know [23] that expanding maps are structurally
stable.

In view of these developments, we shall discuss in detail how stability
of diffeomorphisms can be adapted to the more complicated situation of
C1-maps, and so we shall focus on the noninvertible case (that is, the case
of differentiable maps which are not diffeomorphisms).

In order to state our result let us recall a few notations and basic results
about C1-maps.

Let f ∈ C1(M). For a periodic point p of f , denote by %(f, p) the minimal
integer n > 0 satisfying fn(p) = p. We say that %(f, p) is the period of p
for f . A periodic point p is called hyperbolic if Dpf

%(f,p) : TpM → TpM has
no eigenvalues of absolute value one; then TpM splits into the direct sum
TpM = Es(p)⊕Eu(p) of subspaces Es(p) and Eu(p) such that

(a) Dpf
%(f,p)(Es(p)) ⊂ Es(p), Dpf

%(f,p)(Eu(p)) = Eu(p),(1.1)

(b) there are c > 0 and 0 < λ < 1 such that for n > 0,

(i) ‖Dfn(v)‖ ≤ cλn‖v‖ (v ∈ Es(p)),
(ii) ‖Dfn(v)‖ ≥ c−1λ−n‖v‖ (v ∈ Eu(p)).

A hyperbolic periodic point p is said to be a sink (resp. source) if TpM =
Es(p) (resp. TpM = Eu(p)).

We denote by M =
∏∞
−∞M the topological product of M ’s, and define

an injective continuous map f̃ : M→M by

f̃((xn)) = (f(xn))

for (xn) ∈M. Then P 0 ◦ f̃ = f ◦ P 0 where

(1.2) P 0 : M→M

is the natural projection defined by P 0((xn)) = x0. For Λ ⊂M put

(1.3) Λf = {(xn) ∈M : xn ∈ Λ, f(xn) = xn+1, n ∈ Z}.

Then Λf is f̃ -invariant (f̃(Λf ) = Λf ) and f̃ |Λf : Λf → Λf is a homeomor-
phism when Λf 6= ∅. Notice that Λ is not necessarily f -invariant.

We say that (Mf , f̃) is the inverse limit system of (M,f). Notice that if
f : M → M is a diffeomorphism, then the inverse limit system of (M,f) is
equal to the original system (M,f).

Let TM be the subspace of M× TM defined by

TM = {(x̃, v) ∈M× TM : P 0(x̃) = π(v)}
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and define a Finsler metric ‖ · ‖ on TM by

‖(x̃, v)‖ = ‖v‖ ((x̃, v) ∈ TM).

Define the projection P 0 : TM→ TM by

(1.4) P 0(x̃, v) = v

for (x̃, v) ∈ TM. Then P 0(Tx̃M) = Tx0M and the restriction P 0|Tx̃M :
Tx̃M→ Tx0M is a linear isomorphism.

We define a C0-vector bundle

π̃ : TM→M

by π̃(x̃, v) = x̃ for (x̃, v) ∈ TM, and write Tx̃M = π̃−1(x̃) for x̃ ∈ M. Let
Df̃ : TM→ TM be defined by

Df̃(x̃, v) = (f̃(x̃),Dx0f(v)) ((x̃, v) = ((xn), v) ∈ TM),

where x0 is a point in (xn) and Dx0f is the derivative of f at x0.
We say that a closed f -invariant subset Λ is hyperbolic if the vector

bundle TM|Λf =
⋃
x̃∈Λf Tx̃M splits into the Whitney sum TM|Λf = Es⊕Eu

of subbundles Es and Eu satisfying the following conditions:

(a) Df̃(Es) ⊂ Es, Df̃(Eu) = Eu,
(b) Df̃ |Eu : Eu → Eu is injective,
(c) there exist c > 0 and 0 < λ < 1 such that for n ≥ 0,

‖Df̃n|Es‖ ≤ cλn, ‖(Df̃ |Eu)−n‖ ≤ cλn,
where ‖T‖ denotes the supremum norm of a linear bundle map T . It is
checked from the techniques in [20, §0 and §1] that

(1) Es and Eu are C0-vector bundles over Λf ,
(2) there exist 0 < λ < 1 and a new norm ‖ · ‖ such that

‖Df̃ |Es‖ ≤ λ, ‖(Df̃ |Eu)−1‖ ≤ λ,
(3) if P 0(x̃) = P 0(ỹ) for x̃, ỹ ∈ Λf , then Es(x̃) = Es(ỹ), but in general

Eu(x̃) 6= Eu(ỹ).

Let f , in particular, be a C1-map from M onto itself. Then f is called
Anosov if M is hyperbolic. An Anosov map f is said to be expanding if
Eu(x̃) = Tx̃M for x̃ ∈Mf .

For x̃ = (xn) ∈Mf and ε > 0 put

W s
ε (x̃, f) = {y ∈M : d(xn, fn(y)) ≤ ε for n ≥ 0},

(1.5)
W u
ε (x̃, f) = {y ∈M : there exists ỹ = (yn) ∈Mf with y0 = y

such that d(x−n, y−n) ≤ ε for n ≥ 0}.
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Then W s
ε (x̃, f) = W s

ε (ỹ, f) if P 0(x̃) = P 0(ỹ) for x̃, ỹ ∈Mf , and

W s
ε (x̃, f) ⊂ f−1(W s

ε (f̃(x̃), f)), W u
ε (x̃, f) ⊂ f(W u

ε (f̃−1(x̃), f)).

If Λ is hyperbolic, then it follows from [5, Theorem 5.1] that
{W s

ε (x̃, f)}x̃∈Λf and {W u
ε (x̃, f)}x̃∈Λf are continuous families of C1-disks in

M such that
Tx0W

σ
ε (x̃, f) = P 0(Eσ(x̃))

for x̃ = (xn) ∈ Λf and σ = s,u. It is easily checked that for x̃ ∈ Λf ,

W s(x̃, f) =
⋃

n≥0

f−n(W s
ε (f̃n(x̃), f)),

W u(x̃, f) =
⋃

n≥0

fn(W u
ε (f̃−n(x̃), f)),

where
W s(x̃, f) = {y ∈M : d(xn, fn(y))→ 0 as n→∞},
W u(x̃, f) = {y ∈M : there exists ỹ = (yn) ∈Mf with y0 = y

such that d(x−n, y−n)→ 0 as n→∞}.
Notice that W σ(x̃, f) (σ = s,u) is not an immersed submanifold whenever
f is noninvertible.

A closed f -invariant set Λ is said to be isolated if there is a compact
neighborhood U of Λ satisfying Λf = Uf . If, in particular, f is a diffeomor-
phism, then Λf = Uf means Λ =

⋂∞
n=−∞ f

n(U).
If Λ is isolated and there is a point x ∈ Λ such that {fn(x) : n ≥ 0} is

dense in Λ, then Λ is called a basic set. It follows from [20, Theorem 3.11]
and [21, p. 62] that an isolated hyperbolic set Λ decomposes into a finite
disjoint union Λ = Λ1∪. . .∪Λs of basic sets Λi since the inverse limit system
f̃ of f is an expansive homeomorphism with the shadowing property.

We say that there exists an n-cycle in Λ if there exists {Λij : 1 ≤ j ≤
n+ 1} such that

(1) Λi1 = Λin+1 ,
(2) Λij 6= Λik (1 ≤ j 6= k ≤ n),
(3) {W s(Λij , f) \ Λij} ∩ {W u(Λij+1 , f) \ Λij+1} 6= ∅ (1 ≤ j ≤ n),

where

W s(Λi, f) =
⋃

x̃∈(Λi)f

W s(x̃, f), W u(Λi, f) =
⋃

x̃∈(Λi)f

W u(x̃, f).

We say sometimes that Λi has a homoclinic point when it has a 1-cycle.
The subset

Ω(f) = {x ∈M : for any neighborhood U of x there is n > 0

such that fn(U) ∩ U 6= ∅}
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is closed and satisfies f(Ω(f)) ⊂ Ω(f). We say that Ω(f) is the nonwander-
ing set . Notice that if the set of periodic points, Per(f), is dense in Ω(f),
then f(Ω(f)) = Ω(f). Recall that f satisfies Axiom A if Per(f) is dense in
Ω(f) and Ω(f) is hyperbolic. When f satisfies Axiom A, it is easily checked
that Ω(f) is isolated, and so Ω(f) decomposes into a finite disjoint union
of basic sets. We say that an Axiom A differentiable map f has no cycles if
there are no cycles in Ω(f). Define

P(M) = {f ∈ C1(M) : every periodic point of f is hyperbolic},
AN (M) = {f ∈ C1(M) : f satisfies Axiom A and has no cycles}.

Since AN (M) is open in C1(M) [14, Theorem B], we have AN (M) ⊂
intP(M). Here intE denotes the interior of E.

If Dxf : TxM → Tf(x)M is not injective, then x is called a singular point
for f . Denote by S(f) the set of all singular points of f . Obviously, S(f) is
a closed subset of M . Notice that an expanding map has no singular points.

Let f ∈ C1(M). Then f is said to be C1-structurally stable if there
exists a neighborhood U(f) of f such that for g ∈ U(f), g is topologically
conjugate to f . A differentiable map which is C1-structurally stable has no
singular points [8, p. 381]. But this is not true for C2-structural stability
[2, Theorem 3]. We say that f is C1 Ω-stable if there exists a neighborhood
U(f) of f such that g|Ω(g) is topologically conjugate to f |Ω(f) for all g ∈
U(f). Notice that C1-differentiable maps satisfying C1 Ω-stability belong
to intP(M). This follows from [3, Theorem 1].

Our main theorem is the following:

Theorem A. If a C1-map f belonging to intP(M) satisfies the condi-
tion

Ω(f) ∩ S(f) ⊂ {p ∈ Per(f) : p is a sink},
then f satisfies Axiom A and has no cycles.

The proof of this theorem is based upon results related to stability prob-
lems from Mañé [12], Palis [18] and Przytycki [21].

If f satisfies Axiom A and Ω(f) is the disjoint union Ω1 ∪ Ω2 of two
closed f -invariant sets such that:

(i) f |Ω1 is injective,
(ii) Ω2 is contained in the closure of all source periodic points,

then f is said to satisfy strong Axiom A. When f is a diffeomorphism, the
notion of strong Axiom A coincides with that of Axiom A.

As an extension of the result of Przytycki [21, Theorem A] stated above
we have:

Corollary B. If f ∈ C1(M) satisfies the assumption of Theorem A,
then the following are equivalent :
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(1) f satisfies strong Axiom A and has no cycles,
(2) f is C1 Ω-stable.

2. Proof of Theorem A. To show Theorem A we need the following
propositions, where cl(E) denotes the closure of E.

Proposition 1. If f ∈ intP(M) and {Ω(f) \ cl(Per(f))} ∩ S(f) = ∅,
then Ω(f) = cl(Per(f)).

This will follow from the techniques used to prove the closing lemma for
C1-maps with finite singular points (see Wen [26] and [27, Theorem A]).

Let f ∈ P(M). Then every periodic point p of f is hyperbolic. Thus p
satisfies (1.1). We set

(2.1) Ii(f) = {p ∈ Per(f) : dimEs(p) = i} (0 ≤ i ≤ dimM)

where Es(p) is as in (1.1), and denote by ]E the cardinality of E.

Proposition 2. Every f ∈ intP(M) has the following properties:

(a) ]IdimM (f) <∞,
(b) cl(I0(f)) is hyperbolic.

Proposition 2(a) was proved in [19, Theorem 4.1] for diffeomorphisms
and in [6] for differentiable maps without singular points. We shall give the
proof of (a) for the general case. (b) is clear for diffeomorphisms because
I0(f) = IdimM (f−1). Unfortunately it is not true that ]I0(f) < ∞ for the
noninvertible case, and so we have to give a proof. To do that, the technique
of [12, Theorem I.4] is useful.

We define

F(M) = {f ∈ intP(M) : f satisfies the assumption of Theorem A}
and put

(2.2) Λ(i0) =
i0⋃

i=0

cl(Ii(f)) (0 ≤ i0 ≤ dimM).

Proposition 3. Let f ∈ F(M) and 0 ≤ i0 ≤ dimM − 2. If Λ(i0) is
hyperbolic and Λ(i0) ∩ cl(Ii0+1(f)) = ∅, then cl(Ii0+1(f)) is hyperbolic.

This will be shown using the methods of [12, p. 167].

Proposition 4. Let f ∈ F(M). Then

(a) cl(I0(f)) ∩⋃dimM
i=1 cl(Ii(f)) = ∅,

(b) if 1 ≤ i0 ≤ dimM − 2 and Λ(i0) is hyperbolic, then Λ(i0) ∩
cl(Ii0+1(f)) = ∅.

Proposition 4(a) is clear for diffeomorphisms because ]I0(f) < ∞, but
we have to prove it for C1-maps. We shall derive a contradiction by showing
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that if (a) is false then f has homoclinic points. (b) was given in [1, §3]
for diffeomorphisms. We shall give the proof of (b) for the class F(M) of
differentiable maps which contains the diffeomorphisms.

Once Propositions 2–4 are established, we conclude that cl(Per(f)) is
hyperbolic when f ∈ F(M).

Indeed, cl(IdimM (f)) = IdimM (f) and cl(I0(f)) are hyperbolic by Pro-
position 2. From Propositions 3 and 4 it follows that cl(Ii(f)) (1 ≤ i ≤
dimM−1) are hyperbolic. Thus cl(Per(f)) =

⋃dimM
i=0 cl(Ii(f)) is hyperbolic.

Combining this result and Proposition 1 shows that each f ∈ F(M)
satisfies Axiom A. Using the techniques of [17, Theorem, p. 221], it is checked
that if f ∈ intP(M) satisfies Axiom A, then f has no cycles. Therefore
Theorem A is proved.

Thus it remains to show Propositions 1–4. We devote the rest of this
paper to the proofs.

3. Proof of Proposition 1. We first prepare some auxiliary results.
For x ∈ M and ξ > 0 put TxM(ξ) = {v ∈ TxM : ‖v‖ ≤ ξ}. Then

there exists ξ > 0 such that the exponential map expx : TxM(ξ) → M is a
C∞-embedding for all x ∈M .

The following Lemmas 3.1 and 3.2 were proved in [3, Lemma 1.1] and
[12, Lemma 1.8] for diffeomorphisms. But their proofs can be adapted to
the noninvertible case, and so we omit them.

For E ⊂M , let Bε(E) denote the closed ball defined by

Bε(E) = {y ∈M : d(x, y) ≤ ε for some x ∈ E}.
Lemma 3.1. Let f ∈ C1(M). For every neighborhood U(f) of f there

exist a neighborhood U1(f) ⊂ U(f) of f and ε1 > 0 such that for g ∈ U1(f),
a neighborhood U of a finite sequence θ = {x1, . . . , xN} with xi 6= xj (i 6= j)
and linear maps Li : TxiM → Tg(xi)M (1 ≤ i ≤ N) with ‖Li −Dxig‖ ≤ ε
there are g ∈ U(f) and δ > 0 with the following properties:

(a) B4δ(θ) ⊂ U ,
(b) g(x) = g(x) (x ∈ θ ∪ {M \B4δ(θ)}),
(c) g(x) = expg(xi) ◦Li ◦ exp−1

xi (x) (x ∈ Bδ(xi), 1 ≤ i ≤ N).

For f ∈ P(M), 0 ≤ i ≤ dimM and n > 0 define

Pern(f) = {p ∈ Per(f) : fn(p) = p}, Ini (f) = Ii(f) ∩ Pern(f),

where Ii(f) is defined in (2.1) for 0 ≤ i ≤ dimM .

Lemma 3.2. Let f ∈ intP(M) and U(f) be a connected open neighbor-
hood of f contained in intP(M). Then, for all g ∈ U(f), 0 ≤ i ≤ dimM
and n > 0,

]Ini (f) = ]Ini (g) <∞.
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Lemma 3.3. If f ∈ intP(M), then f(Ω(f)) = Ω(f).

Proof. If f is a diffeomorphism, then the assertion is clear. Thus it suf-
fices to show it for the noninvertible case. It is clear that f(Ω(f)) ⊂ Ω(f).
Suppose there is q ∈M such that q ∈ Ω(f)\f(Ω(f)). Since q ∈ Ω(f), there
exist sequences {xi} of points and {ki} of positive integers such that

d(xi, q) ≤ 1/i and d(fki(xi), q) ≤ 1/i.

We can suppose that {fki−1(xi)} converges to y as i → ∞. Then y ∈
f−1(q) and so y 6∈ Ω(f). Thus there is a neighborhood U(y) of y such that
f j(U(y)) ∩ U(y) = ∅ for j > 0. Then for i > 0 large enough we have

(3.1) fki−1(xi) ∈ U(y) and fk(xi) 6∈ U(y) (0 ≤ k < ki − 1).

Since f(cl(Per(f))) = cl(Per(f)), we have q 6∈ cl(Per(f)). Let U(q) be
a neighborhood of q satisfying U(q) ∩ cl(Per(f)) = ∅, and let U(f) be a
connected open neighborhood of f contained in intP(M). By taking U(y)
and U(f) small enough we can suppose that for all g ∈ U(f),

(3.2) g(U(y)) ⊂ U(q).

By using Lemma 3.1 we can find h ∈ U(f) such that

(i) y 6∈ S(h),(3.3)

(ii) f(z) = h(z) (z ∈ {y} ∪ {M \ U(y)})
(as above, S(h) denotes the set of singular points of h). Then there is a
neighborhood V ⊂ U(y) of y such that h|V : V → h(V ) is a diffeomorphism.
Thus, for i > 0 large enough there is x′i ∈ V satisfying h(x′i) = xi. Since
h(y) = q and xi → q as i→ ∞, we have x′i → y as i → ∞. Thus, for i > 0
large enough we can construct a diffeomorphism ϕ : M →M such that

ϕ(fki−1(xi)) = x′i, {x ∈M : ϕ(x) 6= x} ⊂ U(y), g = h ◦ ϕ ∈ U(f)

and so
g(fki−1(xi)) = xi.

Then
gki(fki−1(xi)) = fki−1 ◦ g(fki−1(xi)) = fki−1(xi)

by (3.1) and (3.3), and g(U(y)) ⊂ U(q) by (3.2). Thus,

g(fki−1(xi)) ∈ Per(g) ∩ U(q) 6= ∅.
Since U(y) ∩ cl(Per(f)) = ∅, we have f(z) = g(z) for z ∈ cl(Per(f)). There-
fore, ]Pern(f) < ]Pern(g) for n = ki, which contradicts Lemma 3.2.

Lemma 3.4. Let f ∈ C1(M) and q ∈ Ω(f). If f−1(q′)∩Ω(f) 6= ∅ for all
q′ ∈ f−n(q) ∩Ω(f) where n ≥ 0, and if {⋃k≥0 f

−k(q) ∩ Ω(f)} ∩ S(f) = ∅,
then for every neighborhood U(f) of f and every neighborhood U(q) of q
there is g ∈ U(f) such that
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(1) Per(g) ∩ U(q) 6= ∅,
(2) {x ∈M : f(x) 6= g(x)} ⊂ ⋃n>0 f

−n(U(q)).

Lemma 3.4 easily follows from [27, Theorem A], and so we omit the
proof.

Proof of Proposition 1. Proposition 1 was proved in [9, Lemma 3.1] for
the case when f is a diffeomorphism. Thus it remains to give the proof for
the noninvertible case. Suppose that q ∈ Ω(f) \ cl(Per(f)). By Lemma 3.3
we have f−1(q′) ∩ Ω(f) 6= ∅ for all q′ ∈ f−n(q) ∩ Ω(f) and n ≥ 0. Since
f(cl(Per(f))) = cl(Per(f)), we have

{f−n(q) ∩Ω(f)} ∩ cl(Per(f)) = ∅
for n ≥ 0. Thus,

{f−n(q) ∩Ω(f)} ∩ S(f) = ∅
for n ≥ 0 because {Ω(f) \ cl(Per(f))}∩S(f) = ∅. Hence the assumptions of
Lemma 3.4 were satisfied.

Let U(f) be a connected open neighborhood of f contained in intP(M)
and U(q) be a neighborhood of q satisfying U(q)∩cl(Per(f)) = ∅. By Lemma
3.4 there is g ∈ U(f) such that Per(g) ∩ U(q) 6= ∅ and

{z ∈M : f(z) 6= g(z)} ⊂
⋃
{f−n(U(q)) : n ≥ 0}.

Since f(cl(Per(f))) = cl(Per(f)), we have
⋃
{f−n(U(q)) : n ≥ 0} ∩ cl(Per(f)) = ∅,

and so f(z) = g(z) for z ∈ cl(Per(f)). Therefore, ]Pern(f) < ]Pern(g) for
some n > 0, which contradicts Lemma 3.2.

4. Proof of Proposition 2(a). Let f ∈ intP(M). Then it follows from
[10, Theorem 4.1] that there exist a neighborhood U(f) ⊂ intP(M) of f and
numbers 0 < λ0 < 1, m0 > 0 and τ0 > 0 such that for all g ∈ U(f) the
following hold:

(a) for p̃ = (pn) ∈ ⋃dimM
i=1 Ii(g)g with %(g, p0) = n > τ0,

(4.1)
[n/m0]−1∏

j=0

‖Dg̃m0 |Es(g̃m0j(p̃))‖ ≤ λ[n/m0]
0 ,

(b) for p̃ = (pn) ∈ ⋃dimM−1
i=0 Ii(g)g with %(g, p0) = n > τ0,

(4.2)
[n/m0]−1∏

j=0

‖(Dg̃m0 |Eu(g̃m0j(p̃)))−1‖ ≤ λ[n/m0]
0 ,
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(c) for p̃ = (pn) ∈ ⋃dimM
i=1 Ii(g)g,

(4.3) lim
n→∞

1
n

n−1∑

j=0

log ‖Dg̃m0 |Es(g̃m0j(p̃))‖ ≤ log λ0,

(d) for p̃ = (pn) ∈ ⋃dimM−1
i=0 Ii(g)g,

(4.4) lim
n→∞

1
n

n−1∑

j=0

log ‖(Dg̃m0 |Eu(g̃m0j(p̃)))−1‖ ≤ log λ0,

where Ii(g) is as in (2.1), Ii(g)g is as in (1.3) and [r] denotes the greatest
integer not greater than r.

Let ε1 satisfy the conclusion of Lemma 3.1 for U0(f) and let λ0 < λ1 < 1.
Choose ε0 > 0 such that (1 + ε0)λ1 < 1 and ε0 < 1

2 (ε1/2)m0 , and take
H1 ≥ 1 satisfying ε0 > e−H1 . Denote by N(λ0, λ1) > 0 the smallest integer
satisfying

(4.5) N(λ0, λ1) log(λ1/λ0) > H1,

and write

(4.6) C(λ0, λ1) =
log(λ1/λ0)

H1
.

Lemma 4.1. Let a sequence {p(n) : 0 ≤ n ≤ N−1} satisfy the following :

(i) N ≥ N(λ0, λ1),
(ii) p(n) > 0,
(iii) −H1 ≤ log p(n),
(iv)

∏N−1
n=0 p(n) ≤ λN0 .

Then there exist an integer k with k > NC(λ0, λ1) and a sequence 0 ≤ n1 <
. . . < nk < N − 1 such that for 1 ≤ j ≤ k and nj < l ≤ N − 1,

l∏

n=nj+1

p(n) ≤ λl−nj1 .

The statement of Lemma 4.1 is a reformulation of the result stated in
[19, Lemma, p. 212] and [12, Lemma II.3], and so we omit the proof.

We set
Q = {x ∈ cl(IdimM (f)) : ‖Dxf

m0‖ < ε0}.
Then there is δ > 0 such that

(4.7) (a) if d(x, y) ≤ 2δ (x ∈ cl(IdimM (f)) \Q, y ∈M), then

‖Dyf
m0‖ ≤ (1 + ε0)‖Dxf

m0‖,
(b) if d(x, y) ≤ 2δ (x, y ∈ cl(IdimM (f))), then

| ‖Dyf
m0‖ − ‖Dxf

m0‖ | ≤ ε0.
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Put λ2 = (1 + ε0)λ1. Since M is compact, there is K > 0 such that for
{x1, . . . , xK} ⊂ M with xi 6= xj (i 6= j) there exist xi, xj (1 ≤ i 6= j ≤ K)
satisfying d(xi, xj) ≤ (1 − λ2)δ. Let N ′ > 0 be an integer such that K ≤
N ′C(λ0, λ1).

To obtain the conclusion of Proposition 2(a) suppose that ]IdimM (f)
= ∞. Since ]Pern(f) < ∞ for n > 0 (by Lemma 3.2), there is a periodic
point p ∈ IdimM (f) with period %(f, p) satisfying

%(f, p) ≥ max{τ0,m0N
′,m0N(λ0, λ1)}.

Put N = [%(f, p)/m0]. If q = fm0n(p) ∈ Q for some 0 ≤ n ≤ N − 1,
then we can construct a family {Lfi(q) : Tfi(q)M → Tfi+1(q)M}m0−1

i=0 of
isomorphisms such that

‖Lfi(q) −Dfi(q)f‖ ≤ ε1,

inf{‖Lfi(q)(v)‖ : v ∈ Tfi(q)M with ‖v‖ = 1} ≥ ε1/2.

By Lemma 3.1 there is g ∈ U0(f) such that

(1) g(x) = f(x) for x ∈ {p, f(p), . . . , f%(f,p)−1(p)},
(2) if fm0n(p) 6∈ Q for 0 ≤ n ≤ N − 1, then Dfi(p)g = Dfi(p)f for

m0n ≤ i ≤ m0(n+ 1)− 1,
(3) if fm0n(p) ∈ Q for 0 ≤ n ≤ N − 1, then Dfi(p)g = Lfi(p) for

m0n ≤ i ≤ m0(n+ 1)− 1,
(4) Dfi(p)g = Dfi(p)f for Nm0 ≤ i ≤ %(f, p)− 1.

Define a function p(·) : {0, 1, . . . , N − 1} → R by

p(n) = ‖Dfm0n(p)g
m0‖.

Then −H1 < log p(n) for 0 ≤ n ≤ N − 1. Since g ∈ U0(f), by (4.1) we have
N−1∏

n=0

p(n) ≤ λN0 ,

and so {p(n)} satisfies the conditions of Lemma 4.1. Thus there are an
integer k > K and a sequence 0 ≤ n1 < . . . < nk < N − 1 such that

(4.8)
l∏

n=nj+1

p(n) ≤ λl−nj1 (1 ≤ j ≤ k, nj < l ≤ N − 1).

By the choice of K there are 0 ≤ i < j ≤ k such that

d(gm0ni(p), gm0nj (p)) ≤ (1− λ2)δ.

By (4.7) and (4.8) it is easily checked that

(4.9) (1) gm0(nj−ni)|Bδ(gm0ni(p)) is a Lipschitz map and its Lipschitz
constant is less than λ2 < 1,

(2) gm0(nj−ni)(Bδ(gm0ni(p))) ⊂ Bδ(gm0ni(p)).
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Thus there is a unique z ∈ Bδ(gm0ni(p)) satisfying gm0(nj−ni)(z) = z. Since
N = [%(f, p)/m0] and 0 < n1 < . . . < nk < N−1, we have 0 < m0(nj−ni) <
%(f, p), and so z 6= gm0ni(p). On the other hand, since

g%(f,p)m0(nj−ni) : Bδ(gm0ni(p))→ Bδ(gm0ni(p))

is a contraction, we have z = gm0ni(p), which is a contradiction. Thus
]IdimM (f) =∞ cannot happen. Therefore Proposition 2(a) is proved.

5. Proof of Key lemma (Lemma 5.1) and Proposition 2(b). Let
Λ be a closed f -invariant set. We say that a Df̃ -invariant subbundle E ⊂
TM|Λf is contracting if Df̃ |E is contracting, and that E is expanding if
Df̃ |E is expanding.

Let f ∈ intP(M) and Ii(f) be as in (2.1). Let m0 and λ0 satisfy (4.1)–
(4.4). It follows from [10, Proposition II.1] that TM|cl(Ii(f))f (1 ≤ i ≤
dimM − 1) splits into the Whitney sum TM|cl(Ii(f))f = Ẽs

i ⊕ Ẽu
i of sub-

bundles Ẽs
i and Ẽu

i such that

(a) Df̃m0(Ẽs
i ) ⊂ Ẽs

i , Df̃
m0(Ẽu

i ) = Ẽu
i ,(5.1)

(b) Df̃m0 |Ẽu
i : Ẽu

i → Ẽu
i is injective,

(c) ‖Df̃m0 |Ẽs
i (x̃)‖ · ‖(Df̃m0 |Ẽu

i (x̃))−1‖ ≤ λ0 for x̃ ∈ cl(Ii(f))f .

It is easily checked from [20, §0 and §1] that for 1 ≤ i ≤ dimM − 1,

(5.2) (1) Ẽs
i and Ẽu

i are C0-vector bundles over cl(Ii(f))f ,
(2) if x̃ = (xn), ỹ = (yn) ∈ cl(Ii(f))f satisfy x0 = y0, then Ẽs

i (x̃)
= Ẽs

i (ỹ ), and so we write Ẽs
i (x0) = P 0(Ẽs

i (x̃))(⊂ Tx0M) where
P 0 is defined as in (1.4) (notice that Ẽu

i (x̃) 6= Ẽu
i (ỹ ) in general),

(3) cl(Ii(f)) is hyperbolic if and only if Ẽs
i is contracting and Ẽu

i

expanding.

In the case when i = 0, cl(I0(f)) is hyperbolic if and only if TM|cl(I0(f))f
is expanding. If f is a diffeomorphism, then we know [19, Theorem 4.1] that
]I0(f) <∞ and I0(f) is hyperbolic.

Lemma 5.1. Let f ∈ intP(M). Then

(a) TM|cl(I0(f))f is expanding ,
(b) if f ∈ F(M) and Ẽs

i is contracting for some 1 ≤ i ≤ dimM−1, then
Ẽu
i is expanding.

If we establish Lemma 5.1, then we obtain Proposition 2(b) from Lem-
ma 5.1(a). The proof of Lemma 5.1(a) is similar to that of (b), and so
we omit it. To show (b) we suppose that Ẽs

i is contracting and Ẽu
i is not

expanding for some 1 ≤ i ≤ dimM − 1. Then we can find a periodic point
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p̃ ∈ ⋃dimM−1
i=0 Ii(f)f such that

(5.3) lim
n→∞

1
n

n−1∑

j=0

log ‖(Df̃m0 |Eu(f̃m0j(p̃)))−1‖ > log λ0,

which in fact contradicts (4.4). Thus it remains to find a periodic point
satisfying (5.3). To do that we need the techniques used in proving Theorem
I.4 of [12].

By (5.1)(b) we can define

Df̃−m0 |Ẽu
i : Ẽu

i → Ẽu
i

by Df̃−m0 |Ẽu
i (x̃) = (Df̃m0 |Ẽu

i (f̃−m0(x̃)))−1 for x̃ ∈ cl(Ii(f))f . We say that
for x̃ ∈ cl(Ii(f))f and n > 0 the pair (x̃, f̃m0n(x̃)) is a γ-string if

n∏

j=1

‖Df̃−m0 |Ẽu
i (f̃m0j(x̃))‖ ≤ γn,

and that it is a uniform γ-string if (f̃m0k(x̃), f̃m0n(x̃)) is a γ-string for
0 ≤ k < n. Let us say that for 0 ≤ N < n a pair (x̃, f̃m0n(x̃)) is an
(N, γ)-obstruction if (x̃, f̃m0k(x̃)) is not a γ-string for N ≤ k < n.

Take γi (0 ≤ i ≤ 4) with

0 < λ0 < γ0 < γ1 < γ2 < γ3 < γ4 < 1.

Let N(γi, γj) and C(γi, γj) (0 ≤ i < j ≤ 4) be as in (4.5) and (4.6), and let
d̃ be a compatible metric for the product topological space M.

Lemma 5.2. If Ẽu
i is not expanding , then for every ε > 0 there exists

a compact invariant set Λ(ε) ⊂ cl(Ii(f))f such that each x̃0 ∈ Λ(ε) has
the following property : there exist x̃1 ∈ Λ(ε) ∩ Ii(f)f arbitrarily near to x̃0,
n1 ≥ 0 and ỹ ∈ Λ(ε) such that

(a) d̃(f̃m0n1(x̃1), ỹ ) < ε/4,
(b) (ỹ, f̃m0n(ỹ )) is an (N(γ3, γ4), γ2)-obstruction for n > N(γ3, γ4),
(c) if n1 > 0, then (x̃1, f̃m0n1(x̃1)) is a uniform γ4-string.

Moreover Λ(ε) is the closure of its interior in cl(Ii(f))f .

Lemma 5.2 is checked in the same way as Lemma II.7 of [12], so we omit
the proof.

The following lemma is stated in [12, Lemma II.5].

Lemma 5.3. Let x̃ ∈ cl(Ii(f))f and let n, r and l be nonnegative inte-
gers with 0 ≤ r ≤ r + l ≤ n. If (x̃, f̃m0n(x̃)) is a γ0-string containing an
(N(γ3, γ4), γ2)-obstruction (f̃m0r(x̃), f̃m0(r+l)(x̃)) such that
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(a) n ≥ N(γ0, γ4),
(b) nC(γ0, γ4) > r + l,
(c) r + l ≥ N(γ1, γ2) and
(d) (r + l)C(γ1, γ2) > r +N(γ3, γ4),

then there exists a uniform γ4-string (x̃, f̃m0m(x̃)), r + l ≤ m ≤ n, that is
not a γ1-string.

Let Λ(ε) be as in Lemma 5.2 and fix x̃0 ∈ Λ(ε). Choose x̃1 ∈ Λ(ε)∩Ii(f)f ,
ỹ ∈ Λ(ε) and n1 > 0 as in Lemma 5.2 and take N1 with

N1 > max{N(γ3, γ4), N(γ1, γ2)}.
Since Λ(ε) is the closure of its interior in cl(Ii(f))f and (ỹ, f̃m0N1(ỹ )) is
an (N(γ3, γ4), γ2)-obstruction, there exists x̃2 ∈ Λ(ε) ∩ Ii(f)f such that

d̃(x̃2, ỹ ) < ε/4 and (x̃2, f̃m0N1(x̃2)) is an (N(γ3, γ4), γ2)-obstruction. Since
x̃2 ∈ Ii(f)f and λ0 < γ0, we deduce by (4.4) that (x̃2, f̃m0n(x̃2)) is a γ0-

string for n large enough. Thus (x̃2, f̃m0n(x̃2)) satisfies the conditions of
Lemma 5.3 (r = 0, l = N1), and so we can choose N1 ≤ n2 ≤ n such that
(x̃2, f̃m0n2(x̃2)) is a uniform γ4-string, but not a γ1-string.

Put K = minx̃∈cl(Ii(f))f ‖Df̃−m0 |Ẽu
i (x̃)‖ > 0 and take 0 < k0 < 1 with

λ0 < k2
0γ1 and γ4 < k0. Since N1 is large enough and n2 ≥ N1, we can

suppose that
γn2

1 Kn1 ≥ (k0γ1)n2+n1 .

Continuing in this manner we obtain the following lemma.

Lemma 5.4. Suppose that Ẽu
i is not expanding. Then for all ε > 0 and

γ1, γ4 with 0 < λ0 < γ1 < γ4 < 1 there exist sequences {x̃j}j≥1 ⊂ Λ(ε) and
{nj}j≥1 such that

(1) d̃(f̃m0nj (x̃j), x̃j+1) < ε/2 (j ≥ 1),
(2) if nj > 0, then (x̃j , f̃m0nj (x̃j)) is a uniform γ4-string ,

(3) if j ≥ 2 is even, then nj > 0 and (x̃j , f̃m0nj (x̃j)) is not a γ1-string ,
and

γ
nj
1 Knj−1 ≥ (k0γ1)nj+nj−1 .

To show (5.3) we extend the continuous bundles Ẽs
i and Ẽu

i to a neigh-
borhood of cl(Ii(f))f . In the same way as in the proof of [4, Theorem (4.2)]
it is checked that there are a closed neighborhood V of cl(Ii(f))f and a
C0-splitting TMf |V = Ês

i ⊕ Êu
i such that

(a) if x̃ ∈ V ∩ f̃−m0(V ), then Df̃m0(Êσi (x̃)) = Êσi (f̃m0(x̃)) (σ = s,u),
(b) Êσi |cl(Ii(f))f = Ẽσi (σ = s,u),
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(c) there is 0 < λ0 < λ < 1 such that for x̃ ∈ V ∩ f̃−m0(V ),

‖Df̃m0 |Ês
i (x̃)‖ · ‖Df̃−m0 |Êu

i (f̃m0(x̃))‖ ≤ λ.

Choose δ > 0 such that if x̃ ∈ cl(Ii(f))f and ỹ = (yi) ∈Mf satisfy d̃(x̃, ỹ ) <
δ, then ỹ ∈ V and

(5.4) k0‖Df̃−m0 |Êu
i (ỹ )‖ ≤ ‖Df̃−m0 |Êu

i (x̃)‖ ≤ k−1
0 ‖Df̃−m0 |Êu

i (ỹ )‖.
Let 0 < ε < δ be sufficiently small. Choose {x̃j}j≥1 and {nj}j≥1 satis-

fying the assertion of Lemma 5.4 for this ε. Without loss of generality we
suppose that d̃(x̃1, f̃m0nk(x̃k)) < ε/2 for some large k > 0 because Λ(ε) is
compact. Then we have to find p̃ ∈ Per(f̃) such that

f̃m0n(p̃) = p̃,
(5.5)

d̃(f̃m0l(f̃m0(n0+n1+...+nj−1)(p̃)), f̃m0l(x̃j)) < δ (0 ≤ l ≤ nj , 1 ≤ j ≤ k),

where n = n1 + . . .+ nk and n0 = 0.
If (5.5) is established, then the point p̃ meets our requirement. In fact it

suffices to see that (5.3) holds for p̃. By (5.4) and Lemma 5.4(2) we have
n∏

l=1

‖Df̃−m0 |Êu
i (f̃m0l(p̃))‖ < k−m0

0 γm0
4 ,

and so Êu
i (p̃) ⊂ Eu(p̃) since k−1

0 γ4 < 1. Thus p̃ ∈ ⋃dimM−1
j=i Ij(f)f . On the

other hand, by (5.4), (5.5) and Lemma 5.4(3),
n∏

l=1

‖Df̃−m0 |Êu
i (f̃m0l(p̃))‖ ≥ k2n

0 γn1 > λn0 .

Therefore we obtain (5.3).
It remains to show (5.5). To do that we apply the local stable manifold

theorem for diffeomorphisms ([5], [23]).
For x̃ ∈ M and ξ > 0 put Tx̃M(ξ) = {(x̃, v) ∈ TM : ‖v‖ ≤ ξ}. Then

expx̃ : Tx̃M(ξ)→M defined by

expx̃ = expx0
◦P 0|Tx̃M(ξ)

is a C∞-embedding for small ξ > 0 as described in §3. Since S(f)∩ cl(Ii(f))
= ∅, there exists 0 < r0 < ξ such that

F−1
x̃ = (exp−1

x̃ ◦fm0 ◦ expf̃−m0 x̃)−1|Tx̃M(r0)

is a C1-embedding for x̃ ∈ cl(Ii(f))f .

Let x̃ ∈ cl(Ii(f))f and Ẽσi (x̃) be as in (5.1) for σ = s,u. We put
Ẽs
i (x̃, r) = Ẽs

i (x̃) ∩ Tx̃M(r) (r > 0) and denote by o the zero vector of
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Tx̃M. We put

Σb(x̃, r) = {σ : Ẽs
i (x̃, r)→ Ẽu

i (x̃) : max
v∈Ẽs

i(x̃,r)
‖σ(v)‖ <∞, Lip(σ) ≤ 1},

and
Σ0(x̃, r) = {σ ∈ Σb(x̃, r) : ‖σ(o)‖ ≤ r}.

Here Lip(σ) denotes a Lipschitz constant of σ. Define

d′(σ, σ′) = max
v∈Ẽs

i(x̃,r)
‖σ(v)− σ′(v)‖ (σ, σ′ ∈ Σb(x̃, r)).

Then (Σb(x̃, r), d′) is a complete metric space and Σ0(x̃, r) is a closed subset
of Σb(x̃, r).

Let ε0 > 0 be small enough and choose 0 < r1 ≤ r0 satisfying

Lip((F−1
x̃ −Dx̃f̃

−m0)|Tx̃M(2r1)) ≤ ε0 for x̃ ∈ cl(Ii(f))f .

Since Ẽs
i is contracting by the assumption of Lemma 5.1(b), we have

‖Df̃m0 |Ẽs
i‖ ≤ µ < 1

for some µ < 1 (take m0 large enough if necessary). Let pσ : Ẽs
i ⊕ Ẽu

i → Ẽσi
(σ = s,u) be the natural projection. Then it is easily checked that if σ ∈
Σ0(x̃, r1), then ps ◦F−1

x̃ ◦ (id, σ) : Ẽs
i (x̃, r)→ Ẽs

i (f̃
−m0(x̃)) is an embedding

such that

ps ◦ F−1
x̃ ◦ (id, σ)(Ẽs

i (x̃, r1)) ⊃ Ẽs
i (f̃
−m0(x̃), r1(1− 2ε0µ)/µ),

and so the graph transformation

Γx̃(σ) = (pu ◦ F−1
x̃ ◦ (σ, id)) ◦ [ps ◦ F−1

x̃ ◦ (σ, id)]−1|Ẽs
i (f̃
−m0(x̃), r1)

is well defined and F−1
x̃ (graph(σ)) ⊃ graph(Γx̃(σ)). Moreover, from (5.1)(c)

it follows that for σ, σ′ ∈ Σ0(x̃, r1),

(1) Lip(Γx̃(σ)) ≤ ε0µ+ λ0

1− 2ε0µ
< 1,

(2) ‖Γx̃(σ)(o)‖ ≤ {‖Df̃−m0 |Ẽu
i (x̃)‖+ ε0}

µ

1− 2ε0µ
‖σ(o)‖,

(3) d′(Γx̃(σ), Γx̃(σ′)) ≤ {‖Df̃−m0 |Ẽu
i (x̃)‖+ 2ε0}

µ

1− 2ε0µ
d′(σ, σ′).

By (1) we have Γx̃(σ) ⊂ Σb(f̃−m0(x̃), r1).
We are now in a position to prove (5.5). Let {x̃j}j≥1 and {nj}j≥1 satisfy

the conclusion of Lemma 5.4 for ε > 0 small enough, and let k > 0 satisfy
d̃(x̃1, f̃nkm0(x̃k)) < ε/2. If nj = 0 then j is odd by Lemma 5.4(3), and
so nj+1 > 0. Thus we suppose that nj > 0, (x̃j , f̃njm0(x̃j)) is a uniform
γ4-string for 1 ≤ j ≤ k, d̃(f̃njm0(x̃j), x̃j+1) < ε for 1 ≤ j ≤ k − 1 and
d̃(f̃nkm0(x̃k), x̃1) < ε. To avoid complication we show (5.5) for the case
when k = 1.
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Choose ε′0 > 0 with eε
′
0γ4 < 1 and suppose

2ε0 < (eε
′
0 − 1) inf

x̃∈cl(Ii(f))f
‖Dx̃f̃

−m0‖

because ε0 is small enough. We put Γ = Γf̃m0 (x̃1) ◦ . . . ◦ Γf̃n1m0 (x̃1). By
applying inductively the above estimates (1)–(3), we find that for σ, σ′ ∈
Σ0(f̃n1m0(x̃1), r1),

(1′) Γ (σ) ⊂ Σ0(x̃1, r1),

(2′) ‖Γ (σ)(o)‖ ≤
{ n1∏

j=1

{‖Df̃−m0 |Ẽu
i (f̃ jm0(x̃1))‖+ ε0}

µ

1− 2ε0µ

}
‖σ(o)‖

≤
(
eε
′
0

µ

1− 2ε0µ

)n1{ n1∏

j=1

‖Df̃−m0 |Ẽu
i (f̃ jm0(x̃1))‖

}
‖σ(o)‖

≤
(
eε
′
0γ4

µ

1− 2ε0µ

)n1

‖σ(o)‖,

(3′) d′(Γ (σ), Γ (σ′)) ≤
(
eε
′
0γ4

µ

1− 2ε0µ

)n1

d′(σ, σ′).

Let σ ∈ Σ0(f̃n1m0(x̃1), r1). Since Ẽσi is continuous (σ = s,u) and d̃(x̃1,

f̃nkm0(x̃1)) < ε, by (1) and (2′) there is a unique σ ∈ Σ0(f̃n1m0(x̃1), r1)
such that

graph(σ) ⊂ exp−1
f̃n1m0 (x̃1)

◦ expx̃1 ◦Γ (σ),

and so we can define Γ 0 : Σ0(f̃n1m0(x̃1), r1)→ Σ0(f̃n1m0(x̃1), r1) by Γ 0(σ)
= σ. From (3′) it follows that Γ 0 is a contracting map, and thus it has
a unique fixed point σ0 ∈ Σ0(f̃n1m0(x̃1), r1). Then fn1m0(graph(σ0)) ⊂
graph(σ0). By Brouwer’s theorem there is p ∈ graph(σ0) such that fn1m0(p)
= p. Put p̃ = (. . . , p, f(p), . . . , fn1m0−1(p), p, . . .) ∈ Per(f̃). Then it is easily
checked that p̃ meets our requirement.

6. Proof of Proposition 3. To show Proposition 3 we need properties
of Borel probability measures used in [12, §1 and §3]. Denote byM(X) the
set of all Borel probability measures on a compact metric space X. Let
f : X → X be a continuous map and Λ be a closed f -invariant set. We
denote by M(f |Λ) the set of all f -invariant measures belonging to M(Λ)
and by Me(f |Λ) that of all ergodic f -invariant measures.

Let f ∈ intP(M) and Ii(f) be as in (2.1). Let m0 and λ0 be numbers
satisfying (4.1)–(4.4), (5.1) and (5.2).

Lemma 6.1. Let f ∈ F(M) and 0 ≤ i0 ≤ dimM − 2 be as in Proposi-
tion 3, and Λ(i0) be as in (2.2). If µ ∈ M(fm0 |cl(Ii0+1(f))) satisfies
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(6.1)
�

cl(Ii0+1(f))

log ‖Dfm0 |Ẽs
i0+1‖ dµ > log λ0,

then µ(Λ(i0)) > 0.

This result was proved in [12, Theorem I.6] for diffeomorphisms. For the
noninvertible case we can apply the method given in [12].

Lemma 6.2. Let f and i0 be as in Lemma 6.1. Suppose that µ ∈ Me(fm0 |
cl(Ii0+1(f))). Then, given a neighborhood V of µ in M(X) and a compact
set D disjoint from the support of µ, there exist a C1-map g, arbitrarily C1

close to f and coinciding with f on D, and a periodic orbit p̃ = (pn) of g
with period mm0 such that

(a) µ0 = m−1∑m−1
n=0 δpnm0

∈ V,
(b) pnm0 6∈ D for n ∈ Z,

where δx is the point measure supported at x.

Lemma 6.2 was obtained in [12, Theorem III.1] by using the ergodic
closing lemma proved in [10, Theorem A] for diffeomorphisms and in [13,
Theorem, p. 173] for C1-maps without singular points. However the proof
in [13] can be adapted to our case. Thus we omit the proof of Lemma 6.2.

Proof of Lemma 6.1. The proof is very similar to that of [12, Theorem
I.6]. Let µ ∈ M(fm0 |cl(Ii0+1(f))) satisfy (6.1). We first check the case when
µ is ergodic.

Let W ⊂ M be a small neighborhood of cl(Ii0+1(f))f . Choose an open
neighborhood W0 of cl(Ii0+1(f)) such that if x̃ = (xn) ∈M satisfies xnm0 ∈
W0 for n ∈ Z, then x̃ ∈ W . By Lemma 6.2 there are g, arbitrarily C1-
near f , and a periodic orbit p̃ = (pn) of g with period mm0 such that
µ0 = m−1∑m−1

n=0 δpnm0
is close to µ in M(M) and pnm0 6∈ M \ W0 for

n ∈ Z. Then µ0 concentrates on W0.
Since g is C1-near f , we can suppose g ∈ P(M). As in (2.1) and (2.2)

define

Ii(g) = {q ∈ Per(g) : dimEs(q) = i}, Λ′(i) =
i⋃

k=0

cl(Ik(g))

for 0 ≤ i ≤ dimM . Since p0 is a periodic point of g with period mm0, it is
hyperbolic and so the tangent space TpM splits as in (1.1). If we prove

(6.2) dimEs(p0) ≤ i0,
then µ0(Λ′(i0)) = 1. Since Λ′(i0) and µ0 converge to Λ(i0) and µ respectively
as g → f , we have µ(Λ(i0)) = 1. Lemma 6.1 proved.

Thus it is enough to show (6.2). To do that we use a continuous splitting

TM|W = Ês
i0+1 ⊕ Êu

i0+1
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that is an extension of the splitting

TM|cl(Ii0+1(f))f = Ẽs
i0+1 ⊕ Ẽu

i0+1

as in (5.1) (cf. [4, Lemma 4.4]). Let g be close to f . Then we know that
W (g̃) =

⋂
n∈Z g̃

n(W ) has a Dg̃m0-invariant splitting TM|W (g̃) = Ês
g ⊕ Êu

g

such that Êσg (x̃) is close to Êσi0+1(x̃) for x̃ ∈ W (g̃), σ = s,u (cf. [5, §2]). If

x̃ = (xn), ỹ = (yn) ∈ W (g̃) satisfy x0 = y0, then Ês
g(x̃) = Ês

g(ỹ ), and so we

write Ês
g(x0) = P 0(Ês

g(x̃)) (⊂ Tx0M). Notice that Êu
g (x̃) 6= Êu

g (ỹ ) generally.
Define a number λ > 0 by

log λ =
�

cl(Ii0+1(f))

log ‖Dfm0 |Ẽs
i0+1‖ dµ > log λ0.

Take λi (i = 1, 2) with 0 < λ0 < λ1 < λ2 < λ. Since Êσg (σ = s,u) and

µ0 are close to Êσi0+1 and µ respectively, by (5.1) and (6.1) we can suppose
that for x̃ ∈W (g̃),

(6.3) ‖Dg̃m0 |Ês
g(x̃)‖ · ‖(Dg̃m0 |Êu

g (x̃))−1‖ ≤ λ1

and

(6.4)
�

W0

log ‖Dgm0 |Ês
g‖ dµ0 ≥ log λ2.

Since pnm0 ∈ W0 for n ∈ Z, we have p̃ ∈ W (g̃). Thus, by (6.4) and the
definition of µ0,

(6.5)
m−1∏

j=0

‖Dg̃m0 |Ês
g(g̃

m0j(p̃))‖ ≥ λm2 .

From (6.3) it follows that

‖Dg̃−mm0 |Êu
g (p̃)‖ ≤

m−1∏

i=0

‖Dg̃−m0 |Êu
g (g̃m0i(p̃))‖

≤
m−1∏

i=0

λ1‖Dg̃m0 |Ês
g(g̃

m0i(p̃))‖−1

≤ (λ1/λ2)m < 1,

and so P 0(Êu
g (p̃)) ⊂ Eu(p0) where P 0 is defined as in (1.4). This implies

that dimEs(p) ≤ i0 + 1.
If dimEs(p0) = i0 + 1, then we have dim Êu

g (p̃) = dimEu(p0), and so

P 0(Êu
g (p̃)) = Eu(p0). Thus it is easily checked that Ês

g(p0) = Es(p0) since

p0 is hyperbolic and Ês
g(p0) is Dp0g

mm0-invariant.
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By (6.5),

lim
n→∞

1
n

n−1∑

j=0

log ‖Dgm0 |Es(pm0j))‖

= lim
n→∞

1
n

log
n−1∏

j=0

‖Dg̃m0 |Ês
g(g̃

m0j(p̃))‖ ≥ log λ2,

which contradicts (4.3). Therefore, dimEs(p0) ≤ i0.
If µ is not ergodic, then by using the ergodic decomposition theorem we

can check that µ(Λ(i0)) > 0 (cf. for the proof, see [12, Theorem I.6]).

Lemma 6.3. Let f ∈ intP(M) and 0 ≤ i0 ≤ dimM − 2. If
�

cl(Ii0+1(f))

log ‖Dfm0 |Ẽs
i0+1‖ dµ < 0

for µ ∈Me(fm0 |cl(Ii0+1(f))), then Ẽs
i0+1 is contracting.

The proof of Lemma 6.3 is very similar to that of [12, Lemma I.5], and
so we omit it.

Lemmas 6.1, 6.3 and 5.1(b) yield Proposition 3 as follows: suppose that
Λ(i0) ∩ cl(Ii0+1(f)) = ∅. Then µ(Λ(i0)) = 0 for µ ∈ Me(fm0 |cl(Ii0+1(f))),
and by Lemma 6.1,

�

cl(Ii0+1(f))

log ‖Dfm0 |Ẽs
i0+1‖ dµ ≤ log λ0 < 0

for µ ∈ M(fm0 |cl(Ii0+1(f))). Therefore cl(Ii0+1(f)) is hyperbolic by Lem-
mas 6.3 and 5.1(b). The proof of Proposition 3 is complete.

7. Proof of Proposition 4(a). Before starting the proof we notice that
if f is a diffeomorphism, then the inverse limit system of (M,f) equals the
original system (M,f), and thus all the results for the inverse limit system
can be transferred to the original system.

To show Proposition 4(a) we prepare the following two lemmas.

Lemma 7.1. Let f ∈ intP(M) and let Λ(i0) be as in (2.2) for f and
0 ≤ i0 ≤ dimM − 2. Let U(f) ⊂ intP(M) be a connected neighborhood
of f . Suppose that Λ(i0) is hyperbolic and g ∈ U(f) satisfies g = f in a
neighborhood of Λ(i0). Then g has no cycles in Λ(i0).

For the proof of Lemma 7.1 we need the following:

Lemma 7.2. Let g ∈ C1(M) and p ∈M be a hyperbolic fixed point of g.
Suppose that there is x̃ = (xn) ∈Mg satisfying the following :
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(1) d(xn, p)→ 0, d(x−n, p)→ 0 (n→∞),
(2) Dx−ng

2n(Tx−nW
u
ε (p̃, g)) + TxnW

s
ε (p̃, g) = TxnM for n > 0 large

enough, where p̃ = (. . . , p, p, p, . . .) ∈ Per(g)g and W σ
ε (p̃, g) (σ = s,u) is as

in (1.5).

Then for every neighborhood U(x0) of x0 there is a hyperbolic periodic
point q such that dimEs(q) = dimEs(p), where Es(p) is the subspace of
TpM as in (1.1).

Lemma 7.2 was proved in [24] and [16, Appendix] for diffeomorphisms
and extended in [25, Theorem 4.2] to differentiable maps.

Proof of Lemma 7.1. Let U(f) and g ∈ U(f) satisfy the assumptions of
Lemma 7.1. Notice that Λ(i0) is an isolated hyperbolic set of g. Suppose that
Λ(i0) has a cycle for g. By using the techniques described in [17, Theorem,
p. 221] there exist h ∈ U(f), p ∈ Λ(i0) and x̃ = (xn) ∈ Mh satisfying the
assumptions (1) and (2) of Lemma 7.2 and h = g = f on some neighborhood
of Λ(i0). Then it follows from Lemma 7.2 that ]Ini (f) < ]Ini (h) for some
0 ≤ i ≤ i0 and n > 0. This contradicts Lemma 3.2.

Let f ∈ F(M). Since cl(I0(f)) is hyperbolic by Proposition 2(b), it is
isolated and can be written as a finite disjoint union cl(I0(f)) = Λ1∪ . . .∪Λs
of basic sets Λi. Since TM|cl(I0(f))f is expanding, there exist ε > 0 and
0 < λ < 1 such that for 1 ≤ a ≤ s,

(i) W u
3ε(x̃, f) = B3ε(x0) (x̃ = (xn) ∈ (Λa)f ),(7.1)

(ii) if x̃ = (xn) ∈ (Λa)f and y ∈ B3ε(x0), then there is a unique

point y−1 ∈ B3ε(x−1) such that f(y−1) = y,

(iii) d(x, y) ≤ λd(f(x), f(y)) (x, y ∈ B3ε(Λa)),

(iv) (Λa)f = {ỹ = (yn) ∈Mf : yn ∈ B3ε(Λa), n ≥ 0}.

Choose 0 < δ1 < ε − ελ such that if d(x, y) ≤ δ1 (x, y ∈ M) then
d(f(x), f(y)) ≤ ε. It is easily checked that for every connected neighborhood
U(f) of f contained in intP(M) there is 0 < δ2 < δ1 such that if d(x, z) ≤
δ2 (x, z ∈M) then we can construct a diffeomorphism ϕ : M →M satisfying

(i) ϕ(z) = x,(7.2)

(ii) {y ∈M : ϕ(y) 6= y} ⊂ Bδ1(z),

(iii) f ◦ ϕ ∈ U(f).

From the properties of differentiable maps belonging to F(M) we have

{cl(Per(f)) \ IdimM (f)} ∩ S(f) = ∅.
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Since ]IdimM (f) <∞ by Proposition 2(a), cl(Per(f)) \ IdimM (f) is closed.
Thus there is 0 < δ3 < δ2 such that if x, y ∈M satisfy d(x, y) ≤ δ3, then for
every point x−1 ∈ f−1(x) with x−1 ∈ cl(Per(f)) \ IdimM (f) there exists a
unique y−1 ∈ f−1(y) satisfying d(x−1, y−1) ≤ δ2.

If Proposition 4(a) is false, we have

Λa ∩ cl(Ii(f)) 6= ∅
for some 1 ≤ a ≤ s and 0 < i ≤ dimM . Proposition 2 ensures that cl(I0(f))\
IdimM (f) = ∅, and so i 6= dimM . Choose x ∈ Λa, p ∈ Ii(f) with d(x, p) ≤ δ3

and a periodic point p̃ ∈ Ii(f)f with p0 = p. By (7.1)(iv) there is 0 < n <
%(p, f) such that p−j ∈ B2ε(Λa) (0 ≤ j ≤ n− 1) and p−n 6∈ B2ε(Λa). Then
for 0 ≤ j ≤ n− 1 there is x−j ∈ Λa such that

(7.3) f(x−j) = x−j+1 and d(x−j, p−j) ≤ δ3.

Indeed, there is a unique x−1 ∈ f−1(x) such that d(x−1, p−1) ≤ δ2 < ε
because d(x, p) ≤ δ3 and p−1 ∈ cl(Per(f)) \ IdimM (f). Obviously, x−1 ∈
B3ε(Λa) since p−1 ∈ B2ε(Λa). By (7.1)(i) we have x−1 ∈ W s(Λa, f) ∩
W u(Λa, f). Since Λa has no cycles by Lemma 7.1, we have x−1 ∈ Λa. By
(7.1)(ii), (iii),

d(x−1, p−1) ≤ λd(x, p) ≤ δ3.

Continuing in this fashion we obtain (7.3).
Since d(x−(n−1), p−(n−1))≤δ3 (by (7.3)) and p−n∈cl(Per(f))\IdimM (f),

we can find a unique point

x−n ∈ f−1(x−(n−1)) ⊂ f−1(Λa)

such that d(x−n, p−n) ≤ δ2. By (7.2) there is a diffeomorphism ϕ : M →M
such that

(i) ϕ(p−n) = x−n,
(ii) {y ∈M : ϕ(y) 6= y} ⊂ Bδ1(p−n),
(iii) f ◦ ϕ ∈ U(f).

For simplicity we write g = f ◦ ϕ. Obviously

g(y) = f(y) (y ∈M \Bδ1(p−n)),

g(p−n) = f ◦ ϕ(p−n) = f(x−n) = x−(n−1) ∈ Λa.
Since p−n 6∈ Λa and gi(p−n) ∈ Λa for i > 0, we have

p−n ∈W s(Λa, g) \ Λa.
If we establish that

(7.4) p−n ∈W u(Λa, g) \ Λa,
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then Λa has a 1-cycle, that is, p−n ∈ {W s(Λa, g) \ Λa} ∩ {W u(Λa, g) \ Λa}.
This contradicts Lemma 7.1. Hence for 1 ≤ a ≤ s,

Λa ∩
dimM⋃

i=1

cl(Ii(f)) = ∅.

This shows Proposition 4(a).
Thus it only remains to prove (7.4). Since p−n 6∈ B2ε(Λa) and p0 =

p%(p,f) ∈ Bδ3(Λa) ⊂ B2ε(Λa), there is n+ 1 ≤ m ≤ %(p, f) such that p−j 6∈
B2ε(Λa) for n ≤ j ≤ m− 1, and p−m ∈ B2ε(Λa). Then d(p−n, p−j) > δ1 for
n+ 1 ≤ j ≤ m.

Indeed, if there is n+ 1 ≤ j ≤ m such that d(p−n, p−j) ≤ δ1, then

d(p−(n−1), p−(j−1)) = d(f(p−n), f(p−j)) ≤ ε.
Since p−(n−1) ∈ Bδ3(Λa) by (7.3), we have p−(j−1) ∈ B2ε(Λa), which con-
tradicts the choice of m.

Thus gj(p−m) 6∈ Bδ1(p−n) for 0 ≤ j ≤ m− n− 1, and so

gm−n(p−m) = p−n.

Since p−m ∈ B2ε(Λa), by (7.1)(i)–(iii) there is q̃ ∈ Mf with q0 = p−m such
that

d(q−j , Λa) ≤ λjd(p−m, Λa) ≤ 2ελj ≤ 2ελ (j ≥ 1)

where d(q, Λ) = minx∈Λ d(q, x) for q ∈M and a closed subset Λ. Then

d(q−j, p−n) ≥ d(p−n, Λa)− d(q−j , Λa) > 2(ε− ελ) > δ1,

and so q−j 6∈ Bδ1(p−n) (j ≥ 1). Put

p′j =




gj(p−n) if j ≥ 0,
gm−n+j(p−m) if −m+ n ≤ j ≤ −1,
qm−n+j if j ≤ −m+ n− 1.

Then (p′j) ∈ Mg and d(p′−j , Λa) → 0 as j → ∞. This implies that p−n =
p′0 ∈W u(Λa, g), and (7.4) holds since p−n 6∈ Λa.

8. Proof of Proposition 4(b). Let f ∈ F(M) and Λ(i0) be as in
the statement of Proposition 4(b). Then Λ(i0) is hyperbolic and isolated by
Lemma 7.1. Thus Λ(i0) splits into a union Λ1 ∪ . . . ∪ Λs of basic sets. Fix
ε0 > 0. For 1 ≤ a ≤ s we define

V +
a =

⋃
{W s

ε0(x̃, f) : x̃ ∈ (Λa)f}, V −a =
⋃
{W u

ε0(x̃, f) : x̃ ∈ (Λa)f}.
Fix 0 < r0 < 1 and 0 < δ0 < 1. For n ≥ 0 define

(8.1)
rn+1 = r1+δ0

n ,

V (rn, Λa) = {x ∈M : d(x, V +
a ) ≤ rn, d(x, V −a ) ≤ rn}.

Then V (rn, Λa)↘ Λa since rn ↘ 0 as n→∞.
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Let m ≥ 0 be an integer and ξ = (x0, x−1, . . . , x−m) be a finite sequence
in M . We say that ξ is a string if

f(x−j) = x−j+1 for 1 ≤ j ≤ m.
Notice that the notion of string described here is different from that of
γ-string introduced at the beginning of §5. For convenience of notation we
make no distinction between a string ξ and a set {x0, x−1, . . . , x−m}.

Let ξ = (x0, . . . , x−m) and η = (y0, . . . , y−n) be strings (0 ≤ n ≤ m).
Then η is said to be a substring of ξ if there is 0 ≤ j ≤ m − n such that
x−j−l = y−l for 0 ≤ l ≤ n (Figure 1(a)). If, in particular, m = n, then we
have η = ξ.

ξ

x0x-1

Λa

Va 

Va 

+

-

V( r0,Λa ) ξ

σ1 x0

x-l

x-t

x-m

y0 = x-j y-n = x-j-n

η

x-m

σ2
1

1

x-t2

x-l 2

(a) (b) 

Fig. 1

Let σ be a substring of ξ = (x0, x−1, . . . , x−m) written as

σ = (x−l, x−l−1, . . . , x−t+1, x−t)

for some 0 < l ≤ t < m. If σ satisfies

(a) σ ⊂ V (r0, Λa),
(b) σ ∩ V (rn, Λa) 6= ∅,
(c) x−l+1, x−t−1 6∈ V (r0, Λa),

then we say that σ is a (ξ, n; a)-string. If x−j ∈ V (r0, Λa) for some 1 ≤
j ≤ m − 1, then there is a (ξ, 0; a)-string containing x−j if and only if
x−j1 , x−j2 6∈ V (r0, Λa) for some j1 and j2 with 0 ≤ j1 < j < j2 ≤ m.

For (ξ, 0; a)-strings

σ1 = (x−l1 , x−l1−1, . . . , x−t1+1, x−t1),

σ2 = (x−l2 , x−l2−1, . . . , x−t2+1, x−t2),

we introduce an order by

σ1 < σ2 if t1 < l2

(Figure 1(b)).
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Since {cl(Per(f)) \ IdimM (f)} ∩ S(f) = ∅ and cl(Per(f)) \ IdimM (f) is
closed by Proposition 2(a), we can choose a compact neighborhood U0 of
cl(Per(f)) \ IdimM (f) satisfying U0 ∩ S(f) = ∅. Hereafter U0 is fixed.

Suppose that a string ξ contained in U0 has the property that

(C) there exist (ξ, n + 1; a)-strings σ1 and σ2 with σ1 < σ2 satisfying
σ ∩ V (rn, Λa) = ∅ for every (ξ, 0; a)-string σ with σ1 < σ < σ2.

If n is large enough, by using the condition (C) we can show ([11] and [15,
Theorem A, p. 57] that there exists g C1-near f such that g = f in a
neighborhood of Λa and Λa has a 1-cycle. However this is inconsistent with
Lemma 7.1.

Thus (C) cannot happen when a string ξ satisfies ξ ⊂ U0 and n is large
enough.

To show Proposition 4(b) we derive a contradiction by proving that if

Λa ∩ cl(Ii0+1(f)) 6= ∅
for some 1 ≤ a ≤ s, then there exists a string ξ satisfying the condition (C)
for n > 0 large enough. To do that we prepare auxiliary results.

Since Λa (1 ≤ a ≤ s) has no homoclinic points by Lemma 7.1, we have
the following:

Lemma 8.1 [15, Proposition 4]. Let {ξk} be a sequence of strings with
ξk ⊂ U0. Suppose that

(1) if ξk = (xk0 , x
k
−1, . . . , x

k
−mk+1, x

k
−mk), then mk ↗∞ as k →∞,

(2) µk = m−1
k

∑mk
i=1 δxk−i converges to µ ∈ M(f),

(3) µ(Λa) > 0 for some 1 ≤ a ≤ s.
Then for N,K > 0 there exist integers n ≥ N , k ≥ K and a (ξk, n+ 1; a)-
string σ1 such that σ ∩ V (rn, Λa) = ∅ for every (ξk, 0; a)-string σ 6= σ1.

Let ξ be a string and for 1 ≤ a ≤ s define

(8.2) Na(ξ) = min{n ≥ 0 : ξ ∩ V (rn+1, Λa) = ∅}.
If a string ξ = (x0, x−1, . . . , x−m) satisfies

(8.3) (1) Na(ξ) > 0,

(2) x0, x−m 6∈ V (r0, Λa),

then there exists a (ξ,Na(ξ); a)-string.

Lemma 8.2. Let ξk = (xk0 , . . . , x
k
−mk) and ηk = (yk0 , . . . , y

k
−nk) be strings

with ξk, ηk ⊂ U0 for k > 0. Suppose that

(1) xk0 , x
k
−mk , y

k
0 , y

k
−nk 6∈

⋃s
c=1 V (r0, Λc) for k > 0,

(2) ηk is a substring of ξk for k > 0,
(3) mk ↗∞ and nk ↗∞ as k →∞,
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(4) µ0
k = m−1

k

∑mk
i=1 δxk−i converges to µ0 and µ1

k = n−1
k

∑nk
i=1 δyk−i con-

verges to µ1.

If there are 1 ≤ a, b ≤ s and L ≥ 0 such that µ0(Λa) > 0 and

lim sup
k→∞

(Na(ξk)−Nb(ηk)) ≤ L,

then µ1(Λb) > 0.

For the proof of Lemma 8.2 we need the following two lemmas:

Lemma 8.3 [15, Proposition 1]. There exist 0 < γ < λ < 1 such that for
1 ≤ a ≤ s and x ∈ V (r0, Λa),

(1) γd(f(x), V +
a ) ≤ d(x, V +

a ),
(2) d(x, V +

a ) ≤ λd(f(x), V +
a ),

(3) there is y ∈ f−1(x) such that γd(y, V −a ) ≤ d(f(y), V −a ) = d(x, V −a ),
(4) d(f(x), V −a ) ≤ λd(x, V −a ).

Let 0 < γ < λ < 1 be as in Lemma 8.3 and set

C1,n =
log rn
2 log γ

and C2,n = 2
(1 + δ0) log rn

log λ

for n ≥ 0.

Lemma 8.4. Let ξ be a string with ξ ⊂ U0. For n large enough there is
Nn > n such that for every (ξ, 0; a)-string σ,

(1) if σ is a (ξ, i; a)-string for some i ≥ Nn, then

]{σ ∩ V (rn, Λa)} ≥ C1,n(1 + δ0)i−n,

(2) if σ is not a (ξ, i+ 1; a)-string for some i ≥ Nn, then

]{σ ∩ V (rn, Λa)} ≤ C2,n(1 + δ0)i−n.

Proof. (1) follows easily from [15, Lemma 5(b)].
To obtain (2) it is enough to show that (2) holds when σ∩V (rn, Λa) 6= ∅.

Let ξ = (x0, . . . , x−m) and σ = (x−k1 , . . . , x−k2). Then 0 < k1 < k2 < m.
Since σ∩V (rn, Λa) 6= ∅, there is k1 < t ≤ k2 satisfying x−t ∈ σ∩V (rn, Λa).
Choose the smallest integers 0 < l1 < t and 0 < l2 < m − t such that
x−t+l1+1 6∈ V (rn, Λa) and x−t−l2−1 6∈ V (rn, Λa). Then

(8.4) ]{σ ∩ V (rn, Λa)} = l1 + l2.

Indeed, since d(x−t+l1+1, V
−
a ) ≤ λl1+1d(x−t, V −a ) ≤ rn by Lemma 8.3(4),

we have
d(x−t+l1+1, V

+
a ) > rn.
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By Lemma 8.3(2), for k1 ≤ j ≤ t− l1 − 1,

d(x−j , V +
a ) ≥ (1/λ)(t−l1−1)−jd(x−j−(t−l1−1−j), V

+
a )

≥ d(x−t+l1+1, V
+
a ) > rn.

This implies that

x−j 6∈ V (rn, Λa) (k1 ≤ j ≤ t− l1 − 1).

Suppose that there is j1 with t + l2 + 1 < j1 ≤ k2 such that x−j1 ∈
V (rn, Λa). Then we can find j2 with t + l2 + 1 ≤ j2 < j1 ≤ k2 such that
x−j2 6∈ V (rn, Λa). Thus,

d(xt, V +
a ) ≥ (1/λ)−t+j2d(x−j2 , V

+
a ) > d(x−j2 , V

+
a ) > rn,

which contradicts x−t ∈ V (rn, Λa). That is, x−j 6∈ V (rn, Λa) for t+ l2 + 1 ≤
j ≤ k2. Therefore we have (8.4).

From [15, Lemma 5(a)] we have the inequality

l1 + l2 ≤ C2,n(1 + δ0)i−n.

Therefore we have (2) by (8.4).

Proof of Lemma 8.2. Let {ξk}, {µ0
k} and µ0 be as in Lemma 8.2. Since

µ0(Λa) > 0 and intV (rn, Λa)↘ Λa (n→∞), we have

0 < µ0(Λa) = lim
n→∞

µ0(intV (rn, Λa))(8.5)

≤ lim
n→∞

lim inf
k→∞

µ0
k(intV (rn, Λa))

= lim
n→∞

lim inf
k→∞

1
mk

mk∑

i=1

δxk−i(V (rn, Λa))

= lim
n→∞

lim inf
k→∞

](ξk ∩ V (rn, Λa))
mk

.

Thus,

(8.6) Na(ξk)→∞ (k →∞),

where Na(ξk) is defined in (8.2). Without loss of generality we suppose that
Na(ξk) > 0 for k > 0. Then, by (1) of Lemma 8.2, ξk satisfies (8.3) and so
there is a (ξk, Na(ξk); a)-string, say σk(a), for k > 0.

First we prove that

(8.7) lim
n→∞

lim sup
k→∞

](σk(a) ∩ V (rn, Λa))
mk

> 0.

To see this write

σk(a) = (xk−lk , . . . , x
k
−sk) (0 < lk < sk < mk)

for k > 0. Then we have the two sequences {lk} and {mk − sk}.
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If, in particular, {lk} and {mk− sk} are bounded, then by (8.5) we have
(8.7) as follows:

0 < lim
n→∞

lim inf
k→∞

](ξk ∩ V (rn, Λa))
mk

≤ lim
n→∞

lim sup
k→∞

](ξk ∩ V (rn, Λa))
mk

≤ lim
n→∞

lim sup
k→∞

lk + ](σk(a) ∩ V (rn, Λa)) + (mk − sk)
mk

= lim
n→∞

lim sup
k→∞

](σk(a) ∩ V (rn, Λa))
mk

.

To conclude (8.7) for the case when either {lk} or {mk−sk} is unbounded
we divide the proof into the following three cases:

(1) both {lk} and {mk − sk} are unbounded,

(2) {lk} is unbounded, and {mk − sk} is bounded,

(3) {lk} is bounded, and {mk − sk} is unbounded.

Case (1): Suppose that {lk} and {mk−sk} are increasing sequences, and
put

ξk+ = (xk0 , x
k
−1, . . . , x

k
−lk+1), µ+

k =
1

lk − 1

lk−1∑

j=1

δxk−j ,

ξk− = (xk−sk−1, x
k
−sk−2, . . . , x

k
−mk), µ−k =

1
mk − sk − 1

mk−sk−1∑

j=1

δxk−sk−1−j

for k > 0. Then ξk+, ξ
k
− ⊂ ξk ⊂ U0 for k > 0. Since ξk = ξk+ ∪ σk(a) ∪ ξk−, we

have

](ξk ∩ V (rn, Λa))
mk

=
1
mk
{](ξk+ ∩ V (rn, Λa)) + ](σk(a) ∩ V (rn, Λa)) + ](ξk− ∩ V (rn, Λa))}

=
1
mk

lk−1∑

j=1

δxk−j (V (rn, Λa)) +
](σk(a) ∩ V (rn, Λa))

mk

+
1
mk

mk−sk−1∑

j=1

δxk−sk−1−j
(V (rn, Λa))



C1-maps having hyperbolic periodic points 29

=
lk − 1
mk

µ+
k (V (rn, Λa)) +

](σk(a) ∩ V (rn, Λa))
mk

+
mk − sk − 1

mk
µ−k (V (rn, Λa))

< µ+
k (V (rn, Λa)) +

](σk(a) ∩ V (rn, Λa))
mk

+ µ−k (V (rn, Λa)).

Since µ+
k and µ−k converge to f -invariant probability measures µ+ and µ−

respectively, by (8.5),

0 < µ+(Λa) + lim
n→∞

lim sup
k→∞

](σk(a) ∩ V (rn, Λa))
mk

+ µ−(Λa).

To obtain (8.7) it suffices to show that µ+(Λa) = 0 and µ−(Λa) = 0.
Suppose that µ+(Λa) > 0. Since {ξk+}, {µ+

k } and µ+ satisfy the assump-
tions (1)–(3) of Lemma 8.1, for N > 0 large enough there exist n > N ,
k > 0 and a (ξk+, n+ 1; a)-string σ such that

(8.8) σ ∩ V (rn, Λa) = ∅
for every (ξk+, 0; a)-string σ 6= σ. Since σ ⊂ ξk+ ⊂ ξk, σ is a (ξk, n+1; a)-string.
Thus

σ ⊂ V (r0, Λa), ∅ 6= σ ∩ V (rn+1, Λa) ⊂ ξk ∩ V (rn+1, Λa),

which yields Na(ξk) ≥ n+1. Since σk(a) is a (ξk, Na(ξk); a)-string, we have

(8.9) σk(a) ∩ V (rn+1, Λa) 6= ∅.
Define a string as

ξk = (xk0 , x
k
−1, . . . , x

k
−lk+1, . . . , x

k
−sk , x

k
−sk−1).

Then ξk+ ⊂ ξk. Since σ is a (ξk+, n + 1; a)-string, it is a (ξk, n + 1; a)-string.
By (8.9), σk(a) is a (ξk, n+ 1; a)-string. Thus, by (8.8) we have

σ ∩ V (rn, Λa) = ∅
for every (ξk, 0; a)-string σ with σ < σ < σk(a). This implies the condition
(C). Since n is large enough, we have a contradiction, and so µ+(Λa) > 0 can-
not happen. Similarly we have µ−(Λa) = 0. Therefore (8.7) holds in case (1).

In a similar way we obtain (8.7) for cases (2) and (3).
To complete the proof of Lemma 8.2 let {ηk} be as in the statement of

the lemma. Since lim supk→∞(Na(ξk)−Nb(ηk)) ≤ L, we have

(8.10) Nb(ηk) ≥ Na(ξk)− L
for k large enough, and so limk→∞Nb(ηk) = ∞ by (8.6). Without loss of
generality we suppose that Nb(ηk) > 0 for k > 0. Then ηk satisfies (8.3) by
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(1) of Lemma 8.2. Thus we can choose a (ηk, Nb(ηk); b)-string, say τk(b), for
k > 0. For ηk define

µ1
k =

1
nk

nk∑

i=1

δyk−i

and suppose that µ1
k → µ1 as k →∞. Then

µ1(Λb) ≥ lim
n→∞

lim sup
k→∞

µ1
k(V (rn, Λb))(8.11)

= lim
n→∞

lim sup
k→∞

1
nk

nk∑

i=1

δyk−i(V (rn, Λb))

= lim
n→∞

lim sup
k→∞

1
nk
](ηk ∩ V (rn, Λb))

≥ lim
n→∞

lim sup
k→∞

1
nk
](τk(b) ∩ V (rn, Λb)).

For n large enough let Nn be as in Lemma 8.4. Since Na(ξk)→ ∞ and
Nb(ηk)→∞ as k →∞, we have Na(ξk) ≥ Nn and Nb(ηk) ≥ Nn for k large
enough. Then, by Lemma 8.4(1),

](τk(b) ∩ V (rn, Λb)) ≥ C1,n(1 + δ0)Nb(η
k)−n.

On the other hand, by Lemma 8.4(2) and (8.2),

](σk(a) ∩ V (rn, Λa)) ≤ C2,n(1 + δ0)Na(ξk)−n.

Since ηk = (yk0 , . . . , y
k
−nk) is a substring of ξk = (xk0 , . . . , x

k
−mk), we have

nk ≤ mk for k > 0. Therefore, by (8.10),
1
nk
](τk(b) ∩ V (rn, Λb)) ≥

1
nk
C1,n(1 + δ0)Nb(η

k)−n(8.12)

≥ 1
mk

C1,n(1 + δ0)Na(ξk)−L−n

≥ C1,n

C2,n
(1 + δ0)−L

](σk(a) ∩ V (rn, Λa))
mk

.

Since

0 < C1,n/C2,n = (log λ)/(4(1 + δ0) log γ) < 1 (n ≥ 0),

by using (8.7), (8.11) and (8.12) we have the conclusion of Lemma 8.2:

µ1(Λb) ≥ lim
n→∞

lim sup
k→∞

C1,n

C2,n
(1 + δ0)−L

](σk(a) ∩ V (rn, Λa))
mk

> 0.

Lemma 8.5 [1, (3.15)]. Suppose that there exist n,N > 0 such that for
strings ξ = (x0, . . . , x−m) and η = (y0, . . . , y−m′) there are a (ξ, 0; a)-string
σ = (x−l, . . . , x−s) and an integer t with l ≤ t ≤ s such that
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(1) x−t ∈ V (rN , Λa) for some N ≥ N ,
(2) d(x−t+j , y−t′+j) ≤ r0/2 (0 ≤ j ≤ t−l) for some t′ with t−l ≤ t′ ≤ m′.

Then there is t′ − t+ l ≤ t0 ≤ t′ such that

(a) y−t0 ∈ V (rN−n, Λa),
(b) y−j ∈ V (r0, Λa) (t0 ≤ j ≤ t′).

Proof. The proof given in [1] was only done for diffeomorphisms. For
completeness we give the full proof.

Since V (rn, Λa) ↘ Λa as n → ∞, there is a sufficiently large integer
N > 0 satisfying

V (rn, Λa) ⊂ U(Λa, r0/2) for n ≥ N.
For a string ξ let σ = (x−l, . . . , x−t, . . . , x−s) be a (ξ, 0; a)-string satisfying
the condition (1) of the lemma. Since x−l ∈ V (r0, Λa), by Lemma 8.3(4) we
have

d(x−l+1, V
−
a ) ≤ d(x−l, V −a ) ≤ r0.

By the definition of a (ξ, 0; a)-string we have x−l+1 6∈ V (r0, Λa), and so

d(x−l+1, V
+
a ) > r0.

Since x−t ∈ V (rN , Λa) ⊂ U(Λa, r0/2), we have

d(x−t, V +
a ) < d(x−t, Λa) ≤ r0/2.

Thus there is t̂ with l ≤ t̂ ≤ t such that

(8.13) d(x−t+j , V +
a ) ≤ r0/2 for 0 ≤ j ≤ t− t̂, d(x−t̂+1, V

+
a ) > r0/2.

Since x−t ∈ V (rN , Λa), by Lemma 8.3(1),

r
(1+δ0)N

0 = rN ≥ d(x−t, V +
a ) ≥ γt−t̂+1d(f t−t̂+1(x−t), V +

a )

= γt−t̂+1d(x−t̂+1, V
+
a ) > γt−t̂+1r0/2,

and so

t− t̂+ 1 > (log r0/log γ)(1 + δ0)N − log(r0/2)/log γ

=
log r0 − log(r0/2)/(1 + δ0)N

log γ
(1 + δ0)N .

Since N is large enough and N ≥ N , we can suppose that

(8.14) t− t̂ > log r0

2 log γ
(1 + δ0)N

(notice that N is independent of ξ and σ).
Let η = (y0, . . . , y−m′) be a string satisfying the condition (2) of Lemma

8.5. Since x−t+j ∈ V (r0, Λa) for 0 ≤ j ≤ t − l and x−t ∈ U(Λa, r0/2), by
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Lemma 8.3(4) we have

d(x−t+j , V −a ) ≤ λjd(x−t, V −a ) ≤ λjd(x−t, Λa) ≤ r0/2 (0 ≤ j ≤ t− l),
and so, for 0 ≤ j ≤ t− t̂,

d(y−t′+j , V −a ) ≤ d(y−t′+j , x−t+j) + d(x−t+j , V −a ) ≤ r0.

On the other hand, by (8.13),

d(y−t′+j , V +
a ) ≤ d(y−t′+j , x−t+j) + d(x−t+j , V +

a ) ≤ r0 (0 ≤ j ≤ t− t̂).
Thus we have

(8.15) y−t′+j ∈ V (r0, Λa) (0 ≤ j ≤ t− t̂).
Put t0 = t′− [(t− t̂ )/2]. We show that t0 satisfies assertions (a) and (b)

of Lemma 8.5. Since

t′ ≥ t0 ≥ t′ − (t− t̂ ) ≥ t′ − t+ l,

(b) follows from (8.15).
To see (a) put

n =
[

logC ′1 − logC ′2
log(1 + δ0)

]
+ 1

where

C ′1 =
2 log r0

log λ
and C ′2 =

log r0

2 log γ
.

Then y−t0 ∈ V (rN−n, Λa). Indeed, put j0 = [(t− t̂ )/2]. Then by (8.15) and
Lemma 8.3 we have

r0 ≥ d(y−t′ , V −a ) ≥ λ−j0d(y−t′+j0 , V
−
a ) = λ−j0d(y−t0 , V

−
a ),

(8.16)
r0 ≥ d(y−t′+2j0 , V

+
a ) ≥ λ−j0d(y−t′+j0 , V

+
a ) = λ−j0d(y−t0 , V

+
a ).

Suppose that y−t0 6∈ V (rn, Λa) for n = N − n. Then

either d(y−t0 , V
+
a ) > rn, or d(y−t0 , V

−
a ) > rn.

In any case, by (8.16) we have r0 > λ−j0rn = λ−j0r(1+δ0)n

0 , and so

j0 < (log r0/log λ){(1 + δ0)n − 1}.
Then

t− t̂ ≤ 2(j0 + 1) < 2(log r0/log λ){(1 + δ0)n − 1}+ 2 ≤ C ′1(1 + δ0)n.

By (8.14) we have C ′2(1 + δ0)N < t− t̂ < C ′1(1 + δ0)n, and so

N − n < logC ′1 − logC ′2
log(1 + δ0)

< n = N − n.

This is a contradiction. Therefore Lemma 8.5(a) holds.
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Proof of Proposition 4(b). Let f ∈ F(M). As mentioned before Λ(i0) =⋃i0
i=1 cl(Ii(f)) and Λ(i0) splits into a union

Λ(i0) = Λ1 ∪ . . . ∪ Λs
of basic sets Λi.

Our aim is to conclude that Λ(i0) ∩ cl(Ii0+1(f)) = ∅. Suppose that

(∗) Λa ∩ cl(Ii0+1(f)) 6= ∅
for some 1 ≤ a ≤ s. Then there is a sequence {pk} ⊂ Ii0+1(f) of periodic
points such that d(pk, Λa)→ 0 as k →∞. Let mk = %(pk, f) be the period
of pk for k > 0. Since Λ(i0)∩ Ii0+1(f) = ∅, the sequence {mk : k > 0} tends
to infinity as k → ∞. Notice that m0 is not a member of {mk : k > 0}. In
fact, m0 is the integer satisfying (4.1)–(4.4).

For simplicity we suppose that pk ∈ V (r0, Λa) for k > 0. Since Λa is
isolated and pk 6∈ Λa, for k > 0 we put

tk = min{0 < t < mk : f t(pk) 6∈ V (r0, Λa)}.
Choose a periodic orbit

(8.17) q̃k = (qkj ) ∈ Ii0+1(f)f

with qk0 = f tk(pk) for k > 0 (Figure 2). Then qk−tk = pk ∈ V (r0, Λa) and
qk0 = qk−mk 6∈ V (r0, Λa). Define a sequence of strings

(8.18) ξk = (qk0 , q
k
−1, . . . , q

k
−mk+1, q

k
−mk)

for k > 0. Then each ξk consists of a periodic orbit and

ξk ⊂ Ii0+1(f) ⊂ U0

where U0 is the compact neighborhood defined before the condition (C).
For k > 0 we put

(8.19) N(ξk) = max{Nb(ξk) : 1 ≤ b ≤ s},
where Nb(ξk) is defined in (8.2). For some 1 ≤ b ≤ s we can find a sequence
k′ of integers such that N(ξk

′
) = Nb(ξk

′
). To simplify the notations suppose

that for k > 0,

(8.20) Na(ξk) = N(ξk), qk−tk = pk ∈ V (rNa(ξk), Λa).

Since d(pk, Λa)→ 0, we have

(8.21) N(ξk)→∞
as k → ∞. Thus we can suppose that N(ξk) is large enough for k > 0 and
{N(ξk)} is an increasing sequence.

Since qk−tk ∈ V (r0, Λa) and qk−mk 6∈ V (r0, Λa), we put

sk = min{tk ≤ s < mk : qk−s−1 6∈ V (r0, Λa)} (k > 0).
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Combining the definitions of tk and sk, for k > 0 we have

qk−t ∈ V (r0, Λa) (1 ≤ t ≤ sk).

Since qk0 , q
k
−sk−1 6∈ V (r0, Λa) and 0 < tk ≤ sk for k > 0, by (8.20) we find

that

(8.22) σk = (qk−1, q
k
−2, . . . , q

k
−sk+1, q

k
−sk)

is a (ξk, N(ξk); a)-string (Figure 2). Notice that ]σk → ∞ as k → ∞ by
(8.21) and Lemma 8.4(1), and so sk →∞ as k →∞.

Λa

Va 

Va 

+

-

V( r0,Λa )

V(r           ,Λa)

V(r       ,Λa)

σk(u)
σk

qk

qk  = qk
    = f   (pk)

 pk = qk

ξk-sk(u) qk
-tk(u)

qk
-mk(u)

0 -mk

tk

N(ξk) - u

N(ξk) 

-tk

qk
-sk

qk
-1

Fig. 2

With the above preparations we shall deduce Proposition 4(b) through
the nine claims below.

Claim 1. For k > 0 there is sk < j < mk such that

qk−j ∈ V (rN(ξk)−1, Λa).

Proof. If this is false, then there is k > 0 such that σ ∩ V (rN(ξk)−1, Λa)
= ∅ for every (ξk, 0; a)-string σ with σk < σ. Let ζk be a string

ζk = (qk0 , . . . , q
k
−mk = qk0 , q

k
−mk−1, . . . , q

k
−2mk),

and let
τk = (qk−mk−1, q

k
−mk−2, . . . , q

k
−mk−sk)

be a (ζk, N(ξk); a)-string. Then τk ⊂ ζk ⊂ U0 and ξk is a substring of
ζk. Obviously, σk and τk are (ζk, N(ξk); a)-strings, and σ∩V (rN(ξk)−1, Λa)
= ∅ for every (ξk, 0; a)-string σ with σk < σ < τk. Therefore we have
the condition (C). Since N(ξk) is large enough, we have a contradiction as
before. Thus we have Claim 1.
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Fix an integer u ≥ 1, and choose K0(u) > 0 large enough satisfying
N(ξk) > u for k ≥ K0(u). Since V (rN(ξk)−1, Λa) ⊂ V (rN(ξk)−u, Λa) for
k ≥ K0(u), we put

(8.23) tk(u) = min{sk < j < mk : qk−j ∈ V (rN(ξk)−u, Λa)} (k ≥ K0(u)).

This is well defined by Claim 1, and so choose a (ξk, N(ξk)− u; a)-string

(8.24) σk(u) = (qk−mk(u), . . . , q
k
−tk(u), . . . , q

k
−sk(u)) (⊂ V (r0, Λa))

for k ≥ K0(u) (Figure 2).

Claim 2. Under the above notations, for k ≥ K0(u) we have

(1) sk + 1 < mk(u) < tk(u) < sk(u) < mk,

(2) sk(u)−mk(u)→∞ as k →∞,
(3) {qk−sk−1, q

k
−sk−2, . . . , q

k
−mk(u)+1} ∩ V (rN(ξk)−u, Λa) = ∅,

(4) σk(u) ∩ V (rN(ξk)−u+1, Λa) = ∅.

Proof. (1) and (3) are clear. By (8.21) and Lemma 8.4(1) we have ]σk =
sk(u)−mk(u) + 1→∞ as k →∞, and so we have (2). If (4) is false, then
σk(u) is a (ξk, N(ξk)−u+1; a)-string and σk is a (ξk, N(ξk)−u+1; a)-string.
By the definition of tk(u) we deduce that σ ∩ V (rN(ξk)−u, Λa) = ∅ for every
(ξk, 0; a)-string σ with σk < σ < σk(u). This implies the condition (C).
Since K0(u) is large enough, N(ξk)−u is large enough for k ≥ K0(u). Thus
we have a contradiction, and (4) is proved.

Let λ0 and m0 be the numbers described at the beginning of §4 and let
the splitting TM|cl(Ii0+1(f)) = Ẽs

i0+1 ⊕ Ẽu
i0+1 be as in (5.1). For simplicity

write E = Ẽs
i0+1 and F = Ẽu

i0+1. Then

(8.25) ‖Df̃m0 |E(x̃)‖ · ‖Df̃−m0 |F (f̃m0(x̃))‖ ≤ λ0

for x̃ ∈ cl(Ii0+1(f))f . Let P 0 and P 0 be as in (1.2) and (1.4). As mentioned
in (5.2)(2) we have P 0(E(x̃)) = P 0(E(ỹ )) when x̃, ỹ ∈ cl(Ii0+1(f))f satisfy
P 0(x̃) = P 0(ỹ ). Thus we write

E(x0) = P 0(E(x̃)) ⊂ Tx0M

for x̃ = (xi) ∈ cl(Ii0+1(f))f , and then ‖Df |E(x0)‖ = ‖Df̃ |E(x̃)‖.
Claim 3. For ε > 0 there exist continuous families

{Zs
ε(x̃, f

m0) : x̃ ∈ cl(Ii0+1(f))f} and {Zu
ε (x̃, fm0) : x̃ ∈ cl(Ii0+1(f))f}

of C1-disks on M such that

(a) for x̃ = (xi) ∈ cl(Ii0+1(f))f and σ = s,u,

x0 ∈ Zσε (x̃, fm0) ⊂ Bε(x0),
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(b) for x̃ = (xi) ∈ cl(Ii0+1(f))f ,

Tx0Z
s
ε(x̃, f

m0) = E(x0) and Tx0Z
u
ε (x̃, fm0) = P 0(F (x̃)),

(c) there is 0 < ε′ ≤ ε such that

fm0(Zσε′(x̃, f
m0)) ⊂ Zσε (f̃m0(x̃), fm0)

for x̃ ∈ cl(Ii0+1(f))f and σ = s,u,

(d) there is δ = δ(ε) > 0 such that if d̃(x̃, ỹ ) ≤ δ (x̃, ỹ ∈ cl(Ii0+1(f))f )
then

Zs
ε(x̃, f

m0) ∩ Zu
ε (ỹ, fm0)

is a one-point set and the intersection is transversal.

Proof. This follows from [9, Proposition 2.3] and [5, Theorem 5.1].

Fix γ0 with λ0 < γ0 < 1. Then we have:

Claim 4. For fixed u ≥ 1 let K0(u) be as above. Then there exists
K1(u) > K0(u) such that for k ≥ K1(u) there is l with 0 < l ≤ [sk(u)/m0]
such that for 0 ≤ r < l,

l∏

t=r+1

‖Dfm0 |E(qk−m0t)‖ ≤ γ
l−r
0 .

Proof. If the claim is false, then for some u ≥ 1 there exist infinitely
many k ≥ K0(u) such that

(8.26)
l∏

t=1

‖Dfm0 |E(qk−m0t)‖ > γl0

for l with 0 < l ≤ [sk(u)/m0]. Without loss of generality we suppose that
(8.26) holds for k > 0.

Define the Borel probability measures µk by

µk =
1

[sk(u)/m0]

[sk(u)/m0]∑

j=1

δqk−m0j
.

Then µk converges to µ belonging to M(fm0 |cl(Ii0+1(f))) (take a subse-
quence if necessary). Since, by (8.26),

�

cl(Ii0+1(f))

log ‖Dfm0 |E‖ dµ = lim
k→∞

�

cl(Ii0+1(f))

log ‖Dfm0 |E‖ dµk
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= lim
k→∞

1
[sk(u)/m0]

log
[sk(u)/m0]∏

j=1

‖Dfm0 |E(qk−m0j)‖

≥ log γ0 > log λ0,

by Lemma 6.1 we have
µ(Λ(i0)) > 0.

Let ξk (k > 0) be the sequence of strings in (8.18). For k > 0 define a
substring of ξk as

ξk = (qk0 , q
k
−1, . . . , q

k
−sk(u), q

k
−sk(u)−1),

for ξk define

µk =
1

sk(u) + 1

sk(u)+1∑

j=1

δqk−j ,

and put

Vn =
s⋃

b=1

V (rn, Λb) (n ≥ 0).

Since µk converges to µ and Vn ↘ Λ(i0) as n→∞, we have

(8.27) µ(Λ(i0))

≥ lim
n→∞

lim sup
k→∞

µk(Vn) = lim
n→∞

lim sup
k→∞

]{ξk ∩ Vn}
sk(u) + 1

≥ lim
n→∞

lim sup
k→∞

1
sk(u) + 1

]{(qk−m0
, qk−2m0

, . . . , qk−[sk(u)/m0]m0
) ∩ Vn}

= lim
n→∞

lim sup
k→∞

[sk(u)/m0]
sk(u) + 1

µk(Vn)

≥ 1
m0

lim
n→∞

lim inf
k→∞

µk(intVn) ≥ 1
m0

µ(Λ(i0)) > 0,

from which

(8.28) µ(Λb) > 0

for some 1 ≤ b ≤ s.
For k > 0 define

ξ̂k = (qk−sk−1, q
k
−sk−2, . . . , q

k
−sk(u)−1) (⊂ ξk),

µ̂k =
1

sk(u)− sk

sk(u)−sk∑

j=1

δq−sk−1−j .
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By Claim 2(1), (2) we have

sk(u)− sk = {sk(u)−mk(u)}+ {mk(u)− sk} → ∞
as k →∞, and so we suppose that µ̂k converges to µ̂. By (8.23) and Claim
2(1),

qk−tk(u) ∈ V (rN(ξk)−u, Λa) ∩ ξ̂k

for k ≥ K0(u), and so

Na(ξ̂k) ≥ N(ξk)− u (k ≥ K0(u)).

Since N(ξk) ≥ Nb(ξk) ≥ Nb(ξk) by (8.20), we have

(8.29) Nb(ξk)−Na(ξ̂k) ≤ N(ξk)− (N(ξk)− u) = u.

Since ξ̂k is a substring of ξk and ξ̂k ⊂ U0, ξ̂k and ξk satisfy the conditions
(1)–(4) of Lemma 8.2. Thus by (8.28), (8.29) and Lemma 8.2 we have

µ̂(Λa) > 0.

Hence {ξ̂k}, {µ̂k} and µ̂ satisfy the conditions (1)–(3) of Lemma 8.1, and so
there exist a sufficiently large n > 0, k ≥ K0(u) and a (ξ̂k, n + 1; a)-string
σ̂1 such that

(8.30) σ ∩ V (rn, Λa) = ∅
for every (ξ̂k, 0; a)-string σ 6= σ̂1.

Since

ξk ∩ V (rn+1, Λa) ⊃ ξ̂k ∩ V (rn+1, Λa) ⊃ σ̂1 ∩ V (rn+1, Λa) 6= ∅,
by (8.2) and (8.19) we have

N(ξk) = Na(ξk) ≥ n+ 1.

Thus the (ξk, N(ξk); a)-string σk of (8.22) contains a (ξk, n + 1; a)-string.
Since ξ̂k is a substring of ξk, σ̂1 is a (ξk, n+ 1; a)-string. If σ is a (ξk, 0; a)-
string with σk < σ < σ̂1, then σ is a (ξ̂k, 0; a)-string with σ 6= σ̂1. Thus, by
(8.30) we have σ ∩ V (rn, Λa) = ∅. This yields the condition (C). Since n is
large enough, we have a contradiction as before. Claim 4 is proved.

For fixed u ≥ 1 let sk(u) be an integer satisfying (1) and (2) of Claim 2
for u ≥ K0(u), and let K1(u) be as in Claim 4. For k ≥ K1(u) define

(8.31) lk(u) = max
{

0 < l ≤
[
sk(u)
m0

]
: for 0 ≤ r < l,

l∏

t=r+1

‖Dfm0 |E(qk−m0t)‖ ≤ γ
l−r
0

}
.
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Then for k ≥ K1(u) and 0 < i ≤ lk(u) we have

‖Dfm0i|E(qk−m0lk(u))‖ ≤
lk(u)∏

t=lk(u)−i+1

‖Dfm0 |E(qk−m0t)‖ ≤ γi0 < 1.

Since
E(qk−m0lk(u)) = Tqk−m0lk(u)

Zs
ε(f̃
−m0lk(u)(q̃k), fm0)

by Claim 3(b), for ε > 0 small enough we have

d(fm0i(y), qk−m0lk(u)+m0i
) ≤ ε (0 ≤ i ≤ lk(u))

for y ∈ Zs
ε(f̃
−m0lk(u)(q̃k), fm0). Therefore, if θ > 0 is sufficiently small

compared with ε, then

d(f j(y), qk−m0lk(u)+j) ≤ ε (0 ≤ j ≤ m0lk(u))(8.32)

for y ∈ Zs
θ(f̃
−m0lk(u)(q̃k), fm0) (⊂ Zs

ε(f̃
−m0lk(u)(q̃k), fm0)). Notice that θ

does not depend on k and u.
Since dimE(x) = i0 + 1 for x ∈ cl(Ii0+1(f)) and Λ(i0) is hyperbolic, by

taking ε0 > 0 small enough we have

‖Dfm0 |E(x)‖ > 1 (x ∈ U2ε0(Λ(i0)) ∩ cl(Ii0+1(f))).

Here Uε(G) = {y ∈M : d(G, y) < ε} for a closed set G. Since r0 is arbitrary
in (8.1), we can assume that 0 < r0 < ε0. Thus,

V0 =
s⋃

b=1

V (r0, Λb) ⊂ Uε0(Λ(i0)).

The choice of lk(u) ensures that ‖Dfm0 |E(qk−m0lk(u))‖ ≤ γ0 < 1, and so

(8.33) qk−m0lk(u) 6∈ U2ε0(Λ(i0)) ⊃ V (r0, Λa) (k ≥ K1(u)).

By (8.24) and Claim 2(1), for k ≥ K1(u) we have

(8.34) sk + 1 ≤ m0lk(u) < mk(u) < sk(u),

and so by Claim 2(2),

(8.35) sk(u)−m0lk(u) = {sk(u)−mk(u)}+ {mk(u)−m0lk(u)} → ∞
as k →∞. Thus {[sk(u)/m0]− lk(u)} is unbounded.

For simplicity suppose that [sk(u)/m0]− lk(u) ≥ 0 for k ≥ K1(u).

Claim 5. Under the above notations, for fixed u ≥ 1 we have
r∏

t=lk(u)+1

‖Dfm0 |E(qk−m0t)‖ ≥ γ
r−lk(u)
0

for k ≥ K1(u) and r with lk(u) < r ≤ [sk(u)/m0].
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Proof. If this is false, then there are k ≥ K1(u) and lk(u) < s ≤
[sk(u)/m0] such that

r∏

t=lk(u)+1

‖Dfm0 |E(qk−m0t)‖ ≥ γ
r−lk(u)
0 (lk(u) < r < s),

s∏

t=lk(u)+1

‖Dfm0 |E(qk−m0t)‖ < γ
s−lk(u)
0 ,

and for lk(u) < r < s,
s∏

t=r+1

‖Dfm0 |E(qk−m0t)‖ =

∏s
t=lk(u)+1 ‖Dfm0 |E(qk−m0t)‖∏r
t=lk(u)+1 ‖Dfm0 |E(qk−m0t)‖

(8.36)

<
γ
s−lk(u)
0

γ
r−lk(u)
0

= γs−r0 .

Since, for 0 ≤ r < lk(u),

(8.37)
s∏

t=r+1

‖Dfm0 |E(qk−m0t)‖

=
lk(u)∏

t=r+1

‖Dfm0 |E(qk−m0t)‖ ·
s∏

t=lk(u)+1

‖Dfm0 |E(qk−m0t)‖

< γ
lk(u)−r
0 · γs−lk(u)

0 = γs−r0 ,

from (8.36) and (8.37) we have
s∏

t=r+1

‖Dfm0 |E(qk−m0t)‖ ≤ γ
s−r
0

for 0 ≤ r < s, which contradicts the choice of lk(u). Therefore Claim 5
holds.

By Claim 5 and (8.25) we have

‖Df̃−m0i|F (f̃−m0lk(u)(q̃k))‖ ≤
lk(u)+i−1∏

t=lk(u)

‖Df̃−m0 |F (f̃−m0t(q̃k))‖

≤
lk(u)+i∏

t=lk(u)+1

λ0‖Dfm0 |E(qk−m0t)‖−1

≤ (λ0γ
−1
0 )i < 1

for k ≥ K1(u) and 0 < i ≤ [sk(u)/m0]− lk(u). Thus the following statement
is easily checked from (b) and (c) of Claim 3: for every ε > 0 we can take a
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small number 0 < θ < ε such that if y ∈ Zu
θ (f̃−m0lk(u)(q̃k), fm0), then there

is a string (y0, . . . , y−sk(u)) with y0 = y satisfying

(8.38) d(y−j, qk−m0lk(u)−j) ≤ ε (0 ≤ j ≤ sk(u))

where

(8.39) sk(u) = sk(u) + 1−m0lk(u).

For fixed u ≥ 1 let K1(u) be as in Claim 5. For k ≥ K1(u) define

ξk1 (u) = (qk−m0lk(u), q
k
−m0lk(u)−1, . . . , q

k
−mk(u)+2, q

k
−mk(u)+1)

where mk(u) is as in Claim 2.

Claim 6. For every v ≥ 1 there is K(u, v) ≥ K1(u) such that for k ≥
K(u, v),

ξk1 (u) ∩ V (rN(ξk)−u−v, Λa) = ∅,
where N(ξk) is as in (8.19).

Proof. Suppose that this is false. Then there is v ≥ 1 such that for
infinitely many k with k ≥ K1(u),

(8.40) ξk1 (u) ∩ V (rN(ξk)−u−v, Λa) 6= ∅.
Without loss of generality we suppose that (8.40) holds for k ≥ K1(u).

It is clear that {ξk1 (u)} ⊂ U0. Since qk−m0lk(u), q
k
−mk(u)+1 6∈ V (r0, Λa) for

k ≥ K1(u), ξk1 (u) contains a (ξk1 (u), N(ξk)−u−v; a)-string, and so by (8.21)
and Lemma 8.4(1),

mk(u)− 1−m0lk(u) ≥ ]{ξk1 (u) ∩ V (r0, Λa)} → ∞
as k →∞. For ξk1 (u) we define

µ1
k =

1
(mk(u)− 1)−m0lk(u)

(mk(u)−1)−m0lk(u)∑

j=1

δqk−m0lk(u)−j

and let µ1 be an accumulation point of µ1
k. If we establish that

(8.41) µ1(Λa) > 0,

then {ξk1 (u)} satisfies the conditions (1)–(3) of Lemma 8.1. Thus there are
sufficiently large integers n, k and a (ξk1 (u), n+ 1; a)-string σ1 such that for
every (ξk1 (u), 0; a)-string σ 6= σ1,

σ ∩ V (rn, Λa) = ∅.
Since this implies the condition (C) for n large enough, we have a contra-
diction.
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Thus it is enough to show (8.41) to obtain Claim 6. For k ≥ K1(u) define
the Borel probability measures νk by

νk =
1

[sk(u)/m0]

[sk(u)/m0]∑

j=1

δqk−m0lk(u)−m0j
.

Then νk converges to ν ∈ M(fm0 |cl(Ii0+1(f))) (take a subsequence if nec-
essary). Since

�

cl(Ii0+1(f))

log ‖Dfm0 |E‖ dν = lim
k→∞

�

cl(Ii0+1(f))

log ‖Dfm0 |E‖ dνk

≥ log γ0 > log λ0

by Claim 5, we find that ν(Λ(i0)) > 0 by Lemma 6.1.
For k ≥ K1(u) define a string

ζk1 (u) = (qk−m0lk(u), q
k
−m0lk(u)−1, . . . , q

k
−mk(u), . . . , q

k
−sk(u), q

k
−sk(u)−1).

Then ξk1 (u) ⊂ ζk1 (u) since mk(u) < sk(u). For ζk1 (u) we define

ν1
k =

1
sk(u) + 1−m0lk(u)

sk(u)+1−m0lk(u)∑

j=1

δqk−m0lk(u)−j
.

Then ν1
k converges to ν1 ∈ M(f) by (8.35). By the same calculation as in

(8.27) we have

ν1(Λ(i0)) ≥ 1
m0

ν(Λ(i0)) > 0,

and so

(8.42) ν1(Λb) > 0

for some 1 ≤ b ≤ s.
Since ζk1 (u) is a substring of ξk, we have Nb(ξk) ≥ Nb(ζk1 (u)), and so by

(8.19),
N(ξk) ≥ Nb(ζk1 (u)) (k ≥ K1(u)).

Thus, by (8.40),

Nb(ζk1 (u))−Na(ξk1 (u)) ≤ N(ξk)− (N(ξk)− u− v) = u+ v.

Since ξk1 (u) is a substring of ζk1 (u), by (8.42) and Lemma 8.2 we have µ1(Λa)
> 0. Thus (8.41) was proved.

Claim 7. Let u1 and u2 be integers with 1 ≤ u2 < u1, and let K(u1, 1)
and K(u2, 1) be as in Claim 6. Then, for k ≥ max{K(u1, 1),K(u2, 1)},

m0lk(u1) < m0lk(u2).

Proof. Since m0lk(u1) < sk(u1) by (8.34), it is enough to show that
sk(u1)<m0lk(u2). Otherwise sk(u1)≥m0lk(u2) for some k≥max{K(u1, 1),
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K(u2, 1)}. By (8.24) we have

qk−t ∈ V (r0, Λa) (mk(u1) ≤ t ≤ sk(u1)).

Since qk−m0lk(u2) 6∈ V (r0, Λa) by (8.33), we have

m0lk(u2) < mk(u1),

and so by Claim 2(3),

qk−t 6∈ V (rN(ξk)−u1
, Λa) ⊃ V (rN(ξk)−u2−1, Λa)

for sk + 1 ≤ t ≤ m0lk(u2). Combining this result and Claim 6, we have

qk−t 6∈ V (rN(ξk)−u2−1, Λa)

for sk + 1 ≤ t ≤ mk(u2)− 1. Then

σ ∩ V (rN(ξk)−u2−1, Λa) = ∅
for every (ξk, 0; a)-string σ with σk < σ < σk(u2). Since σk and σk(u2)
are (ξk, N(ξk)−u2; a)-strings, the condition (C) holds. Since N(ξk) is large
enough, we have a contradiction. Thus we have Claim 7.

Let γ be as in Lemma 8.3, and n and N be as in Lemma 8.5. Let r0 be
a sufficiently small positive number as in (8.1). Choose ε > 0 such that

(8.43) ε < min{(1− λ)r0, γr0/3},
and take a small number θ > 0 satisfying (8.32) and (8.38). Let δ = δ(θ) > 0
be as in Claim 3(d). Since M is compact, there is v0 > 0 such that

max{d̃(x̃, ỹ) : x̃, ỹ ∈M}/v0 ≤ δ.
If a subset G of M satisfies ]G ≥ v0, then we can find x̃, ỹ ∈ G such that
x̃ 6= ỹ and d̃(x̃, ỹ ) ≤ δ. Define

(8.44) K = max{K(u, v) : 1 ≤ u ≤ v0(2n+ 1), 1 ≤ v ≤ v0(2n+ 1)}
where K(u, v) is as in Claim 6. Fix a sufficiently large integer k ≥ K satis-
fying

(8.45) N(ξk)− v0(2n+ 1) ≥ N and rN(ξk)−v0(2n+1) < γr0/3.

For 1 ≤ u2 < u1 ≤ v0(2n+ 1) by Claim 7 we have

f̃−m0lk(u1)(q̃k) 6= f̃−m0lk(u2)(q̃k)

where q̃k is a point of Ii0+1(f)f satisfying (8.17), and so

]{f̃−m0lk(j(2n+1))(q̃k) : 1 ≤ j ≤ v0} = v0.

Thus,
d̃(f̃−m0lk(j1(2n+1))(q̃k), f̃−m0lk(j2(2n+1))(q̃k)) ≤ δ

for some 1 ≤ j2 < j1 ≤ v0. Put

(8.46) u1 = j1(2n+ 1) and u2 = j2(2n+ 1).
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Then

(i) 0 ≤ u2 < u1 ≤ v0(2n+ 1),(8.47)

(ii) 2n+ 1 ≤ u1 − u2 ≤ v0(2n+ 1),

(iii) d̃(f̃−m0lk(u1)(q̃k), f̃−m0lk(u2)(q̃k)) ≤ δ.
By Claim 3(d),

Zs
θ(f̃
−m0lk(u1)(q̃k), fm0) ∩ Zu

θ (f̃−m0lk(u2)(q̃k), fm0)

is one point; denote it by z.

Claim 8. Let sk(u2) be as in (8.39) and lk(u) be as in (8.31). For the
above point z there is a string

η = (z1, z0, z−1, . . . , z−m0lk(u1), . . . , z−m0lk(u1)−sk(u2), z−m0lk(u1)−sk(u2)−1)

such that

(i) z−m0lk(u1) = z,

(ii) d(z−j, qk−j) ≤ ε (0 ≤ j ≤ m0lk(u1)),
(iii) d(z−m0lk(u1)−j , qk−m0lk(u2)−j) ≤ ε (0 ≤ j ≤ sk(u2)),
(iv) either z1 6∈ V (r0, Λa), or z0 6∈ V (r0, Λa),
(v) either z−m0lk(u1)−sk(u2) 6∈ V (r0, Λa), or z−m0lk(u1)−sk(u2)−1 6∈

V (r0, Λa).

Proof. For −1 ≤ j ≤ m0lk(u1) put

z−j = fm0lk(u1)−j(z).

Since z ∈ Zu
θ (f̃−m0lk(u2)(q̃k), fm0), by (8.38) we can take a string

(z−m0lk(u1), . . . , z−m0lk(u1)−sk(u2)) with z−m0lk(u1) = z to satisfy (iii). Let
z−m0lk(u1)−sk(u2)−1 be an arbitrary point belonging to the inverse image of
z−m0lk(u1)−sk(u2). Then η = (z1, . . . , z−m0lk(u1)−sk(u2)−1) is a string.

Clearly (i) holds. Since z ∈ Zs
θ(f̃
−m0lk(u1)(q̃k), fm0), by (8.32) we see

that η satisfies (ii).
It remains to show (iv) and (v). Since qk0 6∈ V (r0, Λa), we can check that

d(qk0 , V
+
a ) > r0. If z0 ∈ V (r0, Λa), then by (ii) we have

d(z0, V
+
a ) ≥ d(qk0 , V

+
a )− d(z0, q

k
0 ) > r0 − ε.

By Lemma 8.3(2) and (8.43),

d(z1, V
+
a ) = d(f(z0), V +

a ) ≥ 1
λ
d(z0, V

+
a ) >

1
λ

(r0 − ε) > r0,

and so z1 6∈ V (r0, Λa). Thus (iv) is proved. Similarly we can check (v).
Therefore Claim 8 holds.
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Hereafter let K be as in (8.44) and k be an integer so large that k ≥ K.
Since qk−m0lk(u1) 6∈ U2ε0(Λ(i0)) by (8.33), it follows from Claim 8(ii) that

z−m0lk(u1) 6∈ V (r0, Λa).(8.48)

Let σk = (qk−1, . . . , q
k
−tk , . . . , q

k
−sk) be the (ξk, N(ξk); a)-string of (8.22).

Then, by (8.20) and (8.45),

qk−tk ∈ σk ∩ V (rN(ξk), Λa) and N(ξk) ≥ N.
By (8.34) we have tk < sk < m0lk(u1), and so by Claim 8(ii) and (8.43),

d(qk−tk+j , z−tk+j) ≤ ε < r0/2 (0 ≤ j ≤ tk − 1).

Thus we have the conditions (1) and (2) of Lemma 8.5, and so there is
1 ≤ t1 ≤ tk such that

(8.49) z−t1 ∈ V (rN(ξk)−n, Λa) and z−j ∈ V (r0, Λa) (t1 ≤ j ≤ tk).

Since 0 ≤ t1 ≤ tk ≤ m0lk(u1) and z−m0lk(u1) 6∈ V (r0, Λa), by (8.43) and
Claim 8(iv) there exists an (η, 0; a)-string σ1 containing z−t1 .

Let u2 be as in (8.46). For u2 let σk(u2) = (qk−mk(u2), . . . , q
k
−tk(u2), . . . ,

qk−sk(u2)) be the (ξk, N(ξk)−u2; a)-string defined as in (8.24). By (8.23) and
(8.45) we have

qk−tk(u2) ∈ V (rN(ξk)−u2
, Λa), N(ξk)− u2 ≥ N(ξk)− v0(2n+ 1) ≥ N.

For 0 ≤ j ≤ tk(u2)−mk(u2), by (8.34) and Claim 2(1) we have

0 < −j + tk(u2)−m0lk(u2) < sk(u2),

and so by Claim 8(iii) and (8.43),

d(qk−tk(u2)+j , z−tk(u2)+w(k)+j)

= d(qk−m0lk(u2)−{−j+tk(u2)−m0lk(u2)}, z−m0lk(u1)−{−j+tk(u2)−m0lk(u2)})

≤ ε < r0/2 (0 ≤ j ≤ tk(u2)−mk(u2))

where
w(k) = m0lk(u2)−m0lk(u1).

Thus we have the conditions (1) and (2) of Lemma 8.5, and so there is t2
with mk(u2)− w(k) ≤ t2 ≤ tk(u2)− w(k) such that

(8.50)
z−t2 ∈ V (rN(ξk)−u2−n, Λa),

z−j ∈ V (r0, Λa) (t2 ≤ j ≤ tk(u2)− w(k)).

Since m0lk(u1) < mk(u2)−w(k) ≤ t2 and z−m0lk(u1) 6∈ V (r0, Λa), by (8.43)
and Claim 8(v) there exists an (η, 0; a)-string σ2 containing z−t2 .

Since, by the choice of t1 and t2,

t1 ≤ tk < m0lk(u1) < mk(u2)− w(k) ≤ t2,
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we have σ1 6= σ2. By (8.47)(ii),

N(ξk)− n ≥ N(ξk)− u2 − n ≥ N(ξk)− u1 + n+ 1,

and so by (8.49) and (8.50),

z−t1 , z−t2 ∈ V (rN(ξk)−u1+n+1, Λa).

Therefore σ1 and σ2 are (η,N(ξk)− u1 + n+ 1, Λa)-strings and σ1 6= σ2.

Claim 9. Let σ1 and σ2 be as above. For every (η, 0; a)-string σ with
σ1 < σ < σ2 we have

σ ∩ V (rN(ξk)−u1+n, Λa) = ∅
for k ≥ K.

If we establish Claim 9, then the condition (C) holds for N(ξk)− u1 + n
(≥ N(ξk)− v0(2n+ 1)) large enough. This implies the existence of a 1-cycle
for Λa, which is inconsistent with Lemma 7.1. This contradiction has been
derived through the nine claims under the assumption given in (∗).

Therefore the assumption Λa ∩ cl(Ii0+1(f)) 6= ∅ is invalid, which yields
Proposition 4(b). To finish the proof it thus suffices to check that Claim 9
is true.

Proof of Claim 9. If Claim 9 is false, then there is an (η, 0; a)-string σ
such that σ1 < σ < σ2 and

σ ∩ V (rN(ξk)−u1+n, Λa) 6= ∅
for some k ≥ K. Write

σ = (z−l, . . . , z−s) (⊂ V (r0, Λa))

for some l, s with l ≤ s. Choose l ≤ t ≤ s such that

(8.51) z−t ∈ σ ∩ V (rN(ξk)−u1+n, Λa).

Since σ1 < σ < σ2, we have t1 < l ≤ t ≤ s < t2. Since z−m0lk(u1) 6∈ V (r0, Λ0)
by (8.48), we have two cases to consider:

(a) s < m0lk(u1), (b) m0lk(u1) < l.

Case (a): By Claim 8(ii), (8.45) and (8.51) we have

z−t ∈ V (rN(ξk)−u1+n, Λa),

N(ξk)− u1 + n ≥ N(ξk)− v0(2n+ 1) ≥ N,
d(z−t+j, qk−t+j) ≤ ε < r0/2 (0 ≤ j ≤ t− l),

and so σ satisfies the conditions (1) and (2) of Lemma 8.5. Replacing ξ by
η and η by ξk in Lemma 8.5, we can take l ≤ t3 ≤ t such that

(8.52) qk−t3 ∈ V (rN(ξk)−u1
, Λa), qk−j ∈ V (r0, Λa) (t3 ≤ j ≤ t).
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By (8.34),
t3 ≤ t ≤ s < m0lk(u1) ≤ mk(u1)− 1,

and so by Claim 2(3),

qk−t3 ∈ V (rN(ξk)−u1
, Λa) ∩ {qk−1, . . . , q

k
−mk(u1)+1} ⊂ σk = (qk−1, . . . , q

k
−sk).

Since qk−sk−1 6∈ V (r0, Λa), by (8.52) we have

(8.53) qk−j ∈ σk ⊂ V (r0, Λa) (1 ≤ j ≤ t).
Since σ = (z−l, . . . , z−s) is an (η, 0; a)-string, we have

z−l ∈ V (r0, Λa) and z−l+1 6∈ V (r0, Λa).

Thus it is easily checked by using Lemma 8.3 that d(z−l+1, V
+
a ) > r0. Thus,

(8.54) d(z−l, V +
a ) ≥ γd(f(z−l), V +

a ) = γd(z−l+1, V
+
a ) > γr0.

Since t1 < l ≤ t and f l−t1(qk−l) = qk−t1 , by (8.53) and Lemma 8.3(2) we have

d(qk−l, V
+
a ) ≤ λl−t1d(f l−t1(qk−l), V

+
a ) < d(qk−t1 , V

+
a ).

Thus, by Claim 8(ii), (8.49) and (8.54),

0 < d(qk−t1 , V
+
a )− d(qk−l, V

+
a )

≤ (d(qk−t1 , z−t1) + d(z−t1 , V
+
a ))− (d(zk−l, V

+
a )− d(zk−l, q

k
−l))

≤ (ε+ rN(ξk)−n)− (γr0 − ε) < rN(ξk)−n − γr0/3 < 0.

This is a contradiction.
Case (b): By Claim 8(iii), (8.45) and (8.51) we have

z−t ∈ V (rN(ξk)−u1+n, Λa),

N(ξk)− u1 + n ≥ N(ξk)− v0(2n+ 1) ≥ N,
d(z−t+j , qk−t−w(k)+j) ≤ ε < r0/2 (0 ≤ j ≤ t− l),

and so σ satisfies the conditions (1) and (2) of Lemma 8.5. Thus,

(8.55) qk−t4 ∈ V (rN(ξk)−u1
, Λa), qk−j ∈ V (r0, Λa) (t4 ≤ j ≤ t+ w(k))

for some t4 with l + w(k) ≤ t4 ≤ t + w(k). Since u1 − u2 ≤ v0(2n + 1) by
(8.47)(ii), it follows that

N(ξk)− u1 ≥ N(ξk)− u2 − v0(2n+ 1),

and so by (8.55) and Claim 6,

qk−t4 ∈ V (rN(ξk)−u2−v0(2n+1)) ∩ {qk−molk(u2), . . . , q
k
−sk(u2)−1}

⊂ σk(u2) = (qk−mk(u2), . . . , q
k
−sk(u2))

because k ≥ K ≥ K(u2, v0(2n+1)) by (8.44). Since qk−mk(u2)+1 6∈ V (r0, Λa),
by (8.55) we have

qk−j ∈ σk(u2) ⊂ V (r0, Λa) (t+ w(k) ≤ j ≤ sk(u2)).
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Since σ and σ2 contain z−t and z−t2 respectively and satisfy σ < σ2,
there is t < t′2 < t2 such that

z−t′2 ∈ V (r0, Λa) and z−t′2+1 6∈ V (r0, Λa),

and so by Claim 8(iii) and (8.50),

0 < d(qk−t−w(k), V
+
a )− d(qk−t′2−w(k), V

+
a )

≤ (d(qk−t−w(k), z−t) + d(z−t, V +
a ))− (d(zk−t′2 , V

+
a )− d(zk−t′2 , q

k
−t′2−w(k)))

≤ (ε+ rN(ξk)−u1+n)− (γr0 − ε) < rN(ξk)−u1+n − γr0/3 < 0.

This is a contradiction. Therefore we have Claim 9.
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