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C'-maps having hyperbolic periodic points
by

Nobuo Aoki (Tokyo), Kazumine Moriyasu (Tokushima)
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Abstract. We show that the Cl-interior of the set of maps satisfying the following
conditions:

(i) periodic points are hyperbolic,
(ii) singular points belonging to the nonwandering set are sinks,

coincides with the set of Axiom A maps having the no cycle property.

1. Introduction. Let M be a closed C*°-manifold, ||-|| be a Riemannian
metric on M and 7 : TM — M be the tangent bundle. Let C1(M) be
the space of C'-differentiable maps from M into itself endowed with the
C'-topology. Then C' (M) contains the set Diff' (M) of C'-diffeomorphisms
and this subset is open in C1(M).

The C'-stability conjecture on Diff* (M) of Palis and Smale was solved
by Mané [12] as follows: if a C''-diffeomorphism f is structurally stable, then
f satisfies Axiom A and the strong transversality. By using the techniques
obtained in proving the conjecture, Palis [18] showed that if there exists a
nonempty open subset U of Diff' (M) such that all periodic points of each
g € U are hyperbolic, then every diffeomorphism belonging to U can be
approximated by Axiom A diffeomorphisms with no cycles. Next it was
checked in [1] that U consists of Axiom A diffeomorphisms with no cycles.
We remark here that the methods of Liao [7] which proved the C!-stability
in the 2-dimensional case were also useful in the higher dimensional case
(the 2-dimensional case was also proved in Sannami [22]).

In this paper we shall discuss the problem of whether stability of C*-
differentiable maps implies Axiom A and no cycles.

Concerning this problem Przytycki proved the following remarkable re-
sults: Anosov differentiable maps which are not diffeomorphisms or expand-
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ings do not satisfy Cl-structural stability [20], and if a differentiable map f
satisfies Axiom A and has no singular points in the nonwandering set, then
f is C* f2-stable if and only if f satisfies strong Axiom A and has no cycles
[21]. On the other hand, we know [23] that expanding maps are structurally
stable.

In view of these developments, we shall discuss in detail how stability
of diffeomorphisms can be adapted to the more complicated situation of
Cl-maps, and so we shall focus on the noninvertible case (that is, the case
of differentiable maps which are not diffeomorphisms).

In order to state our result let us recall a few notations and basic results
about C'-maps.

Let f € C1(M). For a periodic point p of f, denote by o(f, p) the minimal
integer n > 0 satisfying f™(p) = p. We say that o(f,p) is the period of p
for f. A periodic point p is called hyperbolic if Dpfg(f*’) : TyM — T, M has
no eigenvalues of absolute value one; then T, M splits into the direct sum
T,M = E*(p) & E"(p) of subspaces E*(p) and E"(p) such that

(1.1) (a) DpfeYPN(E*(p)) C E5(p), Dpfo P (E*(p)) = E*(p),
(b) there are ¢ > 0 and 0 < A < 1 such that for n > 0,
(@) [|Df" ()] < eA™|lvll (v € E5(p)),
(i) [Df™ (0| = A" [|v]| (v € E"(p)).
A hyperbolic periodic point p is said to be a sink (resp. source) if T, M =
E*(p) (resp. T,M = E"(p)).
We denote by M = Hiooo M the topological product of M’s, and define

an injective continuous map f: M — M by
Fl(@a)) = (f(zn)
for (#,) € M. Then P°o f = f o P° where
(1.2) P'"M— M
is the natural projection defined by P°((z,)) = z¢. For A C M put
(1.3) A ={(z,) eM: 2, € A, f(z,)=2pt1, n € Z}.

Then Ay is f-invariant (f(/lf) = Ay) and ﬂ/lf : Ay — Ay is a homeomor-
phism when Ay # ). Notice that A is not necessarily f-invariant.

We say that (Mg, f) is the inverse limit system of (M, f). Notice that if
f: M — M is a diffeomorphism, then the inverse limit system of (M, f) is
equal to the original system (M, f).

Let TM be the subspace of M x T'M defined by

TM = {(Z,v) e M x TM : P°(Z) = 7(v)}



ot -maps having hyperbolic periodic points 3

and define a Finsler metric || - || on TM by
1@ )|l = [loll - ((Z,v) € TM).
Define the projection P° : TM — T M by
(1.4) P(Z,v) =wv
for (z,v) € TM. Then P°(T;M) = T,,M and the restriction P°|T;M :
T5M — T, M is a linear isomorphism.
We define a C%-vector bundle
m:TM — M

by 7(Z,v) = 7 for (,v) € TM, and write TzM = 7~ 1(Z) for ¥ € M. Let
Df . TM — TM be defined by

Df(z,v) = (f(Z), Doy f(v))  ((2,0) = ((20),v) € TM),

where zg is a point in (z,) and D, f is the derivative of f at xo.

We say that a closed f-invariant subset A is hyperbolic if the vector
bundle TM|Af = UieAf TM splits into the Whitney sum TM|Af = ES@GE"
of subbundles E® and E" satisfying the following conditions:

(a) Df(E®) C E*, Df(E") = E",
(b) Df|E" : E* — E" is injective,
(c) there exist ¢ > 0 and 0 < A < 1 such that for n > 0,
[DFIEP[ < eA™, [[(DFIE") ™" < eA”,
where ||T|| denotes the supremum norm of a linear bundle map 7. It is

checked from the techniques in [20, §0 and §1] that

(1) E® and E" are C%-vector bundles over Ay,
(2) there exist 0 < A < 1 and a new norm || - || such that

IDFIES| <A, I(DFIEDTH < A,

(3) if P°(Z) = P%(y) for T,y € Ay, then E*(Z) = E5(y), but in general
EY(3) £ E*(5).

Let f, in particular, be a C'-map from M onto itself. Then f is called
Anosov if M is hyperbolic. An Anosov map f is said to be expanding if
EH(EL'V) =T;M for T € Mf.

For z = (z,,) € My and € > 0 put

W@, f) ={y € M : d(zy, f"(y)) < € for n > 0},
W(z, f) = {y € M : there exists y = (y,) € My with yg =y
such that d(z_,,,y_,) < e for n > 0}.

(1.5)
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Then Wi(z, f) = Wi(y, f) if P°() = P°(y) for 7,y € My, and

W@, f) C fTHWVEF@). ). WEE L) C FOVEH@), 1)

If A is hyperbolic, then it follows from [5, Theorem 5.1] that
{W2(Z, f)}zea, and {W2(Z, f)}zea, are continuous families of C*-disks in
M such that

T, W2 (Z, f) = P*(E°(2))
for = (x,) € Ay and o = s, u. It is easily checked that for z € Ay,

W@ f) = | T VE @), ),

n>0

= (@), f)),
n>0
where

W2, f) ={y € M : d(zn, f"(y)) — 0 as n — oo},
Wh(z, f) = {y € M : there exists y = (y,) € My withyo =y
such that d(z_,,,y_,) — 0 as n — oo}.

Notice that W (z, f) (¢ = s,u) is not an immersed submanifold whenever
f is noninvertible.

A closed f-invariant set A is said to be isolated if there is a compact
neighborhood U of A satisfying Ay = Uy. If, in particular, f is a diffeomor-
phism, then Ay = Uy means A= —___ f™*(U).

If A is isolated and there is a point « € A such that {f™(z) : n > 0} is
dense in A, then A is called a basic set. It follows from [20, Theorem 3.11]
and [21, p. 62] that an isolated hyperbolic set A decomposes into a finite
disjoint union A = A;U...UA; of basic sets A; since the inverse limit system
f of f is an expansive homeomorphism with the shadowing property.

We say that there exists an n-cycle in A if there exists {A;; : 1 < j <
n + 1} such that

(1> A'Ll = Ain+17

(2> Aij %A’Lk (léj%kgn)v
(3) {Ws(Aljvf) \ Alj} N {Wu(/lij+17f) \Aij+1} 7& 0 (1 <j< n)v
where
WAL f) = | W@, WAL H = |J WUE .
TE(As)y ze(Ai)y

We say sometimes that A; has a homoclinic point when it has a 1-cycle.
The subset

Q2(f) = {x € M : for any neighborhood U of z there is n > 0
such that f"(U)NU # 0}
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is closed and satisfies f(£2(f)) C £2(f). We say that £2(f) is the nonwander-
ing set. Notice that if the set of periodic points, Per(f), is dense in £2(f),
then f(£2(f)) = £2(f). Recall that f satisfies Aziom A if Per(f) is dense in
Q2(f) and £2(f) is hyperbolic. When f satisfies Axiom A, it is easily checked
that (2(f) is isolated, and so §2(f) decomposes into a finite disjoint union
of basic sets. We say that an Axiom A differentiable map f has no cycles if
there are no cycles in 2(f). Define

P(M) = {f € C'(M) : every periodic point of f is hyperbolic},
AN(M) = {f € C'(M) : f satisfies Axiom A and has no cycles}.

Since AN (M) is open in C!'(M) [14, Theorem B], we have AN (M) C
int P(M). Here int E denotes the interior of E.

I Dy f: ToM — Ty M is not injective, then x is called a singular point
for f. Denote by S(f) the set of all singular points of f. Obviously, S(f) is
a closed subset of M. Notice that an expanding map has no singular points.

Let f € CY(M). Then f is said to be Cl-structurally stable if there
exists a neighborhood U(f) of f such that for g € U(f), g is topologically
conjugate to f. A differentiable map which is C''-structurally stable has no
singular points [8, p. 381]. But this is not true for C%-structural stability
[2, Theorem 3]. We say that f is C! 2-stable if there exists a neighborhood
U(f) of f such that g|f2(g) is topologically conjugate to f|£2(f) for all g €
U(f). Notice that Cl-differentiable maps satisfying C! (2-stability belong
to int P(M). This follows from [3, Theorem 1].

Our main theorem is the following:

THEOREM A. If a Ct-map f belonging to int P(M) satisfies the condi-
tion
Q(f)NS(f) C {p € Per(f) : p is a sink},
then f satisfies Axiom A and has no cycles.

The proof of this theorem is based upon results related to stability prob-
lems from Mané [12], Palis [18] and Przytycki [21].

If f satisfies Axiom A and (2(f) is the disjoint union 2; U {25 of two
closed f-invariant sets such that:

(1) f|421 is injective,

(ii) 25 is contained in the closure of all source periodic points,
then f is said to satisfy strong Axiom A. When f is a diffeomorphism, the
notion of strong Axiom A coincides with that of Axiom A.

As an extension of the result of Przytycki [21, Theorem A] stated above
we have:

COROLLARY B. If f € CY(M) satisfies the assumption of Theorem A,
then the following are equivalent:
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(1) f satisfies strong Aziom A and has no cycles,
(2) f is Ct Q-stable.

2. Proof of Theorem A. To show Theorem A we need the following
propositions, where cl(E) denotes the closure of E.

ProprosITION 1. If f € int P(M) and {2(f) \ cl(Per(f))} N S(f) = 0,
then £2(f) = cl(Per(f)).

This will follow from the techniques used to prove the closing lemma for
Cl-maps with finite singular points (see Wen [26] and [27, Theorem A]).

Let f € P(M). Then every periodic point p of f is hyperbolic. Thus p
satisfies (1.1). We set

(2.1) Ii(f) ={p € Per(f) : dim E°(p) =i} (0<i<dimM)
where E®(p) is as in (1.1), and denote by §E the cardinality of E.
PROPOSITION 2. FEvery f € int P(M) has the following properties:

(a) #aim m(f) < o0,

(b) cl(Lo(f)) is hyperbolic.

Proposition 2(a) was proved in [19, Theorem 4.1] for diffeomorphisms
and in [6] for differentiable maps without singular points. We shall give the
proof of (a) for the general case. (b) is clear for diffeomorphisms because
Io(f) = Lgim m (f71). Unfortunately it is not true that #I5(f) < oo for the
noninvertible case, and so we have to give a proof. To do that, the technique
of [12, Theorem 1.4] is useful.

We define

F(M)={f €intP(M) : f satisfies the assumption of Theorem A}
and put

10
(2.2) Alio) = | J A(Ti(f)) (0 <ip < dim M).
i=0
PROPOSITION 3. Let f € F(M) and 0 < igp < dim M — 2. If A(ip) is
hyperbolic and A(io) N cl(Liy+1(f)) = 0, then cl(L;y+1(f)) is hyperbolic.
This will be shown using the methods of [12, p. 167].

PROPOSITION 4. Let f € F(M). Then

(a) cl(To(£) VU el((£)) = 0,

(b) if 1 < ip < dimM — 2 and A(iy) is hyperbolic, then A(ig) N
cl(Lip1(f)) = 0.

Proposition 4(a) is clear for diffeomorphisms because §ly(f) < oo, but
we have to prove it for C''-maps. We shall derive a contradiction by showing
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that if (a) is false then f has homoclinic points. (b) was given in [1, §3]
for diffeomorphisms. We shall give the proof of (b) for the class F(M) of
differentiable maps which contains the diffeomorphisms.

Once Propositions 2-4 are established, we conclude that cl(Per(f)) is
hyperbolic when f € F(M).

Indeed, cl(Zgim p(f)) = Laim m (f) and cl(Ip(f)) are hyperbolic by Pro-
position 2. From Propositions 3 and 4 it follows that cl(Z;(f)) (1 < i <
dim M —1) are hyperbolic. Thus cl(Per(f)) = U?i:rgM cl(1;(f)) is hyperbolic.

Combining this result and Proposition 1 shows that each f € F(M)
satisfies Axiom A. Using the techniques of [17, Theorem, p. 221], it is checked
that if f € int P(M) satisfies Axiom A, then f has no cycles. Therefore
Theorem A is proved.

Thus it remains to show Propositions 1-4. We devote the rest of this
paper to the proofs.

3. Proof of Proposition 1. We first prepare some auxiliary results.

For x € M and £ > 0 put T, M(§) = {v € T,M : |jv| < &}. Then
there exists £ > 0 such that the exponential map exp, : T,M(§) — M is a
C*°-embedding for all x € M.

The following Lemmas 3.1 and 3.2 were proved in [3, Lemma 1.1] and
[12, Lemma 1.8] for diffeomorphisms. But their proofs can be adapted to
the noninvertible case, and so we omit them.

For E C M, let B.(E) denote the closed ball defined by

B.(F)={y e M : d(z,y) < ¢ for some x € E}.

LEMMA 3.1. Let f € CY(M). For every neighborhood U(f) of f there
exist a neighborhood Uy (f) CU(S) of f and €1 > 0 such that for g € Ui (f),
a neighborhood U of a finite sequence § = {x1,...,xn} with x; # x; (i # j)
and linear maps L; : Ty, M — Ty M (1 < i < N) with |[L; — Dy, g|| < €
there are g € Z/{(f) and & > 0 with the following properties:

(a) Bas(0) C

(b) g(z) = ()($€9U{M\B46( )},

(c) g(x) = expy(,,) oLi o exp, ! (x) (x € Bs(w:), 1 < < N).

For f € P(M), 0 <i<dim M and n > 0 define

Per(f) = {p € Per(f) : f"(p) =p},  I}'(f) = Li(f) N Per"(f),
where I;(f) is defined in (2.1) for 0 < i < dim M.
LEMMA 3.2. Let f € int P(M) and U(f) be a connected open neighbor-

hood of f contained in int P(M). Then, for all g € U(f), 0 < i < dim M
andn > 0,

81 (f) = #1i'(g) < .
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LEMMA 3.3. If f € int P(M), then f(82(f)) = £2(f).

Proof. If f is a diffeomorphism, then the assertion is clear. Thus it suf-
fices to show it for the noninvertible case. It is clear that f(£2(f)) C £2(f).
Suppose there is ¢ € M such that ¢ € 2(f)\ f(£2(f)). Since ¢ € £2(f), there
exist sequences {z;} of points and {k;} of positive integers such that

d(zi,q) <1/i and d(f*(x;),q) < 1/i.

We can suppose that {f*~!(z;)} converges to y as i — oo. Then y €
f~Y(q) and so y & £2(f). Thus there is a neighborhood U(y) of y such that
(U (y))NU(y) =0 for j > 0. Then for i > 0 large enough we have

(3.1) fPta) eUly) and  fH(z:) €U®y) (0<k <ki—1).

Since f(cl(Per(f))) = cl(Per(f)), we have ¢ & cl(Per(f)). Let U(q) be
a neighborhood of ¢ satisfying U(q) N cl(Per(f)) = 0, and let U(f) be a
connected open neighborhood of f contained in int P(M). By taking U(y)
and U(f) small enough we can suppose that for all g € U(f),

(3.2) 9(U(y)) C U(q).
By using Lemma 3.1 we can find h € U(f) such that
3.3) (1) y¢&S(h),
(ii) f(z) = h(z) (z € {y} U{M\ U(y)})
(as above, S(h) denotes the set of singular points of h). Then there is a
neighborhood V' C U(y) of y such that h|V : V — h(V) is a diffeomorphism.
Thus, for ¢ > 0 large enough there is z; € V satisfying h(z}) = z;. Since
h(y) = q and xz; — q as i — oo, we have z, — y as i — oo. Thus, for i > 0
large enough we can construct a diffeomorphism ¢ : M — M such that
p(ff Ha)) =ai, {zeM:p@)#a}CUWY), g=hopel(f)
and so
g(ff ) = @
Then
g (R @) = R o g(ff N (@) = R ()
by (3.1) and (3.3), and ¢g(U(y)) C U(q) by (3.2). Thus,
g(f*¥ = (as)) € Per(g) N U(q) # 0.

Since U(y) Ncl(Per(f)) = 0, we have f(z) = g(z) for z € cl(Per(f)). There-
fore, f Per" (f) < § Per"(g) for n = k;, which contradicts Lemma 3.2. =

LEMMA 3.4. Let f € CY(M) and q € Q2(f). If f~X(¢")NQ2(f) # O for all

q € f7(q) N 2(f) where n >0, and if {Uy> RN 20HynS(f) =0,
then for every neighborhood U(f) of f and every neighborhood U(q) of q
there is g € U(f) such that
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(1) Per(g) NU(q) # 0,
(2) {z e M : f(x) # 9(2)} C Upnso S (U(9)-

Lemma 3.4 easily follows from [27, Theorem A], and so we omit the
proof.

Proof of Proposition 1. Proposition 1 was proved in [9, Lemma 3.1] for
the case when f is a diffeomorphism. Thus it remains to give the proof for
the noninvertible case. Suppose that ¢ € £2(f) \ cl(Per(f)). By Lemma 3.3
we have f=1(¢') N 2(f) # 0 for all ¢’ € f~"(q) N 2(f) and n > 0. Since
f(cl(Per(f))) = cl(Per(f)), we have

{f7"(a) N 2(f)} Ncl(Per(f)) =0
for n > 0. Thus,
{fM@ne(fHinsif)=0

for n > 0 because {2(f) \ cl(Per(f))} NS(f) = 0. Hence the assumptions of
Lemma 3.4 were satisfied.

Let U(f) be a connected open neighborhood of f contained in int P(M)
and U(q) be a neighborhood of ¢ satisfying U(¢q)Ncl(Per(f)) = 0. By Lemma
3.4 there is g € U(f) such that Per(g) N U(q) # 0 and

{zeM:f(z)#9(z)} | JF"(U@):n=>0}
Since f(cl(Per(f))) = cl(Per(f)), we have
(WU (g) : n > 0} N el(Pex(f)) =0,

and so f(z) = g(z) for z € cl(Per(f)). Therefore, f Per"(f) < §Per"(g) for
some n > 0, which contradicts Lemma 3.2.

4. Proof of Proposition 2(a). Let f € int P(M). Then it follows from
[10, Theorem 4.1] that there exist a neighborhood U(f) C int P(M) of f and
numbers 0 < Ag < 1, mg > 0 and 79 > 0 such that for all g € U(f) the
following hold:

(a) for p = (pn) € UdlmM I;(9)g with o(g,po) =n > 70,

[n/mo]—1
(4.1) [T [1Dgmelzs @ @)l < rg™,
7=0
(b) for 5= (pn) € Uty ™ ™" Ii(g)g with o(g,po) =n > 0,
M ' n/mo]
(4.2) IT g @ @)~ < A6,

=0



10 N. Aoki et al.

<>ﬁwp—@weLﬁmM»@w

(4.3) hm — Zlog | DG™ | E* (g™ (p))|| < log Ao,

@Hﬁp—@neUMM1L@M

n—1

(4.4) hrn — Zlog” (Dg™|E" (g™ (p))) Y| < log Ao,

where I;(g) is as in (2 1), Ii(g)4 is as in (1.3) and [r] denotes the greatest
integer not greater than r.

Let e, satisfy the conclusion of Lemma 3.1 for Uy (f) and let A\g < A1 < 1.
Choose g9 > 0 such that (1 + e9)A1 < 1 and g9 < 3(£1/2)™°, and take
Hy > 1 satisfying eg > e 1. Denote by N()g, A1) > 0 the smallest integer
satisfying

(4.5) N(Xo, A1) log(A1/Xo) > Hi,
and write
1
(4.6) O, a) = 2BL20)
1

LEMMA 4.1. Let a sequence {p(n) : 0 < n < N —1} satisfy the following:
(i) N = N(Xo, A1),
(i) p(n) > 0,
(iii) —H; <logp(n),
(iv) [Ty p(n) < AY.
Then there exist an integer k with k > NC(Xg, A1) and a sequence 0 < ny <
.<ni <N —1 such that for 1 <j <k andn; <l <N —1,

l
[T »n) <A™

n=n;+1

The statement of Lemma 4.1 is a reformulation of the result stated in
[19, Lemma, p. 212] and [12, Lemma II.3], and so we omit the proof.
We set

Q@ ={z € d(Taim m(f)) : [| Do f™ || < 0}-
Then there is 6 > 0 such that
(4.7)  (a)ifd(z,y) <2 (x € l(Laimm(f)) \ Q, y € M), then
[ Dy f™]] < (1 +€0)|[Da f™ ],
(b) if d(x,y) < 2§ (xz,y € cl(Igim m(f))), then
Dy f™ N = [ Da f™ ||| < €o.
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Put A2 = (1 + €9)A;. Since M is compact, there is K > 0 such that for
{z1,...,2x} C M with x; # z; (i # j) there exist z;,z; (1 <i # j < K)
satisfying d(z;, ;) < (1 — X2)d. Let N’ > 0 be an integer such that K <
N'C(Ao, A1).

To obtain the conclusion of Proposition 2(a) suppose that §l4im as(f)
= o00. Since fPer"(f) < oo for n > 0 (by Lemma 3.2), there is a periodic
point p € Iqim ar(f) with period o(f, p) satisfying

o(f,p) > max{rg, moN', moN(Xo, A1)}

Put N = [o(f,p)/mo]. If ¢ = f™"(p) € Q for some 0 < n < N —1,
then we can construct a family {Lysiq) @ Tyi(qyM — Tf¢+1(q)M}?;°0_1 of
isomorphisms such that

1Ly = Dy Il < e,
inf{||Lysig)(v)]l : v € TiqyM with |Jv]| =1} > e1/2.

By Lemma 3.1 there is g € Uy(f) such that

(1) g(x) = f(x) for = € {p, f(p),..., FOSP) "1 (p)},

(2) if fmon(p) ¢ Q for 0 < n < N — 1, then Dyi,)g = Dyi(p) f for
mon <i<mo(n+1)—1,

(3) if fmon(p) € Q for 0 < n < N — 1, then Dyiyg = Lyi(,) for
mon <i<mo(n+1)—1,

(4) Dfi(p)g = sz‘(p)f for Nmo <1< Q(f,p) —1.
Define a function p(-) : {0,1,...,N —1} — R by

il

p(n) = [[Dgmon ()9
Then —H; < logp(n) for 0 <n < N — 1. Since g € Up(f), by (4.1) we have

N-1
I p(n) < AT,
n=0

and so {p(n)} satisfies the conditions of Lemma 4.1. Thus there are an
integer k > K and a sequence 0 < nj < ... <ni < N — 1 such that

!
(4.8) [I p0) <A™ (Q<j<k ny<I<N-1).

n=n;+1
By the choice of K there are 0 < ¢ < j < k such that
d(g™"™ (p), g™ (p)) < (1 — A2)é.
By (4.7) and (4.8) it is easily checked that

(4.9) (1) gmo(mi—mi)|Bs(g™o™i(p)) is a Lipschitz map and its Lipschitz
constant is less than Ay < 1,

(2) gmotmi=mi)(Bs(g™omi(p))) C Bs(g™™i (p)).
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Thus there is a unique z € Bs(g™°™ (p)) satisfying g™ =) (z) = 2. Since
N = [o(f,p)/mo]and 0 < ny < ... <np < N—1, we have 0 < mo(n;—n;) <
o(f,p), and so z # g™ (p). On the other hand, since

getfpImo(ng—ni) : B5(g™™ (p)) — Bs(g™™ (p))

is a contraction, we have z = ¢™"(p), which is a contradiction. Thus
#14im 0 (f) = oo cannot happen. Therefore Proposition 2(a) is proved.

5. Proof of Key lemma (Lemma 5.1) and Proposition 2(b). Let
A be a closed f-invariant set. We say that a D]?—invariant subbundle E C
TM|Ay is contracting if Df|E is contracting, and that E is ezpanding if
DﬂE is expanding.

Let f € int P(M) and I;(f) be as in (2.1). Let my and Ao satisfy (4.1)—
(4.4). Tt follows from [10, Proposition IL.1] that TM|cl(L;(f))f (1 < i <

dim M — 1) splits into the Whitney sum TM|cl(1;(f))f = E5 @ E" of sub-
bundles E} and E}' such that

(51)  (a) Df™(E;) C E;, Df™(E}) = E},
(b) Df™|E™: E* — E" is injective,

() D™ ES @) - [(DF™|E @) < Ao for & € cl(L(f))y-
It is easily checked from [20, §0 and §1] that for 1 <i < dim M — 1,

(5.2) (1) E? and Ezu are C%-vector bundles over cl(1;(f))¢,
(2) if T = (2n),7 = (yn) € l(I;(f)); satisfy zo = yo, then E3(Z)
= Ef@), and so we write Ef(xg) = FO(EE(E))(C Ty M) where
PV is defined as in (1.4) (notice that E*(Z) # E*() in general),
(3) cl(Z;(f)) is hyperbolic if and only if ES is contracting and EX
expanding.
In the case when ¢ = 0, cl(Io(f)) is hyperbolic if and only if TM|cl(Zo(f)) ¢

is expanding. If f is a diffeomorphism, then we know [19, Theorem 4.1] that
#Io(f) < oo and Iy(f) is hyperbolic.

LEMMA 5.1. Let f € int P(M). Then

(a) TM|cl(Io(f))f is expanding,

(b) if f € F(M) and E is contracting for some 1 < i < dim M —1, then
B} is expanding.

If we establish Lemma 5.1, then we obtain Proposition 2(b) from Lem-
ma 5.1(a). The proof of Lemma 5.1(a) is similar to that of (b), and so

we omit it. To show (b) we suppose that Ef is contracting and EZ“ is not
expanding for some 1 < ¢ < dim M — 1. Then we can find a periodic point
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pEUdlmM "I,(f) such that

12 ~ ~
: lim =Y log|/(Df™|E*(f™3(5))) 7Y > log A
(5.3) ngr;on;ogm Fe B (F709(5)) | > log Ao,

which in fact contradicts (4.4). Thus it remains to find a periodic point

satisfying (5.3). To do that we need the techniques used in proving Theorem
1.4 of [12].
By (5.1)(b) we can define

Df~™|E!: EY — E}

Df=m0|EXE) = (Dfmo|EX(f~™0(F)))~! for Z € cl(I;(f)) . We say that
for € cl(1;(f)) s and n > 0 the pair (z, Fmon(%)) is a y-string if

H IDFmo | BRI @) <A™
Jj=1
and that it is a uniform ~-string if (f™%(Z), fmon (%)) is a y-string for
0 < k < n. Let us say that for 0 < N < n a pair (z, f™"(z)) is an
(N, 7)-obstruction if (z, f™k(F)) is not a y-string for N < k < n.
Take v; (0 <i < 4) with
0<A<rmw<mn<r<y<nu<l

Let N(v;,v;) and C(v4,7;) (0 <i < j <4) be asin (4.5) and (4.6), and let
d be a compatible metric for the product topological space M.

LEmMA 5.2. If E} is not expanding, then for every € > 0 there exists
a compact invariant set A(e) C cl(I;(f))s such that each 2° € A(e) has
the following property: there exist T+ € A(g) N Iz-(f)f arbitrarily near to z°,
ny >0 and y € A(e) such that

(a) d(f™om (3),7) < /4,

(b) (g, f™"(y)) is an (N(73,74),72)-obstruction for n > N(ys,74),

(c) if ny > 0, then (F*, fmom1 (3Y)) is a uniform y4-string.
Moreover A(e) is the closure of its interior in cl(1;(f))y.

Lemma 5.2 is checked in the same way as Lemma I1.7 of [12], so we omit
the proof.

The following lemma is stated in [12, Lemma IL.5].

LEMMA 5.3. Let = € cl(;(f))s and let n,r and | be nonnegative inte-
gers with 0 < r < r+1 < n. If (2, f""(Z)) is a yo-string conlaining an
(N (v3,74), 72)-0bstruction (fmor(z), froC+D(z)) such that
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(a) n > N(v0,74),

(b) nC(v0,74) > r +1,

(¢) r+1> N(y1,72) and

(d) (r+1)C(y1,72) >+ N(73,74),

there exists a uniform vs-string (Z, f™(Z)), r +1 < m < n, that is
not a y1-string.

Let A(g) be as in Lemma 5.2 and fix 2° € A(e). Choose 7! € A(e)NLi(f)
y € A(e) and ny > 0 as in Lemma 5.2 and take N; with

N1 > max{N(v3,7), N(71,72)}-

Since A(e) is the closure of its interior in cl(f;(f))s and (y, oM7) is
an (N (73,74),v2)-obstruction, there exists 22 € A(g) N Ii(f); such that
d(@2,7) < e/4 and (Z2, fmoN1(32)) is an (N (73,74), 72)-obstruction. Since
72 € Ii(f); and Ag < 70, we deduce by (4.4) that (2, fmon(72)) is a o-
string for n large enough. Thus (fz,fmon(fz)) satisfies the conditions of
Lemma 5.3 (r = 0,1 = N;), and so we can choose N1 < ny < n such that
(22, fm"”?(ffz)) is a uniform 44-string, but not a ~;-string.

Put K = mingear, sy, |Df ™| EX@)] > 0 and take 0 < ko < 1 with
Ao < k(Q)’h and 4 < ko. Since N; is large enough and ny > N, we can
suppose that

NE™ = (koyn)"

Continuing in this manner we obtain the following lemma.

LEMMA 5.4. Suppose that E;l s not expanding. Then for all e > 0 and
Y1, va with 0 < Ao < y1 < v4 < 1 there exist sequences {2’};>1 C A(e) and
{n;}j>1 such that

(1) d(fmoms (@), @011) <e/2 (j = 1),
(2) if n; >0, then (5:'j,fm0"f(fj)) is a uniform ~y4-string,
(3) if j > 2 is even, then n; >0 and (1, fmomi (79)) is not a y1-string,
and
v K > (koyr )T

To show (5.3) we extend the continuous bundles Ef and E’lu to a neigh-
borhood of cl(1;(f))s. In the same way as in the proof of [4, Theorem (4.2)]
it is checked that there are a closed neighborhood V' of cl(Z;(f))s and a

CO-splitting TMy|V = Ef @ Ez“ such that
(a) if 7 € V.0 f~m0(V), then D f™(E7 (%)) = E7 (f™(F)) (0 = s,u),
(b) E7|l(L(f))s = E7 (0 =s,u),
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(c) there is 0 < Ag < A < 1 such that for Z € V N f~™0(V),
IDF™ B @) - | D" 1B (F™ @) < A
Choose § > 0 such that if z € cl(Z;(f))r and y = (y;) € M satisfy d(7,7) <
0, then y € V and
(54) kol DFIER@)I < IDFTIER @) < ko HIDF B @)
Let 0 < £ < ¢ be sufficiently small. Choose {Z’};>1 and {n;};>1 satis-

fying the assertion of Lemma 5.4 for this e. Without loss of generality we
suppose that d(zZ!, fmom (%)) < £/2 for some large k > 0 because A(e) is

compact. Then we have to find p € Per(f) such that
. fen(p) = b,
(fmol(fmo(no+n1+ - 1)( ), fmol(xj)) <6(0<1<nj, 1<j<k),

where n =ni + ...+ ng and ng = 0.
If (5.5) is established, then the point p meets our requirement. In fact it
suffices to see that (5.3) holds for p. By (5.4) and Lemma 5.4(2) we have

HHDf mo | B (FolF))]| < kg ™oy,

and so Elu(ﬁ) C EY(p) since ky 'y < 1. Thus p € UdlmM 'I I;i(f)f. On the
other hand, by (5.4), (5.5) and Lemma 5.4(3),

H IDFm B B = ke r > A

Therefore we obtain (5.3).
It remains to show (5.5). To do that we apply the local stable manifold
theorem for diffeomorphisms ([5], [23]).

For 7 € M and § > 0 put T:M(§) = {(z,v) € TM : |jv|| < &}. Then
exp; : TzM(§) — M defined by
exp; = exp,, oP°|T;M(€)
is a C*°-embedding for small £ > 0 as described in §3. Since S(f)Ncl(Z;(f))
= (), there exists 0 < ro < £ such that
F:i_l = (eXp:%l of™0 o epr—m05)71’T5M<r0)

is a C'-embedding for z € cl(1;(f))s.
Let 7 € cl(I (f))s and E?(%) be as in (5.1) for ¢ = s,u. We put
E5(Z,r) = E5(Z) NT3M(r) (r > 0) and denote by o the zero vector of
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M. We put
2@ 1) ={o: Bj(F,7) = E}'(F): max |o(v)|| < oo, Lip(e) < 1},
vEES(Z,r)
and

X9z, r)={o € X%z, 7) : ||o(o)| < 7).
Here Lip(o) denotes a Lipschitz constant of o. Define
d(0,0') = max |lo(v) =o' ()| (0,0" € Z°(Z,1)).

veEES(Z,r)

Then (X°(Z,r),d’) is a complete metric space and X°(, r) is a closed subset
of Xb(z,r).
Let g > 0 be small enough and choose 0 < r; < rq satisfying

Lip((F5' = Daf~™0)|T5M(2r1)) < ep  for @ € cl(Li(f)) -
Since Ef‘ is contracting by the assumption of Lemma 5.1(b), we have
IDF™ B3| < p <1
for some pu < 1 (take mg large enough if necessary). Let p“ : Ef ® Elu — Ef
(0 = s,u) be the natural projection. Then it is easily checked that if o €
XO(Z,71), then p* o F ' o (id, o) : E5(Z,7) — E5(f~™0(Z)) is an embedding
such that
P o By o (id, o) (B3(7, 1)) > B3(F™ (@), 11(1 — 26010) /1),
and so the graph transformation
Iz(o) = (p“o F:i_l o (o,id)) o [p® o Fgl o (o, id)]fl\Eis(f*mO (Z),7r1)
is well defined and F ' (graph(c)) D graph(I’z(c)). Moreover, from (5.1)(c)
it follows that for 0,0’ € X°(2,71),
. g0i + Ao
1) Lip(I'% < -
(1) Lip(T (o) < S22

(2) IT5(0) )| < (IDF " |EY @) + <0} 75— llo(o)]]

(3) d(I5(0), T(o")) < {IDF B D] + 200} =5 —d (0,0").

)

By (1) we have I's(c) C ZP(f~™0(Z),r1).

We are now in a position to prove (5.5). Let {Z7};>1 and {n;};>1 satisfy
the conclusion of Lemma 5.4 for € > 0 small enough, and let k& > 0 satisfy
d(zt, fremo(7%)) < /2. If n; = 0 then j is odd by Lemma 5.4(3), and
so nj41 > 0. Thus we suppose that n; > 0, (Ej,f"fmo (7)) is a uniform
yy-string for 1 < j < k, d(f™™0(39),71) < efor 1 < j < k —1 and
d(fmmo (%), 3') < e. To avoid complication we show (5.5) for the case
when £ = 1.
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Choose g, > 0 with 65374 < 1 and suppose

2e0 < (€50 — 1 inf Dgf_mo

o< il |
because g is small enough. We put I’ = Ffmo( 1) 0.0 anlmo(wl) By
applying inductively the above estimates (1)—(3), we ﬁnd that for 0,0’ €

SO(framo (), ry),
(1) f(a) C 20(551 1),

@) IF(@)(0)] < {H{an ol B @) + eo) b }n ol

IN

e M) 1{H|\Df morE%ffmorlwu}Ha(o)ﬂ

(¢
< (g )m|a< I,

) d(T(0),T(') < (Ewﬁ_m) 40,0,

Let o € X0(fmmo(z1), ry). Since E? is continuous (o = s,u) and d(@,
fremo (1)) < g, by (1) and (2') there is a unique & € X9(f™mmo(zt),r)
such that

graph(a) C exp~, oexps ol (o),

f”1m0(~1)
and so we can define I'0 : XO0(fmmo (1) ) — XO(frimo(zl) ry) by I'°(0)
= 7. From (3') it follows that I'¥ is a contracting map, and thus it has
a unique fixed point oo € XO(f™™0(31),r1). Then fm™o(graph(cy)) C
graph(op). By Brouwer’s theorem there is p € graph(og) such that f1"0(p)

=p.Putp=(...p, f(p),..., fa™ L(p),p,...) € Per(f). Then it is easily
checked that p meets our requirement.

6. Proof of Proposition 3. To show Proposition 3 we need properties
of Borel probability measures used in [12, §1 and §3]. Denote by M (X) the
set of all Borel probability measures on a compact metric space X. Let
f X — X be a continuous map and A be a closed f-invariant set. We
denote by M(f|A) the set of all f-invariant measures belonging to M(A)
and by M (f|A) that of all ergodic f-invariant measures.

Let f € int P(M) and I;(f) be as in (2.1). Let mg and Ao be numbers
satisfying (4.1)—(4.4), (5.1) and (5.2).

LEMMA 6.1. Let f € F(M) and 0 < iy < dimM — 2 be as in Proposi-
tion 3, and A(ig) be as in (2.2). If p € M(f™|cl(L;,+1(f))) satisfies
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(6.1) | log|[Df™|E; |l dp > log Ao,
cl(Tig+1(f))
then pu(A(ip)) > 0.

This result was proved in [12, Theorem 1.6] for diffeomorphisms. For the
noninvertible case we can apply the method given in [12].

LEMMA 6.2. Let f andig be as in Lemma 6.1. Suppose that i € M(f™°]
cl(Liy+1(f))). Then, given a neighborhood V of p in M(X) and a compact
set D disjoint from the support of u, there exist a Ct-map g, arbitrarily C*
close to f and coinciding with f on D, and a periodic orbit p = (p,) of g
with period mmyg such that

(@) po =m0 s EV

n=0 “Pnmg

(b) Prmg &€ D forn € Z,
where 0, 18 the point measure supported at x.

Lemma 6.2 was obtained in [12, Theorem III.1] by using the ergodic
closing lemma proved in [10, Theorem A] for diffeomorphisms and in [13,
Theorem, p. 173] for C'-maps without singular points. However the proof
in [13] can be adapted to our case. Thus we omit the proof of Lemma 6.2.

Proof of Lemma 6.1. The proof is very similar to that of [12, Theorem
1.6]. Let € M(f™|cl(L;y+1(f))) satisfy (6.1). We first check the case when
1 is ergodic.

Let W C M be a small neighborhood of cl(I;,+1(f))s. Choose an open
neighborhood Wy of cl(1;,+1(f)) such that if * = (z,,) € M satisfies zpm, €
Wy for n € Z, then ¥ € W. By Lemma 6.2 there are g, arbitrarily C*-
near f, and a periodic orbit p = (p,) of g with period mmg such that
po = m~1 ZZZOICS g 18 close to p in M(M) and ppm, ¢ M \ Wy for
n € Z. Then py concentrates on Wy.

Since g is Cl-near f, we can suppose g € P(M). As in (2.1) and (2.2)
define

Ii(g) = {q € Per(g) : dim E*(q) = i},  A'(d) = ] cl(Ti(g))
k=0
for 0 < i < dim M. Since pg is a periodic point of g with period mmy, it is
hyperbolic and so the tangent space T, M splits as in (1.1). If we prove

(62) dimES(po) < i(),

then po(A’(ip)) = 1. Since A’(ig) and pg converge to A(ig) and p respectively
as g — f, we have u(A(ip)) = 1. Lemma 6.1 proved.
Thus it is enough to show (6.2). To do that we use a continuous splitting

TMIW = E} 1, @ Ej 4
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that is an extension of the splitting

TMcl(Lig41(£)) s = E5y 1 ® Ef 1
n (5.1) (cf. [4, Lemma 4.4]). Let g be close to f. Then we know that
W(g) = Nnez 9" (W) has a Dg™e-invariant splitting TM|W (g) = Ej @ E}
such that Eg(%) is close to EZ]H(E) for T € W(g), o = s,u (cf. [5, §2]). If
T = (zp),y = (yn) € W(g) satisfy z¢ = yo, then ES(~) = E8 5(y), and so we
write E;(xo) = FO(E;(EE)) (C Ty, M). Notice that Eu( ) # E“( ) generally.
Define a number A > 0 by
log A = S log HDfm(’] i1l dp > log Ao.
cl(Lig+1(f))
Take \; (i-l2)with0<x\g<)\1 < A2 < A SinceE" (0 = s,u) and

1o are close to E " +1 and p respectively, by (5.1) and (6. 1) we can suppose
that for z € W(g )

(6.3) IDg™ |E5 @)l - [|(Dg™ |EX(&) 7Y < M
and
(6.4) [ 1og | Dg™ B dyio > log Ao

Wo

Since ppm, € Wy for n € Z, we have p € W(g). Thus, by (6.4) and the
definition of g,

(6.5) H 1D | E5 (G ()] = A5

From (6.3) it follows that

m—

|Dg~"" | By (5 H IDG | By (™ (7))
m_—l
< [T MlDgm™ B @G @)
=0

< )\1/)\2)m <1
and so FO(E;@)) C E%(po) where P° is defined as in (1.4). This implies
that dim E5(p) <o+ 1.
If dim E°(po) = io + 1, then we have dim Ej(p) = dim E"(po), and so
FU(Eg(ﬁ)) = Eu(po).AThus it is easily checked that E;(po) = E5(pp) since
po is hyperbolic and Ef(po) is Dy, g™ -invariant.
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By (6.5),
1 n—1
Jim —~ ]Z::O 10g | Dg™ | E® (pmy;)) |l

n—1
o1 o | B8 (~mod (~
= lim_~log [ | |[Dg™|E5(5™ (7)) > log Ao,
=0
which contradicts (4.3). Therefore, dim E®*(pg) < io.

If u is not ergodic, then by using the ergodic decomposition theorem we
can check that p(A(ip)) > 0 (cf. for the proof, see [12, Theorem 1.6]). m

LEMMA 6.3. Let f € int P(M) and 0 < iy < dim M — 2. If

| log|Df™|E; [l dp <0
cl(Zig+1(£))

for € Me(f™|cl(Liy+1(f))), then Efoﬂ is contracting.

The proof of Lemma 6.3 is very similar to that of [12, Lemma I1.5], and
so we omit it.
Lemmas 6.1, 6.3 and 5.1(b) yield Proposition 3 as follows: suppose that

A(io) N cl(Zig41(f)) = 0. Then u(A(ig)) = 0 for p € Me(f™|cl(Lig11(f))),
and by Lemma 6.1,

| log|Df™IE; ]l du < log Ao < 0
cl(Lig+1(f))

for p e M(f™|cl(1;y+1(f))). Therefore cl(;,+1(f)) is hyperbolic by Lem-
mas 6.3 and 5.1(b). The proof of Proposition 3 is complete.

7. Proof of Proposition 4(a). Before starting the proof we notice that
if f is a diffeomorphism, then the inverse limit system of (M, f) equals the
original system (M, f), and thus all the results for the inverse limit system
can be transferred to the original system.

To show Proposition 4(a) we prepare the following two lemmas.

LEMMA 7.1. Let f € int P(M) and let A(ig) be as in (2.2) for f and
0 <ip < dimM — 2. Let U(f) C int P(M) be a connected neighborhood
of f. Suppose that A(ig) is hyperbolic and g € U(f) satisfies g = f in a
neighborhood of A(ig). Then g has no cycles in A(ig).

For the proof of Lemma 7.1 we need the following:

LEMMA 7.2. Let g € CY(M) and p € M be a hyperbolic fized point of g.
Suppose that there is T = (z,,) € My satisfying the following:
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(1) d(zn,p) — 0, d(x—pn,p) — 0 (n — ),

(2) D,_, ¢ (T_ ,W2(D,g)) + T, WEp,g) = Ty, M for n > 0 large
enough, where p = (...,p,p,p,...) € Per(g)y and W2 (p,g) (¢ =s,u) is as
in (1.5).

Then for every neighborhood U(xg) of xo there is a hyperbolic periodic
point q such that dim E*(q) = dim E®(p), where E5(p) is the subspace of
T,M as in (1.1).

Lemma 7.2 was proved in [24] and [16, Appendix] for diffeomorphisms
and extended in [25, Theorem 4.2] to differentiable maps.

Proof of Lemma 7.1. Let U(f) and g € U(f) satisfy the assumptions of
Lemma 7.1. Notice that A(ip) is an isolated hyperbolic set of g. Suppose that
A(ip) has a cycle for g. By using the techniques described in [17, Theorem,
p. 221] there exist h € U(f), p € A(ip) and T = (z,,) € M, satisfying the
assumptions (1) and (2) of Lemma 7.2 and h = g = f on some neighborhood
of A(ip). Then it follows from Lemma 7.2 that §I7*(f) < 4I]*(h) for some
0 <i <19 and n > 0. This contradicts Lemma 3.2. =

Let f € F(M). Since cl(Iy(f)) is hyperbolic by Proposition 2(b), it is
isolated and can be written as a finite disjoint union cl(Zo(f)) = A1 U...UA,
of basic sets A;. Since TM|cl(o(f))s is expanding, there exist ¢ > 0 and
0 < A <1 such that for 1 <a < s,

(7.1) () WaL(@, f) = Bse(w0) (T = (zn) € (Aa)y),
(ii) if z = (zp) € (Aq)f and y € Bse(z0), then there is a unique
point y_1 € Bs.(z_1) such that f(y_1) =y,
(i) d(z, 5) < M(f(@), () (2.9 € Bse(Aa)),
(iV) (Aa)f = {g: (yn) € Mf “Yn € BSE(Aa)7 n > O}
Choose 0 < 1 < € — e such that if d(z,y) < 6 (x,y € M) then
d(f(z), f(y)) < e. It is easily checked that for every connected neighborhood

U(f) of f contained in int P(M) there is 0 < d2 < §; such that if d(z, z) <
02 (x,z € M) then we can construct a diffecomorphism ¢ : M — M satisfying

(7.2) () p(z) ==,
(ii) {y € M : p(y) # y} C Bs, (2),
(iii) fo o € U(F).

From the properties of differentiable maps belonging to F (M) we have
{cl(Per(f)) \ Laimas(f)} 0 S(f) = 0.
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Since #14im M (f) < 0o by Proposition 2(a), cl(Per(f)) \ Zdaim a(f) is closed.
Thus there is 0 < d3 < d3 such that if x,y € M satisfy d(z,y) < d3, then for
every point x_1 € f~!(z) with z_1 € cl(Per(f)) \ Laim am(f) there exists a
unique y_; € f~1(y) satisfying d(z_1,y_1) < da.

If Proposition 4(a) is false, we have

Ag Nel(L;(f)) # 0

forsome 1 < a < sand 0 < i < dim M. Proposition 2 ensures that cl(Io(f))\
Tgim m(f) = 0, and so i # dim M. Choose x € Ay, p € I;(f) with d(x, p) < d3
and a periodic point p € I;(f); with pg = p. By (7.1)(iv) there is 0 < n <
o(p, f) such that p_; € Ba.(A,) (0<j <n—1)and p_,, & Ba(A,). Then
for 0 < j <n —1 thereis x_; € A, such that

(7.3) fla—j) =2—j41 and d(z_j,p—;) < ds.

Indeed, there is a unique z_; € f~!(z) such that d(z_1,p_1) < da < ¢
because d(z,p) < d3 and p_1 € cl(Per(f)) \ Igimr(f). Obviously, z_; €
Bs.(Ag) since p_1 € Ba.(A,). By (7.1)(i) we have z_1 € W5(A,, f) N
WY (Aq, f). Since A, has no cycles by Lemma 7.1, we have x_; € A,. By
(7.1)(i), (i)

d(r_1,p-1) < Ad(z,p) < d3.
Continuing in this fashion we obtain (7.3).

Since d(x_(n_l),p_(n_l)) <63 (by (7.3)) and p_,, €cl(Per(f))\ Laim s (f),
we can find a unique point

T_p € f_l(l‘—(n—l)) - f_l(Aa)

such that d(x_,,p_,) < d2. By (7.2) there is a diffeomorphism ¢ : M — M
such that

(i) e(p—n) = T—n,
(i) {y € M : p(y) # y} C Bs, (p—n)s
(iii) fop e U(f).

For simplicity we write g = f o ¢. Obviously
9(y) = f(y) (v € M\ Bs,(p—n)),
9(p-n) = fopp-n) = f(x-n) = T_(n-1) € A
Since p_,, € A, and g*(p_,) € A, for i > 0, we have
P—n € W3(4a, 9) \ Aa.
If we establish that
(7.4) P—n € W*(4a, g) \ Au,
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then A, has a 1-cycle, that is, p_,, € {W*(A4,9) \ Aa} N{W"(Aa,9) \ Au}-
This contradicts Lemma 7.1. Hence for 1 < a < s,
dim M

Ay N U (L (f)) = 0.

This shows Proposition 4(a).

Thus it only remains to prove (7.4). Since p_,, & Ba.(A4,) and py =
Po(p,f) € Bss(Aa) C Bac(Ag), there is n+1 < m < o(p, f) such that p_; ¢
By (Ag) for n < j <m—1, and p_,, € Bo.(A,). Then d(p_,,p—;) > d; for
n+1<j<m.

Indeed, if there is n + 1 < j < m such that d(p_,,p—;) < 91, then

d(P—(n—1):P—(j—1)) = d(f(p-n), f(p-;)) <e.
Since p_(n—1) € Bs,(Aa) by (7.3), we have p_(;_1) € Bac(A,), which con-
tradicts the choice of m.
Thus ¢ (p—m) & Bs, (p—n) for 0 < j <m —n — 1, and so
g p,m) =P-n-

Since p_p, € Boe(Aq), by (7.1)(1)-(iii) there is ¢ € My with gy = p_,, such
that

Y

d(g—j,Aq) < Nd(p_m,Ag) < 26N < 2N (j>1)
where d(q, A) = mingec 4 d(q, x) for ¢ € M and a closed subset A. Then
d(q—j,p—n) = d(p—n, Aa) — d(q—j, Aa) > 2(e — €A) > 01,
and so q_; & Bs, (p—n) (j > 1). Put

9 (p-n) if j >0,
py=1 9" " (ppm) if —m4n<j< -1,
Gm—n+j ifj<-m+n-—1.

Then (p}) € M, and d(p’;,As) — 0 as j — oco. This implies that p_,, =
Py € W(Aq, g), and (7.4) holds since p_,, & A,.

8. Proof of Proposition 4(b). Let f € F(M) and A(ip) be as in
the statement of Proposition 4(b). Then A(iy) is hyperbolic and isolated by
Lemma 7.1. Thus A(ig) splits into a union A; U...U Ay of basic sets. Fix
go > 0. For 1 < a < s we define

V.i=UWE @ ) s E e (Aa)s), Ve = WA )T e (Aa)s}-
Fix 0 <rg<1land0 < dg < 1. For n > 0 define

_ 146
Tn+l =Ty 07

V(rn, Aa) = {z € M :d(z,V,") < rn, d(, V) <.
Then V (ry,, Ag) \, A, since r, \, 0 as n — oo.

(8.1)
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Let m > 0 be an integer and & = (xg,2_1,...,Z_.,) be a finite sequence
in M. We say that £ is a string if

flz—j) =2_j41 for 1 <j<m.

Notice that the notion of string described here is different from that of
~-string introduced at the beginning of §5. For convenience of notation we
make no distinction between a string £ and a set {zg,x_1,...,2_mn}.

Let £ = (zo,...,2—m) and 1 = (Yo, ...,Y—n) be strings (0 < n < m).
Then 7 is said to be a substring of £ if there is 0 < j < m — n such that
x_j_; =y— for 0 <1 < n (Figure 1(a)). If, in particular, m = n, then we
have n = ¢.

[ &m |
V( rO!/\a) o Xy, g !
] 1 I
n .
—A t ( o, X, /'
yn_x-j-n yO:X]
X_m__ _ __X.-:E:(O O ~—®----- %
Va A /
\ v Y é a X
g
Va
@ (b)
Fig. 1
Let o be a substring of £ = (zg,2_1,...,Z_,,) Written as
o= (T, T g1, , Tt41,Ty)

for some 0 < <t < m. If o satisfies
(a) o C V(rg,Ay),
(b) o NV (rp, Ag) # 0,
(€) z—iq1,2—¢—1 & V (1o, Aa),
then we say that o is a (§,n;a)-string. If x_; € V(rg, Ag) for some 1 <
j < m — 1, then there is a (,0;a)-string containing z_; if and only if
T_j, x4, € V(rg,Aq) for some j; and jo with 0 < ji < j < jo < m.
For (&,0;a)-strings
o1 = (36—11,36—11—1, .- ~,$—t1+1,$—t1),
02 = (36—12,36—12—1, .- ~,$—t2+1,$—tz),
we introduce an order by
oL <o if t1 <ly
(Figure 1(b)).
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Since {cl(Per(f)) \ Zaim am(f)} N S(f) = 0 and cl(Per(f)) \ Laim a(f) is
closed by Proposition 2(a), we can choose a compact neighborhood Uy of

cl(Per(f)) \ Zaim am (f) satisfying Up N S(f) = 0. Hereafter Uy is fixed.
Suppose that a string £ contained in Uy has the property that
(C)  there exist (§,n + 1;a)-strings o1 and o9 with 01 < o9 satisfying
o NV (ry, Ag) =0 for every (£,0;a)-string o with o1 < 0 < 0s.
If n is large enough, by using the condition (C) we can show ([11] and [15
Theorem A, p. 57] that there exists g Cl-near f such that ¢ = f in a
neighborhood of A, and A, has a 1-cycle. However this is inconsistent with
Lemma 7.1.
Thus (C) cannot happen when a string & satisfies £ C Uy and n is large
enough.
To show Proposition 4(b) we derive a contradiction by proving that if

Aa N Cl( Zo+1(f)) 7é 0

for some 1 < a < s, then there exists a string £ satisfying the condition (C)
for n > 0 large enough. To do that we prepare auxiliary results.

Since A, (1 < a < s) has no homoclinic points by Lemma 7.1, we have
the following:

LEMMA 8.1 [15, Proposition 4]. Let {¢*} be a sequence of strings with
&8 C Uy. Suppose that

(1) if ¢+ = (mo,xkl,... ak o sak ), then my, /oo as k — oo,
(2) pg =m; P b, converges to p € M(f),
(3) u(Ay) >0 for some 1 < a <s.

Then for N, K > 0 there exist integers n > N, k > K and a (£*,n + 1;a)-
string o1 such that ¢ NV (ry, Ag) = 0 for every (£¥,0;a)-string o # o;.

Let & be a string and for 1 < a < s define
(8.2) Ng(&) =min{n >0: NV (r,e1, Ag) = 0}
If a string £ = (zo,2_1,...,T_,) satisfies
(8.3) (1) Na(§) >0,
(2) xo,x—pm & V(ro, Aa),
then there exists a (£, No(§); a)-string.
LEMMA 8.2. Let &% = (af,..., 2%, ) and n* = (y§,...,y5,,,) be strings

—my

with &8, n* Cc Uy for k > 0. Suppose that
(1) xf, 2%, ub, yEn, & Uil V(re, Ac) for k>0,
(2) n* is a substring of €* for k >0,
(3) mg /o0 and n /" o0 as k — oo,
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(4) pQ = m; P Somn b, converges to p® and p} = ngt Y0, S,k con-
verges to put.
If there are 1 < a,b < s and L > 0 such that u°(A,) > 0 and

lim sup(N, (¢¥) — Ny (n*)) < L,

k—o0
then put(Ap) > 0.
For the proof of Lemma 8.2 we need the following two lemmas:

LEMMA 8.3 [15, Proposition 1]. There exist 0 < v < A < 1 such that for
1<a<sandz e V(rg,Aa),
(1) vd(f(2), V5") < d(z, V1),
(2) d(z, V,") < /\d(f( ) Vah),
(3) there isy € f~1(x) such that vd(y,V,”) < d(f(y),V, ) =d(x,V,),
(4) d(f

(), Vy") < Ad(z, V7).
Let 0 <y < A <1 be as in Lemma 8.3 and set

log 1y, (1+ d9)logry,
1 2log~y and s, log A

for n > 0.
LEMMA 8.4. Let & be a string with & C Uy. For n large enough there is
N,, > n such that for every (&,0;a)-string o,
(1) if o is a (§,1;a)-string for some i > N, then
o NV (ry, 40)} = Cra(l+60)" ",
(2) if o is not a (§,i+ 1;a)-string for some i > Ny, then
tH{o NV (rn, Ag)} < Copn(1 4 60) "
Proof. (1) follows easily from [15, Lemma 5(b)].
To obtain (2) it is enough to show that (2) holds when o NV (1, A) # 0.
Let & = (zo,...,2_y) and 0 = (T_p,,...,Z—k,). Then 0 < k1 < k2 < m.
Since o NV (1, Ay) # 0, there is ky < t < ko satisfying x_y € o NV (ry,, Ag).

Choose the smallest integers 0 < [; < t and 0 < Iy < m — t such that
Totiiy+1 €V (rn, Ay) and x4, 1 & V(rp, Ay). Then

(8.4) Ho NV (rn, Aa)} = 1y + L.

Indeed, since d(z ¢4, 11, V") < Matld(x_;, V") < r, by Lemma 8.3(4),
we have

ATt y1,41, V") > 7
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By Lemma 8.3(2), for k1 < j <t—1; —1,
d(z—j,V;H) = (/N d(@ gy, Vi)
>d(r_ii,41,Vih) > 1.
This implies that
x_; EVirn,Ay) (k1 <j<t—1—1).

Suppose that there is j; with ¢ +1ls +1 < j1 < ko such that z_; €
V(rn, Aq). Then we can find jo with ¢t + 1o + 1 < jo < j3 < kg such that
x_j, € V(rn, Ag). Thus,

d(ze, V,5) > (1/N) 2 d(xj,, V5 > d(j,, VF) > 1,

which contradicts x_; € V(ry,, Ag). That is, x_; &€ V(ry,, Ag) for t +1o+1 <
J < ky. Therefore we have (8.4).
From [15, Lemma 5(a)] we have the inequality

L+l <Cypn(l+ do)' .
Therefore we have (2) by (8.4).

Proof of Lemma 8.2. Let {¢¥}, {u{} and p° be as in Lemma 8.2. Since
p2(Ay) > 0 and int V(r,, Ag) \, Ay (n — 00), we have

(8.5) 0 < u(Ay) = lim pl(int V(rp, Ag))
< lim hmlnf,uk(lnt V(rn, Ad))

n—0o0

= lim hmlnf—Z(S k (Vi(rn, Aq))

n—oo k—oo Mk

= lim liminf ﬂ(gk n V<r"’Aa)).

n—oo k—oo mk

Thus,
(8.6) No(€F) =00 (k— o0),

where N, (¢F) is defined in (8.2). Without loss of generality we suppose that
N, (€F) > 0 for k > 0. Then, by (1) of Lemma 8.2, £ satisfies (8.3) and so
there is a (£F, N,(¢%); a)-string, say o*(a), for k > 0.

First we prove that

t(0*(a) NV (rn, 4a))

(8.7) lim limsup > 0.
=0 k—oo m
To see this write
oFa) = (2%, ,....2%,,) (0<lp<sp<mp)

for k > 0. Then we have the two sequences {l;} and {my — si}.
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If, in particular, {l;} and {my — s} are bounded, then by (8.5) we have
(8.7) as follows:

B(EM NV (rp, Aa))
mg

k
< lim thupﬁ(ﬁ NV(rn, Aa))

n—oo k—>OO mk»
i A _
< lim limsup Iy +8(c%(a) NV (rn, Ag)) + (M — si)
=0 koo mp

= lim limsup Ho (@) NV (rn, Aa)).

n—00 L_.50 mp

0 < lim liminf

n—oo k—

To conclude (8.7) for the case when either {lx} or {my—sx} is unbounded
we divide the proof into the following three cases:

(1) both {lx} and {my — sx} are unbounded,

(2) {lx} is unbounded, and {my — si} is bounded,

(3) {lx} is bounded, and {my — sx} is unbounded.

Case (1): Suppose that {l;} and {my — s} are increasing sequences, and
put

1

ko _ (ko k k 4 3
§+—(.730,:L’_1,...7x_lk+1)’ Hy = Iy —1 5w’ij7

J=1

1 myp—Sk—1
k _ k k k -
L L ey HD DI

J=1

for k > 0. Then g_’i,gﬁ c &k c Uy for k> 0. Since &~ = f—kk Uok(a) Uer, we
have

8(€F NV (rn, Aa))

mg

= mik{ﬁ(ffi NV (rp, Aa)) + (0" (@) NV (rn, Aa)) + 8(EF NV (rp, Aa))}

Ip—1 k
1 s Au
= LS G (Vi A + R 0V A))
myp “ —J me
J=1
1 mi—Sr—1
o 6 ’I’l?Aa
e O | 4 ()
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= i A + ot (a) OV (rn, 4a))

my mg
MM;(V(%, Aa))

f(0"(a) NV (rp, Aa))
my,

mg

< pf (V(rn, Aa)) + + 1y, (V (7, Aa)).

Since ,u;r and 1, converge to f-invariant probability measures g and g~
respectively, by (8.5),

k
0 < pt(A,)+ lim limsup Ho7(a) A V(rn, 4a))
To obtain (8.7) it suffices to show that u*(A,) =0 and p~(A,) = 0.
Suppose that p7(A,) > 0. Since {¢¥}, {u}} and pT satisfy the assump-
tions (1)—(3) of Lemma 8.1, for N > 0 large enough there exist n > N,
k>0 and a (£¥,n + 1;a)-string & such that

(8.8) oNV(rp, Ag) =10

for every (§_]f_, 0; a)-string o # 7. Since 7 C ﬁ_’ﬁ c &k Fisa (€%, n+1;a)-string.
Thus

+p (Aa).

G CV(ro,Aa), D#TNV(rny1, o) CE NV (rpg, Aa),
which yields N, (¢%) > n+1. Since o*(a) is a (&€*, N, (€%); a)-string, we have
(8.9) o (@) NV (rng1, Aa) # 0.

Define a string as

gk = (:cg,a:lil,...,x’ilkﬂ,...,x’iSk,m’iSk_l).
Then &% C &k, Since 7 is a (&% ,n + 1;a)-string, it is a (€%, n + 1;a)-string.
By (8.9), o*(a) is a (€*,n + 1;a)-string. Thus, by (8.8) we have

oNV(rp, Ag) =10

for every (£¥,0;a)-string o with @ < o < o*(a). This implies the condition
(C). Since n is large enough, we have a contradiction, and so u*(4,) > 0 can-
not happen. Similarly we have p1~(A4,) = 0. Therefore (8.7) holds in case (1).
In a similar way we obtain (8.7) for cases (2) and (3).
To complete the proof of Lemma 8.2 let {n*} be as in the statement of
the lemma. Since limsup,,_, . (Na(¢%) — Ny(n*)) < L, we have

(8.10) Ny(n*) > N, (") — L

for k large enough, and so limy_.., Ny(n*) = oo by (8.6). Without loss of
generality we suppose that N, (n*) > 0 for k > 0. Then n* satisfies (8.3) by
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(1) of Lemma 8.2. Thus we can choose a (n*, Ny(n*); b)-string, say 7%(b), for

k > 0. For n* define
1 &
1
=— ) O,k
Hi e zz:; k,

and suppose that uj. — p! as k — oo. Then
(8.11) pt(Ay) > hm hmsupuk(V(rn,Ab))

k—o0

= lim hmsup—Zé k (V(rp, Ap))

N—0 [_~o

= lim hmsup—tt(n NV (rn, Ap))

n—o0 L 00 Nk

1
> lim limsup —4#(7%(0) NV (rp, Ap)).

Tn—o0 b Mg

For n large enough let N,, be as in Lemma 8.4. Since N,(¢¥) — oo and
Nyp(n*) — oo as k — oo, we have N, (¢¥) > N,, and Ny(n*) > N, for k large
enough. Then, by Lemma 8.4(1),

(TR (D) NV (1, Ap)) > Crp (1 + 5o) Ve )=
On the other hand, by Lemma 8.4(2) and (8.2),
40" (a) NV (1, Ag)) < Can(1 4 8)Ne €)=,

Since n* = (y§,...,y*,,) is a substring of ¢&¥ = (zf,...,2%,, ), we have
ng < my for k > 0. Therefore, by (8.10),
1 1
(8.12)  —#(r"(B) NV (rn, Ay)) > —Cyn(1 + o)M=
Nk Nk
> L 01+ ) Nel€) - Ln
mi
k A
Z C (1+5) Lﬁ(a (a)ﬁV(rn, a))‘
an mg

Since
0 < Crn/Com = (logA)/(4(1+ o) logy) <1 (n=0),
by using (8.7), (8.11) and (8.12) we have the conclusion of Lemma 8.2:

pt(Ap) > lim hmsupg (1+60)F to*(a) NV (ry, Ay))

n—o0 koo 2,n mp

>0. =

LEMMA 8.5 [1, (3.15)]. Suppose that there exist m, N > 0 such that for
strings &€ = (xo, ..., T—m) and n = (Yo, ...,Y—m/) there are a (§,0;a)-string
o= (x_y,..., x_s) and an integer t with |l <t < s such that
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(1) 2y € V(rn, Ay) for some N > N,
(2) d(z—t4j,y—t+5) <10/2 (0 < j < t=1l) for somet’ witht—l <t <m/.
Then there ist' —t +1 <ty < t' such that

(a) y—to S V(TN—ﬁ7Aa)7
(b) y—j € V(ro,Aa) (to < j <t').

Proof. The proof given in [1] was only done for diffeomorphisms. For
completeness we give the full proof.

Since V(rn, Aq) \, As as n — oo, there is a sufficiently large integer
N > 0 satisfying

V(rn, Ay) CU(Ag,79/2) for n > N.

For a string { let 0 = (x_y,...,2_¢,...,2_5) be a (§,0; a)-string satisfying
the condition (1) of the lemma. Since z_; € V (rg, A,), by Lemma 8.3(4) we
have

d(x_141,V, ) <d(x_;,V, ) <ro.
By the definition of a (&, 0; a)-string we have x_;41 & V(rg, A,), and so
d(z_141, V) > ro.
Since z_; € V(rn, Aq) C U(Aq,70/2), we have
d(x_¢, V1) < d(z_t,Ay) < 10/2.
Thus there is ¢ with [ < tAS t such that
(8.13) d(z_t44,V,") <7o/2 for0<j<t—t, d(z_z.1, V") > ro/2.
Since z_; € V(rn, Ay), by Lemma 8.3(1),
0T =y 2 e, Vi) 2 AT (@), V)
= 'Yt_ﬂ_ld(x—tll? V) > ’Yt_tA+17’0/27
and so
t—t+1> (logro/logy)(1+ 80) —log(ro/2)/log~
_ log o — log(ro/2)/(1 + 60)™Y (14 60)™.
log ~y
Since N is large enough and N > N, we can suppose that

(8.14) t—1>

(notice that N is independent of ¢ and o).
Let n = (yo, . ..,y—m’) be a string satisfying the condition (2) of Lemma
8.5. Since z_;y; € V(rg,A,) for 0 < j <t —1land z_; € U(A4,70/2), by
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Lemma 8.3(4) we have

(x4, V) < Nd(x_, V) < Nd(z_y, Ag) <19/2  (0<j<t-1),
and so, for 0 < j St—tA,

AY—tr45, Vo ) S dYi4js Ttj) + d(@ 45, Vo) <70

On the other hand, by (8.13),

A(y—1r45, Vah) S dy—vr1js 0-145) + d(@—115,V;") <o (0<j <t —1).
Thus we have
(8.15) Yovij €Viro, o) (0<j<t—1).

Put to = t' — [(t —t)/2]. We show that t, satisfies assertions (a) and (b)
of Lemma 8.5. Since
' >tg>t —(t—t)>t —t+1,

(b) follows from (8.15).
To see (a) put
’r /
—_ {logC1 logCQ] 1
log(1 + do)
where . |
’ 2logro / 0gTo
@ log A and €y 2log~y
Then y_;, € V(ry_m, Aq). Indeed, put jo = [(t —t)/2]. Then by (8.15) and
Lemma 8.3 we have
To Z d(y*t'a Va_) 2 )\_jod(yft“l*joﬂ Va_) = )‘_jod(y*t(n Va_)7
To Z d(y—t/+2j07 Va+) Z A7jod(y—t/+jo7 Va,+) = Aijod(y—t07 Va+)'

Suppose that y_;, & V (ry, A,) for n = N —n. Then

(8.16)

either  d(y_¢,, Vor) > 1n, or d(y_t,,V, ) > .
In any case, by (8.16) we have ro > A™7r, = )\_jor((JIMD)H, and so
jo < (logro/log A){(1 + do)" — 1}.

Then

t—t<2(jo+1) < 2(logro/log \){(1+6)" — 1} +2 < Ci (1 + o)™
By (8.14) we have C5(1 4 6o)N <t —t < C}(1 4 d)™, and so
log C] — log €4,

log(1 + do)

This is a contradiction. Therefore Lemma 8.5(a) holds. m

N-—-n< <n=N —n.
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~ Proof of Proposition 4(b). Let f € F(M). As mentioned before A(ig) =
Ui2, cl(Z;(f)) and A(io) splits into a union
Aig) = AU ... U Aq

of basic sets A;.
Our aim is to conclude that A(ig) N cl(ZL;+1(f)) = 0. Suppose that

(%) Aa el(Lig11(f)) # 0

for some 1 < a < s. Then there is a sequence {p*} C I, 11(f) of periodic
points such that d(p*, A,) — 0 as k — oo. Let my, = o(p¥, f) be the period
of p* for k > 0. Since A(ig) N I;y+1(f) = 0, the sequence {my, : k > 0} tends
to infinity as k — oo. Notice that mg is not a member of {my, : £ > 0}. In
fact, mg is the integer satisfying (4.1)—(4.4).

For simplicity we suppose that p* € V(rg, Aq) for k& > 0. Since A, is
isolated and p* & A,, for k > 0 we put

tr =min{0 < t < my : fL(p¥) & V(ro, Aa)}.

Choose a periodic orbit
(8.17) ¢" = (¢}) € Ly (f)y

with ¢f = 1tk( *) for k > 0 (Figure 2). Then ¢*, = p* € V(ro,A,) and
a§ = q*,,, & V(ro, Aa). Define a sequence of strings

(8'18) 5 = (q(l]faqﬁlv"'vqﬁmk—f—l’qlimk)

for k > 0. Then each &* consists of a periodic orbit and

¢ C Ligya(f) C Ug

where Uy is the compact neighborhood defined before the condition (C).
For & > 0 we put

(8.19) N (&%) = max{ N,y (¢F) : 1 < b < s},
where Ny, (&%) is defined in (8.2). For some 1 < b < s we can find a sequence

k" of integers such that N (& k,) = Nb(gk/). To simplify the notations suppose
that for k£ > 0,

(8.20) Na(gk) = N(gk)a qﬁtk = pk € V(TNa(gk)7 Ag).
Since d(p*, A,) — 0, we have
(8.21) N(&F) — oo

as k — o0o. Thus we can suppose that N(¢¥) is large enough for k > 0 and
{N(£*)} is an increasing sequence.
Since ¢*, € V(ro,Aq) and ¢*,,, & V(ro, Aa), we put

sp=min{ty <s<mp:q¢", | &V(ro,A)} (k> 0).
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Combining the definitions of ¢ and s, for k£ > 0 we have
" eVire, Ay) (1<t <sy).

Since ¢f,q%,, 1 & V(ro,As) and 0 < tj, < s, for k > 0, by (8.20) we find
that

k k k k k
(822) o = (Q—lvq—2""7q—sk+1)Q—sk)

is a (8, N(£%);a)-string (Figure 2). Notice that fo* — oo as k& — oo by
(8.21) and Lemma 8.4(1), and so s — oo as k — oc.

. \
! ’ A |
! K K I '
1 q q !
V(roA) |1 1 XYY W Do
ofu)
0k p q'ék / « 1 :
e )
pé=df ="“‘:"’/
\ qﬁ /I
Ag o« - - —
Va L Ve=d, = e
N~ v, A)
\\ N(Ek) ua
V(rN(Ek)an)

Fig. 2

With the above preparations we shall deduce Proposition 4(b) through
the nine claims below.

CLaM 1. For k > 0 there is s < j < my such that
qﬁ] € V(TN(é‘k)_17Aa).

Proof. If this is false, then there is k > 0 such that o NV (ryer)—1, 4a)
= () for every (£%,0;a)-string o with 0% < 0. Let ¢* be a string

k k k k _k k
C = (QO7"'7Q—mk = q(]?q—mk—l"'WQ—ka)a

and let
k

T = (qﬁmk—lv qlimk—% cee 7qlimk—sk)

be a (¢*, N(&F);a)-string. Then 7% C ¢* C Uy and &F is a substring of
¢*. Obviously, o and 7% are (¢¥, N(¢%); a)-strings, and o N V(rnery—1, Aa)
= ) for every (£%,0;a)-string o with o < o < 7%. Therefore we have
the condition (C). Since N(&¥) is large enough, we have a contradiction as
before. Thus we have Claim 1. =»



ot -maps having hyperbolic periodic points 35

Fix an integer u > 1, and choose Ky(u) > 0 large enough satisfying
N(&¥) > u for k > Ko(u). Since V(ryery—1,4a) C V(ry(er)—us Aa) for
k> Ko(u), we put
(8.23)  tix(u) =min{sy < j < my : qﬁj e V(rner)—u, Aa)} (k> Ko(u)).
This is well defined by Claim 1, and so choose a (£¥, N (&%) — u; a)-string

(8.24) Uk(u) = (qﬁmk(u)’ B thk(u)’ T 7q115k(u)) (C V(ro, Aa))
for k > Ko(u) (Figure 2).

CLAIM 2. Under the above notations, for k > Ko(u) we have

(1) s+ 1 <mp(u) < tp(u) < sp(u) < myg,

(2) sw(u) — mk( ) = 00 as k — oo,

( ) {Q—sk 17q—Sk 29+ .- 7qlimk(u)+1} N V(TN(fk)—uvAa) = 07

(4) o (u) N V(rnes)—ut1, Aa) = 0.

Proof. (1) and (3) are clear. By (8.21) and Lemma 8.4(1) we have fo* =
skp(u) — mg(u) + 1 — 0o as k — oo, and so we have (2). If (4) is false, then
o¥(u) is a (€%, N(&€¥) —u+1; a)-string and o is a (€, N (€%) —u+1; a)-string.
By the definition of ¢4 (u) we deduce that o NV (ry(gr)_y, Aa) = @ for every
(€%,0; a)-string o with 0% < o < o¥(u). This implies the condition (C).
Since Ko(u) is large enough, N (&*) —u is large enough for k > Ko (u). Thus
we have a contradiction, and (4) is proved. =

Let Ao and mg be the numbers described at the beginning of §4 and let
the splitting TM\CI(IiOH(f)) ES 1D Ez0+1 be as in (5.1). For simplicity
write £ = FE} ,; and F' = Ei +1- Then
(8.25) IDF™ | E@)| - |Df ™ |F(F™ @) < Ao

for 7 € cl(L;,+1(f)) . Let P® and PP be as in (1.2) and (1.4). As mentioned
in (5.2)(2) we have P°(E(Z)) = P°(E(y)) when 7,7 € cl(L;,+1(f))s satisfy
PO(Z) = PY(y). Thus we write

E(zy) = PY(E(T)) C TyyM
for & = (2;) € cl(Tig11(f))s, and then | Df|E(zo)|| = |Df|E@)].
CLAM 3. For e > 0 there exist continuous families
{Z2(2, 1) : 7 € d(lig11 ()5} and  {Z2(2, f™°) : & € cl(Lig41(f)) 5}
of C'-disks on M such that
(a) for T = (x;) € l(Ljy41(f))s and o =s,u,
xo € ZZ(, ) C Be(xo),
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(b) for = (x;) € cl(Liy+1(f)) s,
T., Z5(Z, f™) = E(xg) and T, Z"(Z, f™) = PY(F(2)),

xoe To“e

(c) there is 0 < €’ < e such that

F(Z2(E, f70) € ZE(F @), £)
forz € cl(liy+1(f))f and o = s, u,

(d) there is 6 = d(g) > 0 such that if d(z,y) < 6 (z,y € cl(Liy+1(f))¢)
then

Z2(x, f70) 0 Z2(y, f™0)
is a one-point set and the intersection s transversal.
Proof. This follows from [9, Proposition 2.3] and [5, Theorem 5.1]. m

Fix 9 with A\g < 79 < 1. Then we have:

CLAIM 4. For fized v > 1 let Ko(u) be as above. Then there exists
Ki(u) > Ko(u) such that for k > Ki(u) there is | with 0 < I < [si(u)/mg]
such that for 0 <r <,

l

[T IDF™ 1B )l < 76"
t=r+1

Proof. If the claim is false, then for some u > 1 there exist infinitely

many k > Ky(u) such that

l
(8.26) [TIDr™ B )l >

t=1

for I with 0 < I < [sg(u)/mo]. Without loss of generality we suppose that
(8.26) holds for k > 0.

Define the Borel probability measures pg by

1 [sk (u)/mo]
= S .
M Tk (w) /o) 2 T

Then py converges to u belonging to M(f™°|cl(Z;,+1(f))) (take a subse-
quence if necessary). Since, by (8.26),
| logllDfmlElldp = lim | log|[Df"|Elldp,
cl(Lig+1(f)) cl(lig+1(f))
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[sk(u)/mo]

1 ol
= Jim [s%(u)/mpo] tog Jl_Il 1T )

> log~o > log Ao,

by Lemma 6.1 we have
1(A(io)) > 0.

Let ¢* (k > 0) be the sequence of strings in (8.18). For k > 0 define a
substring of ¢ as

k k _k k k
5 = (qO7Q—17 R 7q75k(u)7 qfsk(u)fl)a

for €¢ define
sk (u)+1

1
N 5
H sp(u) +1 ]Zzl gt

and put

S

U (rn, Ap) (n >0).

Since i, converges to @ and V,, \, A(ip) as n — oo, we have
(8.27)  R(A(io))

¢k
> lim limsup i, (V,) = lim lim supw

1
> lim limsup ———
n—00 koo Sk(u)+1

= lim limsu [1(w)/mo]
_nlﬂoolkﬂoop se(0) T 1 (V)

k k k
{<qu07 q72m07 tt 7q—[sk(u)/m0]mo) N Vn}

1 1
> — lim liminf pg(int V;,) > —pu(A(ip)) > 0,

mp n—oo k—oo mo

from which
(8.28) w(Ap) >0

for some 1 < b < s.
For k > 0 define
Ek = (qﬁskflvqksk 250 7qlisk(u)—1) (C Ek)a

sk(u)—sk

,ak: Z 5qsklj
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By Claim 2(1), (2) we have
skp(u) — sk = {sk(u) — mg(uw)} + {mg(u) — sp} — 0

as k — oo, and so we suppose that i, converges to . By (8.23) and Claim
2(1),
qlitk(u) € V(TN(gk)—mAa) N g\k
for k > Ko(u), and so
No(§) 2 N(") —u (k= Ko(u)).

Since N(£F) > Ny (&%) > Ny (€F) by (8.20), we have

(8.29) Ny(€") = Na(€¥) < N(€") = (N(¢F) —u) = u.

Since @“ is a substring of £¥ and f C Uy, f and €* satisfy the conditions
(1)-(4) of Lemma 8.2. Thus by (8.28), (8.29) and Lemma 8.2 we have

fi(Ay) > 0.

Hence {?c}, {lix} and g satisfy the conditions (1)—(3) of Lemma 8.1, and so
there exist a sufficiently large n > 0, kK > Ky(u) and a (@“, n + 1; a)-string
o1 such that

(8.30) oNV(ry, Ay) =10
for every (?“, 0; a)-string o # 071.
Since
XNV (Fag1, Aa) D E NV (ragr, Aa) D1 NV (rg, Aa) # 0,
by (8.2) and (8.19) we have

N(& ) N, (& ) >n+ 1.
Thus the (&%, N(&%);a)-string o of (8.22) contains a (£¥,n + 1;a)-string.
Since ?f is a substring of ¢¥, 71 is a (¢¥,n + 1;a)-string. If o is a (¢¥,0;a)-
string with 0% < ¢ < 71, then o is a (?“, 0; a)-string with o # 1. Thus, by
(8.30) we have o NV (ry, A,) = 0. This yields the condition (C). Since n is
large enough, we have a contradiction as before. Claim 4 is proved. =

For fixed u > 1 let si(u) be an integer satisfying (1) and (2) of Claim 2
for u > Ky(u), and let K (u) be as in Claim 4. For k > K (u) define

sk (u)

mo

(8.31) lk(u):max{0<l§ [ ] sfor 0 <r <,

l
T 105 B )l < 26}

t=r+1
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Then for k > K (u) and 0 < i < [;(u) we have

U (u)

IDF™ B )l < TT IDF™IE@E )]l < 7 < 1.
t=lp(u)—i+1
Since N
E(qﬁmolk(u)) =T Zs(fimOlk(U) (ak)a fmo)

k
I=mplp(u) ©

by Claim 3(b), for € > 0 small enough we have
d(mei(y)’qﬁmolk(u)+moi) <e€ (0 <@ < lk(u))

for y € Z5(f~molk()(G*), fm0). Therefore, if § > 0 is sufficiently small
compared with ¢, then

(8.32) (17 (y), qlimolk(u)+_j) <e (0<j <moli(u))

for y € Zg(fmole(w)(g), fmo) (C Z5(f-molk(w)(gk), fmo)). Notice that @
does not depend on k and wu.
Since dim E(z) = ig + 1 for x € cl(I;,+1(f)) and A(ip) is hyperbolic, by
taking g > 0 small enough we have
D™ E@)]| > 1 (z € Uzey(Alio)) Nel(Xig+1(f)))-

Here U.(G) = {y € M : d(G,y) < €} for a closed set G. Since ry is arbitrary
in (8.1), we can assume that 0 < rg < g9. Thus,

Vo = [ V(ro, 4s) C Ue, (A(io)).
b=1

The choice of Ij(u) ensures that ||Dfm0|E(q’jmolk(u))|| <7 < 1, and so

833)  Enie & UsealAlio) D Vo, Ag) (k> K (u).

By (8.24) and Claim 2(1), for k > K (u) we have

(8.34) sk + 1 <moli(u) < mg(u) < sk(u),

and so by Claim 2(2),

(8.35)  sp(u) — molg(u) = {sk(u) — mg(u)} + {mp(u) — moly(u)} — oo

as k — oo. Thus {[sx(u)/mo] — lx(u)} is unbounded.
For simplicity suppose that [si(u)/mg] — lx(u) > 0 for k > K (u).

CrLAIM 5. Under the above notations, for fized u > 1 we have

T

m r—Il(u
[T IDf™ B )l = v+
t:lk(u)—i-l

for k> Kq(u) and r with li(u) < r < [sg(u)/mo].
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Proof. If this is false, then there are k& > Kj(u) and lx(u) < s <
[sk(u)/mg] such that

T

[T D™ E@E )l =9 "™ (lu) <7 < s),

t:lk(u)+1
S . 7l
[T IDrmE@E )l <7 ™,
t:lk(u)+1
and for Iy (u) <r <s,
: t—t(uy 1 1D E(GE 0 )l
(8.36) [ IDF™|E(G",.,0)l = ERORY e
t=rt1 Ht:lk(u)+1 1D fmo|E(q% )l
s—lk(u)
< ?'*lk(u) =%
0
Since, for 0 <7 < li(u),
837 ] IDF™IE(d" )]
t=r+1
lk(u) S
= [ IDr™E@ )l T IR IEdE 0]
t=r+1 t=lp (u)+1
Il (u)—r s—Ii(u s—r
<’Yok( ) Yo . ):’YU )

from (8.36) and (8.37) we have

S

II 1™ B )l <"
t=r+1

for 0 < r < s, which contradicts the choice of l;(u). Therefore Claim 5
holds. m
By Claim 5 and (8.25) we have
_ _ lk(u)+i—1 _ _
IDf=mH B @) < [T IDf el E (@)
t=lk (u)
I (u)+1
< T PelDrm™IEG )
t=lp(u)+1
< (o ) <1
for k > Kj(u) and 0 < i < [sg(u)/mo] — I (u). Thus the following statement
is easily checked from (b) and (c) of Claim 3: for every € > 0 we can take a
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small number 0 < § < € such that if y € Zgu(f_molk(“) (g%), f™0), then there
is a string (yo, .. ., Y—z,(u)) With yo = y satisfying

(8.38) Ay, 6" ot uy—y) <€ (0< 5 <Sk(u))
where
(839) §k(u) = sk(u) +1-— molk(u)

For fixed u > 1 let K1 (u) be as in Claim 5. For k > K;(u) define

k k k k k
i (u) = (quolk(uﬁ Aol (u)—1s -2 D—my (u)+29 (Lmk(u)ﬂ)

where my(u) is as in Claim 2.

CLAIM 6. For every v > 1 there is K(u,v) > Ki(u) such that for k >
K (u,v),

gf(u) N V<TN(§k)fu7U7Aa) = ®7
where N (&%) is as in (8.19).

Proof. Suppose that this is false. Then there is v > 1 such that for
infinitely many k with k > K (u),

(8.40) &) NV (ryer)—u—vs Aa) # 0.
Without loss of generality we suppose that (8.40) holds for k > K (u).

It is clear that {¢F(u)} C Up. Since qlimolk(u), qﬁmk(u)ﬂ & V(rg, A,) for
k> Ki(u), £8(u) contains a (£F(u), N(£F) —u—wv; a)-string, and so by (8.21)
and Lemma 8.4(1),

mi () — 1 —moli(u) = H{&F (u) NV (ro, 4a)} — 00

as k — o0o. For &¥(u) we define

1 (mk(u)—1)—moly (u)
1
e (me(u) —1) = molk(u) JZ; 9 gty ()=

and let p! be an accumulation point of p}. If we establish that
(8.41) p'(Aa) >0,

then {€F(u)} satisfies the conditions (1)—(3) of Lemma 8.1. Thus there are
sufficiently large integers n, k and a (&¥(u),n + 1; a)-string o such that for
every (&¥(u),0;a)-string o # oy,

o NV (rp, Ay) = 0.

Since this implies the condition (C) for n large enough, we have a contra-
diction.
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Thus it is enough to show (8.41) to obtain Claim 6. For k > K (u) define
the Borel probability measures vy by

L Bk/m
o [sk(u) /mo] ; @ gty (w) o

Then vy converges to v € M(f™0|cl(l;,+1(f))) (take a subsequence if nec-
essary). Since
| log||Df™|E| dv = Jim | log|[Df™|E| du,
ATig+1(£) ATy 11 ()
> logyo > log Ao

by Claim 5, we find that v(A(ip)) > 0 by Lemma 6.1.
For k > K;(u) define a string

C{C(’U,) = (qlimolk(u)7 qﬁmolk(u)—h ce 7qlimk(u)7 ce 7qlisk(u)7 qﬁsk(u)—l)'
Then & (u) C ¢F(u) since my,(u) < si(u). For ¢¥(u) we define

1 sk (uw)+1—molk (u)

J .
sp(u) + 1 —moli(u) Z 9 gt )

Jj=1

vy =

Then v} converges to v! € M(f) by (8.35). By the same calculation as in
(8.27) we have

V (A(ig)) > mioym(io)) 0,
and so
(8.42) vi(Ay) >0

for some 1 < b < s.

Since (¥(u) is a substring of £*, we have Ny (¢%) > N, (¢¥(u)), and so by
(8.19),

N(E) = No(C(w) - (k> Ko (u).
Thus, by (8.40),
No(¢f () = Na(€1 (w) < N(EF) = (N(€F) —u—v) =u +v.

Since &F (u) is a substring of ¢¥(u), by (8.42) and Lemma 8.2 we have u!(4,)
> 0. Thus (8.41) was proved. m

CLAIM 7. Let uy and ug be integers with 1 < uy < uq, and let K(uy,1)
and K (uz,1) be as in Claim 6. Then, for k > max{K (u1,1), K(u2,1)},

molg(u1) < molg(uz).

Proof. Since moli(u1) < si(u1) by (8.34), it is enough to show that
sk (u1) <molg(uz). Otherwise si(uy) >molg(uz2) for some k>max{K (uq, 1),
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K(ug,1)}. By (8.24) we have
", eVirg, Ay (myp(ur) <t < sp(ug)).

Since quolk(w) & V(rg, As) by (8.33), we have

molg(u2) < mg(uq),
and so by Claim 2(3),

0" € VN —urs Aa) D V(rNEer) —us—1- Aa)
for s +1 <t < mylx(uz). Combining this result and Claim 6, we have
qﬁt ¢ V(TN(gk')—uz—h Aq)
for s +1 <t < mpg(uz) — 1. Then
on V<TN(§k)fuzflv Ao) = 0

for every (¢%,0;a)-string o with of < o < oF(ugz). Since 0% and o*(uy)
are (€%, N(¢F) — ug; a)-strings, the condition (C) holds. Since N (£¥) is large
enough, we have a contradiction. Thus we have Claim 7. =

Let v be as in Lemma 8.3, and @ and N be as in Lemma 8.5. Let ro be
a sufficiently small positive number as in (8.1). Choose € > 0 such that

(8.43) e < min{(1 — \)rg,yro/3},

and take a small number 6 > 0 satisfying (8.32) and (8.38). Let 6 = §(6) > 0
be as in Claim 3(d). Since M is compact, there is vg > 0 such that

max{d(z,y) : T,y € M}/vy < 6.
If a subset G of M satisfies §G > vg, then we can find Z,y € G such that

T # 7y and d(z,y) < 6. Define
(8.44) K =max{K(u,v): 1 <u<vy(2m+1), 1 <v<wy(2n+1)}
where K(u,v) is as in Claim 6. Fix a sufficiently large integer k > K satis-
fying
(8.45) N(EF) —vo(2m+1) > N and TN (eF)—vo(24+1) < VT0/3-

For 1 <wuy <uy <wvo(2n+ 1) by Claim 7 we have

Jrrmeb (gt # Jmet ) ()
where ¢* is a point of I;,.1(f) satisfying (8.17), and so
o ETEDN(G4) 1 < j <o} = o

Thus,
J(f—molk(j1(2ﬁ+1)) (ij)? f—molk(jg(Qﬁ—i-l)) (ak‘)) <6

for some 1 < jo < j1 < vg. Put
(8.46) up =j1(2n+1) and wuy = j2(2m+1).



44 N. Aoki et al.

Then
(847) (1) 0<wug <us <vo(2m+1),
(i) 2n 4+ 1 < wug —ug < vp(2m+ 1),
() d( otk (), -t @) < 6
By Claim 3(d),
Zy(Jme (@), o) 0 Zg (e (@), £
is one point; denote it by z.

CLAM 8. Let Si(ug) be as in (8.39) and li(u) be as in (8.31). For the

above point z there is a string
TI - (Z].7 ZO’ Z*l? ceey Z—molk(ul)a e 7Z—m0lk(u1)—§k(u2)a Z—molk(ul)—gk(ug)—l)
such that

(i) Z—molk(u1) = %

(i) d(z—j, " ) <e (0 < j < moli(ur)),
(111) ( Z—moly (u1) ]’q*molk(uz) J) (0 S]
(iv) either z1 & V (ro, Aa), or zo € V(ro, Aa )

Ay,

(v) either z_pmoi(uy)—si(us) £ V(7o
V(TOaAa)‘

51 (u2)),

—molk(ul) Sk(ug) 1 g

Proof. For —1 < j < mglg(u1) put
Z_j = fmolk(ul)_]'(z).

Since z € Zé‘(f‘molk(u?)@k),fmo), by (8.38) we can take a string

(Z—molk(m)’ e 7Z—molk(u1)—§k(u2)) with Z_moly(uy) = % tO satisfy (iii). Let
Z_molp(u1)—5k (ug)—1 D€ an arbitrary point belonging to the inverse image of
Z — ol (u1)—3k (uz) - Then n = (21, ... Z—molk(m) Sn (u2)— 1) is a string.

Clearly (i) holds. Since z € Zs(f molk (1) (k)| fmo) by (8.32) we see
that n satisfies (ii).
It remains to show (iv) and (v). Since ¢§ & V (ro, A4), we can check that
d(gk, V) > ro. If 29 € V(rg, Ay), then by (ii) we have
d(ZOa Va+) > d(qo’VaJr) - d(ZO) q]g) >To — €.
By Lemma 8.3(2) and (8.43),
1 1
d(zl7va+) = d(f( ) V+) Xd<207va+) > X(
and so z1 & V(ro,A,). Thus (iv) is proved. Similarly we can check (v).
Therefore Claim 8 holds. =

ro —€) > 1o,
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Hereafter let K be as in (8.44) and k be an integer so large that k > K.
Since quolk(ul) & Use, (A(ig)) by (8.33), it follows from Claim 8(ii) that
(8.48) 2ol (ur) & V (1o, Aa).

Let o% = (¢"y,...,¢",,,...,q",,) be the (¢*, N(&"); a)-string of (8.22).
Then, by (8.20) and (8.45),

q’itk eofn V(rn(ery, Aa) and N(ﬁk) > N.
By (8.34) we have t;, < si < molg(u1), and so by Claim 8(ii) and (8.43),
A", gy 2tyrg) Se<ro/2  (0<j<tp—1)

Thus we have the conditions (1) and (2) of Lemma 8.5, and so there is
1 < t; <t such that

(849) Z_t, € V(?“N(gk),ﬁ,/la) and zZ—j € V(TU,AQ) (tl <7< tk).
Since 0 < t; <t < molp(ur) and z_y,00, (uy) € V(r0, 4a), by (8.43) and
Claim 8(iv) there exists an (7, 0; a)-string 1 containing z_, .

Let uy be as in (8.46). For ug let 0¥ (uy) = (qﬁmk(w),...,qﬁtk(uz), Cee
qﬁSk(uz)) be the (€%, N(£%) —ug; a)-string defined as in (8.24). By (8.23) and
(8.45) we have

q]itk(ug) € V(TN(ﬁk)—usza)v N(é-k) —ug > N(fk) - /1)(](2ﬁ + 1) > N.
For 0 < j <t(uz) — mg(u2), by (8.34) and Claim 2(1) we have
0 < —j + tg(uz) — molg(uz) < Sk(uz),
and so by Claim 8(iii) and (8.43),
(9" 4 () 4 7t az) () +5)
k

= d(quolk(u2)7{7j+tk(ug)fmolk(uQ)}’ Z*molk(ul)*{*jthk(uz)*molk(uz)})

<e<ro/2 (0= < tg(uz) — my(u2))
where

w(k) = molg(uz) — molk(uy).

Thus we have the conditions (1) and (2) of Lemma 8.5, and so there is ¢,
with mg(u2) — w(k) < to < tx(uz) —w(k) such that
-ty € V<TN(§k)fu27ﬁ7A¢l)7
Z—j c V(T’o,/la) (tg S] < tk(UQ) — ’U)(k))

Since molx(u1) < my(u2) —w(k) <tz and z_p,00, (uy) € V (70, 4a), by (8.43)
and Claim 8(v) there exists an (7, 0; a)-string oy containing z_,.
Since, by the choice of t; and to,

(8.50)

th <tp < mglk(ul) < mk(UQ) — w(k) < tz,
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we have 01 # 02. By (8.47)(ii),
NE)—m>NE) —ug—n>NE) —u +m+1,
and so by (8.49) and (8.50),
Zotyy 2ty € V(In(er)—uy 47415 Aa)-
Therefore oy and o9 are (1, N(6¥) —uy +7 + 1, A,)-strings and oy # 0.

CLAIM 9. Let 01 and o9 be as above. For every (n,0;a)-string o with
01 < o < o9 we have

on V(TN(&'k)iulJrﬁ’ Aa) = @
fork > K.

If we establish Claim 9, then the condition (C) holds for N(¢%) —u; +7
(> N(€¥) —vo(2r+1)) large enough. This implies the existence of a 1-cycle
for A, which is inconsistent with Lemma 7.1. This contradiction has been
derived through the nine claims under the assumption given in (k).

Therefore the assumption A, Ncl(L;,4+1(f)) # 0 is invalid, which yields
Proposition 4(b). To finish the proof it thus suffices to check that Claim 9
is true.

Proof of Claim 9. If Claim 9 is false, then there is an (7, 0; a)-string o
such that o1 < 0 < 09 and

o NV (rner)—usms Aa) # 0
for some k > K. Write
o=(z_1y...,2—5) (CV(ro,4a))
for some [, s with [ < s. Choose [ < t < s such that
(8.51) 2t € 0NV (rn(er)—uy+7> Aa)-

Since 01 < 0 < o, wehavet; <1<t <5 < ta.Since 2_p, 1, (uy) € V(r0, Ao)
by (8.48), we have two cases to consider:

(a) s <moli(ur), (b) mole(ur) <.
Case (a): By Claim 8(ii), (8.45) and (8.51) we have
zt € V(rn(ery—us+m Aa);
N(E®) —uy +7 > N(€¥) —wvo(2m+ 1) > N,
d(z_t4j,q" ;) Se<ro/2 (0<j<t—1),

and so o satisfies the conditions (1) and (2) of Lemma 8.5. Replacing & by
n and n by 5’“ in Lemma 8.5, we can take [ < t3 <t such that

(852) qlitg, € V(TN(Ek)fulaAa)y qﬁj € V(TOaAa) (t3 < .7 < t)'
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By (8.34),
t3 <t < s <molp(ur) < mp(ur) — 1,

and so by Claim 2(3),
qﬁt3 € V(rn(er)—uy» Aa) N {q",..., qﬁmk(ul)ﬂ} cof=(¢",,... ,qﬁsk).
Since qﬁsk_l & V(ro,As), by (8.52) we have
(8.53) ¢, ed" CV(rg,da) (1<j<t).
Since 0 = (2_y,...,2_4) is an (7, 0; a)-string, we have
21 €V(rg,Aq) and z_;41 & V(re, ).
Thus it is easily checked by using Lemma 8.3 that d(z_;4+1, V') > 7. Thus,
(8.54) d(z-1, V") 2 yd(f(2-1), Vo") = vd(2-141, V5") > 770,
Since t; <1 <tand f'="(q",) = ¢",,, by (8.53) and Lemma 8.3(2) we have
d(q®y, Voh) < AR (eE), Veh) < d(ahy, V).
Thus, by Claim 8(ii), (8.49) and (8.54),
0 <d(qt,,,Ve") —d(a,, VF)
< (g, 200) + d(z—ey, VJ5)) = (25, VoF) — d(2E, ¢%))
< (e +7n(ery—n) — (10 — €) < TNn(ery—m — YT0/3 < 0.
This is a contradiction.
Case (b): By Claim 8(iii), (8.45) and (8.51) we have
2t € V(ry(er)—ui+m> Aa),
N(E*) —up +7> N(EF) —vo(2m+ 1) > N,
Az 145, 0%_wiryry) S€<m0/2 (0<j<t—1),
and so o satisfies the conditions (1) and (2) of Lemma 8.5. Thus,
(8.55) qﬁu € V(rn(er)—u» Aa); qﬁj € Vrg,4s) (ta <j<t+w(k))

for some t4 with [ +w(k) < t4 <t + w(k). Since uy — ug < vo(27 + 1) by
(8.47)(ii), it follows that

N(F) —uy > N(€F) —ug — v (20 + 1),
and so by (8.55) and Claim 6,
%1, € V(rn(er)—ug—voat1) NG oot (u)s -0 @si(un)—1)
C O'k(UQ) = (qﬁmk(w), . ,qliSk(w))

because k > K > K (us2,v9(2n+1)) by (8.44). Since qﬁmk(w)ﬂ g V(rg, Aa),
by (8.55) we have

¢ ; € 0"(ug) C V(ro, Aa) (¢ +w(k) <j < sp(un)).
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Since o and o2 contain z_; and z_4, respectively and satisfy o < o9,
there is ¢ < t§ < t9 such that

Zz_y € V(ro, Aa) and  z_y 1 & V(ro, Aa),
and so by Claim 8(iii) and (8.50),
0 <d(q®s iy Var) = d(d" 1y _wirys Va')
<(d(q" iy 2—1) + Az, Vi) = (d(2F 0 VD) —d(28 65 1)
< (e +rn(er)—u+m) — (70 =€) < TN (k) —us+m — YT0/3 < 0.
This is a contradiction. Therefore we have Claim 9.
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