C^{1}-maps having hyperbolic periodic points

by
Nobuo Aoki (Tokyo), Kazumine Moriyasu (Tokushima) and Naoya Sumi (Tokyo)

Abstract

We show that the C^{1}-interior of the set of maps satisfying the following conditions: (i) periodic points are hyperbolic, (ii) singular points belonging to the nonwandering set are sinks, coincides with the set of Axiom A maps having the no cycle property.

1. Introduction. Let M be a closed C^{∞}-manifold, $\|\cdot\|$ be a Riemannian metric on M and $\pi: T M \rightarrow M$ be the tangent bundle. Let $C^{1}(M)$ be the space of C^{1}-differentiable maps from M into itself endowed with the C^{1}-topology. Then $C^{1}(M)$ contains the set Diff $^{1}(M)$ of C^{1}-diffeomorphisms and this subset is open in $C^{1}(M)$.

The C^{1}-stability conjecture on $\mathrm{Diff}^{1}(M)$ of Palis and Smale was solved by Mańé [12] as follows: if a C^{1}-diffeomorphism f is structurally stable, then f satisfies Axiom A and the strong transversality. By using the techniques obtained in proving the conjecture, Palis [18] showed that if there exists a nonempty open subset \mathcal{U} of $\operatorname{Diff}^{1}(M)$ such that all periodic points of each $g \in \mathcal{U}$ are hyperbolic, then every diffeomorphism belonging to \mathcal{U} can be approximated by Axiom A diffeomorphisms with no cycles. Next it was checked in [1] that \mathcal{U} consists of Axiom A diffeomorphisms with no cycles. We remark here that the methods of Liao [7] which proved the C^{1}-stability in the 2-dimensional case were also useful in the higher dimensional case (the 2-dimensional case was also proved in Sannami [22]).

In this paper we shall discuss the problem of whether stability of C^{1} differentiable maps implies Axiom A and no cycles.

Concerning this problem Przytycki proved the following remarkable results: Anosov differentiable maps which are not diffeomorphisms or expand-

2000 Mathematics Subject Classification: Primary 37C20, 37D20, 34D30.
ings do not satisfy C^{1}-structural stability [20], and if a differentiable map f satisfies Axiom A and has no singular points in the nonwandering set, then f is $C^{1} \Omega$-stable if and only if f satisfies strong Axiom A and has no cycles [21]. On the other hand, we know [23] that expanding maps are structurally stable.

In view of these developments, we shall discuss in detail how stability of diffeomorphisms can be adapted to the more complicated situation of C^{1}-maps, and so we shall focus on the noninvertible case (that is, the case of differentiable maps which are not diffeomorphisms).

In order to state our result let us recall a few notations and basic results about C^{1}-maps.

Let $f \in C^{1}(M)$. For a periodic point p of f, denote by $\varrho(f, p)$ the minimal integer $n>0$ satisfying $f^{n}(p)=p$. We say that $\varrho(f, p)$ is the period of p for f. A periodic point p is called hyperbolic if $D_{p} f^{\varrho(f, p)}: T_{p} M \rightarrow T_{p} M$ has no eigenvalues of absolute value one; then $T_{p} M$ splits into the direct sum $T_{p} M=E^{\mathrm{s}}(p) \oplus E^{\mathrm{u}}(p)$ of subspaces $E^{\mathrm{s}}(p)$ and $E^{\mathrm{u}}(p)$ such that
(a) $D_{p} f^{\varrho(f, p)}\left(E^{\mathrm{s}}(p)\right) \subset E^{\mathrm{s}}(p), D_{p} f^{\varrho(f, p)}\left(E^{\mathrm{u}}(p)\right)=E^{\mathrm{u}}(p)$,
(b) there are $c>0$ and $0<\lambda<1$ such that for $n>0$,
(i) $\left\|D f^{n}(v)\right\| \leq c \lambda^{n}\|v\|\left(v \in E^{\mathrm{s}}(p)\right)$,
(ii) $\left\|D f^{n}(v)\right\| \geq c^{-1} \lambda^{-n}\|v\|\left(v \in E^{\mathrm{u}}(p)\right)$.

A hyperbolic periodic point p is said to be a sink (resp. source) if $T_{p} M=$ $E^{\mathrm{s}}(p)\left(\operatorname{resp} . T_{p} M=E^{\mathrm{u}}(p)\right)$.

We denote by $\mathbb{M}=\prod_{-\infty}^{\infty} M$ the topological product of M 's, and define an injective continuous map $\widetilde{f}: \mathbb{M} \rightarrow \mathbb{M}$ by

$$
\widetilde{f}\left(\left(x_{n}\right)\right)=\left(f\left(x_{n}\right)\right)
$$

for $\left(x_{n}\right) \in \mathbb{M}$. Then $P^{0} \circ \widetilde{f}=f \circ P^{0}$ where

$$
\begin{equation*}
P^{0}: \mathbb{M} \rightarrow M \tag{1.2}
\end{equation*}
$$

is the natural projection defined by $P^{0}\left(\left(x_{n}\right)\right)=x_{0}$. For $\Lambda \subset M$ put

$$
\begin{equation*}
\Lambda_{f}=\left\{\left(x_{n}\right) \in \mathbb{M}: x_{n} \in \Lambda, f\left(x_{n}\right)=x_{n+1}, n \in \mathbb{Z}\right\} \tag{1.3}
\end{equation*}
$$

Then Λ_{f} is \tilde{f}-invariant $\left(\tilde{f}\left(\Lambda_{f}\right)=\Lambda_{f}\right)$ and $\tilde{f} \mid \Lambda_{f}: \Lambda_{f} \rightarrow \Lambda_{f}$ is a homeomorphism when $\Lambda_{f} \neq \emptyset$. Notice that Λ is not necessarily f-invariant.

We say that $\left(M_{f}, \widetilde{f}\right)$ is the inverse limit system of (M, f). Notice that if $f: M \rightarrow M$ is a diffeomorphism, then the inverse limit system of (M, f) is equal to the original system (M, f).

Let $T \mathbb{M}$ be the subspace of $\mathbb{M} \times T M$ defined by

$$
T \mathbb{M}=\left\{(\widetilde{x}, v) \in \mathbb{M} \times T M: P^{0}(\widetilde{x})=\pi(v)\right\}
$$

and define a Finsler metric $\|\cdot\|$ on $T \mathbb{M}$ by

$$
\|(\widetilde{x}, v)\|=\|v\| \quad((\widetilde{x}, v) \in T \mathbb{M})
$$

Define the projection $\bar{P}^{0}: T \mathbb{M} \rightarrow T M$ by

$$
\begin{equation*}
\bar{P}^{0}(\widetilde{x}, v)=v \tag{1.4}
\end{equation*}
$$

for $(\widetilde{x}, v) \in T \mathbb{M}$. Then $\bar{P}^{0}\left(T_{\widetilde{x}} \mathbb{M}\right)=T_{x_{0}} M$ and the restriction $\bar{P}^{0} \mid T_{\widetilde{x}} \mathbb{M}$: $T_{\widetilde{x}} \mathbb{M} \rightarrow T_{x_{0}} M$ is a linear isomorphism.

We define a C^{0}-vector bundle

$$
\tilde{\pi}: T \mathbb{M} \rightarrow \mathbb{M}
$$

by $\widetilde{\pi}(\widetilde{x}, v)=\widetilde{x}$ for $(\widetilde{x}, v) \in T \mathbb{M}$, and write $T_{\widetilde{x}} \mathbb{M}=\widetilde{\pi}^{-1}(\widetilde{x})$ for $\widetilde{x} \in \mathbb{M}$. Let $D \tilde{f}: T \mathbb{M} \rightarrow T \mathbb{M}$ be defined by

$$
D \widetilde{f}(\widetilde{x}, v)=\left(\widetilde{f}(\widetilde{x}), D_{x_{0}} f(v)\right) \quad\left((\widetilde{x}, v)=\left(\left(x_{n}\right), v\right) \in T \mathbb{M}\right)
$$

where x_{0} is a point in $\left(x_{n}\right)$ and $D_{x_{0}} f$ is the derivative of f at x_{0}.
We say that a closed f-invariant subset Λ is hyperbolic if the vector bundle $T \mathbb{M} \mid \Lambda_{f}=\bigcup_{\tilde{x} \in \Lambda_{f}} T_{\widetilde{x}} \mathbb{M}$ splits into the Whitney sum $T \mathbb{M} \mid \Lambda_{f}=E^{\mathrm{s}} \oplus E^{\mathrm{u}}$ of subbundles E^{s} and E^{u} satisfying the following conditions:
(a) $D \widetilde{f}\left(E^{\mathrm{s}}\right) \subset E^{\mathrm{s}}, D \widetilde{f}\left(E^{\mathrm{u}}\right)=E^{\mathrm{u}}$,
(b) $D \widetilde{f} \mid E^{\mathrm{u}}: E^{\mathrm{u}} \rightarrow E^{\mathrm{u}}$ is injective,
(c) there exist $c>0$ and $0<\lambda<1$ such that for $n \geq 0$,

$$
\left\|D \widetilde{f}^{n} \mid E^{\mathrm{s}}\right\| \leq c \lambda^{n}, \quad\left\|\left(D \widetilde{f} \mid E^{\mathrm{u}}\right)^{-n}\right\| \leq c \lambda^{n}
$$

where $\|T\|$ denotes the supremum norm of a linear bundle map T. It is checked from the techniques in $[20, \S 0$ and $\S 1]$ that
(1) E^{s} and E^{u} are C^{0}-vector bundles over Λ_{f},
(2) there exist $0<\lambda<1$ and a new norm $\|\cdot\|$ such that

$$
\left\|D \widetilde{f} \mid E^{\mathrm{s}}\right\| \leq \lambda, \quad\left\|\left(D \widetilde{f} \mid E^{\mathrm{u}}\right)^{-1}\right\| \leq \lambda
$$

(3) if $P^{0}(\widetilde{x})=P^{0}(\widetilde{y})$ for $\widetilde{x}, \widetilde{y} \in \Lambda_{f}$, then $E^{\mathbf{s}}(\widetilde{x})=E^{\mathbf{s}}(\widetilde{y})$, but in general $E^{\mathrm{u}}(\widetilde{x}) \neq E^{\mathrm{u}}(\widetilde{y})$.

Let f, in particular, be a C^{1}-map from M onto itself. Then f is called Anosov if M is hyperbolic. An Anosov map f is said to be expanding if $E^{\mathrm{u}}(\widetilde{x})=T_{\widetilde{x}} M$ for $\widetilde{x} \in M_{f}$.

For $\widetilde{x}=\left(x_{n}\right) \in M_{f}$ and $\varepsilon>0$ put

$$
\begin{align*}
& W_{\varepsilon}^{\mathrm{s}}(\widetilde{x}, f)=\left\{y \in M: d\left(x_{n}, f^{n}(y)\right) \leq \varepsilon \text { for } n \geq 0\right\} \\
& W_{\varepsilon}^{\mathrm{u}}(\widetilde{x}, f)=\left\{y \in M: \text { there exists } \widetilde{y}=\left(y_{n}\right) \in M_{f} \text { with } y_{0}=y\right. \tag{1.5}\\
& \left.\quad \text { such that } d\left(x_{-n}, y_{-n}\right) \leq \varepsilon \text { for } n \geq 0\right\} .
\end{align*}
$$

Then $W_{\varepsilon}^{\mathrm{s}}(\widetilde{x}, f)=W_{\varepsilon}^{\mathrm{s}}(\widetilde{y}, f)$ if $P^{0}(\widetilde{x})=P^{0}(\widetilde{y})$ for $\widetilde{x}, \widetilde{y} \in M_{f}$, and

$$
W_{\varepsilon}^{\mathrm{s}}(\widetilde{x}, f) \subset f^{-1}\left(W_{\varepsilon}^{\mathrm{s}}(\widetilde{f}(\widetilde{x}), f)\right), \quad W_{\varepsilon}^{\mathrm{u}}(\widetilde{x}, f) \subset f\left(W_{\varepsilon}^{\mathrm{u}}\left(\tilde{f}^{-1}(\widetilde{x}), f\right)\right) .
$$

If Λ is hyperbolic, then it follows from [5, Theorem 5.1] that $\left\{W_{\varepsilon}^{\mathrm{s}}(\widetilde{x}, f)\right\}_{\widetilde{x} \in \Lambda_{f}}$ and $\left\{W_{\varepsilon}^{\mathrm{u}}(\widetilde{x}, f)\right\}_{\widetilde{x} \in \Lambda_{f}}$ are continuous families of C^{1}-disks in M such that

$$
T_{x_{0}} W_{\varepsilon}^{\sigma}(\widetilde{x}, f)=\bar{P}^{0}\left(E^{\sigma}(\widetilde{x})\right)
$$

for $\widetilde{x}=\left(x_{n}\right) \in \Lambda_{f}$ and $\sigma=\mathrm{s}$, u . It is easily checked that for $\widetilde{x} \in \Lambda_{f}$,

$$
\begin{aligned}
W^{\mathrm{s}}(\widetilde{x}, f) & =\bigcup_{n \geq 0} f^{-n}\left(W_{\varepsilon}^{\mathrm{s}}\left(\widetilde{f}^{n}(\widetilde{x}), f\right)\right), \\
W^{\mathrm{u}}(\widetilde{x}, f) & =\bigcup_{n \geq 0} f^{n}\left(W_{\varepsilon}^{\mathrm{u}}\left(\widetilde{f}^{-n}(\widetilde{x}), f\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
W^{\mathrm{s}}(\widetilde{x}, f) & =\left\{y \in M: d\left(x_{n}, f^{n}(y)\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\}, \\
W^{\mathrm{u}}(\widetilde{x}, f) & =\left\{y \in M: \text { there exists } \widetilde{y}=\left(y_{n}\right) \in M_{f} \text { with } y_{0}=y\right. \\
& \left.\quad \text { such that } d\left(x_{-n}, y_{-n}\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\} .
\end{aligned}
$$

Notice that $W^{\sigma}(\widetilde{x}, f)(\sigma=\mathrm{s}, \mathrm{u})$ is not an immersed submanifold whenever f is noninvertible.

A closed f-invariant set Λ is said to be isolated if there is a compact neighborhood U of Λ satisfying $\Lambda_{f}=U_{f}$. If, in particular, f is a diffeomorphism, then $\Lambda_{f}=U_{f}$ means $\Lambda=\bigcap_{n=-\infty}^{\infty} f^{n}(U)$.

If Λ is isolated and there is a point $x \in \Lambda$ such that $\left\{f^{n}(x): n \geq 0\right\}$ is dense in Λ, then Λ is called a basic set. It follows from [20, Theorem 3.11] and [21, p. 62] that an isolated hyperbolic set Λ decomposes into a finite disjoint union $\Lambda=\Lambda_{1} \cup \ldots \cup \Lambda_{s}$ of basic sets Λ_{i} since the inverse limit system \tilde{f} of f is an expansive homeomorphism with the shadowing property.

We say that there exists an n-cycle in Λ if there exists $\left\{\Lambda_{i_{j}}: 1 \leq j \leq\right.$ $n+1\}$ such that
(1) $\Lambda_{i_{1}}=\Lambda_{i_{n+1}}$,
(2) $\Lambda_{i_{j}} \neq \Lambda_{i_{k}}(1 \leq j \neq k \leq n)$,
(3) $\left\{W^{\mathrm{s}}\left(\Lambda_{i_{j}}, f\right) \backslash \Lambda_{i_{j}}\right\} \cap\left\{W^{\mathrm{u}}\left(\Lambda_{i_{j+1}}, f\right) \backslash \Lambda_{i_{j+1}}\right\} \neq \emptyset(1 \leq j \leq n)$,
where

$$
W^{\mathrm{s}}\left(\Lambda_{i}, f\right)=\bigcup_{\widetilde{x} \in\left(\Lambda_{i}\right)_{f}} W^{\mathrm{s}}(\widetilde{x}, f), \quad W^{\mathrm{u}}\left(\Lambda_{i}, f\right)=\bigcup_{\widetilde{x} \in\left(\Lambda_{i}\right)_{f}} W^{\mathrm{u}}(\widetilde{x}, f) .
$$

We say sometimes that Λ_{i} has a homoclinic point when it has a 1-cycle.
The subset
$\Omega(f)=\{x \in M$: for any neighborhood U of x there is $n>0$ such that $\left.f^{n}(U) \cap U \neq \emptyset\right\}$
is closed and satisfies $f(\Omega(f)) \subset \Omega(f)$. We say that $\Omega(f)$ is the nonwandering set. Notice that if the set of periodic points, $\operatorname{Per}(f)$, is dense in $\Omega(f)$, then $f(\Omega(f))=\Omega(f)$. Recall that f satisfies Axiom A if $\operatorname{Per}(f)$ is dense in $\Omega(f)$ and $\Omega(f)$ is hyperbolic. When f satisfies Axiom A, it is easily checked that $\Omega(f)$ is isolated, and so $\Omega(f)$ decomposes into a finite disjoint union of basic sets. We say that an Axiom A differentiable map f has no cycles if there are no cycles in $\Omega(f)$. Define

$$
\begin{aligned}
\mathcal{P}(M) & =\left\{f \in C^{1}(M): \text { every periodic point of } f \text { is hyperbolic }\right\} \\
\mathcal{A} \mathcal{N}(M) & =\left\{f \in C^{1}(M): f \text { satisfies Axiom A and has no cycles }\right\}
\end{aligned}
$$

Since $\mathcal{A} \mathcal{N}(M)$ is open in $C^{1}(M)$ [14, Theorem B], we have $\mathcal{A} \mathcal{N}(M) \subset$ int $\mathcal{P}(M)$. Here int E denotes the interior of E.

If $D_{x} f: T_{x} M \rightarrow T_{f(x)} M$ is not injective, then x is called a singular point for f. Denote by $S(f)$ the set of all singular points of f. Obviously, $S(f)$ is a closed subset of M. Notice that an expanding map has no singular points.

Let $f \in C^{1}(M)$. Then f is said to be C^{1}-structurally stable if there exists a neighborhood $\mathcal{U}(f)$ of f such that for $g \in \mathcal{U}(f), g$ is topologically conjugate to f. A differentiable map which is C^{1}-structurally stable has no singular points [8, p. 381]. But this is not true for C^{2}-structural stability [2, Theorem 3]. We say that f is $C^{1} \Omega$-stable if there exists a neighborhood $\mathcal{U}(f)$ of f such that $g \mid \Omega(g)$ is topologically conjugate to $f \mid \Omega(f)$ for all $g \in$ $\mathcal{U}(f)$. Notice that C^{1}-differentiable maps satisfying $C^{1} \Omega$-stability belong to $\operatorname{int} \mathcal{P}(M)$. This follows from [3, Theorem 1].

Our main theorem is the following:
Theorem A. If a C^{1}-map f belonging to $\operatorname{int} \mathcal{P}(M)$ satisfies the condition

$$
\Omega(f) \cap S(f) \subset\{p \in \operatorname{Per}(f): p \text { is a sink }\}
$$

then f satisfies Axiom A and has no cycles.
The proof of this theorem is based upon results related to stability problems from Mañé [12], Palis [18] and Przytycki [21].

If f satisfies Axiom A and $\Omega(f)$ is the disjoint union $\Omega_{1} \cup \Omega_{2}$ of two closed f-invariant sets such that:
(i) $f \mid \Omega_{1}$ is injective,
(ii) Ω_{2} is contained in the closure of all source periodic points,
then f is said to satisfy strong Axiom A. When f is a diffeomorphism, the notion of strong Axiom A coincides with that of Axiom A.

As an extension of the result of Przytycki [21, Theorem A] stated above we have:

Corollary B. If $f \in C^{1}(M)$ satisfies the assumption of Theorem A, then the following are equivalent:
(1) f satisfies strong Axiom A and has no cycles,
(2) f is $C^{1} \Omega$-stable.
2. Proof of Theorem A. To show Theorem A we need the following propositions, where $\operatorname{cl}(E)$ denotes the closure of E.

Proposition 1. If $f \in \operatorname{int} \mathcal{P}(M)$ and $\{\Omega(f) \backslash \operatorname{cl}(\operatorname{Per}(f))\} \cap S(f)=\emptyset$, then $\Omega(f)=\operatorname{cl}(\operatorname{Per}(f))$.

This will follow from the techniques used to prove the closing lemma for C^{1}-maps with finite singular points (see Wen [26] and [27, Theorem A]).

Let $f \in \mathcal{P}(M)$. Then every periodic point p of f is hyperbolic. Thus p satisfies (1.1). We set

$$
\begin{equation*}
I_{i}(f)=\left\{p \in \operatorname{Per}(f): \operatorname{dim} E^{\mathrm{s}}(p)=i\right\} \quad(0 \leq i \leq \operatorname{dim} M) \tag{2.1}
\end{equation*}
$$

where $E^{\mathrm{s}}(p)$ is as in (1.1), and denote by $\sharp E$ the cardinality of E.
Proposition 2. Every $f \in \operatorname{int} \mathcal{P}(M)$ has the following properties:
(a) $\sharp I_{\operatorname{dim} M}(f)<\infty$,
(b) $\operatorname{cl}\left(I_{0}(f)\right)$ is hyperbolic.

Proposition 2(a) was proved in [19, Theorem 4.1] for diffeomorphisms and in [6] for differentiable maps without singular points. We shall give the proof of (a) for the general case. (b) is clear for diffeomorphisms because $I_{0}(f)=I_{\operatorname{dim} M}\left(f^{-1}\right)$. Unfortunately it is not true that $\sharp I_{0}(f)<\infty$ for the noninvertible case, and so we have to give a proof. To do that, the technique of [12, Theorem I.4] is useful.

We define
$\mathcal{F}(M)=\{f \in \operatorname{int} \mathcal{P}(M): f$ satisfies the assumption of Theorem A $\}$
and put

$$
\begin{equation*}
\Lambda\left(i_{0}\right)=\bigcup_{i=0}^{i_{0}} \operatorname{cl}\left(I_{i}(f)\right) \quad\left(0 \leq i_{0} \leq \operatorname{dim} M\right) \tag{2.2}
\end{equation*}
$$

Proposition 3. Let $f \in \mathcal{F}(M)$ and $0 \leq i_{0} \leq \operatorname{dim} M-2$. If $\Lambda\left(i_{0}\right)$ is hyperbolic and $\Lambda\left(i_{0}\right) \cap \operatorname{cl}\left(I_{i_{0}+1}(f)\right)=\emptyset$, then $\operatorname{cl}\left(I_{i_{0}+1}(f)\right)$ is hyperbolic.

This will be shown using the methods of [12, p. 167].
Proposition 4. Let $f \in \mathcal{F}(M)$. Then
(a) $\operatorname{cl}\left(I_{0}(f)\right) \cap \bigcup_{i=1}^{\operatorname{dim} M} \operatorname{cl}\left(I_{i}(f)\right)=\emptyset$,
(b) if $1 \leq i_{0} \leq \operatorname{dim} M-2$ and $\Lambda\left(i_{0}\right)$ is hyperbolic, then $\Lambda\left(i_{0}\right) \cap$ $\operatorname{cl}\left(I_{i_{0}+1}(f)\right)=\emptyset$.

Proposition $4(\mathrm{a})$ is clear for diffeomorphisms because $\sharp I_{0}(f)<\infty$, but we have to prove it for C^{1}-maps. We shall derive a contradiction by showing
that if (a) is false then f has homoclinic points. (b) was given in $[1, \S 3]$ for diffeomorphisms. We shall give the proof of (b) for the class $\mathcal{F}(M)$ of differentiable maps which contains the diffeomorphisms.

Once Propositions 2-4 are established, we conclude that $\operatorname{cl}(\operatorname{Per}(f))$ is hyperbolic when $f \in \mathcal{F}(M)$.

Indeed, $\operatorname{cl}\left(I_{\operatorname{dim} M}(f)\right)=I_{\operatorname{dim} M}(f)$ and $\operatorname{cl}\left(I_{0}(f)\right)$ are hyperbolic by Proposition 2. From Propositions 3 and 4 it follows that $\operatorname{cl}\left(I_{i}(f)\right)(1 \leq i \leq$ $\operatorname{dim} M-1)$ are hyperbolic. Thus $\operatorname{cl}(\operatorname{Per}(f))=\bigcup_{i=0}^{\operatorname{dim} M} \operatorname{cl}\left(I_{i}(f)\right)$ is hyperbolic.

Combining this result and Proposition 1 shows that each $f \in \mathcal{F}(M)$ satisfies Axiom A. Using the techniques of [17, Theorem, p. 221], it is checked that if $f \in \operatorname{int} \mathcal{P}(M)$ satisfies Axiom A, then f has no cycles. Therefore Theorem A is proved.

Thus it remains to show Propositions $1-4$. We devote the rest of this paper to the proofs.
3. Proof of Proposition 1. We first prepare some auxiliary results.

For $x \in M$ and $\xi>0$ put $T_{x} M(\xi)=\left\{v \in T_{x} M:\|v\| \leq \xi\right\}$. Then there exists $\xi>0$ such that the exponential map $\exp _{x}: T_{x} M(\xi) \rightarrow M$ is a C^{∞}-embedding for all $x \in M$.

The following Lemmas 3.1 and 3.2 were proved in [3, Lemma 1.1] and [12, Lemma 1.8] for diffeomorphisms. But their proofs can be adapted to the noninvertible case, and so we omit them.

For $E \subset M$, let $B_{\varepsilon}(E)$ denote the closed ball defined by

$$
B_{\varepsilon}(E)=\{y \in M: d(x, y) \leq \varepsilon \text { for some } x \in E\}
$$

Lemma 3.1. Let $f \in C^{1}(M)$. For every neighborhood $\mathcal{U}(f)$ of f there exist a neighborhood $\mathcal{U}_{1}(f) \subset \mathcal{U}(f)$ of f and $\varepsilon_{1}>0$ such that for $g \in \mathcal{U}_{1}(f)$, a neighborhood U of a finite sequence $\theta=\left\{x_{1}, \ldots, x_{N}\right\}$ with $x_{i} \neq x_{j}(i \neq j)$ and linear maps $L_{i}: T_{x_{i}} M \rightarrow T_{g\left(x_{i}\right)} M(1 \leq i \leq N)$ with $\left\|L_{i}-D_{x_{i}} g\right\| \leq \varepsilon$ there are $\bar{g} \in \mathcal{U}(f)$ and $\delta>0$ with the following properties:
(a) $B_{4 \delta}(\theta) \subset U$,
(b) $\bar{g}(x)=g(x)\left(x \in \theta \cup\left\{M \backslash B_{4 \delta}(\theta)\right\}\right)$,
(c) $\bar{g}(x)=\exp _{\bar{g}\left(x_{i}\right)} \circ L_{i} \circ \exp _{x_{i}}^{-1}(x)\left(x \in B_{\delta}\left(x_{i}\right), 1 \leq i \leq N\right)$.

For $f \in \mathcal{P}(M), 0 \leq i \leq \operatorname{dim} M$ and $n>0$ define

$$
\operatorname{Per}^{n}(f)=\left\{p \in \operatorname{Per}(f): f^{n}(p)=p\right\}, \quad I_{i}^{n}(f)=I_{i}(f) \cap \operatorname{Per}^{n}(f)
$$

where $I_{i}(f)$ is defined in (2.1) for $0 \leq i \leq \operatorname{dim} M$.
Lemma 3.2. Let $f \in \operatorname{int} \mathcal{P}(M)$ and $\mathcal{U}(f)$ be a connected open neighborhood of f contained in $\operatorname{int} \mathcal{P}(M)$. Then, for all $g \in \mathcal{U}(f), 0 \leq i \leq \operatorname{dim} M$ and $n>0$,

$$
\sharp I_{i}^{n}(f)=\sharp I_{i}^{n}(g)<\infty .
$$

Lemma 3.3. If $f \in \operatorname{int} \mathcal{P}(M)$, then $f(\Omega(f))=\Omega(f)$.
Proof. If f is a diffeomorphism, then the assertion is clear. Thus it suffices to show it for the noninvertible case. It is clear that $f(\Omega(f)) \subset \Omega(f)$. Suppose there is $q \in M$ such that $q \in \Omega(f) \backslash f(\Omega(f))$. Since $q \in \Omega(f)$, there exist sequences $\left\{x_{i}\right\}$ of points and $\left\{k_{i}\right\}$ of positive integers such that

$$
d\left(x_{i}, q\right) \leq 1 / i \quad \text { and } \quad d\left(f^{k_{i}}\left(x_{i}\right), q\right) \leq 1 / i
$$

We can suppose that $\left\{f^{k_{i}-1}\left(x_{i}\right)\right\}$ converges to y as $i \rightarrow \infty$. Then $y \in$ $f^{-1}(q)$ and so $y \notin \Omega(f)$. Thus there is a neighborhood $U(y)$ of y such that $f^{j}(U(y)) \cap U(y)=\emptyset$ for $j>0$. Then for $i>0$ large enough we have

$$
\begin{equation*}
f^{k_{i}-1}\left(x_{i}\right) \in U(y) \quad \text { and } \quad f^{k}\left(x_{i}\right) \notin U(y) \quad\left(0 \leq k<k_{i}-1\right) \tag{3.1}
\end{equation*}
$$

Since $f(\operatorname{cl}(\operatorname{Per}(f)))=\operatorname{cl}(\operatorname{Per}(f))$, we have $q \notin \operatorname{cl}(\operatorname{Per}(f))$. Let $U(q)$ be a neighborhood of q satisfying $U(q) \cap \operatorname{cl}(\operatorname{Per}(f))=\emptyset$, and let $\mathcal{U}(f)$ be a connected open neighborhood of f contained in int $\mathcal{P}(M)$. By taking $U(y)$ and $\mathcal{U}(f)$ small enough we can suppose that for all $g \in \mathcal{U}(f)$,

$$
\begin{equation*}
g(U(y)) \subset U(q) \tag{3.2}
\end{equation*}
$$

By using Lemma 3.1 we can find $h \in \mathcal{U}(f)$ such that
(i) $y \notin S(h)$,
(ii) $f(z)=h(z)(z \in\{y\} \cup\{M \backslash U(y)\})$
(as above, $S(h)$ denotes the set of singular points of h). Then there is a neighborhood $V \subset U(y)$ of y such that $h \mid V: V \rightarrow h(V)$ is a diffeomorphism. Thus, for $i>0$ large enough there is $x_{i}^{\prime} \in V$ satisfying $h\left(x_{i}^{\prime}\right)=x_{i}$. Since $h(y)=q$ and $x_{i} \rightarrow q$ as $i \rightarrow \infty$, we have $x_{i}^{\prime} \rightarrow y$ as $i \rightarrow \infty$. Thus, for $i>0$ large enough we can construct a diffeomorphism $\varphi: M \rightarrow M$ such that

$$
\varphi\left(f^{k_{i}-1}\left(x_{i}\right)\right)=x_{i}^{\prime}, \quad\{x \in M: \varphi(x) \neq x\} \subset U(y), \quad g=h \circ \varphi \in \mathcal{U}(f)
$$

and so

$$
g\left(f^{k_{i}-1}\left(x_{i}\right)\right)=x_{i} .
$$

Then

$$
g^{k_{i}}\left(f^{k_{i}-1}\left(x_{i}\right)\right)=f^{k_{i}-1} \circ g\left(f^{k_{i}-1}\left(x_{i}\right)\right)=f^{k_{i}-1}\left(x_{i}\right)
$$

by (3.1) and (3.3), and $g(U(y)) \subset U(q)$ by (3.2). Thus,

$$
g\left(f^{k_{i}-1}\left(x_{i}\right)\right) \in \operatorname{Per}(g) \cap U(q) \neq \emptyset .
$$

Since $U(y) \cap \operatorname{cl}(\operatorname{Per}(f))=\emptyset$, we have $f(z)=g(z)$ for $z \in \operatorname{cl}(\operatorname{Per}(f))$. Therefore, $\sharp \operatorname{Per}^{n}(f)<\sharp \operatorname{Per}^{n}(g)$ for $n=k_{i}$, which contradicts Lemma 3.2.

Lemma 3.4. Let $f \in C^{1}(M)$ and $q \in \Omega(f)$. If $f^{-1}\left(q^{\prime}\right) \cap \Omega(f) \neq \emptyset$ for all $q^{\prime} \in f^{-n}(q) \cap \Omega(f)$ where $n \geq 0$, and if $\left\{\bigcup_{k \geq 0} f^{-k}(q) \cap \Omega(f)\right\} \cap S(f)=\emptyset$, then for every neighborhood $\mathcal{U}(f)$ of f and every neighborhood $U(q)$ of q there is $g \in \mathcal{U}(f)$ such that
(1) $\operatorname{Per}(g) \cap U(q) \neq \emptyset$,
(2) $\{x \in M: f(x) \neq g(x)\} \subset \bigcup_{n>0} f^{-n}(U(q))$.

Lemma 3.4 easily follows from [27, Theorem A], and so we omit the proof.

Proof of Proposition 1. Proposition 1 was proved in [9, Lemma 3.1] for the case when f is a diffeomorphism. Thus it remains to give the proof for the noninvertible case. Suppose that $q \in \Omega(f) \backslash \operatorname{cl}(\operatorname{Per}(f))$. By Lemma 3.3 we have $f^{-1}\left(q^{\prime}\right) \cap \Omega(f) \neq \emptyset$ for all $q^{\prime} \in f^{-n}(q) \cap \Omega(f)$ and $n \geq 0$. Since $f(\operatorname{cl}(\operatorname{Per}(f)))=\operatorname{cl}(\operatorname{Per}(f))$, we have

$$
\left\{f^{-n}(q) \cap \Omega(f)\right\} \cap \operatorname{cl}(\operatorname{Per}(f))=\emptyset
$$

for $n \geq 0$. Thus,

$$
\left\{f^{-n}(q) \cap \Omega(f)\right\} \cap S(f)=\emptyset
$$

for $n \geq 0$ because $\{\Omega(f) \backslash \operatorname{cl}(\operatorname{Per}(f))\} \cap S(f)=\emptyset$. Hence the assumptions of Lemma 3.4 were satisfied.

Let $\mathcal{U}(f)$ be a connected open neighborhood of f contained in int $\mathcal{P}(M)$ and $U(q)$ be a neighborhood of q satisfying $U(q) \cap c l(\operatorname{Per}(f))=\emptyset$. By Lemma 3.4 there is $g \in \mathcal{U}(f)$ such that $\operatorname{Per}(g) \cap U(q) \neq \emptyset$ and

$$
\{z \in M: f(z) \neq g(z)\} \subset \bigcup\left\{f^{-n}(U(q)): n \geq 0\right\} .
$$

Since $f(\operatorname{cl}(\operatorname{Per}(f)))=\operatorname{cl}(\operatorname{Per}(f))$, we have

$$
\bigcup\left\{f^{-n}(U(q)): n \geq 0\right\} \cap \operatorname{cl}(\operatorname{Per}(f))=\emptyset,
$$

and so $f(z)=g(z)$ for $z \in \operatorname{cl}(\operatorname{Per}(f))$. Therefore, $\sharp \operatorname{Per}^{n}(f)<\sharp \operatorname{Per}^{n}(g)$ for some $n>0$, which contradicts Lemma 3.2.
4. Proof of Proposition 2(a). Let $f \in \operatorname{int} \mathcal{P}(M)$. Then it follows from [10, Theorem 4.1] that there exist a neighborhood $\mathcal{U}(f) \subset \operatorname{int} \mathcal{P}(M)$ of f and numbers $0<\lambda_{0}<1, m_{0}>0$ and $\tau_{0}>0$ such that for all $g \in \mathcal{U}(f)$ the following hold:
(a) for $\widetilde{p}=\left(p_{n}\right) \in \bigcup_{i=1}^{\operatorname{dim} M} I_{i}(g)_{g}$ with $\varrho\left(g, p_{0}\right)=n>\tau_{0}$,

$$
\prod_{j=0}^{\left[n / m_{0}\right]-1}\left\|D \widetilde{g}^{m_{0}} \mid E^{\mathrm{s}}\left(\widetilde{g}^{m_{0} j}(\widetilde{p})\right)\right\| \leq \lambda_{0}^{\left[n / m_{0}\right]}
$$

(b) for $\widetilde{p}=\left(p_{n}\right) \in \bigcup_{i=0}^{\operatorname{dim} M-1} I_{i}(g)_{g}$ with $\varrho\left(g, p_{0}\right)=n>\tau_{0}$,

$$
\prod_{j=0}^{\left[n / m_{0}\right]-1}\left\|\left(D \widetilde{g}^{m_{0}} \mid E^{\mathrm{u}}\left(\widetilde{g}^{m_{0} j}(\widetilde{p})\right)\right)^{-1}\right\| \leq \lambda_{0}^{\left[n / m_{0}\right]}
$$

(c) for $\widetilde{p}=\left(p_{n}\right) \in \bigcup_{i=1}^{\operatorname{dim} M} I_{i}(g)_{g}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \left\|D \widetilde{g}^{m_{0}} \mid E^{\mathrm{s}}\left(\widetilde{g}^{m_{0} j}(\widetilde{p})\right)\right\| \leq \log \lambda_{0} \tag{4.3}
\end{equation*}
$$

(d) for $\widetilde{p}=\left(p_{n}\right) \in \bigcup_{i=0}^{\operatorname{dim} M-1} I_{i}(g)_{g}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \left\|\left(D \widetilde{g}^{m_{0}} \mid E^{\mathrm{u}}\left(\widetilde{g}^{m_{0} j}(\widetilde{p})\right)\right)^{-1}\right\| \leq \log \lambda_{0} \tag{4.4}
\end{equation*}
$$

where $I_{i}(g)$ is as in $(2.1), I_{i}(g)_{g}$ is as in (1.3) and $[r]$ denotes the greatest integer not greater than r.

Let ε_{1} satisfy the conclusion of Lemma 3.1 for $\mathcal{U}_{0}(f)$ and let $\lambda_{0}<\lambda_{1}<1$. Choose $\varepsilon_{0}>0$ such that $\left(1+\varepsilon_{0}\right) \lambda_{1}<1$ and $\varepsilon_{0}<\frac{1}{2}\left(\varepsilon_{1} / 2\right)^{m_{0}}$, and take $H_{1} \geq 1$ satisfying $\varepsilon_{0}>e^{-H_{1}}$. Denote by $N\left(\lambda_{0}, \lambda_{1}\right)>0$ the smallest integer satisfying

$$
\begin{equation*}
N\left(\lambda_{0}, \lambda_{1}\right) \log \left(\lambda_{1} / \lambda_{0}\right)>H_{1} \tag{4.5}
\end{equation*}
$$

and write

$$
\begin{equation*}
C\left(\lambda_{0}, \lambda_{1}\right)=\frac{\log \left(\lambda_{1} / \lambda_{0}\right)}{H_{1}} \tag{4.6}
\end{equation*}
$$

Lemma 4.1. Let a sequence $\{p(n): 0 \leq n \leq N-1\}$ satisfy the following:
(i) $N \geq N\left(\lambda_{0}, \lambda_{1}\right)$,
(ii) $p(n)>0$,
(iii) $-H_{1} \leq \log p(n)$,
(iv) $\prod_{n=0}^{N-1} p(n) \leq \lambda_{0}^{N}$.

Then there exist an integer k with $k>N C\left(\lambda_{0}, \lambda_{1}\right)$ and a sequence $0 \leq n_{1}<$ $\ldots<n_{k}<N-1$ such that for $1 \leq j \leq k$ and $n_{j}<l \leq N-1$,

$$
\prod_{n=n_{j}+1}^{l} p(n) \leq \lambda_{1}^{l-n_{j}}
$$

The statement of Lemma 4.1 is a reformulation of the result stated in [19, Lemma, p. 212] and [12, Lemma II.3], and so we omit the proof.

We set

$$
Q=\left\{x \in \operatorname{cl}\left(I_{\operatorname{dim} M}(f)\right):\left\|D_{x} f^{m_{0}}\right\|<\varepsilon_{0}\right\}
$$

Then there is $\delta>0$ such that
(a) if $d(x, y) \leq 2 \delta\left(x \in \operatorname{cl}\left(I_{\operatorname{dim} M}(f)\right) \backslash Q, y \in M\right)$, then

$$
\begin{equation*}
\left\|D_{y} f^{m_{0}}\right\| \leq\left(1+\varepsilon_{0}\right)\left\|D_{x} f^{m_{0}}\right\| \tag{4.7}
\end{equation*}
$$

(b) if $d(x, y) \leq 2 \delta\left(x, y \in \operatorname{cl}\left(I_{\operatorname{dim} M}(f)\right)\right)$, then

$$
\left|\left\|D_{y} f^{m_{0}}\right\|-\left\|D_{x} f^{m_{0}}\right\|\right| \leq \varepsilon_{0}
$$

Put $\lambda_{2}=\left(1+\varepsilon_{0}\right) \lambda_{1}$. Since M is compact, there is $K>0$ such that for $\left\{x_{1}, \ldots, x_{K}\right\} \subset M$ with $x_{i} \neq x_{j}(i \neq j)$ there exist $x_{i}, x_{j}(1 \leq i \neq j \leq K)$ satisfying $d\left(x_{i}, x_{j}\right) \leq\left(1-\lambda_{2}\right) \delta$. Let $N^{\prime}>0$ be an integer such that $K \leq$ $N^{\prime} C\left(\lambda_{0}, \lambda_{1}\right)$.

To obtain the conclusion of Proposition 2(a) suppose that $\sharp I_{\operatorname{dim} M}(f)$ $=\infty$. Since $\sharp \operatorname{Per}^{n}(f)<\infty$ for $n>0$ (by Lemma 3.2), there is a periodic point $p \in I_{\text {dim } M}(f)$ with period $\varrho(f, p)$ satisfying

$$
\varrho(f, p) \geq \max \left\{\tau_{0}, m_{0} N^{\prime}, m_{0} N\left(\lambda_{0}, \lambda_{1}\right)\right\}
$$

Put $N=\left[\varrho(f, p) / m_{0}\right]$. If $q=f^{m_{0} n}(p) \in Q$ for some $0 \leq n \leq N-1$, then we can construct a family $\left\{L_{f^{i}(q)}: T_{f^{i}(q)} M \rightarrow T_{f^{i+1}(q)} M\right\}_{i=0}^{m_{0}-1}$ of isomorphisms such that

$$
\begin{gathered}
\left\|L_{f^{i}(q)}-D_{f^{i}(q)} f\right\| \leq \varepsilon_{1} \\
\inf \left\{\left\|L_{f^{i}(q)}(v)\right\|: v \in T_{f^{i}(q)} M \text { with }\|v\|=1\right\} \geq \varepsilon_{1} / 2
\end{gathered}
$$

By Lemma 3.1 there is $g \in \mathcal{U}_{0}(f)$ such that
(1) $g(x)=f(x)$ for $x \in\left\{p, f(p), \ldots, f^{\varrho(f, p)-1}(p)\right\}$,
(2) if $f^{m_{0} n}(p) \notin Q$ for $0 \leq n \leq N-1$, then $D_{f^{i}(p)} g=D_{f^{i}(p)} f$ for $m_{0} n \leq i \leq m_{0}(n+1)-1$,
(3) if $f^{m_{0} n}(p) \in Q$ for $0 \leq n \leq N-1$, then $D_{f^{i}(p)} g=L_{f^{i}(p)}$ for $m_{0} n \leq i \leq m_{0}(n+1)-1$,
(4) $D_{f^{i}(p)} g=D_{f^{i}(p)} f$ for $N m_{0} \leq i \leq \varrho(f, p)-1$.

Define a function $p(\cdot):\{0,1, \ldots, N-1\} \rightarrow \mathbb{R}$ by

$$
p(n)=\left\|D_{f^{m_{0} n}(p)} g^{m_{0}}\right\| .
$$

Then $-H_{1}<\log p(n)$ for $0 \leq n \leq N-1$. Since $g \in \mathcal{U}_{0}(f)$, by (4.1) we have

$$
\prod_{n=0}^{N-1} p(n) \leq \lambda_{0}^{N}
$$

and so $\{p(n)\}$ satisfies the conditions of Lemma 4.1. Thus there are an integer $k>K$ and a sequence $0 \leq n_{1}<\ldots<n_{k}<N-1$ such that

$$
\begin{equation*}
\prod_{n=n_{j}+1}^{l} p(n) \leq \lambda_{1}^{l-n_{j}} \quad\left(1 \leq j \leq k, n_{j}<l \leq N-1\right) \tag{4.8}
\end{equation*}
$$

By the choice of K there are $0 \leq i<j \leq k$ such that

$$
d\left(g^{m_{0} n_{i}}(p), g^{m_{0} n_{j}}(p)\right) \leq\left(1-\lambda_{2}\right) \delta .
$$

By (4.7) and (4.8) it is easily checked that
(4.9) (1) $g^{m_{0}\left(n_{j}-n_{i}\right)} \mid B_{\delta}\left(g^{m_{0} n_{i}}(p)\right)$ is a Lipschitz map and its Lipschitz constant is less than $\lambda_{2}<1$,
(2) $g^{m_{0}\left(n_{j}-n_{i}\right)}\left(B_{\delta}\left(g^{m_{0} n_{i}}(p)\right)\right) \subset B_{\delta}\left(g^{m_{0} n_{i}}(p)\right)$.

Thus there is a unique $z \in B_{\delta}\left(g^{m_{0} n_{i}}(p)\right)$ satisfying $g^{m_{0}\left(n_{j}-n_{i}\right)}(z)=z$. Since $N=\left[\varrho(f, p) / m_{0}\right]$ and $0<n_{1}<\ldots<n_{k}<N-1$, we have $0<m_{0}\left(n_{j}-n_{i}\right)<$ $\varrho(f, p)$, and so $z \neq g^{m_{0} n_{i}}(p)$. On the other hand, since

$$
g^{\varrho(f, p) m_{0}\left(n_{j}-n_{i}\right)}: B_{\delta}\left(g^{m_{0} n_{i}}(p)\right) \rightarrow B_{\delta}\left(g^{m_{0} n_{i}}(p)\right)
$$

is a contraction, we have $z=g^{m_{0} n_{i}}(p)$, which is a contradiction. Thus $\sharp I_{\operatorname{dim} M}(f)=\infty$ cannot happen. Therefore Proposition 2(a) is proved.
5. Proof of Key lemma (Lemma 5.1) and Proposition 2(b). Let Λ be a closed f-invariant set. We say that a $D \widetilde{f}$-invariant subbundle $E \subset$ $T \mathbb{M} \mid \Lambda_{f}$ is contracting if $D \widetilde{f} \mid E$ is contracting, and that E is expanding if $D \widetilde{f} \mid E$ is expanding.

Let $f \in \operatorname{int} \mathcal{P}(M)$ and $I_{i}(f)$ be as in (2.1). Let m_{0} and λ_{0} satisfy (4.1)(4.4). It follows from [10, Proposition II.1] that $T \mathbb{M} \mid \operatorname{cl}\left(I_{i}(f)\right)_{f}(1 \leq i \leq$ $\operatorname{dim} M-1)$ splits into the Whitney sum $T \mathbb{M} \mid \operatorname{cl}\left(I_{i}(f)\right)_{f}=\widetilde{E}_{i}^{\mathbf{s}} \oplus \widetilde{E}_{i}^{u}$ of subbundles $\widetilde{E}_{i}^{\mathrm{s}}$ and $\widetilde{E}_{i}^{\mathrm{u}}$ such that
(a) $D \widetilde{f}^{m_{0}}\left(\widetilde{E}_{i}^{\mathrm{s}}\right) \subset \widetilde{E}_{i}^{\mathrm{s}}, D \widetilde{f}^{m_{0}}\left(\widetilde{E}_{i}^{\mathrm{u}}\right)=\widetilde{E}_{i}^{\mathrm{u}}$,
(b) $D \widetilde{f}^{m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}: \widetilde{E}_{i}^{\mathrm{u}} \rightarrow \widetilde{E}_{i}^{\mathrm{u}}$ is injective,
(c) $\left\|D \widetilde{f}^{m_{0}} \mid \widetilde{E}_{i}^{\mathrm{s}}(\widetilde{x})\right\| \cdot\left\|\left(D \widetilde{f}^{m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}(\widetilde{x})\right)^{-1}\right\| \leq \lambda_{0}$ for $\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}$.

It is easily checked from $[20, \S 0$ and $\S 1]$ that for $1 \leq i \leq \operatorname{dim} M-1$,
(1) $\widetilde{E}_{i}^{\mathrm{s}}$ and $\widetilde{E}_{i}^{\text {u }}$ are C^{0}-vector bundles over $\operatorname{cl}\left(I_{i}(f)\right)_{f}$,
(2) if $\widetilde{x}=\left(x_{n}\right), \widetilde{y}=\left(y_{n}\right) \in \operatorname{cl}\left(I_{i}(f)\right)_{f}$ satisfy $x_{0}=y_{0}$, then $\widetilde{E}_{i}^{\mathrm{s}}(\widetilde{x})$ $=\widetilde{E}_{i}^{\mathrm{s}}(\widetilde{y})$, and so we write $\widetilde{E}_{i}^{\mathrm{s}}\left(x_{0}\right)=\bar{P}^{0}\left(\widetilde{E}_{i}^{\mathrm{s}}(\widetilde{x})\right)\left(\subset T_{x_{0}} M\right)$ where \bar{P}^{0} is defined as in (1.4) (notice that $\widetilde{E}_{i}^{\mathrm{u}}(\widetilde{x}) \neq \widetilde{E}_{i}^{\mathrm{u}}(\widetilde{y})$ in general),
(3) $\operatorname{cl}\left(I_{i}(f)\right)$ is hyperbolic if and only if $\widetilde{E}_{i}^{\mathrm{s}}$ is contracting and $\widetilde{E}_{i}^{\mathrm{u}}$ expanding.
In the case when $i=0, \operatorname{cl}\left(I_{0}(f)\right)$ is hyperbolic if and only if $T \mathbb{M} \mid \operatorname{cl}\left(I_{0}(f)\right)_{f}$ is expanding. If f is a diffeomorphism, then we know [19, Theorem 4.1] that $\sharp I_{0}(f)<\infty$ and $I_{0}(f)$ is hyperbolic.

Lemma 5.1. Let $f \in \operatorname{int} \mathcal{P}(M)$. Then
(a) $T \mathbb{M} \mid \operatorname{cl}\left(I_{0}(f)\right)_{f}$ is expanding,
(b) if $f \in \mathcal{F}(M)$ and $\widetilde{E}_{i}^{\mathrm{s}}$ is contracting for some $1 \leq i \leq \operatorname{dim} M-1$, then $\widetilde{E}_{i}^{\mathrm{u}}$ is expanding.

If we establish Lemma 5.1, then we obtain Proposition 2(b) from Lemma 5.1(a). The proof of Lemma $5.1(\mathrm{a})$ is similar to that of (b), and so we omit it. To show (b) we suppose that $\widetilde{E}_{i}^{\mathrm{s}}$ is contracting and $\widetilde{E}_{i}^{\mathrm{u}}$ is not expanding for some $1 \leq i \leq \operatorname{dim} M-1$. Then we can find a periodic point
$\widetilde{p} \in \bigcup_{i=0}^{\operatorname{dim} M-1} I_{i}(f)_{f}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \left\|\left(D \widetilde{f}^{m_{0}} \mid E^{\mathrm{u}}\left(\widetilde{f}^{m_{0} j}(\widetilde{p})\right)\right)^{-1}\right\|>\log \lambda_{0} \tag{5.3}
\end{equation*}
$$

which in fact contradicts (4.4). Thus it remains to find a periodic point satisfying (5.3). To do that we need the techniques used in proving Theorem I. 4 of [12].

By (5.1)(b) we can define

$$
D \tilde{f}^{-m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}: \widetilde{E}_{i}^{\mathrm{u}} \rightarrow \widetilde{E}_{i}^{\mathrm{u}}
$$

by $D \widetilde{f}^{-m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}(\widetilde{x})=\left(D \widetilde{f}^{m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}\left(\widetilde{f}^{-m_{0}}(\widetilde{x})\right)\right)^{-1}$ for $\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}$. We say that for $\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}$ and $n>0$ the pair $\left(\widetilde{x}, \widetilde{f}^{m_{0} n}(\widetilde{x})\right)$ is a γ-string if

$$
\prod_{j=1}^{n}\left\|D \widetilde{f}^{-m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}\left(\widetilde{f}^{m_{0} j}(\widetilde{x})\right)\right\| \leq \gamma^{n}
$$

and that it is a uniform γ-string if $\left(\widetilde{f}^{m_{0} k}(\widetilde{x}), \widetilde{f}^{m_{0} n}(\widetilde{x})\right)$ is a γ-string for $0 \leq k<n$. Let us say that for $0 \leq N<n$ a pair $\left(\widetilde{x}, \widetilde{f}^{m_{0} n}(\widetilde{x})\right)$ is an (N, γ)-obstruction if $\left(\widetilde{x}, \widetilde{f}^{m_{0} k}(\widetilde{x})\right)$ is not a γ-string for $N \leq k<n$.

Take $\gamma_{i}(0 \leq i \leq 4)$ with

$$
0<\lambda_{0}<\gamma_{0}<\gamma_{1}<\gamma_{2}<\gamma_{3}<\gamma_{4}<1
$$

Let $N\left(\gamma_{i}, \gamma_{j}\right)$ and $C\left(\gamma_{i}, \gamma_{j}\right)(0 \leq i<j \leq 4)$ be as in (4.5) and (4.6), and let \widetilde{d} be a compatible metric for the product topological space \mathbb{M}.

Lemma 5.2. If \widetilde{E}_{i}^{u} is not expanding, then for every $\varepsilon>0$ there exists a compact invariant set $\Lambda(\varepsilon) \subset \operatorname{cl}\left(I_{i}(f)\right)_{f}$ such that each $\widetilde{x}^{0} \in \Lambda(\varepsilon)$ has the following property: there exist $\widetilde{x}^{1} \in \Lambda(\varepsilon) \cap I_{i}(f)_{f}$ arbitrarily near to \widetilde{x}^{0}, $n_{1} \geq 0$ and $\widetilde{y} \in \Lambda(\varepsilon)$ such that
(a) $\widetilde{d}\left(\widetilde{f}^{m_{0} n_{1}}\left(\widetilde{x}^{1}\right), \widetilde{y}\right)<\varepsilon / 4$,
(b) $\left(\widetilde{y}, \widetilde{f}^{m_{0} n}(\widetilde{y})\right)$ is an $\left(N\left(\gamma_{3}, \gamma_{4}\right), \gamma_{2}\right)$-obstruction for $n>N\left(\gamma_{3}, \gamma_{4}\right)$,
(c) if $n_{1}>0$, then $\left(\widetilde{x}^{1}, \widetilde{f}^{m_{0} n_{1}}\left(\widetilde{x}^{1}\right)\right)$ is a uniform γ_{4}-string.

Moreover $\Lambda(\varepsilon)$ is the closure of its interior in $\operatorname{cl}\left(I_{i}(f)\right)_{f}$.
Lemma 5.2 is checked in the same way as Lemma II. 7 of [12], so we omit the proof.

The following lemma is stated in [12, Lemma II.5].
Lemma 5.3. Let $\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}$ and let n, r and l be nonnegative integers with $0 \leq r \leq r+l \leq n$. If $\left(\widetilde{x}, \widetilde{f}^{m_{0} n}(\widetilde{x})\right)$ is a γ_{0}-string containing an $\left(N\left(\gamma_{3}, \gamma_{4}\right), \gamma_{2}\right)$-obstruction $\left(\widetilde{f}^{m_{0} r}(\widetilde{x}), \widetilde{f}^{m_{0}(r+l)}(\widetilde{x})\right)$ such that
(a) $n \geq N\left(\gamma_{0}, \gamma_{4}\right)$,
(b) $n C\left(\gamma_{0}, \gamma_{4}\right)>r+l$,
(c) $r+l \geq N\left(\gamma_{1}, \gamma_{2}\right)$ and
(d) $(r+l) C\left(\gamma_{1}, \gamma_{2}\right)>r+N\left(\gamma_{3}, \gamma_{4}\right)$,
then there exists a uniform γ_{4}-string $\left(\widetilde{x}, \widetilde{f}^{m_{0} m}(\widetilde{x})\right), r+l \leq m \leq n$, that is not $a \gamma_{1}$-string.

Let $\Lambda(\varepsilon)$ be as in Lemma 5.2 and fix $\widetilde{x}^{0} \in \Lambda(\varepsilon)$. Choose $\widetilde{x}^{1} \in \Lambda(\varepsilon) \cap I_{i}(f)_{f}$, $\widetilde{y} \in \Lambda(\varepsilon)$ and $n_{1}>0$ as in Lemma 5.2 and take N_{1} with

$$
N_{1}>\max \left\{N\left(\gamma_{3}, \gamma_{4}\right), N\left(\gamma_{1}, \gamma_{2}\right)\right\} .
$$

Since $\Lambda(\varepsilon)$ is the closure of its interior in $\operatorname{cl}\left(I_{i}(f)\right)_{f}$ and $\left(\widetilde{y}, \widetilde{f}^{m_{0} N_{1}}(\widetilde{y})\right)$ is an $\left(N\left(\gamma_{3}, \gamma_{4}\right), \gamma_{2}\right)$-obstruction, there exists $\widetilde{x}^{2} \in \Lambda(\varepsilon) \cap I_{i}(f)_{f}$ such that $\widetilde{d}\left(\widetilde{x}^{2}, \widetilde{y}\right)<\varepsilon / 4$ and $\left(\widetilde{x}^{2}, \widetilde{f}^{m_{0} N_{1}}\left(\widetilde{x}^{2}\right)\right)$ is an $\left(N\left(\gamma_{3}, \gamma_{4}\right), \gamma_{2}\right)$-obstruction. Since $\widetilde{x}^{2} \in I_{i}(f)_{f}$ and $\lambda_{0}<\gamma_{0}$, we deduce by (4.4) that $\left(\widetilde{x}^{2}, \widetilde{f}^{m_{0} n}\left(\widetilde{x}^{2}\right)\right)$ is a $\gamma_{0}-$ string for n large enough. Thus ($\left.\widetilde{x}^{2}, \widetilde{f}^{m_{0} n}\left(\widetilde{x}^{2}\right)\right)$ satisfies the conditions of Lemma $5.3\left(r=0, l=N_{1}\right)$, and so we can choose $N_{1} \leq n_{2} \leq n$ such that $\left(\widetilde{x}^{2}, \widetilde{f}^{m_{0} n_{2}}\left(\widetilde{x}^{2}\right)\right)$ is a uniform γ_{4}-string, but not a γ_{1}-string.

Put $K=\min _{\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}}\left\|D \widetilde{f}^{-m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}(\widetilde{x})\right\|>0$ and take $0<k_{0}<1$ with $\lambda_{0}<k_{0}^{2} \gamma_{1}$ and $\gamma_{4}<k_{0}$. Since N_{1} is large enough and $n_{2} \geq N_{1}$, we can suppose that

$$
\gamma_{1}^{n_{2}} K^{n_{1}} \geq\left(k_{0} \gamma_{1}\right)^{n_{2}+n_{1}} .
$$

Continuing in this manner we obtain the following lemma.
Lemma 5.4. Suppose that $\widetilde{E}_{i}^{\mathrm{u}}$ is not expanding. Then for all $\varepsilon>0$ and γ_{1}, γ_{4} with $0<\lambda_{0}<\gamma_{1}<\gamma_{4}<1$ there exist sequences $\left\{\widetilde{x}^{j}\right\}_{j \geq 1} \subset \Lambda(\varepsilon)$ and $\left\{n_{j}\right\}_{j \geq 1}$ such that
(1) $\widetilde{d}\left(\tilde{f}^{m_{0} n_{j}}\left(\widetilde{x}^{j}\right), \widetilde{x}^{j+1}\right)<\varepsilon / 2(j \geq 1)$,
(2) if $n_{j}>0$, then ($\widetilde{x}^{j}, \widetilde{f}^{m_{0} n_{j}}\left(\widetilde{x}^{j}\right)$) is a uniform γ_{4}-string,
(3) if $j \geq 2$ is even, then $n_{j}>0$ and $\left(\widetilde{x}^{j}, \widetilde{f}^{m_{0} n_{j}}\left(\widetilde{x}^{j}\right)\right)$ is not a γ_{1}-string, and

$$
\gamma_{1}^{n_{j}} K^{n_{j-1}} \geq\left(k_{0} \gamma_{1}\right)^{n_{j}+n_{j-1}} .
$$

To show (5.3) we extend the continuous bundles $\widetilde{E}_{i}^{\mathrm{s}}$ and $\widetilde{E}_{i}^{\mathrm{u}}$ to a neighborhood of $\operatorname{cl}\left(I_{i}(f)\right)_{f}$. In the same way as in the proof of [4, Theorem (4.2)] it is checked that there are a closed neighborhood V of $\operatorname{cl}\left(I_{i}(f)\right)_{f}$ and a C^{0}-splitting $T M_{f} \mid V=\widehat{E}_{i}^{\mathrm{s}} \oplus \widehat{E}_{i}^{\mathrm{u}}$ such that
(a) if $\widetilde{x} \in V \cap \widetilde{f}^{-m_{0}}(V)$, then $D \widetilde{f}^{m_{0}}\left(\widehat{E_{i}^{\sigma}}(\widetilde{x})\right)=\widehat{E}_{i}^{\sigma}\left(\widetilde{f^{m_{0}}}(\widetilde{x})\right)(\sigma=\mathrm{s}, \mathrm{u})$,
(b) $\widehat{E}_{i}^{\sigma} \mid \operatorname{cl}\left(I_{i}(f)\right)_{f}=\widetilde{E}_{i}^{\sigma}(\sigma=\mathrm{s}, \mathrm{u})$,
(c) there is $0<\lambda_{0}<\lambda<1$ such that for $\widetilde{x} \in V \cap \tilde{f}^{-m_{0}}(V)$,

$$
\left\|D \widetilde{f}^{m_{0}}\left|\widehat{E}_{i}^{\mathrm{s}}(\widetilde{x})\|\cdot\| D \tilde{f}^{-m_{0}}\right| \widehat{E}_{i}^{\mathrm{u}}\left(\tilde{f}^{m_{0}}(\widetilde{x})\right)\right\| \leq \lambda
$$

Choose $\delta>0$ such that if $\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}$ and $\widetilde{y}=\left(y_{i}\right) \in M_{f}$ satisfy $\widetilde{d}(\widetilde{x}, \widetilde{y})<$ δ, then $\widetilde{y} \in V$ and

$$
\begin{equation*}
k_{0}\left\|D \widetilde{f}^{-m_{0}}\left|\widehat{E}_{i}^{\mathrm{u}}(\widetilde{y})\|\leq\| D \widetilde{f}^{-m_{0}}\right| \widehat{E}_{i}^{\mathrm{u}}(\widetilde{x})\right\| \leq k_{0}^{-1}\left\|D \widetilde{f}^{-m_{0}} \mid \widehat{E}_{i}^{\mathrm{u}}(\widetilde{y})\right\| \tag{5.4}
\end{equation*}
$$

Let $0<\varepsilon<\delta$ be sufficiently small. Choose $\left\{\widetilde{x}^{j}\right\}_{j \geq 1}$ and $\left\{n_{j}\right\}_{j \geq 1}$ satisfying the assertion of Lemma 5.4 for this ε. Without loss of generality we suppose that $\widetilde{d}\left(\widetilde{x}^{1}, \widetilde{f}^{m_{0} n_{k}}\left(\widetilde{x}^{k}\right)\right)<\varepsilon / 2$ for some large $k>0$ because $\Lambda(\varepsilon)$ is compact. Then we have to find $\widetilde{p} \in \operatorname{Per}(\widetilde{f})$ such that

$$
\begin{align*}
& \tilde{f}^{m_{0} n}(\widetilde{p})=\widetilde{p} \\
& \widetilde{d}\left(\widetilde{f}^{m_{0} l}\left(\widetilde{f}^{m_{0}\left(n_{0}+n_{1}+\ldots+n_{j-1}\right)}(\widetilde{p})\right), \widetilde{f}^{m_{0} l}\left(\widetilde{x}^{j}\right)\right)<\delta\left(0 \leq l \leq n_{j}, 1 \leq j \leq k\right), \tag{5.5}
\end{align*}
$$

where $n=n_{1}+\ldots+n_{k}$ and $n_{0}=0$.
If (5.5) is established, then the point \widetilde{p} meets our requirement. In fact it suffices to see that (5.3) holds for \widetilde{p}. By (5.4) and Lemma $5.4(2)$ we have

$$
\prod_{l=1}^{n}\left\|D \widetilde{f}^{-m_{0}} \mid \widehat{E}_{i}^{\mathrm{u}}\left(\widetilde{f}^{m_{0} l}(\widetilde{p})\right)\right\|<k_{0}^{-m_{0}} \gamma_{4}^{m_{0}}
$$

and so $\widehat{E}_{i}^{\mathrm{u}}(\widetilde{p}) \subset E^{\mathrm{u}}(\widetilde{p})$ since $k_{0}^{-1} \gamma_{4}<1$. Thus $\widetilde{p} \in \bigcup_{j=i}^{\operatorname{dim} M-1} I_{j}(f)_{f}$. On the other hand, by (5.4), (5.5) and Lemma 5.4(3),

$$
\prod_{l=1}^{n}\left\|D \widetilde{f}^{-m_{0}} \mid \widehat{E}_{i}^{\mathrm{u}}\left(\widetilde{f}^{m_{0} l}(\widetilde{p})\right)\right\| \geq k_{0}^{2 n} \gamma_{1}^{n}>\lambda_{0}^{n}
$$

Therefore we obtain (5.3).
It remains to show (5.5). To do that we apply the local stable manifold theorem for diffeomorphisms ([5], [23]).

For $\widetilde{x} \in \mathbb{M}$ and $\xi>0$ put $T_{\widetilde{x}} \mathbb{M}(\xi)=\{(\widetilde{x}, v) \in T \mathbb{M}:\|v\| \leq \xi\}$. Then $\exp _{\widetilde{x}}: T_{\widetilde{x}} \mathbb{M}(\xi) \rightarrow M$ defined by

$$
\exp _{\widetilde{x}}=\exp _{x_{0}} \circ \bar{P}^{0} \mid T_{\widetilde{x}} \mathbb{M}(\xi)
$$

is a C^{∞}-embedding for small $\xi>0$ as described in $\S 3$. Since $S(f) \cap \operatorname{cl}\left(I_{i}(f)\right)$ $=\emptyset$, there exists $0<r_{0}<\xi$ such that

$$
F_{\widetilde{x}}^{-1}=\left(\exp _{\widetilde{x}}^{-1} \circ f^{m_{0}} \circ \exp _{\tilde{f}-m_{0} \widetilde{x}}\right)^{-1} \mid T_{\widetilde{x}} \mathbb{M}\left(r_{0}\right)
$$

is a C^{1}-embedding for $\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}$.
Let $\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}$ and $\widetilde{E}_{i}^{\sigma}(\widetilde{x})$ be as in (5.1) for $\sigma=\mathrm{s}$, u. We put $\widetilde{E}_{i}^{\mathrm{s}}(\widetilde{x}, r)=\widetilde{E}_{i}^{\mathrm{s}}(\widetilde{x}) \cap T_{\widetilde{x}} \mathbb{M}(r)(r>0)$ and denote by o the zero vector of
$T_{\widetilde{x}} \mathbb{M}$. We put

$$
\Sigma^{\mathrm{b}}(\widetilde{x}, r)=\left\{\sigma: \widetilde{E}_{i}^{\mathrm{s}}(\widetilde{x}, r) \rightarrow \widetilde{E}_{i}^{\mathrm{u}}(\widetilde{x}): \max _{v \in \widetilde{E}_{i}^{\mathrm{s}}(\widetilde{x}, r)}\|\sigma(v)\|<\infty, \operatorname{Lip}(\sigma) \leq 1\right\}
$$

and

$$
\Sigma^{0}(\widetilde{x}, r)=\left\{\sigma \in \Sigma^{b}(\widetilde{x}, r):\|\sigma(o)\| \leq r\right\}
$$

Here $\operatorname{Lip}(\sigma)$ denotes a Lipschitz constant of σ. Define

$$
d^{\prime}\left(\sigma, \sigma^{\prime}\right)=\max _{v \in \widetilde{E}_{i}^{s}(\widetilde{x}, r)}\left\|\sigma(v)-\sigma^{\prime}(v)\right\| \quad\left(\sigma, \sigma^{\prime} \in \Sigma^{b}(\widetilde{x}, r)\right)
$$

Then $\left(\Sigma^{b}(\widetilde{x}, r), d^{\prime}\right)$ is a complete metric space and $\Sigma^{0}(\widetilde{x}, r)$ is a closed subset of $\Sigma^{b}(\widetilde{x}, r)$.

Let $\varepsilon_{0}>0$ be small enough and choose $0<r_{1} \leq r_{0}$ satisfying

$$
\operatorname{Lip}\left(\left(F_{\widetilde{x}}^{-1}-D_{\widetilde{x}} \widetilde{f}^{-m_{0}}\right) \mid T_{\widetilde{x}} \mathbb{M}\left(2 r_{1}\right)\right) \leq \varepsilon_{0} \quad \text { for } \widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}
$$

Since $\widetilde{E}_{i}^{\mathrm{s}}$ is contracting by the assumption of Lemma $5.1(\mathrm{~b})$, we have

$$
\left\|D \widetilde{f}^{m_{0}} \mid \widetilde{E}_{i}^{\mathrm{s}}\right\| \leq \mu<1
$$

for some $\mu<1$ (take m_{0} large enough if necessary). Let $p^{\sigma}: \widetilde{E}_{i}^{\mathbf{s}} \oplus \widetilde{E}_{i}^{\mathrm{u}} \rightarrow \widetilde{E}_{i}^{\sigma}$ ($\sigma=\mathrm{s}, \mathrm{u}$) be the natural projection. Then it is easily checked that if $\sigma \in$ $\Sigma^{0}\left(\widetilde{x}, r_{1}\right)$, then $p^{\mathrm{s}} \circ F_{\widetilde{x}}^{-1} \circ(\mathrm{id}, \sigma): \widetilde{E}_{i}^{\mathrm{s}}(\widetilde{x}, r) \rightarrow \widetilde{E}_{i}^{\mathrm{s}}\left(\widetilde{f}^{-m_{0}}(\widetilde{x})\right)$ is an embedding such that

$$
p^{\mathrm{s}} \circ F_{\widetilde{x}}^{-1} \circ(\mathrm{id}, \sigma)\left(\widetilde{E}_{i}^{\mathrm{s}}\left(\widetilde{x}, r_{1}\right)\right) \supset \widetilde{E}_{i}^{\mathrm{s}}\left(\tilde{f}^{-m_{0}}(\widetilde{x}), r_{1}\left(1-2 \varepsilon_{0} \mu\right) / \mu\right)
$$

and so the graph transformation

$$
\Gamma_{\widetilde{x}}(\sigma)=\left(p^{\mathrm{u}} \circ F_{\widetilde{x}}^{-1} \circ(\sigma, \mathrm{id})\right) \circ\left[p^{\mathrm{s}} \circ F_{\widetilde{x}}^{-1} \circ(\sigma, \mathrm{id})\right]^{-1} \mid \widetilde{E}_{i}^{\mathrm{s}}\left(\widetilde{f}^{-m_{0}}(\widetilde{x}), r_{1}\right)
$$

is well defined and $F_{\widetilde{x}}^{-1}(\operatorname{graph}(\sigma)) \supset \operatorname{graph}\left(\Gamma_{\widetilde{x}}(\sigma)\right)$. Moreover, from (5.1)(c) it follows that for $\sigma, \sigma^{\prime} \in \Sigma^{0}\left(\widetilde{x}, r_{1}\right)$,
(1) $\operatorname{Lip}\left(\Gamma_{\widetilde{x}}(\sigma)\right) \leq \frac{\varepsilon_{0} \mu+\lambda_{0}}{1-2 \varepsilon_{0} \mu}<1$,
(2) $\left\|\Gamma_{\widetilde{x}}(\sigma)(o)\right\| \leq\left\{\left\|D \widetilde{f}^{-m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}(\widetilde{x})\right\|+\varepsilon_{0}\right\} \frac{\mu}{1-2 \varepsilon_{0} \mu}\|\sigma(o)\|$,
(3) $d^{\prime}\left(\Gamma_{\widetilde{x}}(\sigma), \Gamma_{\widetilde{x}}\left(\sigma^{\prime}\right)\right) \leq\left\{\left\|D \widetilde{f}^{-m_{0}} \mid \widetilde{E}_{i}^{u}(\widetilde{x})\right\|+2 \varepsilon_{0}\right\} \frac{\mu}{1-2 \varepsilon_{0} \mu} d^{\prime}\left(\sigma, \sigma^{\prime}\right)$.

By (1) we have $\Gamma_{\widetilde{x}}(\sigma) \subset \Sigma^{\mathrm{b}}\left(\widetilde{f}^{-m_{0}}(\widetilde{x}), r_{1}\right)$.
We are now in a position to prove (5.5). Let $\left\{\widetilde{x}^{j}\right\}_{j \geq 1}$ and $\left\{n_{j}\right\}_{j \geq 1}$ satisfy the conclusion of Lemma 5.4 for $\varepsilon>0$ small enough, and let $k>0$ satisfy $\widetilde{d}\left(\widetilde{x}^{1}, \widetilde{f}^{n_{k} m_{0}}\left(\widetilde{x}^{k}\right)\right)<\varepsilon / 2$. If $n_{j}=0$ then j is odd by Lemma $5.4(3)$, and so $n_{j+1}>0$. Thus we suppose that $n_{j}>0$, ($\left.\widetilde{x}^{j}, \widetilde{f}^{n_{j} m_{0}}\left(\widetilde{x}^{j}\right)\right)$ is a uniform $\mathcal{\gamma}_{4}$-string for $1 \leq j \leq k, \widetilde{d}\left(\widetilde{f}^{n_{j} m_{0}}\left(\widetilde{x}^{j}\right), \widetilde{x}^{j+1}\right)<\varepsilon$ for $1 \leq j \leq k-1$ and $\widetilde{d}\left(\widetilde{f}^{n_{k} m_{0}}\left(\widetilde{x}^{k}\right), \widetilde{x}^{1}\right)<\varepsilon$. To avoid complication we show (5.5) for the case when $k=1$.

Choose $\varepsilon_{0}^{\prime}>0$ with $e^{\varepsilon_{0}^{\prime}} \gamma_{4}<1$ and suppose

$$
2 \varepsilon_{0}<\left(e^{\varepsilon_{0}^{\prime}}-1\right) \inf _{\widetilde{x} \in \operatorname{cl}\left(I_{i}(f)\right)_{f}}\left\|D_{\widetilde{x}} \widetilde{f}^{-m_{0}}\right\|
$$

because ε_{0} is small enough. We put $\bar{\Gamma}=\Gamma_{\widetilde{f}^{m_{0}}\left(\widetilde{x}^{1}\right)} \circ \ldots \circ \Gamma_{\widetilde{f}^{n_{1} m_{0}}\left(\widetilde{x}^{1}\right)}$. By applying inductively the above estimates (1)-(3), we find that for $\sigma, \sigma^{\prime} \in$ $\Sigma^{0}\left(\widetilde{f}^{n_{1} m_{0}}\left(\widetilde{x}^{1}\right), r_{1}\right)$,
$\left(1^{\prime}\right) \bar{\Gamma}(\sigma) \subset \Sigma^{0}\left(\widetilde{x}^{1}, r_{1}\right)$,
$\left(2^{\prime}\right)\|\bar{\Gamma}(\sigma)(o)\| \leq\left\{\prod_{j=1}^{n_{1}}\left\{\left\|D \widetilde{f}^{-m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}\left(\widetilde{f}^{j m_{0}}\left(\widetilde{x}^{1}\right)\right)\right\|+\varepsilon_{0}\right\} \frac{\mu}{1-2 \varepsilon_{0} \mu}\right\}\|\sigma(o)\|$
$\leq\left(e^{\varepsilon_{0}^{\prime}} \frac{\mu}{1-2 \varepsilon_{0} \mu}\right)^{n_{1}}\left\{\prod_{j=1}^{n_{1}}\left\|D \tilde{f}^{-m_{0}} \mid \widetilde{E}_{i}^{\mathrm{u}}\left(\widetilde{f}^{j m_{0}}\left(\widetilde{x}^{1}\right)\right)\right\|\right\}\|\sigma(o)\|$
$\leq\left(e^{\varepsilon_{0}^{\prime}} \gamma_{4} \frac{\mu}{1-2 \varepsilon_{0} \mu}\right)^{n_{1}}\|\sigma(o)\|$,
$\left(3^{\prime}\right) d^{\prime}\left(\bar{\Gamma}(\sigma), \bar{\Gamma}\left(\sigma^{\prime}\right)\right) \leq\left(e^{\varepsilon_{0}^{\prime}} \gamma_{4} \frac{\mu}{1-2 \varepsilon_{0} \mu}\right)^{n_{1}} d^{\prime}\left(\sigma, \sigma^{\prime}\right)$.
Let $\sigma \in \Sigma^{0}\left(\widetilde{f}^{n_{1} m_{0}}\left(\widetilde{x}^{1}\right), r_{1}\right)$. Since $\widetilde{E}_{i}^{\sigma}$ is continuous $(\sigma=\mathrm{s}, \mathrm{u})$ and $\widetilde{d}\left(\widetilde{x}^{1}\right.$, $\left.\tilde{f}^{n_{k} m_{0}}\left(\widetilde{x}^{1}\right)\right)<\varepsilon$, by (1) and $\left(2^{\prime}\right)$ there is a unique $\bar{\sigma} \in \Sigma^{0}\left(\widetilde{f}^{n_{1} m_{0}}\left(\widetilde{x}^{1}\right), r_{1}\right)$ such that

$$
\operatorname{graph}(\bar{\sigma}) \subset \exp _{\widetilde{f}^{n_{1} m_{0}}\left(\widetilde{x}^{1}\right)}^{-1} \circ \exp _{\widetilde{x}^{1}} \circ \bar{\Gamma}(\sigma)
$$

and so we can define $\Gamma^{0}: \Sigma^{0}\left(\widetilde{f}^{n_{1} m_{0}}\left(\widetilde{x}^{1}\right), r_{1}\right) \rightarrow \Sigma^{0}\left(\widetilde{f}^{n_{1} m_{0}}\left(\widetilde{x}^{1}\right), r_{1}\right)$ by $\Gamma^{0}(\sigma)$ $=\bar{\sigma}$. From $\left(3^{\prime}\right)$ it follows that Γ^{0} is a contracting map, and thus it has a unique fixed point $\sigma_{0} \in \Sigma^{0}\left(\widetilde{f}^{n_{1} m_{0}}\left(\widetilde{x}^{1}\right), r_{1}\right)$. Then $f^{n_{1} m_{0}}\left(\operatorname{graph}\left(\sigma_{0}\right)\right) \subset$ $\operatorname{graph}\left(\sigma_{0}\right)$. By Brouwer's theorem there is $p \in \operatorname{graph}\left(\sigma_{0}\right)$ such that $f^{n_{1} m_{0}}(p)$ $=p$. Put $\widetilde{p}=\left(\ldots, p, f(p), \ldots, f^{n_{1} m_{0}-1}(p), p, \ldots\right) \in \operatorname{Per}(\widetilde{f})$. Then it is easily checked that \widetilde{p} meets our requirement.
6. Proof of Proposition 3. To show Proposition 3 we need properties of Borel probability measures used in [12, $\S 1$ and $\S 3]$. Denote by $\mathcal{M}(X)$ the set of all Borel probability measures on a compact metric space X. Let $f: X \rightarrow X$ be a continuous map and Λ be a closed f-invariant set. We denote by $\mathcal{M}(f \mid \Lambda)$ the set of all f-invariant measures belonging to $\mathcal{M}(\Lambda)$ and by $\mathcal{M}_{\mathrm{e}}(f \mid \Lambda)$ that of all ergodic f-invariant measures.

Let $f \in \operatorname{int} \mathcal{P}(M)$ and $I_{i}(f)$ be as in (2.1). Let m_{0} and λ_{0} be numbers satisfying (4.1)-(4.4), (5.1) and (5.2).

Lemma 6.1. Let $f \in \mathcal{F}(M)$ and $0 \leq i_{0} \leq \operatorname{dim} M-2$ be as in Proposition 3, and $\Lambda\left(i_{0}\right)$ be as in (2.2). If $\mu \in \mathcal{M}\left(f^{m_{0}} \mid \operatorname{cl}\left(I_{i_{0}+1}(f)\right)\right)$ satisfies

$$
\begin{equation*}
\int_{\operatorname{cl}\left(I_{i_{0}+1}(f)\right)} \log \left\|D f^{m_{0}} \mid \widetilde{E}_{i_{0}+1}^{\mathrm{s}}\right\| d \mu>\log \lambda_{0} \tag{6.1}
\end{equation*}
$$

then $\mu\left(\Lambda\left(i_{0}\right)\right)>0$.
This result was proved in [12, Theorem I.6] for diffeomorphisms. For the noninvertible case we can apply the method given in [12].

Lemma 6.2. Let f and i_{0} be as in Lemma 6.1. Suppose that $\mu \in \mathcal{M}_{\mathrm{e}}\left(f^{m_{0}} \mid\right.$ $\operatorname{cl}\left(I_{i_{0}+1}(f)\right)$). Then, given a neighborhood V of μ in $\mathcal{M}(X)$ and a compact set D disjoint from the support of μ, there exist a C^{1}-map g, arbitrarily C^{1} close to f and coinciding with f on D, and a periodic orbit $\widetilde{p}=\left(p_{n}\right)$ of g with period m_{0} such that
(a) $\mu_{0}=m^{-1} \sum_{n=0}^{m-1} \delta_{p_{n m_{0}}} \in V$,
(b) $p_{n m_{0}} \notin D$ for $n \in \mathbb{Z}$,
where δ_{x} is the point measure supported at x.
Lemma 6.2 was obtained in [12, Theorem III.1] by using the ergodic closing lemma proved in [10, Theorem A] for diffeomorphisms and in [13, Theorem, p. 173] for C^{1}-maps without singular points. However the proof in [13] can be adapted to our case. Thus we omit the proof of Lemma 6.2.

Proof of Lemma 6.1. The proof is very similar to that of [12, Theorem I.6]. Let $\mu \in \mathcal{M}\left(f^{m_{0}} \mid \operatorname{cl}\left(I_{i_{0}+1}(f)\right)\right)$ satisfy (6.1). We first check the case when μ is ergodic.

Let $W \subset \mathbb{M}$ be a small neighborhood of $\operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}$. Choose an open neighborhood W_{0} of $\operatorname{cl}\left(I_{i_{0}+1}(f)\right)$ such that if $\widetilde{x}=\left(x_{n}\right) \in \mathbb{M}$ satisfies $x_{n m_{0}} \in$ W_{0} for $n \in \mathbb{Z}$, then $\widetilde{x} \in W$. By Lemma 6.2 there are g, arbitrarily C^{1} near f, and a periodic orbit $\widetilde{p}=\left(p_{n}\right)$ of g with period $m m_{0}$ such that $\mu_{0}=m^{-1} \sum_{n=0}^{m-1} \delta_{p_{n m_{0}}}$ is close to μ in $\mathcal{M}(M)$ and $p_{n m_{0}} \notin M \backslash W_{0}$ for $n \in \mathbb{Z}$. Then μ_{0} concentrates on W_{0}.

Since g is C^{1}-near f, we can suppose $g \in \mathcal{P}(M)$. As in (2.1) and (2.2) define

$$
I_{i}(g)=\left\{q \in \operatorname{Per}(g): \operatorname{dim} E^{\mathrm{s}}(q)=i\right\}, \quad \Lambda^{\prime}(i)=\bigcup_{k=0}^{i} \operatorname{cl}\left(I_{k}(g)\right)
$$

for $0 \leq i \leq \operatorname{dim} M$. Since p_{0} is a periodic point of g with period $m m_{0}$, it is hyperbolic and so the tangent space $T_{p} M$ splits as in (1.1). If we prove

$$
\begin{equation*}
\operatorname{dim} E^{\mathrm{s}}\left(p_{0}\right) \leq i_{0} \tag{6.2}
\end{equation*}
$$

then $\mu_{0}\left(\Lambda^{\prime}\left(i_{0}\right)\right)=1$. Since $\Lambda^{\prime}\left(i_{0}\right)$ and μ_{0} converge to $\Lambda\left(i_{0}\right)$ and μ respectively as $g \rightarrow f$, we have $\mu\left(\Lambda\left(i_{0}\right)\right)=1$. Lemma 6.1 proved.

Thus it is enough to show (6.2). To do that we use a continuous splitting

$$
T \mathbb{M} \mid W=\widehat{E}_{i_{0}+1}^{\mathrm{s}} \oplus \widehat{E}_{i_{0}+1}^{\mathrm{u}}
$$

that is an extension of the splitting

$$
T \mathbb{M} \mid \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}=\widetilde{E}_{i_{0}+1}^{\mathrm{s}} \oplus \widetilde{E}_{i_{0}+1}^{\mathrm{u}}
$$

as in (5.1) (cf. [4, Lemma 4.4]). Let g be close to f. Then we know that $W(\widetilde{g})=\bigcap_{n \in \mathbb{Z}} \widetilde{g}^{n}(W)$ has a $D \widetilde{g}^{m_{0} \text {-invariant splitting } T \mathbb{M} \mid W(\widetilde{g})=\widehat{E}_{g}^{\mathrm{s}} \oplus \widehat{E}_{g}^{\mathrm{u}}, ~}$ such that $\widehat{E}_{g}^{\sigma}(\widetilde{x})$ is close to $\widehat{E}_{i_{0}+1}^{\sigma}(\widetilde{x})$ for $\widetilde{x} \in W(\widetilde{g}), \sigma=\mathrm{s}$, u (cf. [5, §2]). If $\widetilde{x}=\left(x_{n}\right), \widetilde{y}=\left(y_{n}\right) \in W(\widetilde{g})$ satisfy $x_{0}=y_{0}$, then $\widehat{E}_{g}^{\mathrm{s}}(\widetilde{x})=\widehat{E}_{g}^{\mathrm{s}}(\widetilde{y})$, and so we write $\widehat{E}_{g}^{\mathrm{s}}\left(x_{0}\right)=\bar{P}^{0}\left(\widehat{E}_{g}^{\mathrm{s}}(\widetilde{x})\right)\left(\subset T_{x_{0}} M\right)$. Notice that $\widehat{E}_{g}^{\mathrm{u}}(\widetilde{x}) \neq \widehat{E}_{g}^{\mathrm{u}}(\widetilde{y})$ generally.

Define a number $\lambda>0$ by

$$
\log \lambda=\int_{\operatorname{cl}\left(I_{i_{0}+1}(f)\right)} \log \left\|D f^{m_{0}} \mid \widetilde{E}_{i_{0}+1}^{\mathrm{s}}\right\| d \mu>\log \lambda_{0} .
$$

Take $\lambda_{i}(i=1,2)$ with $0<\lambda_{0}<\lambda_{1}<\lambda_{2}<\lambda$. Since $\widehat{E}_{g}^{\sigma}(\sigma=\mathrm{s}, \mathrm{u})$ and μ_{0} are close to $\widehat{E}_{i_{0}+1}^{\sigma}$ and μ respectively, by (5.1) and (6.1) we can suppose that for $\widetilde{x} \in W(\widetilde{g})$,

$$
\begin{equation*}
\left\|D \widetilde{g}^{m_{0}} \mid \widehat{E}_{g}^{\mathrm{s}}(\widetilde{x})\right\| \cdot\left\|\left(D \widetilde{g}^{m_{0}} \mid \widehat{E}_{g}^{\mathrm{u}}(\widetilde{x})\right)^{-1}\right\| \leq \lambda_{1} \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{W_{0}} \log \left\|D g^{m_{0}} \mid \widehat{E}_{g}^{\mathrm{s}}\right\| d \mu_{0} \geq \log \lambda_{2} . \tag{6.4}
\end{equation*}
$$

Since $p_{n m_{0}} \in W_{0}$ for $n \in \mathbb{Z}$, we have $\widetilde{p} \in W(\widetilde{g})$. Thus, by (6.4) and the definition of μ_{0},

$$
\begin{equation*}
\prod_{j=0}^{m-1}\left\|D \widetilde{g}^{m_{0}} \mid \widehat{E}_{g}^{\mathrm{s}}\left(\widetilde{g}^{m_{0} j}(\widetilde{p})\right)\right\| \geq \lambda_{2}^{m} \tag{6.5}
\end{equation*}
$$

From (6.3) it follows that

$$
\begin{aligned}
\left\|D \widetilde{g}^{-m m_{0}} \mid \widehat{E}_{g}^{\mathrm{u}}(\widetilde{p})\right\| & \leq \prod_{i=0}^{m-1}\left\|D \widetilde{g}^{-m_{0}} \mid \widehat{E}_{g}^{\mathrm{u}}\left(\widetilde{g}^{m_{0} i}(\widetilde{p})\right)\right\| \\
& \leq \prod_{i=0}^{m-1} \lambda_{1}\left\|D \widetilde{g}^{m_{0}} \mid \widehat{E}_{g}^{\mathrm{s}}\left(\widetilde{g}^{m_{0} i}(\widetilde{p})\right)\right\|^{-1} \\
& \leq\left(\lambda_{1} / \lambda_{2}\right)^{m}<1,
\end{aligned}
$$

and so $\bar{P}^{0}\left(\widehat{E}_{g}^{\mathrm{u}}(\widetilde{p})\right) \subset E^{\mathrm{u}}\left(p_{0}\right)$ where \bar{P}^{0} is defined as in (1.4). This implies that $\operatorname{dim} E^{\mathrm{s}}(p) \leq i_{0}+1$.

If $\operatorname{dim} E^{\mathrm{s}}\left(p_{0}\right)=i_{0}+1$, then we have $\operatorname{dim} \widehat{E}_{g}^{\mathrm{u}}(\widetilde{p})=\operatorname{dim} E^{\mathrm{u}}\left(p_{0}\right)$, and so $\bar{P}^{0}\left(\widehat{E}_{g}^{\mathrm{u}}(\widetilde{p})\right)=E^{\mathrm{u}}\left(p_{0}\right)$. Thus it is easily checked that $\widehat{E}_{g}^{\mathrm{s}}\left(p_{0}\right)=E^{\mathrm{s}}\left(p_{0}\right)$ since p_{0} is hyperbolic and $\widehat{E}_{g}^{\mathrm{s}}\left(p_{0}\right)$ is $D_{p_{0}} g^{m m_{0}}$-invariant.

By (6.5),

$$
\begin{aligned}
&\left.\left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \| D g^{m_{0}} \right\rvert\, E^{\mathrm{s}}\left(p_{m_{0} j}\right)\right) \| \\
&=\lim _{n \rightarrow \infty} \frac{1}{n} \log \prod_{j=0}^{n-1}\left\|D \widetilde{g}^{m_{0}} \mid \widehat{E}_{g}^{\mathrm{s}}\left(\widetilde{g}^{m_{0} j}(\widetilde{p})\right)\right\| \geq \log \lambda_{2}
\end{aligned}
$$

which contradicts (4.3). Therefore, $\operatorname{dim} E^{\mathrm{s}}\left(p_{0}\right) \leq i_{0}$.
If μ is not ergodic, then by using the ergodic decomposition theorem we can check that $\mu\left(\Lambda\left(i_{0}\right)\right)>0$ (cf. for the proof, see [12, Theorem I.6]).

Lemma 6.3. Let $f \in \operatorname{int} \mathcal{P}(M)$ and $0 \leq i_{0} \leq \operatorname{dim} M-2$. If

$$
\int_{\operatorname{cl}\left(I_{i_{0}+1}(f)\right)} \log \left\|D f^{m_{0}} \mid \widetilde{E}_{i_{0}+1}^{\mathrm{s}}\right\| d \mu<0
$$

for $\mu \in \mathcal{M}_{\mathrm{e}}\left(f^{m_{0}} \mid \mathrm{cl}\left(I_{i_{0}+1}(f)\right)\right)$, then $\widetilde{E}_{i_{0}+1}^{\mathrm{s}}$ is contracting.
The proof of Lemma 6.3 is very similar to that of [12, Lemma I.5], and so we omit it.

Lemmas 6.1, 6.3 and 5.1(b) yield Proposition 3 as follows: suppose that $\Lambda\left(i_{0}\right) \cap \operatorname{cl}\left(I_{i_{0}+1}(f)\right)=\emptyset$. Then $\mu\left(\Lambda\left(i_{0}\right)\right)=0$ for $\mu \in \mathcal{M}_{\mathrm{e}}\left(f^{m_{0}} \mid \operatorname{cl}\left(I_{i_{0}+1}(f)\right)\right)$, and by Lemma 6.1,

$$
\int_{\operatorname{cl}\left(I_{i_{0}+1}(f)\right)} \log \left\|D f^{m_{0}} \mid \widetilde{E}_{i_{0}+1}^{\mathrm{s}}\right\| d \mu \leq \log \lambda_{0}<0
$$

for $\mu \in \mathcal{M}\left(f^{m_{0}} \mid \operatorname{cl}\left(I_{i_{0}+1}(f)\right)\right)$. Therefore $\operatorname{cl}\left(I_{i_{0}+1}(f)\right)$ is hyperbolic by Lemmas 6.3 and $5.1(\mathrm{~b})$. The proof of Proposition 3 is complete.
7. Proof of Proposition 4(a). Before starting the proof we notice that if f is a diffeomorphism, then the inverse limit system of (M, f) equals the original system (M, f), and thus all the results for the inverse limit system can be transferred to the original system.

To show Proposition 4(a) we prepare the following two lemmas.
Lemma 7.1. Let $f \in \operatorname{int} \mathcal{P}(M)$ and let $\Lambda\left(i_{0}\right)$ be as in (2.2) for f and $0 \leq i_{0} \leq \operatorname{dim} M-2$. Let $\mathcal{U}(f) \subset \operatorname{int} \mathcal{P}(M)$ be a connected neighborhood of f. Suppose that $\Lambda\left(i_{0}\right)$ is hyperbolic and $g \in \mathcal{U}(f)$ satisfies $g=f$ in a neighborhood of $\Lambda\left(i_{0}\right)$. Then g has no cycles in $\Lambda\left(i_{0}\right)$.

For the proof of Lemma 7.1 we need the following:
Lemma 7.2. Let $g \in C^{1}(M)$ and $p \in M$ be a hyperbolic fixed point of g. Suppose that there is $\widetilde{x}=\left(x_{n}\right) \in M_{g}$ satisfying the following:
(1) $d\left(x_{n}, p\right) \rightarrow 0, d\left(x_{-n}, p\right) \rightarrow 0(n \rightarrow \infty)$,
(2) $D_{x_{-n}} g^{2 n}\left(T_{x_{-n}} W_{\varepsilon}^{\mathrm{u}}(\widetilde{p}, g)\right)+T_{x_{n}} W_{\varepsilon}^{\mathrm{s}}(\widetilde{p}, g)=T_{x_{n}} M$ for $n>0$ large enough, where $\widetilde{p}=(\ldots, p, p, p, \ldots) \in \operatorname{Per}(g)_{g}$ and $W_{\varepsilon}^{\sigma}(\widetilde{p}, g)(\sigma=\mathrm{s}, \mathrm{u})$ is as in (1.5).

Then for every neighborhood $U\left(x_{0}\right)$ of x_{0} there is a hyperbolic periodic point q such that $\operatorname{dim} E^{\mathrm{s}}(q)=\operatorname{dim} E^{\mathrm{s}}(p)$, where $E^{\mathrm{s}}(p)$ is the subspace of $T_{p} M$ as in (1.1).

Lemma 7.2 was proved in [24] and [16, Appendix] for diffeomorphisms and extended in [25, Theorem 4.2] to differentiable maps.

Proof of Lemma 7.1. Let $\mathcal{U}(f)$ and $g \in \mathcal{U}(f)$ satisfy the assumptions of Lemma 7.1. Notice that $\Lambda\left(i_{0}\right)$ is an isolated hyperbolic set of g. Suppose that $\Lambda\left(i_{0}\right)$ has a cycle for g. By using the techniques described in [17, Theorem, p. 221] there exist $h \in \mathcal{U}(f), p \in \Lambda\left(i_{0}\right)$ and $\widetilde{x}=\left(x_{n}\right) \in M_{h}$ satisfying the assumptions (1) and (2) of Lemma 7.2 and $h=g=f$ on some neighborhood of $\Lambda\left(i_{0}\right)$. Then it follows from Lemma 7.2 that $\sharp I_{i}^{n}(f)<\sharp I_{i}^{n}(h)$ for some $0 \leq i \leq i_{0}$ and $n>0$. This contradicts Lemma 3.2.

Let $f \in \mathcal{F}(M)$. Since $\operatorname{cl}\left(I_{0}(f)\right)$ is hyperbolic by Proposition 2(b), it is isolated and can be written as a finite disjoint union $\operatorname{cl}\left(I_{0}(f)\right)=\Lambda_{1} \cup \ldots \cup \Lambda_{s}$ of basic sets Λ_{i}. Since $T \mathbb{M} \mid \operatorname{cl}\left(I_{0}(f)\right)_{f}$ is expanding, there exist $\varepsilon>0$ and $0<\lambda<1$ such that for $1 \leq a \leq s$,
(i) $W_{3 \varepsilon}^{\mathrm{u}}(\widetilde{x}, f)=B_{3 \varepsilon}\left(x_{0}\right)\left(\widetilde{x}=\left(x_{n}\right) \in\left(\Lambda_{a}\right)_{f}\right)$,
(ii) if $\widetilde{x}=\left(x_{n}\right) \in\left(\Lambda_{a}\right)_{f}$ and $y \in B_{3 \varepsilon}\left(x_{0}\right)$, then there is a unique point $y_{-1} \in B_{3 \varepsilon}\left(x_{-1}\right)$ such that $f\left(y_{-1}\right)=y$,
(iii) $d(x, y) \leq \lambda d(f(x), f(y))\left(x, y \in B_{3 \varepsilon}\left(\Lambda_{a}\right)\right)$,
(iv) $\left(\Lambda_{a}\right)_{f}=\left\{\widetilde{y}=\left(y_{n}\right) \in M_{f}: y_{n} \in B_{3 \varepsilon}\left(\Lambda_{a}\right), n \geq 0\right\}$.

Choose $0<\delta_{1}<\varepsilon-\varepsilon \lambda$ such that if $d(x, y) \leq \delta_{1}(x, y \in M)$ then $d(f(x), f(y)) \leq \varepsilon$. It is easily checked that for every connected neighborhood $\mathcal{U}(f)$ of f contained in int $\mathcal{P}(M)$ there is $0<\delta_{2}<\delta_{1}$ such that if $d(x, z) \leq$ $\delta_{2}(x, z \in M)$ then we can construct a diffeomorphism $\varphi: M \rightarrow M$ satisfying
(i) $\varphi(z)=x$,
(ii) $\{y \in M: \varphi(y) \neq y\} \subset B_{\delta_{1}}(z)$,
(iii) $f \circ \varphi \in \mathcal{U}(f)$.

From the properties of differentiable maps belonging to $\mathcal{F}(M)$ we have

$$
\left\{\mathrm{cl}(\operatorname{Per}(f)) \backslash I_{\operatorname{dim} M}(f)\right\} \cap S(f)=\emptyset .
$$

Since $\sharp I_{\operatorname{dim} M}(f)<\infty$ by Proposition 2(a), $\operatorname{cl}(\operatorname{Per}(f)) \backslash I_{\operatorname{dim} M}(f)$ is closed. Thus there is $0<\delta_{3}<\delta_{2}$ such that if $x, y \in M$ satisfy $d(x, y) \leq \delta_{3}$, then for every point $x_{-1} \in f^{-1}(x)$ with $x_{-1} \in \operatorname{cl}(\operatorname{Per}(f)) \backslash I_{\text {dim } M}(f)$ there exists a unique $y_{-1} \in f^{-1}(y)$ satisfying $d\left(x_{-1}, y_{-1}\right) \leq \delta_{2}$.

If Proposition 4(a) is false, we have

$$
\Lambda_{a} \cap \operatorname{cl}\left(I_{i}(f)\right) \neq \emptyset
$$

for some $1 \leq a \leq s$ and $0<i \leq \operatorname{dim} M$. Proposition 2 ensures that $\operatorname{cl}\left(I_{0}(f)\right) \backslash$ $I_{\operatorname{dim} M}(f)=\emptyset$, and so $i \neq \operatorname{dim} M$. Choose $x \in \Lambda_{a}, p \in I_{i}(f)$ with $d(x, p) \leq \delta_{3}$ and a periodic point $\widetilde{p} \in I_{i}(f)_{f}$ with $p_{0}=p$. By (7.1)(iv) there is $0<n<$ $\varrho(p, f)$ such that $p_{-j} \in B_{2 \varepsilon}\left(\Lambda_{a}\right)(0 \leq j \leq n-1)$ and $p_{-n} \notin B_{2 \varepsilon}\left(\Lambda_{a}\right)$. Then for $0 \leq j \leq n-1$ there is $x_{-j} \in \Lambda_{a}$ such that

$$
\begin{equation*}
f\left(x_{-j}\right)=x_{-j+1} \quad \text { and } \quad d\left(x_{-j}, p_{-j}\right) \leq \delta_{3} . \tag{7.3}
\end{equation*}
$$

Indeed, there is a unique $x_{-1} \in f^{-1}(x)$ such that $d\left(x_{-1}, p_{-1}\right) \leq \delta_{2}<\varepsilon$ because $d(x, p) \leq \delta_{3}$ and $p_{-1} \in \operatorname{cl}(\operatorname{Per}(f)) \backslash I_{\text {dim } M}(f)$. Obviously, $x_{-1} \in$ $B_{3 \varepsilon}\left(\Lambda_{a}\right)$ since $p_{-1} \in B_{2 \varepsilon}\left(\Lambda_{a}\right)$. By (7.1)(i) we have $x_{-1} \in W^{\mathbf{s}}\left(\Lambda_{a}, f\right) \cap$ $W^{\mathrm{u}}\left(\Lambda_{a}, f\right)$. Since Λ_{a} has no cycles by Lemma 7.1, we have $x_{-1} \in \Lambda_{a}$. By (7.1)(ii), (iii),

$$
d\left(x_{-1}, p_{-1}\right) \leq \lambda d(x, p) \leq \delta_{3} .
$$

Continuing in this fashion we obtain (7.3).
Since $d\left(x_{-(n-1)}, p_{-(n-1)}\right) \leq \delta_{3}($ by $(7.3))$ and $p_{-n} \in \operatorname{cl}(\operatorname{Per}(f)) \backslash I_{\operatorname{dim} M}(f)$, we can find a unique point

$$
x_{-n} \in f^{-1}\left(x_{-(n-1)}\right) \subset f^{-1}\left(\Lambda_{a}\right)
$$

such that $d\left(x_{-n}, p_{-n}\right) \leq \delta_{2}$. By (7.2) there is a diffeomorphism $\varphi: M \rightarrow M$ such that
(i) $\varphi\left(p_{-n}\right)=x_{-n}$,
(ii) $\{y \in M: \varphi(y) \neq y\} \subset B_{\delta_{1}}\left(p_{-n}\right)$,
(iii) $f \circ \varphi \in \mathcal{U}(f)$.

For simplicity we write $g=f \circ \varphi$. Obviously

$$
\begin{gathered}
g(y)=f(y) \quad\left(y \in M \backslash B_{\delta_{1}}\left(p_{-n}\right)\right), \\
g\left(p_{-n}\right)=f \circ \varphi\left(p_{-n}\right)=f\left(x_{-n}\right)=x_{-(n-1)} \in \Lambda_{a} .
\end{gathered}
$$

Since $p_{-n} \notin \Lambda_{a}$ and $g^{i}\left(p_{-n}\right) \in \Lambda_{a}$ for $i>0$, we have

$$
p_{-n} \in W^{\mathrm{s}}\left(\Lambda_{a}, g\right) \backslash \Lambda_{a} .
$$

If we establish that

$$
\begin{equation*}
p_{-n} \in W^{\mathrm{u}}\left(\Lambda_{a}, g\right) \backslash \Lambda_{a}, \tag{7.4}
\end{equation*}
$$

then Λ_{a} has a 1-cycle, that is, $p_{-n} \in\left\{W^{\mathrm{s}}\left(\Lambda_{a}, g\right) \backslash \Lambda_{a}\right\} \cap\left\{W^{\mathrm{u}}\left(\Lambda_{a}, g\right) \backslash \Lambda_{a}\right\}$. This contradicts Lemma 7.1. Hence for $1 \leq a \leq s$,

$$
\Lambda_{a} \cap \bigcup_{i=1}^{\operatorname{dim} M} \operatorname{cl}\left(I_{i}(f)\right)=\emptyset .
$$

This shows Proposition 4(a).
Thus it only remains to prove (7.4). Since $p_{-n} \notin B_{2 \varepsilon}\left(\Lambda_{a}\right)$ and $p_{0}=$ $p_{\varrho(p, f)} \in B_{\delta_{3}}\left(\Lambda_{a}\right) \subset B_{2 \varepsilon}\left(\Lambda_{a}\right)$, there is $n+1 \leq m \leq \varrho(p, f)$ such that $p_{-j} \notin$ $B_{2 \varepsilon}\left(\Lambda_{a}\right)$ for $n \leq j \leq m-1$, and $p_{-m} \in B_{2 \varepsilon}\left(\Lambda_{a}\right)$. Then $d\left(p_{-n}, p_{-j}\right)>\delta_{1}$ for $n+1 \leq j \leq m$.

Indeed, if there is $n+1 \leq j \leq m$ such that $d\left(p_{-n}, p_{-j}\right) \leq \delta_{1}$, then

$$
d\left(p_{-(n-1)}, p_{-(j-1)}\right)=d\left(f\left(p_{-n}\right), f\left(p_{-j}\right)\right) \leq \varepsilon
$$

Since $p_{-(n-1)} \in B_{\delta_{3}}\left(\Lambda_{a}\right)$ by (7.3), we have $p_{-(j-1)} \in B_{2 \varepsilon}\left(\Lambda_{a}\right)$, which contradicts the choice of m.

Thus $g^{j}\left(p_{-m}\right) \notin B_{\delta_{1}}\left(p_{-n}\right)$ for $0 \leq j \leq m-n-1$, and so

$$
g^{m-n}\left(p_{-m}\right)=p_{-n}
$$

Since $p_{-m} \in B_{2 \varepsilon}\left(\Lambda_{a}\right)$, by (7.1)(i)-(iii) there is $\widetilde{q} \in M_{f}$ with $q_{0}=p_{-m}$ such that

$$
d\left(q_{-j}, \Lambda_{a}\right) \leq \lambda^{j} d\left(p_{-m}, \Lambda_{a}\right) \leq 2 \varepsilon \lambda^{j} \leq 2 \varepsilon \lambda \quad(j \geq 1)
$$

where $d(q, \Lambda)=\min _{x \in \Lambda} d(q, x)$ for $q \in M$ and a closed subset Λ. Then

$$
d\left(q_{-j}, p_{-n}\right) \geq d\left(p_{-n}, \Lambda_{a}\right)-d\left(q_{-j}, \Lambda_{a}\right)>2(\varepsilon-\varepsilon \lambda)>\delta_{1},
$$

and so $q_{-j} \notin B_{\delta_{1}}\left(p_{-n}\right)(j \geq 1)$. Put

$$
p_{j}^{\prime}= \begin{cases}g^{j}\left(p_{-n}\right) & \text { if } j \geq 0 \\ g^{m-n+j}\left(p_{-m}\right) & \text { if }-m+n \leq j \leq-1 \\ q_{m-n+j} & \text { if } j \leq-m+n-1\end{cases}
$$

Then $\left(p_{j}^{\prime}\right) \in M_{g}$ and $d\left(p_{-j}^{\prime}, \Lambda_{a}\right) \rightarrow 0$ as $j \rightarrow \infty$. This implies that $p_{-n}=$ $p_{0}^{\prime} \in W^{\mathrm{u}}\left(\Lambda_{a}, g\right)$, and (7.4) holds since $p_{-n} \notin \Lambda_{a}$.
8. Proof of Proposition 4(b). Let $f \in \mathcal{F}(M)$ and $\Lambda\left(i_{0}\right)$ be as in the statement of Proposition $4(\mathrm{~b})$. Then $\Lambda\left(i_{0}\right)$ is hyperbolic and isolated by Lemma 7.1. Thus $\Lambda\left(i_{0}\right)$ splits into a union $\Lambda_{1} \cup \ldots \cup \Lambda_{s}$ of basic sets. Fix $\varepsilon_{0}>0$. For $1 \leq a \leq s$ we define

$$
V_{a}^{+}=\bigcup\left\{W_{\varepsilon_{0}}^{\mathrm{s}}(\widetilde{x}, f): \widetilde{x} \in\left(\Lambda_{a}\right)_{f}\right\}, \quad V_{a}^{-}=\bigcup\left\{W_{\varepsilon_{0}}^{\mathrm{u}}(\widetilde{x}, f): \widetilde{x} \in\left(\Lambda_{a}\right)_{f}\right\}
$$

Fix $0<r_{0}<1$ and $0<\delta_{0}<1$. For $n \geq 0$ define

$$
\begin{align*}
& r_{n+1}=r_{n}^{1+\delta_{0}} \\
& V\left(r_{n}, \Lambda_{a}\right)=\left\{x \in M: d\left(x, V_{a}^{+}\right) \leq r_{n}, d\left(x, V_{a}^{-}\right) \leq r_{n}\right\} . \tag{8.1}
\end{align*}
$$

Then $V\left(r_{n}, \Lambda_{a}\right) \searrow \Lambda_{a}$ since $r_{n} \searrow 0$ as $n \rightarrow \infty$.

Let $m \geq 0$ be an integer and $\xi=\left(x_{0}, x_{-1}, \ldots, x_{-m}\right)$ be a finite sequence in M. We say that ξ is a string if

$$
f\left(x_{-j}\right)=x_{-j+1} \quad \text { for } \quad 1 \leq j \leq m
$$

Notice that the notion of string described here is different from that of γ-string introduced at the beginning of $\S 5$. For convenience of notation we make no distinction between a string ξ and a set $\left\{x_{0}, x_{-1}, \ldots, x_{-m}\right\}$.

Let $\xi=\left(x_{0}, \ldots, x_{-m}\right)$ and $\eta=\left(y_{0}, \ldots, y_{-n}\right)$ be strings $(0 \leq n \leq m)$. Then η is said to be a substring of ξ if there is $0 \leq j \leq m-n$ such that $x_{-j-l}=y_{-l}$ for $0 \leq l \leq n$ (Figure 1(a)). If, in particular, $m=n$, then we have $\eta=\xi$.

Fig. 1

Let σ be a substring of $\xi=\left(x_{0}, x_{-1}, \ldots, x_{-m}\right)$ written as

$$
\sigma=\left(x_{-l}, x_{-l-1}, \ldots, x_{-t+1}, x_{-t}\right)
$$

for some $0<l \leq t<m$. If σ satisfies
(a) $\sigma \subset V\left(r_{0}, \Lambda_{a}\right)$,
(b) $\sigma \cap V\left(r_{n}, \Lambda_{a}\right) \neq \emptyset$,
(c) $x_{-l+1}, x_{-t-1} \notin V\left(r_{0}, \Lambda_{a}\right)$,
then we say that σ is a $(\xi, n ; a)$-string. If $x_{-j} \in V\left(r_{0}, \Lambda_{a}\right)$ for some $1 \leq$ $j \leq m-1$, then there is a $(\xi, 0 ; a)$-string containing x_{-j} if and only if $x_{-j_{1}}, x_{-j_{2}} \notin V\left(r_{0}, \Lambda_{a}\right)$ for some j_{1} and j_{2} with $0 \leq j_{1}<j<j_{2} \leq m$.

For $(\xi, 0 ; a)$-strings

$$
\begin{aligned}
& \sigma_{1}=\left(x_{-l_{1}}, x_{-l_{1}-1}, \ldots, x_{-t_{1}+1}, x_{-t_{1}}\right) \\
& \sigma_{2}=\left(x_{-l_{2}}, x_{-l_{2}-1}, \ldots, x_{-t_{2}+1}, x_{-t_{2}}\right)
\end{aligned}
$$

we introduce an order by

$$
\sigma_{1}<\sigma_{2} \quad \text { if } \quad t_{1}<l_{2}
$$

(Figure 1(b)).

Since $\left\{\operatorname{cl}(\operatorname{Per}(f)) \backslash I_{\operatorname{dim} M}(f)\right\} \cap S(f)=\emptyset$ and $\operatorname{cl}(\operatorname{Per}(f)) \backslash I_{\text {dim } M}(f)$ is closed by Proposition 2(a), we can choose a compact neighborhood U_{0} of $\mathrm{cl}(\operatorname{Per}(f)) \backslash I_{\text {dim } M}(f)$ satisfying $U_{0} \cap S(f)=\emptyset$. Hereafter U_{0} is fixed.

Suppose that a string ξ contained in U_{0} has the property that
(C) there exist $(\xi, n+1 ; a)$-strings σ_{1} and σ_{2} with $\sigma_{1}<\sigma_{2}$ satisfying $\sigma \cap V\left(r_{n}, \Lambda_{a}\right)=\emptyset$ for every $(\xi, 0 ; a)$-string σ with $\sigma_{1}<\sigma<\sigma_{2}$.
If n is large enough, by using the condition (C) we can show ([11] and [15, Theorem A, p. 57] that there exists $g C^{1}$-near f such that $g=f$ in a neighborhood of Λ_{a} and Λ_{a} has a 1-cycle. However this is inconsistent with Lemma 7.1.

Thus (C) cannot happen when a string ξ satisfies $\xi \subset U_{0}$ and n is large enough.

To show Proposition 4(b) we derive a contradiction by proving that if

$$
\Lambda_{a} \cap \operatorname{cl}\left(I_{i_{0}+1}(f)\right) \neq \emptyset
$$

for some $1 \leq a \leq s$, then there exists a string ξ satisfying the condition (C) for $n>0$ large enough. To do that we prepare auxiliary results.

Since $\Lambda_{a}(1 \leq a \leq s)$ has no homoclinic points by Lemma 7.1, we have the following:

Lemma 8.1 [15, Proposition 4]. Let $\left\{\xi^{k}\right\}$ be a sequence of strings with $\xi^{k} \subset U_{0}$. Suppose that
(1) if $\xi^{k}=\left(x_{0}^{k}, x_{-1}^{k}, \ldots, x_{-m_{k}+1}^{k}, x_{-m_{k}}^{k}\right)$, then $m_{k} \nearrow \infty$ as $k \rightarrow \infty$,
(2) $\mu_{k}=m_{k}^{-1} \sum_{i=1}^{m_{k}} \delta_{x_{-i}^{k}}$ converges to $\mu \in \mathcal{M}(f)$,
(3) $\mu\left(\Lambda_{a}\right)>0$ for some $1 \leq a \leq s$.

Then for $N, K>0$ there exist integers $n \geq N, k \geq K$ and $a\left(\xi^{k}, n+1 ; a\right)$ string σ_{1} such that $\sigma \cap V\left(r_{n}, \Lambda_{a}\right)=\emptyset$ for every $\left(\xi^{k}, 0 ; a\right)$-string $\sigma \neq \sigma_{1}$.

Let ξ be a string and for $1 \leq a \leq s$ define

$$
\begin{equation*}
N_{a}(\xi)=\min \left\{n \geq 0: \xi \cap V\left(r_{n+1}, \Lambda_{a}\right)=\emptyset\right\} . \tag{8.2}
\end{equation*}
$$

If a string $\xi=\left(x_{0}, x_{-1}, \ldots, x_{-m}\right)$ satisfies
(1) $N_{a}(\xi)>0$,
(2) $x_{0}, x_{-m} \notin V\left(r_{0}, \Lambda_{a}\right)$,
then there exists a $\left(\xi, N_{a}(\xi) ; a\right)$-string.
Lemma 8.2. Let $\xi^{k}=\left(x_{0}^{k}, \ldots, x_{-m_{k}}^{k}\right)$ and $\eta^{k}=\left(y_{0}^{k}, \ldots, y_{-n_{k}}^{k}\right)$ be strings with $\xi^{k}, \eta^{k} \subset U_{0}$ for $k>0$. Suppose that
(1) $x_{0}^{k}, x_{-m_{k}}^{k}, y_{0}^{k}, y_{-n_{k}}^{k} \notin \bigcup_{c=1}^{s} V\left(r_{0}, \Lambda_{c}\right)$ for $k>0$,
(2) η^{k} is a substring of ξ^{k} for $k>0$,
(3) $m_{k} \nearrow \infty$ and $n_{k} \nearrow \infty$ as $k \rightarrow \infty$,
(4) $\mu_{k}^{0}=m_{k}^{-1} \sum_{i=1}^{m_{k}} \delta_{x_{-i}^{k}}$ converges to μ^{0} and $\mu_{k}^{1}=n_{k}^{-1} \sum_{i=1}^{n_{k}} \delta_{y_{-i}^{k}}$ converges to μ^{1}.

If there are $1 \leq a, b \leq s$ and $L \geq 0$ such that $\mu^{0}\left(\Lambda_{a}\right)>0$ and

$$
\limsup _{k \rightarrow \infty}\left(N_{a}\left(\xi^{k}\right)-N_{b}\left(\eta^{k}\right)\right) \leq L
$$

then $\mu^{1}\left(\Lambda_{b}\right)>0$.
For the proof of Lemma 8.2 we need the following two lemmas:
Lemma 8.3 [15, Proposition 1]. There exist $0<\gamma<\lambda<1$ such that for $1 \leq a \leq s$ and $x \in V\left(r_{0}, \Lambda_{a}\right)$,
(1) $\gamma d\left(f(x), V_{a}^{+}\right) \leq d\left(x, V_{a}^{+}\right)$,
(2) $d\left(x, V_{a}^{+}\right) \leq \lambda d\left(f(x), V_{a}^{+}\right)$,
(3) there is $y \in f^{-1}(x)$ such that $\gamma d\left(y, V_{a}^{-}\right) \leq d\left(f(y), V_{a}^{-}\right)=d\left(x, V_{a}^{-}\right)$,
(4) $d\left(f(x), V_{a}^{-}\right) \leq \lambda d\left(x, V_{a}^{-}\right)$.

Let $0<\gamma<\lambda<1$ be as in Lemma 8.3 and set

$$
C_{1, n}=\frac{\log r_{n}}{2 \log \gamma} \quad \text { and } \quad C_{2, n}=2 \frac{\left(1+\delta_{0}\right) \log r_{n}}{\log \lambda}
$$

for $n \geq 0$.
Lemma 8.4. Let ξ be a string with $\xi \subset U_{0}$. For n large enough there is $N_{n}>n$ such that for every $(\xi, 0 ; a)$-string σ,
(1) if σ is a $(\xi, i ; a)$-string for some $i \geq N_{n}$, then

$$
\sharp\left\{\sigma \cap V\left(r_{n}, \Lambda_{a}\right)\right\} \geq C_{1, n}\left(1+\delta_{0}\right)^{i-n},
$$

(2) if σ is not a $(\xi, i+1 ; a)$-string for some $i \geq N_{n}$, then

$$
\sharp\left\{\sigma \cap V\left(r_{n}, \Lambda_{a}\right)\right\} \leq C_{2, n}\left(1+\delta_{0}\right)^{i-n} .
$$

Proof. (1) follows easily from [15, Lemma 5(b)].
To obtain (2) it is enough to show that (2) holds when $\sigma \cap V\left(r_{n}, \Lambda_{a}\right) \neq \emptyset$. Let $\xi=\left(x_{0}, \ldots, x_{-m}\right)$ and $\sigma=\left(x_{-k_{1}}, \ldots, x_{-k_{2}}\right)$. Then $0<k_{1}<k_{2}<m$. Since $\sigma \cap V\left(r_{n}, \Lambda_{a}\right) \neq \emptyset$, there is $k_{1}<t \leq k_{2}$ satisfying $x_{-t} \in \sigma \cap V\left(r_{n}, \Lambda_{a}\right)$. Choose the smallest integers $0<l_{1}<t$ and $0<l_{2}<m-t$ such that $x_{-t+l_{1}+1} \notin V\left(r_{n}, \Lambda_{a}\right)$ and $x_{-t-l_{2}-1} \notin V\left(r_{n}, \Lambda_{a}\right)$. Then

$$
\begin{equation*}
\sharp\left\{\sigma \cap V\left(r_{n}, \Lambda_{a}\right)\right\}=l_{1}+l_{2} . \tag{8.4}
\end{equation*}
$$

Indeed, since $d\left(x_{-t+l_{1}+1}, V_{a}^{-}\right) \leq \lambda^{l_{1}+1} d\left(x_{-t}, V_{a}^{-}\right) \leq r_{n}$ by Lemma 8.3(4), we have

$$
d\left(x_{-t+l_{1}+1}, V_{a}^{+}\right)>r_{n}
$$

By Lemma $8.3(2)$, for $k_{1} \leq j \leq t-l_{1}-1$,

$$
\begin{aligned}
d\left(x_{-j}, V_{a}^{+}\right) & \geq(1 / \lambda)^{\left(t-l_{1}-1\right)-j} d\left(x_{-j-\left(t-l_{1}-1-j\right)}, V_{a}^{+}\right) \\
& \geq d\left(x_{-t+l_{1}+1}, V_{a}^{+}\right)>r_{n} .
\end{aligned}
$$

This implies that

$$
x_{-j} \notin V\left(r_{n}, \Lambda_{a}\right) \quad\left(k_{1} \leq j \leq t-l_{1}-1\right) .
$$

Suppose that there is j_{1} with $t+l_{2}+1<j_{1} \leq k_{2}$ such that $x_{-j_{1}} \in$ $V\left(r_{n}, \Lambda_{a}\right)$. Then we can find j_{2} with $t+l_{2}+1 \leq j_{2}<j_{1} \leq k_{2}$ such that $x_{-j_{2}} \notin V\left(r_{n}, \Lambda_{a}\right)$. Thus,

$$
d\left(x_{t}, V_{a}^{+}\right) \geq(1 / \lambda)^{-t+j_{2}} d\left(x_{-j_{2}}, V_{a}^{+}\right)>d\left(x_{-j_{2}}, V_{a}^{+}\right)>r_{n}
$$

which contradicts $x_{-t} \in V\left(r_{n}, \Lambda_{a}\right)$. That is, $x_{-j} \notin V\left(r_{n}, \Lambda_{a}\right)$ for $t+l_{2}+1 \leq$ $j \leq k_{2}$. Therefore we have (8.4).

From [15, Lemma 5(a)] we have the inequality

$$
l_{1}+l_{2} \leq C_{2, n}\left(1+\delta_{0}\right)^{i-n}
$$

Therefore we have (2) by (8.4).
Proof of Lemma 8.2. Let $\left\{\xi^{k}\right\},\left\{\mu_{k}^{0}\right\}$ and μ^{0} be as in Lemma 8.2. Since $\mu^{0}\left(\Lambda_{a}\right)>0$ and $\operatorname{int} V\left(r_{n}, \Lambda_{a}\right) \searrow \Lambda_{a}(n \rightarrow \infty)$, we have

$$
\begin{align*}
0<\mu^{0}\left(\Lambda_{a}\right) & =\lim _{n \rightarrow \infty} \mu^{0}\left(\operatorname{int} V\left(r_{n}, \Lambda_{a}\right)\right) \tag{8.5}\\
& \leq \lim _{n \rightarrow \infty} \liminf _{k \rightarrow \infty} \mu_{k}^{0}\left(\operatorname{int} V\left(r_{n}, \Lambda_{a}\right)\right) \\
& =\lim _{n \rightarrow \infty} \liminf _{k \rightarrow \infty} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} \delta_{x_{-i}^{k}}\left(V\left(r_{n}, \Lambda_{a}\right)\right) \\
& =\lim _{n \rightarrow \infty} \liminf _{k \rightarrow \infty} \frac{\sharp\left(\xi^{k} \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}} .
\end{align*}
$$

Thus,

$$
\begin{equation*}
N_{a}\left(\xi^{k}\right) \rightarrow \infty \quad(k \rightarrow \infty) \tag{8.6}
\end{equation*}
$$

where $N_{a}\left(\xi^{k}\right)$ is defined in (8.2). Without loss of generality we suppose that $N_{a}\left(\xi^{k}\right)>0$ for $k>0$. Then, by (1) of Lemma 8.2, ξ^{k} satisfies (8.3) and so there is a $\left(\xi^{k}, N_{a}\left(\xi^{k}\right) ; a\right)$-string, say $\sigma^{k}(a)$, for $k>0$.

First we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}}>0 . \tag{8.7}
\end{equation*}
$$

To see this write

$$
\sigma^{k}(a)=\left(x_{-l_{k}}^{k}, \ldots, x_{-s_{k}}^{k}\right) \quad\left(0<l_{k}<s_{k}<m_{k}\right)
$$

for $k>0$. Then we have the two sequences $\left\{l_{k}\right\}$ and $\left\{m_{k}-s_{k}\right\}$.

If, in particular, $\left\{l_{k}\right\}$ and $\left\{m_{k}-s_{k}\right\}$ are bounded, then by (8.5) we have (8.7) as follows:

$$
\begin{aligned}
0 & <\lim _{n \rightarrow \infty} \liminf _{k \rightarrow \infty} \frac{\sharp\left(\xi^{k} \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}} \\
& \leq \lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{\sharp\left(\xi^{k} \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}} \\
& \leq \lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{l_{k}+\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)+\left(m_{k}-s_{k}\right)}{m_{k}} \\
& =\lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}} .
\end{aligned}
$$

To conclude (8.7) for the case when either $\left\{l_{k}\right\}$ or $\left\{m_{k}-s_{k}\right\}$ is unbounded we divide the proof into the following three cases:
(1) both $\left\{l_{k}\right\}$ and $\left\{m_{k}-s_{k}\right\}$ are unbounded,
(2) $\left\{l_{k}\right\}$ is unbounded, and $\left\{m_{k}-s_{k}\right\}$ is bounded,
(3) $\left\{l_{k}\right\}$ is bounded, and $\left\{m_{k}-s_{k}\right\}$ is unbounded.

Case (1): Suppose that $\left\{l_{k}\right\}$ and $\left\{m_{k}-s_{k}\right\}$ are increasing sequences, and put

$$
\begin{array}{ll}
\xi_{+}^{k}=\left(x_{0}^{k}, x_{-1}^{k}, \ldots, x_{-l_{k}+1}^{k}\right), & \mu_{k}^{+}=\frac{1}{l_{k}-1} \sum_{j=1}^{l_{k}-1} \delta_{x_{-j}^{k}}, \\
\xi_{-}^{k}=\left(x_{-s_{k}-1}^{k}, x_{-s_{k}-2}^{k}, \ldots, x_{-m_{k}}^{k}\right), & \mu_{k}^{-}=\frac{1}{m_{k}-s_{k}-1} \sum_{j=1}^{m_{k}-s_{k}-1} \delta_{x_{-s_{k}-1-j}^{k}}
\end{array}
$$

for $k>0$. Then $\xi_{+}^{k}, \xi_{-}^{k} \subset \xi^{k} \subset U_{0}$ for $k>0$. Since $\xi^{k}=\xi_{+}^{k} \cup \sigma^{k}(a) \cup \xi_{-}^{k}$, we have

$$
\begin{aligned}
& \frac{\sharp\left(\xi^{k} \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}} \\
&= \frac{1}{m_{k}}\left\{\sharp\left(\xi_{+}^{k} \cap V\left(r_{n}, \Lambda_{a}\right)\right)+\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)+\sharp\left(\xi_{-}^{k} \cap V\left(r_{n}, \Lambda_{a}\right)\right)\right\} \\
&= \frac{1}{m_{k}} \sum_{j=1}^{l_{k}-1} \delta_{x_{-j}^{k}}\left(V\left(r_{n}, \Lambda_{a}\right)\right)+\frac{\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}} \\
&+\frac{1}{m_{k}} \sum_{j=1}^{m_{k}-s_{k}-1} \delta_{x_{-s_{k}-1-j}}\left(V\left(r_{n}, \Lambda_{a}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{l_{k}-1}{m_{k}} \mu_{k}^{+}\left(V\left(r_{n}, \Lambda_{a}\right)\right)+\frac{\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}} \\
& +\frac{m_{k}-s_{k}-1}{m_{k}} \mu_{k}^{-}\left(V\left(r_{n}, \Lambda_{a}\right)\right) \\
< & \mu_{k}^{+}\left(V\left(r_{n}, \Lambda_{a}\right)\right)+\frac{\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}}+\mu_{k}^{-}\left(V\left(r_{n}, \Lambda_{a}\right)\right) .
\end{aligned}
$$

Since μ_{k}^{+}and μ_{k}^{-}converge to f-invariant probability measures μ^{+}and μ^{-} respectively, by (8.5),

$$
0<\mu^{+}\left(\Lambda_{a}\right)+\lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}}+\mu^{-}\left(\Lambda_{a}\right) .
$$

To obtain (8.7) it suffices to show that $\mu^{+}\left(\Lambda_{a}\right)=0$ and $\mu^{-}\left(\Lambda_{a}\right)=0$.
Suppose that $\mu^{+}\left(\Lambda_{a}\right)>0$. Since $\left\{\xi_{+}^{k}\right\},\left\{\mu_{k}^{+}\right\}$and μ^{+}satisfy the assumptions (1)-(3) of Lemma 8.1, for $N>0$ large enough there exist $n>N$, $k>0$ and a $\left(\xi_{+}^{k}, n+1 ; a\right)$-string $\bar{\sigma}$ such that

$$
\begin{equation*}
\sigma \cap V\left(r_{n}, \Lambda_{a}\right)=\emptyset \tag{8.8}
\end{equation*}
$$

for every $\left(\xi_{+}^{k}, 0 ; a\right)$-string $\sigma \neq \bar{\sigma}$. Since $\bar{\sigma} \subset \xi_{+}^{k} \subset \xi^{k}, \bar{\sigma}$ is a $\left(\xi^{k}, n+1 ; a\right)$-string. Thus

$$
\bar{\sigma} \subset V\left(r_{0}, \Lambda_{a}\right), \quad \emptyset \neq \bar{\sigma} \cap V\left(r_{n+1}, \Lambda_{a}\right) \subset \xi^{k} \cap V\left(r_{n+1}, \Lambda_{a}\right)
$$

which yields $N_{a}\left(\xi^{k}\right) \geq n+1$. Since $\sigma^{k}(a)$ is a $\left(\xi^{k}, N_{a}\left(\xi^{k}\right) ; a\right)$-string, we have

$$
\begin{equation*}
\sigma^{k}(a) \cap V\left(r_{n+1}, \Lambda_{a}\right) \neq \emptyset \tag{8.9}
\end{equation*}
$$

Define a string as

$$
\bar{\xi}^{k}=\left(x_{0}^{k}, x_{-1}^{k}, \ldots, x_{-l_{k}+1}^{k}, \ldots, x_{-s_{k}}^{k}, x_{-s_{k}-1}^{k}\right) .
$$

Then $\xi_{+}^{k} \subset \bar{\xi}^{k}$. Since $\bar{\sigma}$ is a $\left(\xi_{+}^{k}, n+1 ; a\right)$-string, it is a $\left(\bar{\xi}^{k}, n+1 ; a\right)$-string. By (8.9), $\sigma^{k}(a)$ is a $\left(\bar{\xi}^{k}, n+1 ; a\right)$-string. Thus, by (8.8) we have

$$
\sigma \cap V\left(r_{n}, \Lambda_{a}\right)=\emptyset
$$

for every $\left(\bar{\xi}^{k}, 0 ; a\right)$-string σ with $\bar{\sigma}<\sigma<\sigma^{k}(a)$. This implies the condition (C). Since n is large enough, we have a contradiction, and so $\mu^{+}\left(\Lambda_{a}\right)>0$ cannot happen. Similarly we have $\mu^{-}\left(\Lambda_{a}\right)=0$. Therefore (8.7) holds in case (1).

In a similar way we obtain (8.7) for cases (2) and (3).
To complete the proof of Lemma 8.2 let $\left\{\eta^{k}\right\}$ be as in the statement of the lemma. Since $\lim \sup _{k \rightarrow \infty}\left(N_{a}\left(\xi^{k}\right)-N_{b}\left(\eta^{k}\right)\right) \leq L$, we have

$$
\begin{equation*}
N_{b}\left(\eta^{k}\right) \geq N_{a}\left(\xi^{k}\right)-L \tag{8.10}
\end{equation*}
$$

for k large enough, and so $\lim _{k \rightarrow \infty} N_{b}\left(\eta^{k}\right)=\infty$ by (8.6). Without loss of generality we suppose that $N_{b}\left(\eta^{k}\right)>0$ for $k>0$. Then η^{k} satisfies (8.3) by
(1) of Lemma 8.2. Thus we can choose a $\left(\eta^{k}, N_{b}\left(\eta^{k}\right) ; b\right)$-string, say $\tau^{k}(b)$, for $k>0$. For η^{k} define

$$
\mu_{k}^{1}=\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \delta_{y_{-i}^{k}}
$$

and suppose that $\mu_{k}^{1} \rightarrow \mu^{1}$ as $k \rightarrow \infty$. Then

$$
\begin{align*}
\mu^{1}\left(\Lambda_{b}\right) & \geq \lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \mu_{k}^{1}\left(V\left(r_{n}, \Lambda_{b}\right)\right) \tag{8.11}\\
& =\lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \delta_{y_{-i}^{k}}\left(V\left(r_{n}, \Lambda_{b}\right)\right) \\
& =\lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{1}{n_{k}} \sharp\left(\eta^{k} \cap V\left(r_{n}, \Lambda_{b}\right)\right) \\
& \geq \lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{1}{n_{k}} \sharp\left(\tau^{k}(b) \cap V\left(r_{n}, \Lambda_{b}\right)\right) .
\end{align*}
$$

For n large enough let N_{n} be as in Lemma 8.4. Since $N_{a}\left(\xi^{k}\right) \rightarrow \infty$ and $N_{b}\left(\eta^{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$, we have $N_{a}\left(\xi^{k}\right) \geq N_{n}$ and $N_{b}\left(\eta^{k}\right) \geq N_{n}$ for k large enough. Then, by Lemma 8.4(1),

$$
\sharp\left(\tau^{k}(b) \cap V\left(r_{n}, \Lambda_{b}\right)\right) \geq C_{1, n}\left(1+\delta_{0}\right)^{N_{b}\left(\eta^{k}\right)-n} .
$$

On the other hand, by Lemma 8.4(2) and (8.2),

$$
\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right) \leq C_{2, n}\left(1+\delta_{0}\right)^{N_{a}\left(\xi^{k}\right)-n} .
$$

Since $\eta^{k}=\left(y_{0}^{k}, \ldots, y_{-n_{k}}^{k}\right)$ is a substring of $\xi^{k}=\left(x_{0}^{k}, \ldots, x_{-m_{k}}^{k}\right)$, we have $n_{k} \leq m_{k}$ for $k>0$. Therefore, by (8.10),

$$
\begin{align*}
\frac{1}{n_{k}} \sharp\left(\tau^{k}(b) \cap V\left(r_{n}, \Lambda_{b}\right)\right) & \geq \frac{1}{n_{k}} C_{1, n}\left(1+\delta_{0}\right)^{N_{b}\left(\eta^{k}\right)-n} \tag{8.12}\\
& \geq \frac{1}{m_{k}} C_{1, n}\left(1+\delta_{0}\right)^{N_{a}\left(\xi^{k}\right)-L-n} \\
& \geq \frac{C_{1, n}}{C_{2, n}}\left(1+\delta_{0}\right)^{-L} \frac{\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}} .
\end{align*}
$$

Since

$$
0<C_{1, n} / C_{2, n}=(\log \lambda) /\left(4\left(1+\delta_{0}\right) \log \gamma\right)<1 \quad(n \geq 0)
$$

by using (8.7), (8.11) and (8.12) we have the conclusion of Lemma 8.2:

$$
\mu^{1}\left(\Lambda_{b}\right) \geq \lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{C_{1, n}}{C_{2, n}}\left(1+\delta_{0}\right)^{-L} \frac{\sharp\left(\sigma^{k}(a) \cap V\left(r_{n}, \Lambda_{a}\right)\right)}{m_{k}}>0 .
$$

Lemma $8.5[1,(3.15)]$. Suppose that there exist $\bar{n}, \bar{N}>0$ such that for strings $\xi=\left(x_{0}, \ldots, x_{-m}\right)$ and $\eta=\left(y_{0}, \ldots, y_{-m^{\prime}}\right)$ there are a $(\xi, 0 ; a)$-string $\sigma=\left(x_{-l}, \ldots, x_{-s}\right)$ and an integer t with $l \leq t \leq s$ such that
(1) $x_{-t} \in V\left(r_{N}, \Lambda_{a}\right)$ for some $N \geq \bar{N}$,
(2) $d\left(x_{-t+j}, y_{-t^{\prime}+j}\right) \leq r_{0} / 2(0 \leq j \leq t-l)$ for some t^{\prime} with $t-l \leq t^{\prime} \leq m^{\prime}$.

Then there is $t^{\prime}-t+l \leq t_{0} \leq t^{\prime}$ such that
(a) $y_{-t_{0}} \in V\left(r_{N-\bar{n}}, \Lambda_{a}\right)$,
(b) $y_{-j} \in V\left(r_{0}, \Lambda_{a}\right)\left(t_{0} \leq j \leq t^{\prime}\right)$.

Proof. The proof given in [1] was only done for diffeomorphisms. For completeness we give the full proof.

Since $V\left(r_{n}, \Lambda_{a}\right) \searrow \Lambda_{a}$ as $n \rightarrow \infty$, there is a sufficiently large integer $\bar{N}>0$ satisfying

$$
V\left(r_{n}, \Lambda_{a}\right) \subset U\left(\Lambda_{a}, r_{0} / 2\right) \quad \text { for } n \geq \bar{N} .
$$

For a string ξ let $\sigma=\left(x_{-l}, \ldots, x_{-t}, \ldots, x_{-s}\right)$ be a $(\xi, 0 ; a)$-string satisfying the condition (1) of the lemma. Since $x_{-l} \in V\left(r_{0}, \Lambda_{a}\right)$, by Lemma 8.3(4) we have

$$
d\left(x_{-l+1}, V_{a}^{-}\right) \leq d\left(x_{-l}, V_{a}^{-}\right) \leq r_{0} .
$$

By the definition of a $(\xi, 0 ; a)$-string we have $x_{-l+1} \notin V\left(r_{0}, \Lambda_{a}\right)$, and so

$$
d\left(x_{-l+1}, V_{a}^{+}\right)>r_{0} .
$$

Since $x_{-t} \in V\left(r_{N}, \Lambda_{a}\right) \subset U\left(\Lambda_{a}, r_{0} / 2\right)$, we have

$$
d\left(x_{-t}, V_{a}^{+}\right)<d\left(x_{-t}, \Lambda_{a}\right) \leq r_{0} / 2 .
$$

Thus there is \widehat{t} with $l \leq \widehat{t} \leq t$ such that

$$
\begin{equation*}
d\left(x_{-t+j}, V_{a}^{+}\right) \leq r_{0} / 2 \quad \text { for } 0 \leq j \leq t-\widehat{t}, \quad d\left(x_{-\widehat{t}+1}, V_{a}^{+}\right)>r_{0} / 2 . \tag{8.13}
\end{equation*}
$$

Since $x_{-t} \in V\left(r_{N}, \Lambda_{a}\right)$, by Lemma 8.3(1),

$$
\begin{aligned}
r_{0}^{\left(1+\delta_{0}\right)^{N}}=r_{N} & \geq d\left(x_{-t}, V_{a}^{+}\right) \geq \gamma^{t-\hat{t}+1} d\left(f^{t-\hat{t}+1}\left(x_{-t}\right), V_{a}^{+}\right) \\
& =\gamma^{t-\widehat{t}+1} d\left(x_{-\hat{t}+1}, V_{a}^{+}\right)>\gamma^{t-\hat{t}+1} r_{0} / 2,
\end{aligned}
$$

and so

$$
\begin{aligned}
t-\hat{t}+1 & >\left(\log r_{0} / \log \gamma\right)\left(1+\delta_{0}\right)^{N}-\log \left(r_{0} / 2\right) / \log \gamma \\
& =\frac{\log r_{0}-\log \left(r_{0} / 2\right) /\left(1+\delta_{0}\right)^{N}}{\log \gamma}\left(1+\delta_{0}\right)^{N} .
\end{aligned}
$$

Since \bar{N} is large enough and $N \geq \bar{N}$, we can suppose that

$$
\begin{equation*}
t-\widehat{t}>\frac{\log r_{0}}{2 \log \gamma}\left(1+\delta_{0}\right)^{N} \tag{8.14}
\end{equation*}
$$

(notice that \bar{N} is independent of ξ and σ).
Let $\eta=\left(y_{0}, \ldots, y_{-m^{\prime}}\right)$ be a string satisfying the condition (2) of Lemma 8.5. Since $x_{-t+j} \in V\left(r_{0}, \Lambda_{a}\right)$ for $0 \leq j \leq t-l$ and $x_{-t} \in U\left(\Lambda_{a}, r_{0} / 2\right)$, by

Lemma 8.3(4) we have

$$
d\left(x_{-t+j}, V_{a}^{-}\right) \leq \lambda^{j} d\left(x_{-t}, V_{a}^{-}\right) \leq \lambda^{j} d\left(x_{-t}, \Lambda_{a}\right) \leq r_{0} / 2 \quad(0 \leq j \leq t-l)
$$ and so, for $0 \leq j \leq t-\widehat{t}$,

$$
d\left(y_{-t^{\prime}+j}, V_{a}^{-}\right) \leq d\left(y_{-t^{\prime}+j}, x_{-t+j}\right)+d\left(x_{-t+j}, V_{a}^{-}\right) \leq r_{0}
$$

On the other hand, by (8.13),

$$
d\left(y_{-t^{\prime}+j}, V_{a}^{+}\right) \leq d\left(y_{-t^{\prime}+j}, x_{-t+j}\right)+d\left(x_{-t+j}, V_{a}^{+}\right) \leq r_{0} \quad(0 \leq j \leq t-\hat{t})
$$

Thus we have

$$
\begin{equation*}
y_{-t^{\prime}+j} \in V\left(r_{0}, \Lambda_{a}\right) \quad(0 \leq j \leq t-\widehat{t}) \tag{8.15}
\end{equation*}
$$

Put $t_{0}=t^{\prime}-[(t-\widehat{t}) / 2]$. We show that t_{0} satisfies assertions (a) and (b) of Lemma 8.5. Since

$$
t^{\prime} \geq t_{0} \geq t^{\prime}-(t-\widehat{t}) \geq t^{\prime}-t+l
$$

(b) follows from (8.15).

To see (a) put

$$
\bar{n}=\left[\frac{\log C_{1}^{\prime}-\log C_{2}^{\prime}}{\log \left(1+\delta_{0}\right)}\right]+1
$$

where

$$
C_{1}^{\prime}=\frac{2 \log r_{0}}{\log \lambda} \quad \text { and } \quad C_{2}^{\prime}=\frac{\log r_{0}}{2 \log \gamma}
$$

Then $y_{-t_{0}} \in V\left(r_{N-\bar{n}}, \Lambda_{a}\right)$. Indeed, put $j_{0}=[(t-\widehat{t}) / 2]$. Then by (8.15) and Lemma 8.3 we have

$$
\begin{align*}
& r_{0} \geq d\left(y_{-t^{\prime}}, V_{a}^{-}\right) \geq \lambda^{-j_{0}} d\left(y_{-t^{\prime}+j_{0}}, V_{a}^{-}\right)=\lambda^{-j_{0}} d\left(y_{-t_{0}}, V_{a}^{-}\right) \\
& r_{0} \geq d\left(y_{-t^{\prime}+2 j_{0}}, V_{a}^{+}\right) \geq \lambda^{-j_{0}} d\left(y_{-t^{\prime}+j_{0}}, V_{a}^{+}\right)=\lambda^{-j_{0}} d\left(y_{-t_{0}}, V_{a}^{+}\right) \tag{8.16}
\end{align*}
$$

Suppose that $y_{-t_{0}} \notin V\left(r_{n}, \Lambda_{a}\right)$ for $n=N-\bar{n}$. Then

$$
\text { either } d\left(y_{-t_{0}}, V_{a}^{+}\right)>r_{n}, \quad \text { or } \quad d\left(y_{-t_{0}}, V_{a}^{-}\right)>r_{n} .
$$

In any case, by (8.16) we have $r_{0}>\lambda^{-j_{0}} r_{n}=\lambda^{-j_{0}} r_{0}^{\left(1+\delta_{0}\right)^{n}}$, and so

$$
j_{0}<\left(\log r_{0} / \log \lambda\right)\left\{\left(1+\delta_{0}\right)^{n}-1\right\}
$$

Then

$$
t-\widehat{t} \leq 2\left(j_{0}+1\right)<2\left(\log r_{0} / \log \lambda\right)\left\{\left(1+\delta_{0}\right)^{n}-1\right\}+2 \leq C_{1}^{\prime}\left(1+\delta_{0}\right)^{n}
$$

By (8.14) we have $C_{2}^{\prime}\left(1+\delta_{0}\right)^{N}<t-\widehat{t}<C_{1}^{\prime}\left(1+\delta_{0}\right)^{n}$, and so

$$
N-n<\frac{\log C_{1}^{\prime}-\log C_{2}^{\prime}}{\log \left(1+\delta_{0}\right)}<\bar{n}=N-n
$$

This is a contradiction. Therefore Lemma 8.5(a) holds.

Proof of Proposition $4(b)$. Let $f \in \mathcal{F}(M)$. As mentioned before $\Lambda\left(i_{0}\right)=$ $\bigcup_{i=1}^{i_{0}} \operatorname{cl}\left(I_{i}(f)\right)$ and $\Lambda\left(i_{0}\right)$ splits into a union

$$
\Lambda\left(i_{0}\right)=\Lambda_{1} \cup \ldots \cup \Lambda_{s}
$$

of basic sets Λ_{i}.
Our aim is to conclude that $\Lambda\left(i_{0}\right) \cap \operatorname{cl}\left(I_{i_{0}+1}(f)\right)=\emptyset$. Suppose that

$$
\begin{equation*}
\Lambda_{a} \cap \operatorname{cl}\left(I_{i_{0}+1}(f)\right) \neq \emptyset \tag{*}
\end{equation*}
$$

for some $1 \leq a \leq s$. Then there is a sequence $\left\{p^{k}\right\} \subset I_{i_{0}+1}(f)$ of periodic points such that $d\left(p^{k}, \Lambda_{a}\right) \rightarrow 0$ as $k \rightarrow \infty$. Let $m_{k}=\varrho\left(p^{k}, f\right)$ be the period of p^{k} for $k>0$. Since $\Lambda\left(i_{0}\right) \cap I_{i_{0}+1}(f)=\emptyset$, the sequence $\left\{m_{k}: k>0\right\}$ tends to infinity as $k \rightarrow \infty$. Notice that m_{0} is not a member of $\left\{m_{k}: k>0\right\}$. In fact, m_{0} is the integer satisfying (4.1)-(4.4).

For simplicity we suppose that $p^{k} \in V\left(r_{0}, \Lambda_{a}\right)$ for $k>0$. Since Λ_{a} is isolated and $p^{k} \notin \Lambda_{a}$, for $k>0$ we put

$$
t_{k}=\min \left\{0<t<m_{k}: f^{t}\left(p^{k}\right) \notin V\left(r_{0}, \Lambda_{a}\right)\right\} .
$$

Choose a periodic orbit

$$
\begin{equation*}
\widetilde{q}^{k}=\left(q_{j}^{k}\right) \in I_{i_{0}+1}(f)_{f} \tag{8.17}
\end{equation*}
$$

with $q_{0}^{k}=f^{t_{k}}\left(p^{k}\right)$ for $k>0$ (Figure 2). Then $q_{-t_{k}}^{k}=p^{k} \in V\left(r_{0}, \Lambda_{a}\right)$ and $q_{0}^{k}=q_{-m_{k}}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)$. Define a sequence of strings

$$
\begin{equation*}
\xi^{k}=\left(q_{0}^{k}, q_{-1}^{k}, \ldots, q_{-m_{k}+1}^{k}, q_{-m_{k}}^{k}\right) \tag{8.18}
\end{equation*}
$$

for $k>0$. Then each ξ^{k} consists of a periodic orbit and

$$
\xi^{k} \subset I_{i_{0}+1}(f) \subset U_{0}
$$

where U_{0} is the compact neighborhood defined before the condition (C).
For $k>0$ we put

$$
\begin{equation*}
N\left(\xi^{k}\right)=\max \left\{N_{b}\left(\xi^{k}\right): 1 \leq b \leq s\right\} \tag{8.19}
\end{equation*}
$$

where $N_{b}\left(\xi^{k}\right)$ is defined in (8.2). For some $1 \leq b \leq s$ we can find a sequence k^{\prime} of integers such that $N\left(\xi^{k^{\prime}}\right)=N_{b}\left(\xi^{k^{\prime}}\right)$. To simplify the notations suppose that for $k>0$,

$$
\begin{equation*}
N_{a}\left(\xi^{k}\right)=N\left(\xi^{k}\right), \quad q_{-t_{k}}^{k}=p^{k} \in V\left(r_{N_{a}\left(\xi^{k}\right)}, \Lambda_{a}\right) . \tag{8.20}
\end{equation*}
$$

Since $d\left(p^{k}, \Lambda_{a}\right) \rightarrow 0$, we have

$$
\begin{equation*}
N\left(\xi^{k}\right) \rightarrow \infty \tag{8.21}
\end{equation*}
$$

as $k \rightarrow \infty$. Thus we can suppose that $N\left(\xi^{k}\right)$ is large enough for $k>0$ and $\left\{N\left(\xi^{k}\right)\right\}$ is an increasing sequence.

Since $q_{-t_{k}}^{k} \in V\left(r_{0}, \Lambda_{a}\right)$ and $q_{-m_{k}}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)$, we put

$$
s_{k}=\min \left\{t_{k} \leq s<m_{k}: q_{-s-1}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)\right\} \quad(k>0) .
$$

Combining the definitions of t_{k} and s_{k}, for $k>0$ we have

$$
q_{-t}^{k} \in V\left(r_{0}, \Lambda_{a}\right) \quad\left(1 \leq t \leq s_{k}\right)
$$

Since $q_{0}^{k}, q_{-s_{k}-1}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)$ and $0<t_{k} \leq s_{k}$ for $k>0$, by (8.20) we find that

$$
\begin{equation*}
\sigma^{k}=\left(q_{-1}^{k}, q_{-2}^{k}, \ldots, q_{-s_{k}+1}^{k}, q_{-s_{k}}^{k}\right) \tag{8.22}
\end{equation*}
$$

is a $\left(\xi^{k}, N\left(\xi^{k}\right) ; a\right)$-string (Figure 2). Notice that $\sharp \sigma^{k} \rightarrow \infty$ as $k \rightarrow \infty$ by (8.21) and Lemma 8.4(1), and so $s_{k} \rightarrow \infty$ as $k \rightarrow \infty$.

Fig. 2

With the above preparations we shall deduce Proposition 4(b) through the nine claims below.

Claim 1. For $k>0$ there is $s_{k}<j<m_{k}$ such that

$$
q_{-j}^{k} \in V\left(r_{N\left(\xi^{k}\right)-1}, \Lambda_{a}\right)
$$

Proof. If this is false, then there is $k>0$ such that $\sigma \cap V\left(r_{N\left(\xi^{k}\right)-1}, \Lambda_{a}\right)$ $=\emptyset$ for every $\left(\xi^{k}, 0 ; a\right)$-string σ with $\sigma^{k}<\sigma$. Let ζ^{k} be a string

$$
\zeta^{k}=\left(q_{0}^{k}, \ldots, q_{-m_{k}}^{k}=q_{0}^{k}, q_{-m_{k}-1}^{k}, \ldots, q_{-2 m_{k}}^{k}\right)
$$

and let

$$
\tau^{k}=\left(q_{-m_{k}-1}^{k}, q_{-m_{k}-2}^{k}, \ldots, q_{-m_{k}-s_{k}}^{k}\right)
$$

be a $\left(\zeta^{k}, N\left(\xi^{k}\right) ; a\right)$-string. Then $\tau^{k} \subset \zeta^{k} \subset U_{0}$ and ξ^{k} is a substring of ζ^{k}. Obviously, σ^{k} and τ^{k} are $\left(\zeta^{k}, N\left(\xi^{k}\right) ; a\right)$-strings, and $\sigma \cap V\left(r_{N\left(\xi^{k}\right)-1}, \Lambda_{a}\right)$ $=\emptyset$ for every $\left(\xi^{k}, 0 ; a\right)$-string σ with $\sigma^{k}<\sigma<\tau^{k}$. Therefore we have the condition (C). Since $N\left(\xi^{k}\right)$ is large enough, we have a contradiction as before. Thus we have Claim 1.

Fix an integer $u \geq 1$, and choose $K_{0}(u)>0$ large enough satisfying $N\left(\xi^{k}\right)>u$ for $k \geq K_{0}(u)$. Since $V\left(r_{N\left(\xi^{k}\right)-1}, \Lambda_{a}\right) \subset V\left(r_{N\left(\xi^{k}\right)-u}, \Lambda_{a}\right)$ for $k \geq K_{0}(u)$, we put

$$
\begin{equation*}
t_{k}(u)=\min \left\{s_{k}<j<m_{k}: q_{-j}^{k} \in V\left(r_{N\left(\xi^{k}\right)-u}, \Lambda_{a}\right)\right\} \quad\left(k \geq K_{0}(u)\right) . \tag{8.23}
\end{equation*}
$$

This is well defined by Claim 1, and so choose a $\left(\xi^{k}, N\left(\xi^{k}\right)-u ; a\right)$-string

$$
\begin{equation*}
\sigma^{k}(u)=\left(q_{-m_{k}(u)}^{k}, \ldots, q_{-t_{k}(u)}^{k}, \ldots, q_{-s_{k}(u)}^{k}\right) \quad\left(\subset V\left(r_{0}, \Lambda_{a}\right)\right) \tag{8.24}
\end{equation*}
$$

for $k \geq K_{0}(u)$ (Figure 2).
Claim 2. Under the above notations, for $k \geq K_{0}(u)$ we have
(1) $s_{k}+1<m_{k}(u)<t_{k}(u)<s_{k}(u)<m_{k}$,
(2) $s_{k}(u)-m_{k}(u) \rightarrow \infty$ as $k \rightarrow \infty$,
(3) $\left\{q_{-s_{k}-1}^{k}, q_{-s_{k}-2}^{k}, \ldots, q_{-m_{k}(u)+1}^{k}\right\} \cap V\left(r_{N\left(\xi^{k}\right)-u}, \Lambda_{a}\right)=\emptyset$,
(4) $\sigma^{k}(u) \cap V\left(r_{N\left(\xi^{k}\right)-u+1}, \Lambda_{a}\right)=\emptyset$.

Proof. (1) and (3) are clear. By (8.21) and Lemma 8.4(1) we have $\sharp \sigma^{k}=$ $s_{k}(u)-m_{k}(u)+1 \rightarrow \infty$ as $k \rightarrow \infty$, and so we have (2). If (4) is false, then $\sigma^{k}(u)$ is a $\left(\xi^{k}, N\left(\xi^{k}\right)-u+1 ; a\right)$-string and σ^{k} is a $\left(\xi^{k}, N\left(\xi^{k}\right)-u+1 ; a\right)$-string. By the definition of $t_{k}(u)$ we deduce that $\sigma \cap V\left(r_{N\left(\xi^{k}\right)-u}, \Lambda_{a}\right)=\emptyset$ for every ($\xi^{k}, 0 ; a$)-string σ with $\sigma^{k}<\sigma<\sigma^{k}(u)$. This implies the condition (C). Since $K_{0}(u)$ is large enough, $N\left(\xi^{k}\right)-u$ is large enough for $k \geq K_{0}(u)$. Thus we have a contradiction, and (4) is proved.

Let λ_{0} and m_{0} be the numbers described at the beginning of $\S 4$ and let the splitting $T \mathbb{M} \mid \operatorname{cl}\left(I_{i_{0}+1}(f)\right)=\widetilde{E}_{i_{0}+1}^{\mathrm{s}} \oplus \widetilde{E}_{i_{0}+1}^{\mathrm{u}}$ be as in (5.1). For simplicity write $E=\widetilde{E}_{i_{0}+1}^{\mathrm{s}}$ and $F=\widetilde{E}_{i_{0}+1}^{u}$. Then

$$
\begin{equation*}
\left\|D \widetilde{f}^{m_{0}}\left|E(\widetilde{x})\|\cdot\| D \widetilde{f}^{-m_{0}}\right| F\left(\widetilde{f}^{m_{0}}(\widetilde{x})\right)\right\| \leq \lambda_{0} \tag{8.25}
\end{equation*}
$$

for $\widetilde{x} \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}$. Let P^{0} and \bar{P}^{0} be as in (1.2) and (1.4). As mentioned in (5.2)(2) we have $\bar{P}^{0}(E(\widetilde{x}))=\bar{P}^{0}(E(\widetilde{y}))$ when $\widetilde{x}, \widetilde{y} \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}$ satisfy $P^{0}(\widetilde{x})=P^{0}(\widetilde{y})$. Thus we write

$$
E\left(x_{0}\right)=\bar{P}^{0}(E(\widetilde{x})) \subset T_{x_{0}} M
$$

for $\widetilde{x}=\left(x_{i}\right) \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}$, and then $\left\|D f\left|E\left(x_{0}\right)\|=\| D \widetilde{f}\right| E(\widetilde{x})\right\|$.
Claim 3. For $\varepsilon>0$ there exist continuous families

$$
\left\{Z_{\varepsilon}^{\mathrm{s}}\left(\widetilde{x}, f^{m_{0}}\right): \widetilde{x} \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}\right\} \quad \text { and } \quad\left\{Z_{\varepsilon}^{\mathrm{u}}\left(\widetilde{x}, f^{m_{0}}\right): \widetilde{x} \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}\right\}
$$

of C^{1}-disks on M such that
(a) for $\widetilde{x}=\left(x_{i}\right) \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}$ and $\sigma=\mathrm{s}, \mathrm{u}$,

$$
x_{0} \in Z_{\varepsilon}^{\sigma}\left(\widetilde{x}, f^{m_{0}}\right) \subset B_{\varepsilon}\left(x_{0}\right),
$$

(b) for $\widetilde{x}=\left(x_{i}\right) \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}$,

$$
T_{x_{0}} Z_{\varepsilon}^{\mathrm{s}}\left(\widetilde{x}, f^{m_{0}}\right)=E\left(x_{0}\right) \quad \text { and } \quad T_{x_{0}} Z_{\varepsilon}^{\mathrm{u}}\left(\widetilde{x}, f^{m_{0}}\right)=\bar{P}^{0}(F(\widetilde{x})),
$$

(c) there is $0<\varepsilon^{\prime} \leq \varepsilon$ such that

$$
f^{m_{0}}\left(Z_{\varepsilon^{\prime}}^{\sigma}\left(\widetilde{x}, f^{m_{0}}\right)\right) \subset Z_{\varepsilon}^{\sigma}\left(\widetilde{f}^{m_{0}}(\widetilde{x}), f^{m_{0}}\right)
$$

for $\widetilde{x} \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}$ and $\sigma=\mathrm{s}, \mathrm{u}$,
(d) there is $\delta=\delta(\varepsilon)>0$ such that if $\widetilde{d}(\widetilde{x}, \widetilde{y}) \leq \delta\left(\widetilde{x}, \widetilde{y} \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)_{f}\right)$ then

$$
Z_{\varepsilon}^{\mathrm{s}}\left(\widetilde{x}, f^{m_{0}}\right) \cap Z_{\varepsilon}^{\mathrm{u}}\left(\widetilde{y}, f^{m_{0}}\right)
$$

is a one-point set and the intersection is transversal.
Proof. This follows from [9, Proposition 2.3] and [5, Theorem 5.1].
Fix γ_{0} with $\lambda_{0}<\gamma_{0}<1$. Then we have:
Claim 4. For fixed $u \geq 1$ let $K_{0}(u)$ be as above. Then there exists $K_{1}(u)>K_{0}(u)$ such that for $k \geq K_{1}(u)$ there is l with $0<l \leq\left[s_{k}(u) / m_{0}\right]$ such that for $0 \leq r<l$,

$$
\prod_{t=r+1}^{l}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\| \leq \gamma_{0}^{l-r}
$$

Proof. If the claim is false, then for some $u \geq 1$ there exist infinitely many $k \geq K_{0}(u)$ such that

$$
\begin{equation*}
\prod_{t=1}^{l}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\|>\gamma_{0}^{l} \tag{8.26}
\end{equation*}
$$

for l with $0<l \leq\left[s_{k}(u) / m_{0}\right]$. Without loss of generality we suppose that (8.26) holds for $k>0$.

Define the Borel probability measures μ_{k} by

$$
\mu_{k}=\frac{1}{\left[s_{k}(u) / m_{0}\right]} \sum_{j=1}^{\left[s_{k}(u) / m_{0}\right]} \delta_{q_{-m_{0} j}^{k}} .
$$

Then μ_{k} converges to μ belonging to $\mathcal{M}\left(f^{m_{0}} \mid \operatorname{cl}\left(I_{i_{0}+1}(f)\right)\right)$ (take a subsequence if necessary). Since, by (8.26),

$$
\int_{\substack{\left.\operatorname{ci}_{i_{0}+1}(f)\right)}} \log \left\|D f^{m_{0}}\left|E\left\|d \mu=\lim _{k \rightarrow \infty} \int_{\operatorname{cl}\left(I_{i_{0}+1}(f)\right)} \log \right\| D f^{m_{0}}\right| E\right\| d \mu_{k}
$$

$$
\begin{aligned}
& =\lim _{k \rightarrow \infty} \frac{1}{\left[s_{k}(u) / m_{0}\right]} \log \prod_{j=1}^{\left[s_{k}(u) / m_{0}\right]}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} j}^{k}\right)\right\| \\
& \geq \log \gamma_{0}>\log \lambda_{0}
\end{aligned}
$$

by Lemma 6.1 we have

$$
\mu\left(\Lambda\left(i_{0}\right)\right)>0 .
$$

Let $\xi^{k}(k>0)$ be the sequence of strings in (8.18). For $k>0$ define a substring of ξ^{k} as

$$
\bar{\xi}^{k}=\left(q_{0}^{k}, q_{-1}^{k}, \ldots, q_{-s_{k}(u)}^{k}, q_{-s_{k}(u)-1}^{k}\right)
$$

for $\bar{\xi}^{k}$ define

$$
\bar{\mu}_{k}=\frac{1}{s_{k}(u)+1} \sum_{j=1}^{s_{k}(u)+1} \delta_{q_{-j}^{k}}
$$

and put

$$
V_{n}=\bigcup_{b=1}^{\mathrm{s}} V\left(r_{n}, \Lambda_{b}\right) \quad(n \geq 0)
$$

Since $\bar{\mu}_{k}$ converges to $\bar{\mu}$ and $V_{n} \searrow \Lambda\left(i_{0}\right)$ as $n \rightarrow \infty$, we have

$$
\begin{align*}
& \bar{\mu}\left(\Lambda\left(i_{0}\right)\right) \tag{8.27}\\
& \geq \lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \bar{\mu}_{k}\left(V_{n}\right)=\lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{\sharp\left\{\bar{\xi}^{k} \cap V_{n}\right\}}{s_{k}(u)+1} \\
& \geq \lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{1}{s_{k}(u)+1} \sharp\left\{\left(q_{-m_{0}}^{k}, q_{-2 m_{0}}^{k}, \ldots, q_{-\left[s_{k}(u) / m_{0}\right] m_{0}}^{k}\right) \cap V_{n}\right\} \\
& =\lim _{n \rightarrow \infty} \limsup _{k \rightarrow \infty} \frac{\left[s_{k}(u) / m_{0}\right]}{s_{k}(u)+1} \mu_{k}\left(V_{n}\right) \\
& \geq \frac{1}{m_{0}} \lim _{n \rightarrow \infty} \liminf _{k \rightarrow \infty} \mu_{k}\left(\operatorname{int} V_{n}\right) \geq \frac{1}{m_{0}} \mu\left(\Lambda\left(i_{0}\right)\right)>0
\end{align*}
$$

from which

$$
\begin{equation*}
\bar{\mu}\left(\Lambda_{b}\right)>0 \tag{8.28}
\end{equation*}
$$

for some $1 \leq b \leq s$.
For $k>0$ define

$$
\begin{aligned}
\widehat{\xi}^{k} & =\left(q_{-s_{k}-1}^{k}, q_{-s_{k}-2}^{k}, \ldots, q_{-s_{k}(u)-1}^{k}\right) \quad\left(\subset \bar{\xi}^{k}\right) \\
\widehat{\mu}_{k} & =\frac{1}{s_{k}(u)-s_{k}} \sum_{j=1}^{s_{k}(u)-s_{k}} \delta_{q_{-s_{k}-1-j}}
\end{aligned}
$$

By Claim 2(1), (2) we have

$$
s_{k}(u)-s_{k}=\left\{s_{k}(u)-m_{k}(u)\right\}+\left\{m_{k}(u)-s_{k}\right\} \rightarrow \infty
$$

as $k \rightarrow \infty$, and so we suppose that $\widehat{\mu}_{k}$ converges to $\widehat{\mu}$. By (8.23) and Claim 2(1),

$$
q_{-t_{k}(u)}^{k} \in V\left(r_{N\left(\xi^{k}\right)-u}, \Lambda_{a}\right) \cap \widehat{\xi}^{k}
$$

for $k \geq K_{0}(u)$, and so

$$
N_{a}\left(\widehat{\xi}^{k}\right) \geq N\left(\xi^{k}\right)-u \quad\left(k \geq K_{0}(u)\right)
$$

Since $N\left(\xi^{k}\right) \geq N_{b}\left(\xi^{k}\right) \geq N_{b}\left(\bar{\xi}^{k}\right)$ by (8.20), we have

$$
\begin{equation*}
N_{b}\left(\bar{\xi}^{k}\right)-N_{a}\left(\widehat{\xi}^{k}\right) \leq N\left(\xi^{k}\right)-\left(N\left(\xi^{k}\right)-u\right)=u \tag{8.29}
\end{equation*}
$$

Since $\widehat{\xi}^{k}$ is a substring of $\bar{\xi}^{k}$ and $\widehat{\xi}^{k} \subset U_{0}, \widehat{\xi}^{k}$ and $\bar{\xi}^{k}$ satisfy the conditions (1)-(4) of Lemma 8.2. Thus by (8.28), (8.29) and Lemma 8.2 we have

$$
\widehat{\mu}\left(\Lambda_{a}\right)>0 .
$$

Hence $\left\{\widehat{\xi}^{k}\right\},\left\{\widehat{\mu}_{k}\right\}$ and $\widehat{\mu}$ satisfy the conditions (1)-(3) of Lemma 8.1, and so there exist a sufficiently large $n>0, k \geq K_{0}(u)$ and a $\left(\widehat{\xi}^{k}, n+1 ; a\right)$-string $\widehat{\sigma}_{1}$ such that

$$
\begin{equation*}
\sigma \cap V\left(r_{n}, \Lambda_{a}\right)=\emptyset \tag{8.30}
\end{equation*}
$$

for every $\left(\widehat{\xi}^{k}, 0 ; a\right)$-string $\sigma \neq \widehat{\sigma}_{1}$.
Since

$$
\xi^{k} \cap V\left(r_{n+1}, \Lambda_{a}\right) \supset \widehat{\xi}^{k} \cap V\left(r_{n+1}, \Lambda_{a}\right) \supset \widehat{\sigma}_{1} \cap V\left(r_{n+1}, \Lambda_{a}\right) \neq \emptyset
$$

by (8.2) and (8.19) we have

$$
N\left(\xi^{k}\right)=N_{a}\left(\xi^{k}\right) \geq n+1
$$

Thus the $\left(\xi^{k}, N\left(\xi^{k}\right) ; a\right)$-string σ^{k} of (8.22) contains a $\left(\xi^{k}, n+1 ; a\right)$-string. Since $\widehat{\xi}^{k}$ is a substring of $\xi^{k}, \widehat{\sigma}_{1}$ is a $\left(\xi^{k}, n+1 ; a\right)$-string. If σ is a $\left(\xi^{k}, 0 ; a\right)$ string with $\sigma^{k}<\sigma<\widehat{\sigma}_{1}$, then σ is a $\left(\widehat{\xi}^{k}, 0 ; a\right)$-string with $\sigma \neq \widehat{\sigma}_{1}$. Thus, by (8.30) we have $\sigma \cap V\left(r_{n}, \Lambda_{a}\right)=\emptyset$. This yields the condition (C). Since n is large enough, we have a contradiction as before. Claim 4 is proved.

For fixed $u \geq 1$ let $s_{k}(u)$ be an integer satisfying (1) and (2) of Claim 2 for $u \geq K_{0}(u)$, and let $K_{1}(u)$ be as in Claim 4. For $k \geq K_{1}(u)$ define

$$
\begin{align*}
& l_{k}(u)=\max \left\{0<l \leq\left[\frac{s_{k}(u)}{m_{0}}\right]: \text { for } 0 \leq r<l\right. \tag{8.31}\\
& \\
& \left.\prod_{t=r+1}^{l}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\| \leq \gamma_{0}^{l-r}\right\}
\end{align*}
$$

Then for $k \geq K_{1}(u)$ and $0<i \leq l_{k}(u)$ we have

$$
\left\|D f^{m_{0} i}\left|E\left(q_{-m_{0} l_{k}(u)}^{k}\right)\left\|\leq \prod_{t=l_{k}(u)-i+1}^{l_{k}(u)}\right\| D f^{m_{0}}\right| E\left(q_{-m_{0} t}^{k}\right)\right\| \leq \gamma_{0}^{i}<1
$$

Since

$$
E\left(q_{-m_{0} l_{k}(u)}^{k}\right)=T_{q_{-m_{0} l_{k}(u)}^{k}} Z_{\varepsilon}^{\mathrm{S}}\left(\tilde{f}^{-m_{0} l_{k}(u)}\left(\widetilde{q}^{k}\right), f^{m_{0}}\right)
$$

by Claim 3(b), for $\varepsilon>0$ small enough we have

$$
d\left(f^{m_{0} i}(y), q_{-m_{0} l_{k}(u)+m_{0} i}^{k}\right) \leq \varepsilon \quad\left(0 \leq i \leq l_{k}(u)\right)
$$

for $y \in Z_{\varepsilon}^{\mathrm{s}}\left(\widetilde{f}^{-m_{0} l_{k}(u)}\left(\widetilde{q}^{k}\right), f^{m_{0}}\right)$. Therefore, if $\theta>0$ is sufficiently small compared with ε, then

$$
\begin{equation*}
d\left(f^{j}(y), q_{-m_{0} l_{k}(u)+j}^{k}\right) \leq \varepsilon \quad\left(0 \leq j \leq m_{0} l_{k}(u)\right) \tag{8.32}
\end{equation*}
$$

for $y \in Z_{\theta}^{\mathrm{S}}\left(\tilde{f}^{-m_{0} l_{k}(u)}\left(\widetilde{q}^{k}\right), f^{m_{0}}\right)\left(\subset Z_{\varepsilon}^{\mathrm{s}}\left(\tilde{f}^{-m_{0} l_{k}(u)}\left(\widetilde{q}^{k}\right), f^{m_{0}}\right)\right)$. Notice that θ does not depend on k and u.

Since $\operatorname{dim} E(x)=i_{0}+1$ for $x \in \operatorname{cl}\left(I_{i_{0}+1}(f)\right)$ and $\Lambda\left(i_{0}\right)$ is hyperbolic, by taking $\varepsilon_{0}>0$ small enough we have

$$
\left\|D f^{m_{0}} \mid E(x)\right\|>1 \quad\left(x \in U_{2 \varepsilon_{0}}\left(\Lambda\left(i_{0}\right)\right) \cap \operatorname{cl}\left(I_{i_{0}+1}(f)\right)\right)
$$

Here $U_{\varepsilon}(G)=\{y \in M: d(G, y)<\varepsilon\}$ for a closed set G. Since r_{0} is arbitrary in (8.1), we can assume that $0<r_{0}<\varepsilon_{0}$. Thus,

$$
V_{0}=\bigcup_{b=1}^{\mathrm{s}} V\left(r_{0}, \Lambda_{b}\right) \subset U_{\varepsilon_{0}}\left(\Lambda\left(i_{0}\right)\right)
$$

The choice of $l_{k}(u)$ ensures that $\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} l_{k}(u)}^{k}\right)\right\| \leq \gamma_{0}<1$, and so

$$
\begin{equation*}
q_{-m_{0} l_{k}(u)}^{k} \notin U_{2 \varepsilon_{0}}\left(\Lambda\left(i_{0}\right)\right) \supset V\left(r_{0}, \Lambda_{a}\right) \quad\left(k \geq K_{1}(u)\right) \tag{8.33}
\end{equation*}
$$

By (8.24) and Claim 2(1), for $k \geq K_{1}(u)$ we have

$$
\begin{equation*}
s_{k}+1 \leq m_{0} l_{k}(u)<m_{k}(u)<s_{k}(u) \tag{8.34}
\end{equation*}
$$

and so by Claim 2(2),

$$
\begin{equation*}
s_{k}(u)-m_{0} l_{k}(u)=\left\{s_{k}(u)-m_{k}(u)\right\}+\left\{m_{k}(u)-m_{0} l_{k}(u)\right\} \rightarrow \infty \tag{8.35}
\end{equation*}
$$

as $k \rightarrow \infty$. Thus $\left\{\left[s_{k}(u) / m_{0}\right]-l_{k}(u)\right\}$ is unbounded.
For simplicity suppose that $\left[s_{k}(u) / m_{0}\right]-l_{k}(u) \geq 0$ for $k \geq K_{1}(u)$.
Claim 5. Under the above notations, for fixed $u \geq 1$ we have

$$
\prod_{t=l_{k}(u)+1}^{r}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\| \geq \gamma_{0}^{r-l_{k}(u)}
$$

for $k \geq K_{1}(u)$ and r with $l_{k}(u)<r \leq\left[s_{k}(u) / m_{0}\right]$.

Proof. If this is false, then there are $k \geq K_{1}(u)$ and $l_{k}(u)<s \leq$ $\left[s_{k}(u) / m_{0}\right]$ such that

$$
\begin{aligned}
& \quad \prod_{t=l_{k}(u)+1}^{r}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\| \geq \gamma_{0}^{r-l_{k}(u)} \quad\left(l_{k}(u)<r<s\right), \\
& \\
& \prod_{t=l_{k}(u)+1}^{s}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\|<\gamma_{0}^{s-l_{k}(u)}
\end{aligned}
$$

and for $l_{k}(u)<r<s$,

$$
\begin{align*}
\prod_{t=r+1}^{s}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0}}^{k}\right)\right\| & =\frac{\prod_{t=l_{k}(u)+1}^{s}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\|}{\prod_{t=l_{k}(u)+1}^{r}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\|} \tag{8.36}\\
& <\frac{\gamma_{0}^{s-l_{k}(u)}}{\gamma_{0}^{r-l_{k}(u)}}=\gamma_{0}^{s-r} .
\end{align*}
$$

Since, for $0 \leq r<l_{k}(u)$,

$$
\begin{align*}
\prod_{t=r+1}^{s} & \left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\| \tag{8.37}\\
& =\prod_{t=r+1}^{l_{k}(u)}\left\|D f^{m_{0}}\left|E\left(q_{-m_{0} t}^{k}\right)\left\|\cdot \prod_{t=l_{k}(u)+1}^{s}\right\| D f^{m_{0}}\right| E\left(q_{-m_{0} t}^{k}\right)\right\| \\
& <\gamma_{0}^{l_{k}(u)-r} \cdot \gamma_{0}^{s-l_{k}(u)}=\gamma_{0}^{s-r},
\end{align*}
$$

from (8.36) and (8.37) we have

$$
\prod_{t=r+1}^{s}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\| \leq \gamma_{0}^{s-r}
$$

for $0 \leq r<s$, which contradicts the choice of $l_{k}(u)$. Therefore Claim 5 holds.

By Claim 5 and (8.25) we have

$$
\begin{aligned}
\left\|D \tilde{f}^{-m_{0} i} \mid F\left(\tilde{f}^{-m_{0} l_{k}(u)}\left(\tilde{q}^{k}\right)\right)\right\| & \leq \prod_{t=l_{k}(u)}^{l_{k}(u)+i-1}\left\|D \tilde{f}^{-m_{0}} \mid F\left(\tilde{f}^{-m_{0} t}\left(\widetilde{q}^{k}\right)\right)\right\| \\
& \leq \prod_{t=l_{k}(u)+1}^{l_{k}(u)+i} \lambda_{0}\left\|D f^{m_{0}} \mid E\left(q_{-m_{0} t}^{k}\right)\right\|^{-1} \\
& \leq\left(\lambda_{0} \gamma_{0}^{-1}\right)^{i}<1
\end{aligned}
$$

for $k \geq K_{1}(u)$ and $0<i \leq\left[s_{k}(u) / m_{0}\right]-l_{k}(u)$. Thus the following statement is easily checked from (b) and (c) of Claim 3: for every $\varepsilon>0$ we can take a
small number $0<\theta<\varepsilon$ such that if $y \in Z_{\theta}^{\mathrm{u}}\left(\tilde{f}^{-m_{0} l_{k}(u)}\left(\widetilde{q}^{k}\right), f^{m_{0}}\right)$, then there is a string $\left(y_{0}, \ldots, y_{-\bar{s}_{k}(u)}\right)$ with $y_{0}=y$ satisfying

$$
\begin{equation*}
d\left(y_{-j}, q_{-m_{0} l_{k}(u)-j}^{k}\right) \leq \varepsilon \quad\left(0 \leq j \leq \bar{s}_{k}(u)\right) \tag{8.38}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{s}_{k}(u)=s_{k}(u)+1-m_{0} l_{k}(u) . \tag{8.39}
\end{equation*}
$$

For fixed $u \geq 1$ let $K_{1}(u)$ be as in Claim 5 . For $k \geq K_{1}(u)$ define

$$
\xi_{1}^{k}(u)=\left(q_{-m_{0} l_{k}(u)}^{k}, q_{-m_{0} l_{k}(u)-1}^{k}, \ldots, q_{-m_{k}(u)+2}^{k}, q_{-m_{k}(u)+1}^{k}\right)
$$

where $m_{k}(u)$ is as in Claim 2.
Claim 6. For every $v \geq 1$ there is $K(u, v) \geq K_{1}(u)$ such that for $k \geq$ $K(u, v)$,

$$
\xi_{1}^{k}(u) \cap V\left(r_{N\left(\xi^{k}\right)-u-v}, \Lambda_{a}\right)=\emptyset
$$

where $N\left(\xi^{k}\right)$ is as in (8.19).
Proof. Suppose that this is false. Then there is $v \geq 1$ such that for infinitely many k with $k \geq K_{1}(u)$,

$$
\begin{equation*}
\xi_{1}^{k}(u) \cap V\left(r_{N\left(\xi^{k}\right)-u-v}, \Lambda_{a}\right) \neq \emptyset . \tag{8.40}
\end{equation*}
$$

Without loss of generality we suppose that (8.40) holds for $k \geq K_{1}(u)$.
It is clear that $\left\{\xi_{1}^{k}(u)\right\} \subset U_{0}$. Since $q_{-m_{0} l_{k}(u)}^{k}, q_{-m_{k}(u)+1}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)$ for $k \geq K_{1}(u), \xi_{1}^{k}(u)$ contains a $\left(\xi_{1}^{k}(u), N\left(\xi^{k}\right)-u-v ; a\right)$-string, and so by (8.21) and Lemma 8.4(1),

$$
m_{k}(u)-1-m_{0} l_{k}(u) \geq \sharp\left\{\xi_{1}^{k}(u) \cap V\left(r_{0}, \Lambda_{a}\right)\right\} \rightarrow \infty
$$

as $k \rightarrow \infty$. For $\xi_{1}^{k}(u)$ we define

$$
\mu_{k}^{1}=\frac{1}{\left(m_{k}(u)-1\right)-m_{0} l_{k}(u)} \sum_{j=1}^{\left(m_{k}(u)-1\right)-m_{0} l_{k}(u)} \delta_{q_{-m_{0} l_{k}(u)-j}}
$$

and let μ^{1} be an accumulation point of μ_{k}^{1}. If we establish that

$$
\begin{equation*}
\mu^{1}\left(\Lambda_{a}\right)>0 \tag{8.41}
\end{equation*}
$$

then $\left\{\xi_{1}^{k}(u)\right\}$ satisfies the conditions (1)-(3) of Lemma 8.1. Thus there are sufficiently large integers n, k and a $\left(\xi_{1}^{k}(u), n+1 ; a\right)$-string σ_{1} such that for every $\left(\xi_{1}^{k}(u), 0 ; a\right)$-string $\sigma \neq \sigma_{1}$,

$$
\sigma \cap V\left(r_{n}, \Lambda_{a}\right)=\emptyset
$$

Since this implies the condition (C) for n large enough, we have a contradiction.

Thus it is enough to show (8.41) to obtain Claim 6. For $k \geq K_{1}(u)$ define the Borel probability measures ν_{k} by

$$
\nu_{k}=\frac{1}{\left[s_{k}(u) / m_{0}\right]} \sum_{j=1}^{\left[s_{k}(u) / m_{0}\right]} \delta_{q_{-m_{0} l_{k}(u)-m_{0} j}}
$$

Then ν_{k} converges to $\nu \in \mathcal{M}\left(f^{m_{0}} \mid \operatorname{cl}\left(I_{i_{0}+1}(f)\right)\right.$) (take a subsequence if necessary). Since

$$
\begin{aligned}
\int_{\operatorname{cl}\left(I_{i_{0}+1}(f)\right)} \log \left\|D f^{m_{0}} \mid E\right\| d \nu & =\lim _{k \rightarrow \infty} \int_{\operatorname{cl}\left(I_{i_{0}+1}(f)\right)} \log \left\|D f^{m_{0}} \mid E\right\| d \nu_{k} \\
& \geq \log \gamma_{0}>\log \lambda_{0}
\end{aligned}
$$

by Claim 5 , we find that $\nu\left(\Lambda\left(i_{0}\right)\right)>0$ by Lemma 6.1.
For $k \geq K_{1}(u)$ define a string

$$
\zeta_{1}^{k}(u)=\left(q_{-m_{0} l_{k}(u)}^{k}, q_{-m_{0} l_{k}(u)-1}^{k}, \ldots, q_{-m_{k}(u)}^{k}, \ldots, q_{-s_{k}(u)}^{k}, q_{-s_{k}(u)-1}^{k}\right)
$$

Then $\xi_{1}^{k}(u) \subset \zeta_{1}^{k}(u)$ since $m_{k}(u)<s_{k}(u)$. For $\zeta_{1}^{k}(u)$ we define

$$
\nu_{k}^{1}=\frac{1}{s_{k}(u)+1-m_{0} l_{k}(u)} \sum_{j=1}^{s_{k}(u)+1-m_{0} l_{k}(u)} \delta_{q_{-m_{0} l_{k}(u)-j}} .
$$

Then ν_{k}^{1} converges to $\nu^{1} \in \mathcal{M}(f)$ by (8.35). By the same calculation as in (8.27) we have

$$
\nu^{1}\left(\Lambda\left(i_{0}\right)\right) \geq \frac{1}{m_{0}} \nu\left(\Lambda\left(i_{0}\right)\right)>0
$$

and so

$$
\begin{equation*}
\nu^{1}\left(\Lambda_{b}\right)>0 \tag{8.42}
\end{equation*}
$$

for some $1 \leq b \leq s$.
Since $\zeta_{1}^{k}(u)$ is a substring of ξ^{k}, we have $N_{b}\left(\xi^{k}\right) \geq N_{b}\left(\zeta_{1}^{k}(u)\right)$, and so by (8.19),

$$
N\left(\xi^{k}\right) \geq N_{b}\left(\zeta_{1}^{k}(u)\right) \quad\left(k \geq K_{1}(u)\right)
$$

Thus, by (8.40),

$$
N_{b}\left(\zeta_{1}^{k}(u)\right)-N_{a}\left(\xi_{1}^{k}(u)\right) \leq N\left(\xi^{k}\right)-\left(N\left(\xi^{k}\right)-u-v\right)=u+v
$$

Since $\xi_{1}^{k}(u)$ is a substring of $\zeta_{1}^{k}(u)$, by (8.42) and Lemma 8.2 we have $\mu^{1}\left(\Lambda_{a}\right)$ >0. Thus (8.41) was proved.

CLAim 7. Let u_{1} and u_{2} be integers with $1 \leq u_{2}<u_{1}$, and let $K\left(u_{1}, 1\right)$ and $K\left(u_{2}, 1\right)$ be as in Claim 6. Then, for $k \geq \max \left\{K\left(u_{1}, 1\right), K\left(u_{2}, 1\right)\right\}$,

$$
m_{0} l_{k}\left(u_{1}\right)<m_{0} l_{k}\left(u_{2}\right)
$$

Proof. Since $m_{0} l_{k}\left(u_{1}\right)<s_{k}\left(u_{1}\right)$ by (8.34), it is enough to show that $s_{k}\left(u_{1}\right)<m_{0} l_{k}\left(u_{2}\right)$. Otherwise $s_{k}\left(u_{1}\right) \geq m_{0} l_{k}\left(u_{2}\right)$ for some $k \geq \max \left\{K\left(u_{1}, 1\right)\right.$,
$\left.K\left(u_{2}, 1\right)\right\}$. By (8.24) we have

$$
q_{-t}^{k} \in V\left(r_{0}, \Lambda_{a}\right) \quad\left(m_{k}\left(u_{1}\right) \leq t \leq s_{k}\left(u_{1}\right)\right)
$$

Since $q_{-m_{0} l_{k}\left(u_{2}\right)}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)$ by (8.33), we have

$$
m_{0} l_{k}\left(u_{2}\right)<m_{k}\left(u_{1}\right),
$$

and so by Claim $2(3)$,

$$
q_{-t}^{k} \notin V\left(r_{N\left(\xi^{k}\right)-u_{1}}, \Lambda_{a}\right) \supset V\left(r_{N\left(\xi^{k}\right)-u_{2}-1}, \Lambda_{a}\right)
$$

for $s_{k}+1 \leq t \leq m_{0} l_{k}\left(u_{2}\right)$. Combining this result and Claim 6, we have

$$
q_{-t}^{k} \notin V\left(r_{N\left(\xi^{k}\right)-u_{2}-1}, \Lambda_{a}\right)
$$

for $s_{k}+1 \leq t \leq m_{k}\left(u_{2}\right)-1$. Then

$$
\sigma \cap V\left(r_{N\left(\xi^{k}\right)-u_{2}-1}, \Lambda_{a}\right)=\emptyset
$$

for every $\left(\xi^{k}, 0 ; a\right)$-string σ with $\sigma^{k}<\sigma<\sigma^{k}\left(u_{2}\right)$. Since σ^{k} and $\sigma^{k}\left(u_{2}\right)$ are $\left(\xi^{k}, N\left(\xi^{k}\right)-u_{2} ; a\right)$-strings, the condition (C) holds. Since $N\left(\xi^{k}\right)$ is large enough, we have a contradiction. Thus we have Claim 7.

Let γ be as in Lemma 8.3, and \bar{n} and \bar{N} be as in Lemma 8.5. Let r_{0} be a sufficiently small positive number as in (8.1). Choose $\varepsilon>0$ such that

$$
\begin{equation*}
\varepsilon<\min \left\{(1-\lambda) r_{0}, \gamma r_{0} / 3\right\} \tag{8.43}
\end{equation*}
$$

and take a small number $\theta>0$ satisfying (8.32) and (8.38). Let $\delta=\delta(\theta)>0$ be as in Claim 3(d). Since M is compact, there is $v_{0}>0$ such that

$$
\max \{\widetilde{d}(\widetilde{x}, \widetilde{y}): \widetilde{x}, \widetilde{y} \in \mathbb{M}\} / v_{0} \leq \delta
$$

If a subset G of \mathbb{M} satisfies $\sharp G \geq v_{0}$, then we can find $\widetilde{x}, \tilde{y} \in G$ such that $\widetilde{x} \neq \widetilde{y}$ and $\widetilde{d}(\widetilde{x}, \widetilde{y}) \leq \delta$. Define

$$
\begin{equation*}
K=\max \left\{K(u, v): 1 \leq u \leq v_{0}(2 \bar{n}+1), 1 \leq v \leq v_{0}(2 \bar{n}+1)\right\} \tag{8.44}
\end{equation*}
$$

where $K(u, v)$ is as in Claim 6. Fix a sufficiently large integer $k \geq K$ satisfying

$$
\begin{equation*}
N\left(\xi^{k}\right)-v_{0}(2 \bar{n}+1) \geq \bar{N} \quad \text { and } \quad r_{N\left(\xi^{k}\right)-v_{0}(2 \bar{n}+1)}<\gamma r_{0} / 3 \tag{8.45}
\end{equation*}
$$

For $1 \leq u_{2}<u_{1} \leq v_{0}(2 \bar{n}+1)$ by Claim 7 we have

$$
\widetilde{f}^{-m_{0} l_{k}\left(u_{1}\right)}\left(\widetilde{q}^{k}\right) \neq \widetilde{f}^{-m_{0} l_{k}\left(u_{2}\right)}\left(\widetilde{q}^{k}\right)
$$

where \widetilde{q}^{k} is a point of $I_{i_{0}+1}(f)_{f}$ satisfying (8.17), and so

$$
\sharp\left\{\tilde{f}^{-m_{0} l_{k}(j(2 \bar{n}+1))}\left(\widetilde{q}^{k}\right): 1 \leq j \leq v_{0}\right\}=v_{0} .
$$

Thus,

$$
\widetilde{d}\left(\tilde{f}^{-m_{0} l_{k}\left(j_{1}(2 \bar{n}+1)\right)}\left(\widetilde{q}^{k}\right), \widetilde{f}^{-m_{0} l_{k}\left(j_{2}(2 \bar{n}+1)\right)}\left(\widetilde{q}^{k}\right)\right) \leq \delta
$$

for some $1 \leq j_{2}<j_{1} \leq v_{0}$. Put

$$
\begin{equation*}
u_{1}=j_{1}(2 \bar{n}+1) \quad \text { and } \quad u_{2}=j_{2}(2 \bar{n}+1) \tag{8.46}
\end{equation*}
$$

Then
(i) $0 \leq u_{2}<u_{1} \leq v_{0}(2 \bar{n}+1)$,
(ii) $2 \bar{n}+1 \leq u_{1}-u_{2} \leq v_{0}(2 \bar{n}+1)$,
(iii) $\widetilde{d}\left(\tilde{f}^{-m_{0} l_{k}\left(u_{1}\right)}\left(\widetilde{q}^{k}\right), \tilde{f}^{-m_{0} l_{k}\left(u_{2}\right)}\left(\widetilde{q}^{k}\right)\right) \leq \delta$.

By Claim 3(d),

$$
Z_{\theta}^{\mathrm{S}}\left(\tilde{f}^{-m_{0} l_{k}\left(u_{1}\right)}\left(\widetilde{q}^{k}\right), f^{m_{0}}\right) \cap Z_{\theta}^{\mathrm{u}}\left(\tilde{f}^{-m_{0} l_{k}\left(u_{2}\right)}\left(\widetilde{q}^{k}\right), f^{m_{0}}\right)
$$

is one point; denote it by z.
Claim 8. Let $\bar{s}_{k}\left(u_{2}\right)$ be as in (8.39) and $l_{k}(u)$ be as in (8.31). For the above point z there is a string

$$
\eta=\left(z_{1}, z_{0}, z_{-1}, \ldots, z_{-m_{0} l_{k}\left(u_{1}\right)}, \ldots, z_{-m_{0} l_{k}\left(u_{1}\right)-\bar{s}_{k}\left(u_{2}\right)}, z_{-m_{0} l_{k}\left(u_{1}\right)-\bar{s}_{k}\left(u_{2}\right)-1}\right)
$$

such that
(i) $z_{-m_{0} l_{k}\left(u_{1}\right)}=z$,
(ii) $d\left(z_{-j}, q_{-j}^{k}\right) \leq \varepsilon\left(0 \leq j \leq m_{0} l_{k}\left(u_{1}\right)\right)$,
(iii) $d\left(z_{-m_{0} l_{k}\left(u_{1}\right)-j}, q_{-m_{0} l_{k}\left(u_{2}\right)-j}^{k}\right) \leq \varepsilon\left(0 \leq j \leq \bar{s}_{k}\left(u_{2}\right)\right)$,
(iv) either $z_{1} \notin V\left(r_{0}, \Lambda_{a}\right)$, or $z_{0} \notin V\left(r_{0}, \Lambda_{a}\right)$,
(v) either $z_{-m_{0} l_{k}\left(u_{1}\right)-\bar{s}_{k}\left(u_{2}\right)} \notin V\left(r_{0}, \Lambda_{a}\right)$, or $z_{-m_{0} l_{k}\left(u_{1}\right)-\bar{s}_{k}\left(u_{2}\right)-1} \notin$ $V\left(r_{0}, \Lambda_{a}\right)$.

Proof. For $-1 \leq j \leq m_{0} l_{k}\left(u_{1}\right)$ put

$$
z_{-j}=f^{m_{0} l_{k}\left(u_{1}\right)-j}(z)
$$

Since $z \in Z_{\theta}^{\mathrm{u}}\left(\tilde{f}^{-m_{0} l_{k}\left(u_{2}\right)}\left(\widetilde{q}^{k}\right), f^{m_{0}}\right)$, by (8.38) we can take a string $\left(z_{-m_{0} l_{k}\left(u_{1}\right)}, \ldots, z_{-m_{0} l_{k}\left(u_{1}\right)-\bar{s}_{k}\left(u_{2}\right)}\right)$ with $z_{-m_{0} l_{k}\left(u_{1}\right)}=z$ to satisfy (iii). Let $z_{-m_{0} l_{k}\left(u_{1}\right)-\bar{s}_{k}\left(u_{2}\right)-1}$ be an arbitrary point belonging to the inverse image of $z_{-m_{0} l_{k}\left(u_{1}\right)-\bar{s}_{k}\left(u_{2}\right)}$. Then $\eta=\left(z_{1}, \ldots, z_{-m_{0} l_{k}\left(u_{1}\right)-\bar{s}_{k}\left(u_{2}\right)-1}\right)$ is a string.

Clearly (i) holds. Since $z \in Z_{\theta}^{\mathrm{s}}\left(\widetilde{f}-m_{0} l_{k}\left(u_{1}\right)\left(\widetilde{q}^{k}\right), f^{m_{0}}\right)$, by (8.32) we see that η satisfies (ii).

It remains to show (iv) and (v). Since $q_{0}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)$, we can check that $d\left(q_{0}^{k}, V_{a}^{+}\right)>r_{0}$. If $z_{0} \in V\left(r_{0}, \Lambda_{a}\right)$, then by (ii) we have

$$
d\left(z_{0}, V_{a}^{+}\right) \geq d\left(q_{0}^{k}, V_{a}^{+}\right)-d\left(z_{0}, q_{0}^{k}\right)>r_{0}-\varepsilon
$$

By Lemma 8.3(2) and (8.43),

$$
d\left(z_{1}, V_{a}^{+}\right)=d\left(f\left(z_{0}\right), V_{a}^{+}\right) \geq \frac{1}{\lambda} d\left(z_{0}, V_{a}^{+}\right)>\frac{1}{\lambda}\left(r_{0}-\varepsilon\right)>r_{0}
$$

and so $z_{1} \notin V\left(r_{0}, \Lambda_{a}\right)$. Thus (iv) is proved. Similarly we can check (v). Therefore Claim 8 holds.

Hereafter let K be as in (8.44) and k be an integer so large that $k \geq K$. Since $q_{-m_{0} l_{k}\left(u_{1}\right)}^{k} \notin U_{2 \varepsilon_{0}}\left(\Lambda\left(i_{0}\right)\right)$ by (8.33), it follows from Claim 8(ii) that

$$
\begin{equation*}
z_{-m_{0} l_{k}\left(u_{1}\right)} \notin V\left(r_{0}, \Lambda_{a}\right) . \tag{8.48}
\end{equation*}
$$

Let $\sigma^{k}=\left(q_{-1}^{k}, \ldots, q_{-t_{k}}^{k}, \ldots, q_{-s_{k}}^{k}\right)$ be the $\left(\xi^{k}, N\left(\xi^{k}\right) ; a\right)$-string of (8.22). Then, by (8.20) and (8.45),

$$
q_{-t_{k}}^{k} \in \sigma^{k} \cap V\left(r_{N\left(\xi^{k}\right)}, \Lambda_{a}\right) \quad \text { and } \quad N\left(\xi^{k}\right) \geq \bar{N}
$$

By (8.34) we have $t_{k}<s_{k}<m_{0} l_{k}\left(u_{1}\right)$, and so by Claim 8(ii) and (8.43),

$$
d\left(q_{-t_{k}+j}^{k}, z_{-t_{k}+j}\right) \leq \varepsilon<r_{0} / 2 \quad\left(0 \leq j \leq t_{k}-1\right)
$$

Thus we have the conditions (1) and (2) of Lemma 8.5, and so there is $1 \leq t_{1} \leq t_{k}$ such that

$$
\begin{equation*}
z_{-t_{1}} \in V\left(r_{N\left(\xi^{k}\right)-\bar{n}}, \Lambda_{a}\right) \quad \text { and } \quad z_{-j} \in V\left(r_{0}, \Lambda_{a}\right) \quad\left(t_{1} \leq j \leq t_{k}\right) \tag{8.49}
\end{equation*}
$$

Since $0 \leq t_{1} \leq t_{k} \leq m_{0} l_{k}\left(u_{1}\right)$ and $z_{-m_{0} l_{k}\left(u_{1}\right)} \notin V\left(r_{0}, \Lambda_{a}\right)$, by (8.43) and Claim 8(iv) there exists an $(\eta, 0 ; a)$-string σ_{1} containing $z_{-t_{1}}$.

Let u_{2} be as in (8.46). For u_{2} let $\sigma^{k}\left(u_{2}\right)=\left(q_{-m_{k}\left(u_{2}\right)}^{k}, \ldots, q_{-t_{k}\left(u_{2}\right)}^{k}, \ldots\right.$, $\left.q_{-s_{k}\left(u_{2}\right)}^{k}\right)$ be the ($\left.\xi^{k}, N\left(\xi^{k}\right)-u_{2} ; a\right)$-string defined as in (8.24). By (8.23) and (8.45) we have

$$
q_{-t_{k}\left(u_{2}\right)}^{k} \in V\left(r_{N\left(\xi^{k}\right)-u_{2}}, \Lambda_{a}\right), \quad N\left(\xi^{k}\right)-u_{2} \geq N\left(\xi^{k}\right)-v_{0}(2 \bar{n}+1) \geq \bar{N}
$$

For $0 \leq j \leq t_{k}\left(u_{2}\right)-m_{k}\left(u_{2}\right)$, by (8.34) and Claim 2(1) we have

$$
0<-j+t_{k}\left(u_{2}\right)-m_{0} l_{k}\left(u_{2}\right)<\bar{s}_{k}\left(u_{2}\right)
$$

and so by Claim 8(iii) and (8.43),

$$
\begin{aligned}
& d\left(q_{-t_{k}\left(u_{2}\right)+j}^{k}, z_{-t_{k}\left(u_{2}\right)+w(k)+j}\right) \\
& \quad=d\left(q_{-m_{0} l_{k}\left(u_{2}\right)-\left\{-j+t_{k}\left(u_{2}\right)-m_{0} l_{k}\left(u_{2}\right)\right\}}^{k}, z_{\left.-m_{0} l_{k}\left(u_{1}\right)-\left\{-j+t_{k}\left(u_{2}\right)-m_{0} l_{k}\left(u_{2}\right)\right\}\right)}^{\quad \leq \varepsilon<r_{0} / 2 \quad\left(0 \leq j \leq t_{k}\left(u_{2}\right)-m_{k}\left(u_{2}\right)\right)}\right.
\end{aligned}
$$

where

$$
w(k)=m_{0} l_{k}\left(u_{2}\right)-m_{0} l_{k}\left(u_{1}\right) .
$$

Thus we have the conditions (1) and (2) of Lemma 8.5, and so there is t_{2} with $m_{k}\left(u_{2}\right)-w(k) \leq t_{2} \leq t_{k}\left(u_{2}\right)-w(k)$ such that

$$
\begin{align*}
z_{-t_{2}} & \in V\left(r_{N\left(\xi^{k}\right)-u_{2}-\bar{n}}, \Lambda_{a}\right) \\
z_{-j} & \in V\left(r_{0}, \Lambda_{a}\right) \quad\left(t_{2} \leq j \leq t_{k}\left(u_{2}\right)-w(k)\right) \tag{8.50}
\end{align*}
$$

Since $m_{0} l_{k}\left(u_{1}\right)<m_{k}\left(u_{2}\right)-w(k) \leq t_{2}$ and $z_{-m_{0} l_{k}\left(u_{1}\right)} \notin V\left(r_{0}, \Lambda_{a}\right)$, by (8.43) and Claim 8(v) there exists an $(\eta, 0 ; a)$-string σ_{2} containing $z_{-t_{2}}$.

Since, by the choice of t_{1} and t_{2},

$$
t_{1} \leq t_{k}<m_{0} l_{k}\left(u_{1}\right)<m_{k}\left(u_{2}\right)-w(k) \leq t_{2}
$$

we have $\sigma_{1} \neq \sigma_{2}$. By (8.47)(ii),

$$
N\left(\xi^{k}\right)-\bar{n} \geq N\left(\xi^{k}\right)-u_{2}-\bar{n} \geq N\left(\xi^{k}\right)-u_{1}+\bar{n}+1
$$

and so by (8.49) and (8.50),

$$
z_{-t_{1}}, z_{-t_{2}} \in V\left(r_{N\left(\xi^{k}\right)-u_{1}+\bar{n}+1}, \Lambda_{a}\right)
$$

Therefore σ_{1} and σ_{2} are $\left(\eta, N\left(\xi^{k}\right)-u_{1}+\bar{n}+1, \Lambda_{a}\right)$-strings and $\sigma_{1} \neq \sigma_{2}$.
Claim 9. Let σ_{1} and σ_{2} be as above. For every $(\eta, 0 ; a)$-string σ with $\sigma_{1}<\sigma<\sigma_{2}$ we have

$$
\sigma \cap V\left(r_{N\left(\xi^{k}\right)-u_{1}+\bar{n}}, \Lambda_{a}\right)=\emptyset
$$

for $k \geq K$.
If we establish Claim 9, then the condition (C) holds for $N\left(\xi^{k}\right)-u_{1}+\bar{n}$ $\left(\geq N\left(\xi^{k}\right)-v_{0}(2 \bar{n}+1)\right)$ large enough. This implies the existence of a 1 -cycle for Λ_{a}, which is inconsistent with Lemma 7.1. This contradiction has been derived through the nine claims under the assumption given in $(*)$.

Therefore the assumption $\Lambda_{a} \cap \operatorname{cl}\left(I_{i_{0}+1}(f)\right) \neq \emptyset$ is invalid, which yields Proposition 4(b). To finish the proof it thus suffices to check that Claim 9 is true.

Proof of Claim 9. If Claim 9 is false, then there is an ($\eta, 0 ; a)$-string σ such that $\sigma_{1}<\sigma<\sigma_{2}$ and

$$
\sigma \cap V\left(r_{N\left(\xi^{k}\right)-u_{1}+\bar{n}}, \Lambda_{a}\right) \neq \emptyset
$$

for some $k \geq K$. Write

$$
\sigma=\left(z_{-l}, \ldots, z_{-s}\right) \quad\left(\subset V\left(r_{0}, \Lambda_{a}\right)\right)
$$

for some l, s with $l \leq s$. Choose $l \leq t \leq s$ such that

$$
\begin{equation*}
z_{-t} \in \sigma \cap V\left(r_{N\left(\xi^{k}\right)-u_{1}+\bar{n}}, \Lambda_{a}\right) \tag{8.51}
\end{equation*}
$$

Since $\sigma_{1}<\sigma<\sigma_{2}$, we have $t_{1}<l \leq t \leq s<t_{2}$. Since $z_{-m_{0} l_{k}\left(u_{1}\right)} \notin V\left(r_{0}, \Lambda_{0}\right)$ by (8.48), we have two cases to consider:

$$
\text { (a) } s<m_{0} l_{k}\left(u_{1}\right), \quad \text { (b) } m_{0} l_{k}\left(u_{1}\right)<l \text {. }
$$

Case (a): By Claim 8(ii), (8.45) and (8.51) we have

$$
\begin{gathered}
z_{-t} \in V\left(r_{N\left(\xi^{k}\right)-u_{1}+\bar{n}}, \Lambda_{a}\right) \\
N\left(\xi^{k}\right)-u_{1}+\bar{n} \geq N\left(\xi^{k}\right)-v_{0}(2 \bar{n}+1) \geq \bar{N} \\
d\left(z_{-t+j}, q_{-t+j}^{k}\right) \leq \varepsilon<r_{0} / 2 \quad(0 \leq j \leq t-l)
\end{gathered}
$$

and so σ satisfies the conditions (1) and (2) of Lemma 8.5. Replacing ξ by η and η by ξ^{k} in Lemma 8.5, we can take $l \leq t_{3} \leq t$ such that

$$
\begin{equation*}
q_{-t_{3}}^{k} \in V\left(r_{N\left(\xi^{k}\right)-u_{1}}, \Lambda_{a}\right), \quad q_{-j}^{k} \in V\left(r_{0}, \Lambda_{a}\right) \quad\left(t_{3} \leq j \leq t\right) \tag{8.52}
\end{equation*}
$$

By (8.34),

$$
t_{3} \leq t \leq s<m_{0} l_{k}\left(u_{1}\right) \leq m_{k}\left(u_{1}\right)-1
$$

and so by Claim 2(3),

$$
q_{-t_{3}}^{k} \in V\left(r_{N\left(\xi^{k}\right)-u_{1}}, \Lambda_{a}\right) \cap\left\{q_{-1}^{k}, \ldots, q_{-m_{k}\left(u_{1}\right)+1}^{k}\right\} \subset \sigma^{k}=\left(q_{-1}^{k}, \ldots, q_{-s_{k}}^{k}\right)
$$

Since $q_{-s_{k}-1}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)$, by (8.52) we have

$$
\begin{equation*}
q_{-j}^{k} \in \sigma^{k} \subset V\left(r_{0}, \Lambda_{a}\right) \quad(1 \leq j \leq t) \tag{8.53}
\end{equation*}
$$

Since $\sigma=\left(z_{-l}, \ldots, z_{-s}\right)$ is an $(\eta, 0 ; a)$-string, we have

$$
z_{-l} \in V\left(r_{0}, \Lambda_{a}\right) \quad \text { and } \quad z_{-l+1} \notin V\left(r_{0}, \Lambda_{a}\right)
$$

Thus it is easily checked by using Lemma 8.3 that $d\left(z_{-l+1}, V_{a}^{+}\right)>r_{0}$. Thus,

$$
\begin{equation*}
d\left(z_{-l}, V_{a}^{+}\right) \geq \gamma d\left(f\left(z_{-l}\right), V_{a}^{+}\right)=\gamma d\left(z_{-l+1}, V_{a}^{+}\right)>\gamma r_{0} \tag{8.54}
\end{equation*}
$$

Since $t_{1}<l \leq t$ and $f^{l-t_{1}}\left(q_{-l}^{k}\right)=q_{-t_{1}}^{k}$, by (8.53) and Lemma 8.3(2) we have

$$
d\left(q_{-l}^{k}, V_{a}^{+}\right) \leq \lambda^{l-t_{1}} d\left(f^{l-t_{1}}\left(q_{-l}^{k}\right), V_{a}^{+}\right)<d\left(q_{-t_{1}}^{k}, V_{a}^{+}\right) .
$$

Thus, by Claim 8(ii), (8.49) and (8.54),

$$
\begin{aligned}
0 & <d\left(q_{-t_{1}}^{k}, V_{a}^{+}\right)-d\left(q_{-l}^{k}, V_{a}^{+}\right) \\
& \leq\left(d\left(q_{-t_{1}}^{k}, z_{-t_{1}}\right)+d\left(z_{-t_{1}}, V_{a}^{+}\right)\right)-\left(d\left(z_{-l}^{k}, V_{a}^{+}\right)-d\left(z_{-l}^{k}, q_{-l}^{k}\right)\right) \\
& \leq\left(\varepsilon+r_{N\left(\xi^{k}\right)-\bar{n}}\right)-\left(\gamma r_{0}-\varepsilon\right)<r_{N\left(\xi^{k}\right)-\bar{n}}-\gamma r_{0} / 3<0
\end{aligned}
$$

This is a contradiction.
Case (b): By Claim 8(iii), (8.45) and (8.51) we have

$$
\begin{gathered}
z_{-t} \in V\left(r_{N\left(\xi^{k}\right)-u_{1}+\bar{n}}, \Lambda_{a}\right), \\
N\left(\xi^{k}\right)-u_{1}+\bar{n} \geq N\left(\xi^{k}\right)-v_{0}(2 \bar{n}+1) \geq \bar{N}, \\
d\left(z_{-t+j}, q_{-t-w(k)+j}^{k}\right) \leq \varepsilon<r_{0} / 2 \quad(0 \leq j \leq t-l),
\end{gathered}
$$

and so σ satisfies the conditions (1) and (2) of Lemma 8.5. Thus,

$$
\begin{equation*}
q_{-t_{4}}^{k} \in V\left(r_{N\left(\xi^{k}\right)-u_{1}}, \Lambda_{a}\right), \quad q_{-j}^{k} \in V\left(r_{0}, \Lambda_{a}\right) \quad\left(t_{4} \leq j \leq t+w(k)\right) \tag{8.55}
\end{equation*}
$$

for some t_{4} with $l+w(k) \leq t_{4} \leq t+w(k)$. Since $u_{1}-u_{2} \leq v_{0}(2 \bar{n}+1)$ by (8.47)(ii), it follows that

$$
N\left(\xi^{k}\right)-u_{1} \geq N\left(\xi^{k}\right)-u_{2}-v_{0}(2 \bar{n}+1)
$$

and so by (8.55) and Claim 6,

$$
\begin{aligned}
q_{-t_{4}}^{k} & \in V\left(r_{N\left(\xi^{k}\right)-u_{2}-v_{0}(2 \bar{n}+1)}\right) \cap\left\{q_{-m_{o} l_{k}\left(u_{2}\right)}^{k}, \ldots, q_{-s_{k}\left(u_{2}\right)-1}^{k}\right\} \\
& \subset \sigma^{k}\left(u_{2}\right)=\left(q_{-m_{k}\left(u_{2}\right)}^{k}, \ldots, q_{-s_{k}\left(u_{2}\right)}^{k}\right)
\end{aligned}
$$

because $k \geq K \geq K\left(u_{2}, v_{0}(2 \bar{n}+1)\right)$ by (8.44). Since $q_{-m_{k}\left(u_{2}\right)+1}^{k} \notin V\left(r_{0}, \Lambda_{a}\right)$, by (8.55) we have

$$
q_{-j}^{k} \in \sigma^{k}\left(u_{2}\right) \subset V\left(r_{0}, \Lambda_{a}\right) \quad\left(t+w(k) \leq j \leq s_{k}\left(u_{2}\right)\right)
$$

Since σ and σ_{2} contain z_{-t} and $z_{-t_{2}}$ respectively and satisfy $\sigma<\sigma_{2}$, there is $t<t_{2}^{\prime}<t_{2}$ such that

$$
z_{-t_{2}^{\prime}} \in V\left(r_{0}, \Lambda_{a}\right) \quad \text { and } \quad z_{-t_{2}^{\prime}+1} \notin V\left(r_{0}, \Lambda_{a}\right)
$$

and so by Claim 8(iii) and (8.50),

$$
\begin{aligned}
0 & <d\left(q_{-t-w(k)}^{k}, V_{a}^{+}\right)-d\left(q_{-t_{2}^{\prime}-w(k)}^{k}, V_{a}^{+}\right) \\
& \leq\left(d\left(q_{-t-w(k)}^{k}, z_{-t}\right)+d\left(z_{-t}, V_{a}^{+}\right)\right)-\left(d\left(z_{-t_{2}^{\prime}}^{k}, V_{a}^{+}\right)-d\left(z_{-t_{2}^{\prime}}^{k}, q_{-t_{2}^{\prime}-w(k)}^{k}\right)\right) \\
& \leq\left(\varepsilon+r_{N\left(\xi^{k}\right)-u_{1}+\bar{n}}\right)-\left(\gamma r_{0}-\varepsilon\right)<r_{N\left(\xi^{k}\right)-u_{1}+\bar{n}}-\gamma r_{0} / 3<0
\end{aligned}
$$

This is a contradiction. Therefore we have Claim 9.
Acknowledgments. The authors are grateful to the referee for his advice on the proof of the main theorem. His comments are much appreciated.

References

[1] N. Aoki, The set of axiom A diffeomorphisms with no cycles, Bol. Soc. Brasil. Mat. 23 (1992), 21-65.
[2] L. Block and J. Franke, A classification of the structurally stable endomorphisms of S^{1}, Proc. Amer. Math. Soc. 36 (1972), 597-602.
[3] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301-308.
[4] M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1970), 121-134.
[5] M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, 1977.
[6] K. Kato, On periodic points of stable endomorphisms, Mem. Fac. Sci. Kochi Univ. (Math.) 1 (1980), 59-67.
[7] S. T. Liao, On stability conjecture, Chinese Ann. Math. 1 (1980), 9-30.
[8] R. Mañé, Axiom A for endomorphisms, in: Lecture Notes in Math. 597, Springer, 1977, 379-388.
[9] -, Contributions to the stability conjecture, Topology 17 (1978), 383-396.
[10] -, An ergodic closing lemma, Ann. of Math. 116 (1982), 503-540.
[11] -, On the creation of homoclinic points, Publ. Math. I.H.E.S. 66 (1987), 139-159.
[12] -, A proof of the C^{1} stability conjecture, ibid. 66 (1987), 161-210.
[13] K. Moriyasu, The ergodic closing lemma for C^{1} regular maps, Tokyo J. Math. 15 (1992), 171-183.
[14] -, Axiom A endomorphisms having no cycle, in: N. Aoki et al. (eds.), Proc. Internat. Conf. on Dynamical Systems and Chaos 1, World Sci., Singapore, 1995, 182-186.
[15] K. Moriyasu and M. Oka, The creation of homoclinic points of C^{1}-maps, Topology Appl. 54 (1993), 47-64.
[16] S. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc. 167 (1972), 125-150.
[17] J. Palis, A note on Ω-stability, in: Global Analysis, Proc. Sympos. Pure Math. 14, Amer. Math. Soc., 1970, 221-222.
[18] - , On the $C^{1} \Omega$-stability conjecture, Publ. Math. I.H.E.S. 66 (1987), 211-215.
[19] V. A. Pliss, A hypothesis due to Smale, Differential Equations 8 (1972), 203-214.
[20] F. Przytycki, Anosov endomorphisms, Studia Math. 58 (1976), 249-285.
[21] -, On Ω-stability and structural stability of endomorphisms satisfying Axiom A, ibid. 60 (1977), 61-77.
[22] A. Sannami, The stability theorems for discrete dynamical systems on two-dimensional manifolds, Nagoya Math. J. 90 (1983), 1-55.
[23] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-199.
[24] S. Smale, Diffeomorphisms with many periodic points, in: Differential and Combinatorial Topology, Princeton Univ. Press, 1964, 63-80.
[25] H. Steinlein and H. O. Walther, Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for C^{1}-maps in Banach spaces, J. Dynamics Differential Equations 2 (1990), 325-365.
[26] L. Wen, The C^{1} closing lemma for non-singular endomorphisms, Ergodic Theory Dynam. Systems 111 (1991), 393-412.
[27] —, The C^{1} closing lemma for endomorphisms with finitely many singularities, Proc. Amer. Math. Soc. 114 (1992), 217-223.
N. Aoki and N. Sumi K. Moriyasu

Department of Mathematics Department of Mathematics
Tokyo Metropolitan University
Tokushima University
Minamijosanjima 1-1
Minami-Ohsawa 1-1, Hachioji-Shi
Tokyo 192-0397, Japan
E-mail: sumi@comp.metro-u.ac.jp
Tokushima 770-8502, Japan
E-mail: moriyasu@ias.tokushima-u.ac.jp
Current address of N. Aoki:
Faculty of Commerce
Chuo University
Hachioji-shi
Tokyo 192-0393, Japan

