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Homotopy decompositions of orbit spaces
and the Webb conjecture

by

Jolanta Stominska (Warszawa)

Abstract. Let p be a prime number. We prove that if G is a compact Lie group
with a non-trivial p-subgroup, then the orbit space (BAp(G))/G of the classifying space
of the category associated to the G-poset Ap(G) of all non-trivial elementary abelian
p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose
isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy
colimit of the functor X ©» /(NEyN...NN Ey) defined over the poset (sd Ap(G))/G, where
sd is the barycentric subdivision. We also investigate some other equivariant homotopy
and homology decompositions of X and prove that if G is a compact Lie group with
a non-trivial p-subgroup, then the map EG X BA,(G) — BG induced by the G-map
BA,(G) — « is a mod p homology isomorphism.

Introduction. In this paper we will study homotopy and homology
decompositions which are associated to the equivariant structure of a G-CW-
complex X where G is a Lie group. We will try to generalize and streamline
techniques of such decompositions.

Let C be a small topological category and let F' : C — G-CW be a functor
such that, for every ¢ € C, F(c) = G Xp(c) XH'(©) where H(c), H'(c) are
closed subgroups of G and H(c) is a subgroup of the normalizer NH'(c) =
NgH'(c) of H'(¢) in G. Suppose also that there is a natural transformation
from F to the constant functor X induced by the inclusions X ) - X,
G-maps

u : hocolimeee G X g (c) XH @  x

induced by such natural transformations can be used in constructing
different homotopy and homology decompositions. If v is a G-homotopy
equivalence then it will be called a G-homotopy decomposition of X.

In Section 0 we will introduce a “universal” category C¢ and, for every
G-CW-complex X, a functor X : Co4 — G-CW and a natural transformation
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of functors X — X. We will study the decompositions induced by functors
F which are compositions )?F’, where I’ : C — Cq.

For a given G-CW-complex K, we will investigate homotopy decompo-
sitions of the orbit space K x¢g X, i.e. homotopy equivalences of the form

id X gu : hocolimeec K X (e XH'() ~ K xa X.

We will also study mod p homology decompositions. In this case the map
id xgu is an Fp-equivalence. We will show how the known examples of de-
compositions of K X X can be described using Cg.

The best known examples of homology decompositions are the cases
where K = EG is a universal free G-space and X = % is a one-point space
(M2, [IMO)).

Let p be a prime number and let A, (G) be the G-poset of all elementary
abelian non-trivial p-subgroups of G. If G does not contain a p-subgroup,
then the set A,(G) is empty. Let A,(G) be the category whose objects are
elements of A,(G) and whose morphisms are homomorphisms which are
restrictions of inner automorphisms of G. Let C¢(E) be the centralizer of
E in G. There is a contravariant functor F' : A,(G) — G-CW such that
F(E) = G xcyp XF. In the case where X = x and G is a compact Lie
group which contains a non-trivial p-subgroup, there is a mod p homology
decomposition (Theorem 1.3 of [JM2])

hocolimge 4, () BCa(E) — BG.

Using this fact it is proved in [H1] that if the isotropy groups of X are
compact and contain a non-trivial p-group, then the map

hocolimpe a,(G) EG Xcgm) X¥ — EG x¢ X

is a mod p homology isomorphism.
We will prove that one can take instead of EG any Fj-acyclic complex K.
We will also construct, for such K, another mod p homology decomposition

hocolimy(g, ... 5, )je(sd A, (G)/c K XNEo...anE, X7 — K x¢ X.

Here we take C equal to the poset (sdA,(G))/G of the orbits of the
G-action on the barycentric subdivision of A,(G). (Recall that the elements
of sd A,(G) are the increasing sequences (Ey < ... < E,) of elements of
A,(G).) If G is a compact Lie group, then in the special case when X = x
and K = EG, we obtain a mod p homology isomorphism

hOCOhm[(Eo,...,En)]e(sd.AP(G))/G B(NEO n...N NEn) — BG,
which is in fact equal to the mod p isomorphism

EG x¢ B(A4,(G)) — BG.
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This last fact is well known in the finite case and can be obtained using 1.3
of [JM2]. The compact case is more complicated because of the topological
structure of A,(G).

If K = % then we obtain not only a homology but also a homotopy
decomposition of X/G (Theorem 0.1). In the case when G is a compact Lie
group and X =  this means that the space (BA,(G))/G is contractible.
For finite groups this was conjectured in [We|. A combinatorial proof of this
fact in the finite case was given in [Sy]. Our proof is a generalization of an
equivariant approach described for finite groups in [S1].

We will also study hy, decompositions, where h¢, is a generalized equiv-
ariant cohomology theory, i.e. maps u which induce isomorphisms

hi(u) : h5(X) — h(hocolimeee G X gr(ey X)),
We will use the fact that such a decomposition gives a spectral sequence
B (€ (X)) = b (X),
where hj; (=) = h(G xg —) and H™(C, —) = limg'(—) = Extg'(Z, —) are
the cohomology groups of the category C (Ch. XII of [BK], Section 5 of
[DF1]).

0. The main results. Let G be a Lie group. Let Og be the orbit
category of G whose objects are the orbits G/H, where H is a closed
subgroup of G. The morphisms of O¢g are the equivariant continuous maps.
Every morphism f : G/H — G/H; corresponds to a class [g] € (G/Hy)?
such that f([¢']) = ¢’gH,. It follows from the definitions that [g] € (G/H;)?
if and only if H C gH;g~ " The topology of the morphism space More,, (G/H,
G/H,) = (G/H;)" is induced from G/H;. The category Og is a topological
category in the sense of [HV], i.e. a small category C with topological mor-
phism sets such that the composition is continuous and the structural map
ObC — MorC is a closed cofibration. Similarly to [HV] we will work in the
category Top of compactly generated spaces. We will consider Og as a full
subcategory of the category G-CW of all G-CW-complexes and equivariant
cellular maps. This category is described, for example, in [Wi] and [JMO].

We introduce another topological category Co which plays a crucial role
in our considerations concerning equivariant decompositions. Its object set
WI(G) consists of all pairs (H, H') of closed subgroups of G such that H
is a subgroup of NH’. The morphisms (H,H') — (Hy, H]) of Cq are all
morphisms f = [g] : G/H — G/H; of Og such that H| C g~ 'H'g. If
=141 : (H1,H{) — (H2, H}) is a morphism of Cg, then the condition
H, C ¢'"1Hj{g implies that H) C ¢'~tg=*H'gg’ so f'f = [g¢’] is a morphism
of Cg. The topology of the morphism spaces is induced from the morphism
space topology in Og. There is an inclusion of categories i : Og — Cg such
that i(H) = (H,e). The category Cs has a final object (G, e).
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Let X be a G-CW-complex. Let X: Cc — G-CW be the functor defined
by X(H,H') = G xg X', X([9])(lg',2]) = [g'g, 9 ']. Hence X(G,e) =
G xg X = X. The equivariant maps

oH,H)=X(le]): Gxug X' - X
such that «(H, H')[¢’,x] = ¢’z form a natural transformation of functors
a: X — X where X is the constant functor. Let C be a topological category.
Suppose that we have a functor (H(—), H'(—)) : C — Cg. Then « induces a
G-map

u : hocolimeee G X (e xXH ), x.

Many examples of decompositions induced by such maps will be de-
scribed and studied in Sections 3 and 4. For example, let V' be a G-set of
closed subgroups of G and let Oy be the full subcategory of Og such that
G/H is an object of Oy if and only if H € V. Let C(V') be the full subcat-
egory of Cg whose objects are pairs (H, H') where H is a subgroup of H’
and H' € V. We will prove the following result in Section 3.

0.0. PROPOSITION. Assume that all isotropy groups of X are in V. Then:
(i) The map
u : hocolime vy X — X

is a G-homotopy decomposition.
(ii) The map u/G gives a homotopy decomposition

hocolimg, o, X7 ~ X/G.

The homotopy decomposition from (ii) is well known. It appears in [E]
and [DF2].

In Sections 1 and 2 we will consider the case where C is the orbit cate-
gory of the barycentric subdivision of a poset of subgroups of G. In order
to describe this case we need the following notation. Let W be a topolog-
ical G-poset. This means that W is a topological poset in the sense of [Z]
(i.e. the order relation is a closed subset of W?2) together with a continuous
and order preserving action of G on W. Let d,,WW denote the G-subspace of
Wntl consisting of all non-decreasing sequences w. = (wy,...,w,). The
G-subspace of d,W consisting of all w. such that w; # w;1q1 for all ¢
will be denoted by sd, W. The disjoint union sdW = ||, cysd, W is a
topological G-poset such that (wo,...,w,) < (wg,...,w,,) if and only if
{wp, ..., w,} C{wo,...,w,}. There are two G-poset maps pg : sd W — W
and pp : (sdW)°? — W such that po(w.) = wo, p1(w.) = w,. We will as-
sume that as a topological space, W is equal to the disjoint union of its
G-orbits Gw = G/G,, with the topology induced from the topology of G. In
this case the topological space W/G is discrete. If W satisfies the condition

that w < gw implies that w = gw then W/G is a poset such that [w] < [w]
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if and only if w < gw’ for some g € G. The G-poset sd W satisfies this
condition.

Let S(G) denote the poset of all closed subgroups of G. The group G
acts on S(G) by conjugation. If H € S(G), then the isotropy group of this
action at H is equal to N H. We will assume that S(G) is a topological space
equal to the disjoint union of its G-orbits Gz with topology induced from
the topology of G. Let W be a G-subposet of S(G) satisfying the condition
that w < gw implies that w = gw. Suppose that (sd W) /G is also a discrete
space. Then the space sd W is equal to the disjoint union of its G-orbits
G/(NwoN...N Nw,). There is a functor F' : (sd W)/G — Cq such that

F([wo, ..., wy]) = (Nwo N ...N Nwy, wy).

If [wo,...,w,] < [w],...,w,], then there exists exactly one element [g] of
G/(Nwy N ...N Nw.,) such that (wo,...,w,) < (qwhg™?,...,gwmg™1).
This implies that gw! g~! C w, and F([wo, ..., w,] < [wo,...,w!]) is the

morphism of C¢ defined by [g].

If X is a G-CW-complex then there is a functor X : (sd W)/G — G-CW
such that

)’Z([wOJ o 7wn]) =G X NwoN...NNws, X

In Section 2 of this paper we will prove the following result which in the
case when G is a finite group was proved in [S1] (2.10.iv and 2.11).

0.1. THEOREM. Let X be a G-CW-complex such that all its isotropy
groups are compact and contain a non-trivial p-subgroup. Then there is a
homotopy equivalence

hOCOhm[(Eo,‘..,E")}E(SdAP(G))/G XE"/(NEO Nn...N NEn) ~ X/G
If X = x is a one-point G-CW-complex, then
*([wo, ..., wy]) =G/(NwoN...N Nwy,)

and 0.1 specializes to the fact that, in the case when G is a compact Lie
group, the classifying space B((sd A,(G))/G) of the category associated to
the poset (sd.A,(G))/G is contractible.

If W is a poset (discrete as topological space), then the geometrical
realization |W| of the simplicial complex associated to W is equal to the
classifying space BW of the category associated to W. An action of G
on W induces a G-action on |W|. Then there are homotopy equivalences
|sdW|/G ~ |[W|/G and |sd W|/G ~ |(sdW)/G|. Let G be a finite group.
Let S,(G) be the G-poset of all non-trivial p-subgroups of G. Then the spaces
|Sp(G)| and |A,(G)| are G-homotopy equivalent (Theorem 2 of [TW]). It
is proved in [We] (2.6.1) that |S,(G)|/G is Fp-acyclic and conjectured that
|S,(G)]/G is contractible. It is also proved in [We] (2.1.2) that |S,(G)| is
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contractible whenever H is a subgroup of G which contains a normal non-
trivial p-subgroup. In [S1] a proof of the Webb conjecture was presented
which uses this fact and methods introduced in [O1]. We will generalize this
proof to the case of a compact Lie group.

If W is a topological poset then the morphism space of the topological
category associated to the poset W has topology induced from the topol-
ogy of W x W and the classifying space BW of this category is equal to
Ll,eny An % dnW/~ where A, is the standard n-dimensional simplex and ~
is an appropriate equivalence relation (3.6 of [Z]).

Let W be a topological G-poset such that the condition that w < gw
implies that w = gw. Then W/G is a topological poset. Suppose that the
topological space W/G is discrete and that, for every n € N, (d,W)/G is
discrete. (This holds for example if W is a subposet of S(G) and all sub-
groups in W are finite. Indeed, let p : (d,WW)/G — W/G be the projection
such that p([wo, ..., w,]) = [wy]. Then, for every [w] € W/G, the preimage
p~1([w]) is a finite space.) The topological space sd W/G = (sd W)/G is
also discrete in this case and BW = | |, . Ay X sd, W/~. There is a nat-
ural G-CW-complex structure on BW such that the poset sd W/G is equal
to the poset of the G-cells of BWW. We will show in Section 2 (cf. the proof
of 2.3) that

(BW)/G = | | A x (sdn W) /G~

neN

is a classifying space B((sd W)/G) of the category associated to the poset
sd W/G. We will also show that there are G-homotopy equivalences

hOCOIim[(wO,...,w,L)}esd W/G G/(NwoN...N Nw,)~ BsdW ~ BW.

In Section 1 we will prove that if G is a compact Lie group and contains a
non-trivial p-subgroup, then the space BA,(G)/G is contractible. The proof
consists of several steps which will be described below. Recall that P is a
p-toral group if its identity component Py is a torus and mo(P) = P/Fy is a
finite p-group. The following result is an immediate consequence of 0.1 but
in the proof of 0.1 we will use 0.2 in the case when X has finitely many orbit
types. We will prove this fact in Section 1.

0.2. THEOREM. Let G be a compact Lie group. Let X be a G-CW-
complex such that all its isotropy groups contain a mon-trivial p-subgroup.
Suppose that X¥ /H is contractible whenever P is a non-trivial p-toral sub-
group of G and H is a closed subgroup of the normalizer NP of P in G.
Then X/G is contractible.

To prove 0.1 we will also need the following result.
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0.3. PROPOSITION. Let R be a commutative ring. Let X and Y be G-
CW-complezxes such that all their isotropy groups are compact and contain
a non-trivial p-subgroup. Let f : X — Y be a cellular G-map of G-CW-
complexes. Then:

(i) If, for every compact subgroup H of G containing a non-trivial nor-
mal p-toral subgroup, f7 : X" — YH is a homotopy equivalence, then so is
f/G:X/G—-Y/G.

(ii) If, for every compact subgroup H of G containing a non-trivial
normal p-toral subgroup, fH : XH — YH s an R-equivalence, then so
is f/G:X/G—Y/G.

If G is a compact Lie group and Y = * then 0.3 is a consequence of
0.2 and the well known decomposition described in 0.0(ii). This result will
be proved in Section 1 in the case when X has finitely many orbit types.
We will show that the map BA,(G) — * satisfies the assumptions of 0.3(i).
Hence BA,(G)/G is contractible and using this we will infer 0.1. We will
also prove 0.3 for an arbitrary Lie group G.

Let W be a poset of closed subgroups of G. In Section 4 we will describe
a condition on W which ensures that h§,(Y) — h(X) is an isomorphism if
XH — YH is an R-homology isomorphism for all H € W. As an example
we will consider the case when

hi(X) = H*(K x¢ X, R).

In particular, we will show how 0.3(ii) and the results of [JMO] and [JO]
concerning the mod p decomposition

hocolimg/peoRP(G) BP — BG,

where R, (G) is a certain poset of p-toral subgroups of G, imply the following
result.

0.4. PROPOSITION. Let X and Y be G-CW-complexes such that all their
isotropy groups are compact and contain non-trivial p-subgroups. Let K be
an Fy-acyclic G-CW-complex. If, for every non-trivial p-toral subgroup H
of G, fH : XH — YH is an F,-equivalence, then so isidg xgf : K xgX —
K XaG Y.

If G is a compact Lie group with a non-trivial p-subgroup, then from the
fact (cf. the proof of 1.5) that all isotropy groups of B.A,(G) contain non-
trivial normal p-subgroups and that, for every subgroup H of G containing
a non-trivial normal p-subgroup, the space B.Ap(G)H is contractible, we
obtain the following result.

0.5. COROLLARY. Let G be a compact Lie group with a non-trivial p-
subgroup. Then the map EG xg BA,(G) — BG induced by the G-map
BA,(G) — * is an Fy-equivalence.
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The following posets of subgroups will be defined and used in the paper.
List of posets of subgroups of G

o A,(G) — the set of all elementary abelian non-trivial p-subgroups,

o A)(G) — the set of all elementary abelian p-subgroups,

e K,(G) — the set of all compact subgroups H such that, for every
P e M,(G), HN Z(P) contains a non-trivial p-subgroup,

o M, (G) — the set of all maximal non-trivial p-toral subgroups,

e N,(G) — the set of all compact subgroups containing a non-trivial
normal p-toral subgroup,

o S(G) — the set of all closed subgroups,

e S(G, X) — the set of all isotropy groups of X,

e 50(G,X)=8(G,X)US(G, %),

e S/(G) — the set of all compact subgroups,

e S.(G) — the set of all compact subgroups which contain a non-trivial
p-subgroup,

e S,(G) — the set of all subtoral p-subgroups,

¢ 5,(G) — the set of all subtoral p-subgroups which contain a non-trivial
p-subgroup,

e 7,(G) — the set of all p-toral subgroups,

e 7,(G) — the set of all non-trivial p-toral subgroups,

e 7,(G, X) — the set of all maximal p-toral subgroups of isotropy groups
of X,

e Z,(G) — the set of all compact subgroups containing a non-trivial
central p-subgroup.

1. Orbit spaces of compact Lie group actions. Let G be a Lie
group. The set of all compact subgroups of G will be denoted by S.(G).
The set of all elements of S/ (G) which contain a non-trivial p-subgroup will
be denoted by S.(G). The set of all closed p-toral subgroups of G will be
denoted by 7,(G). The set of all non-trivial p-toral subgroups of G will
be denoted by 7,(G). The set of all compact subgroups of G containing a
non-trivial normal p-toral subgroup will be denoted by N,(G).

If G is a compact Lie group, T' is a maximal torus of G and N,T/T is a
Sylow p-subgroup of NT'/T', then N,T is a maximal p-toral subgroup of G.
All maximal p-toral subgroups of G are conjugate to N,T" (Lemma A.1 of
[JMO]). The set of all maximal p-toral subgroups of G will be denoted by
M, (G) and the set of all maximal p-toral subgroups of isotropy groups of
X by T,(G, X).

Let S be a subset of the set of compact subgroups of G. We will use the
notation

Ws={(H,H):H CHCNH', H €8, HeS,(G).}
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A non-empty G-poset P of p-toral subgroups of G will be called concave
if, for any p-toral subgroups P and P’ the condition that P C P’ and
P € P implies that P’ € P. If G is a compact Lie group and P is concave,
then M, (G) C P because all maximal p-toral subgroups are conjugate by
elements of G.

Let CW denote the category of spaces having the homotopy type of
CW-complexes and let CWy be the subcategory of CW consisting of the
connected spaces. We will say that a class A of objects of CW is thick if it
is closed under homotopy equivalences and taking homotopy pushouts.

In this section we will assume that G is a compact Lie group with a
non-trivial p-subgroup and that X is a G-CW-complex with finitely many
orbit types.

1.1. THEOREM. Let A be thick. Let P be a concave G-poset of p-toral
subgroups of G containing all maximal p-toral subgroups of the isotropy
groups of X. If X¥/H € A whenever P € P and P C H C NP, then
X/G € A.

Proof. If (e) € P, then the assumptions imply that X/G € A. Let
k(G, X) denote the number of elements of 7,(G, X)/G.

If k(G,X) = 1, then 7T,(G,X) = (P) = {gyPg~' : g € G}, where P
is, up to conjugacy, the unique maximal p-toral group of an isotropy group
of X. Hence X = XP) = Uprep) XP'. 1t is proved in [O1] (in the proof
of Proposition 3) that the map X*/NP — X() /G is a homeomorphism.
(This is a consequence of the fact that, if G’ is a closed subgroup of G
and P is a maximal p-toral subgroup of G’, then NP acts transitively on
(G/G")F . Indeed, let aG’,bG’ € (G/G")F. Then a=!Pa, b~ Pb are maximal
p-toral subgroups of G’ so they are conjugate in G’ and there is ¢ € G’
such that bca™! € NP.) If the assumptions hold, then P is a maximal toral
p-subgroup of G. Hence, in this case, X/G = XF /NP € A.

We use induction on the dimension of G and then on the order of
m0(G) = G/Go, where Gy is the identity component of G. Assume that
the result is true for all proper closed Lie subgroups of G. Now we use
induction on k(G,X). Let k(G,X) = k+ 1 > 1. Suppose that the re-
sult is true for all G-CW-complexes X' such that k(G,X’) < k. Let P
be a minimal element of 7,(G, X). As P is not a maximal p-toral group,
it follows that NP/P contains a non-trivial p-toral subgroup (cf. [O1],
Lemma 2). Let X’ be a G-CW-subcomplex of X such that z € X \ X’
if and only if maximal p-toral subgroups of the isotropy group G, are con-
jugate to P. The induction assumption implies that X’'/G € A because
k(G,X") < k. Indeed, let P, = P\ (P). Then, for every (H,P') € Wp,,
X'P'/H=XF/H.
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It follows from the definition that X = X'UX ) and that X/G is equal
to the pushout of the diagram

X/ —x'PGg - X')a.

If z € X\ X', then M, (G;) is a subset of (P) and NP acts transitively on
(Gz)P = (G/G,)F. Hence X/G is the pushout of the diagram

XP/NP — X'"/NP - X'/G.

Since X' /NP — XT /NP is a cofibration, X/G is the homotopy pushout
of this diagram.

The space X'F, which has the structure of an N P-CW complex, satisfies
the assumptions of the proposition. It is of finite orbit type because, for
every closed subgroup G’ of G, (G/G')P /NP is finite (I1.5.7 of [Brl]). Let
P ={P € P: P C P C NP P # P}. From the fact that, for every
re€ X'P PCG,NNP and P is not a maximal p-toral subgroup of G, it
follows that P is not a maximal p-toral subgroup of G, N NP (Lemma 2 of
[O1]). Hence

T,(NP,X'") = | ] Mp(G.NNP)C P
reX’

and X'”'/H = XP'/H € A whenever (H, P') € Wp..
If P is a normal subgroup of G, then NP = G but k(X" G) < k,
because P ¢ T,(G,X'P) C T,(G, X). If P is not a normal subgroup of G,

then NP < G and we can use the induction assumption. In both cases we
find that X'* /NP € A. Hence X/G € A.

In particular, if P = 7,(G) and A is the class of all contractible objects
of CW, then 1.1 specializes to 0.2.

In what follows let A be a thick category. We now define three conditions
for thick categories.

A1: For every compact Lie group H and for every H-CW-complex X,
if X#' € A for every closed subgroup H' of H, then X/H € A.

A2: For every compact Lie group H and for every H-CW-complex X,
if dim X < oo and X € A, then X/H € A.

A3: For every compact Lie group H and for every H-CW-complex X,
if X/P € A for every P € M,(H), then X/H € A.

Let H' be a closed subgroup of G and let P be a set of subgroups of G.
We use the notation
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Ny ={HeS(G):H CHCNH'},
Np={HeSG):H CHCNH', H P},

Sp= |J {HeS(@G):PCHCP CNP},
P,P'eP

S)(G) =S11c),  Sp(G) = S1,0)-

1.2. COROLLARY. Let P be a concave G-poset of p-toral subgroups of G.
Let X be a G-CW-complex such that maximal p-toral subgroups of isotropy
groups of X are in P. Suppose that A is thick and that one of the following
conditions holds:

(i) A satisfies A3 and X /P’ € A whenever (P',P) € Wp and P’ € P.
(ii) A satisfies A1 and Xt € A whenever H € Np.
(iii) A satisfies A1 and A3 and X € A whenever H € Sp.
(iv) A satisfies A2, dim X < oo and X € A whenever H € P.

Then X/G € A.

Proof. The result is a consequence of 1.1. Suppose that (H, P") € Wp.

If (i) holds, then X*'/P" € A whenever P € M,(H). Since A satisfies
A3, it follows that X*'/H € A.

Assume that (ii) holds. Let H' = H/P' and let Y = X', We can
consider Y as an H'-CW-complex. If H| is a subgroup of H', then H} =
Hy/P', where P' C Hy C H, and Yo = XHo ¢ A because Hy € Np.
Hence X' /H = Y/H' € A.

If A satisfies A1 and X&' € A whenever G’ € Sp then X /P ¢ A
whenever P, P’ € P, P € Np. Now we can use part (ii) of this result to
obtain (iii).

If (iv) holds, then X' /H € A by the definitions.

1.3. EXAMPLES. Let
C={X € CW)y: X is contractible},
D(R) ={X € COW)y : X is R-acyclic},
Br(R)={X €CWy: H(X,R)=0fori=1,...,k}.
(i) The well known decomposition from 0.0(ii) implies that all these
classes satisfy A1l.
(ii) The classes D(F),) and By(F),) satisfy A3. This is a consequence of
the existence of an appropriate transfer. Let H be a closed subgroup of G

and let mx : X/H — X/G be the projection to the orbit space. It is proved
in [02], [LMM], [LMS] that there exists a natural transfer map

tyx : H*(X/H,R) — H*(X/G, R)
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such that the composition H*(mx)tx is the multiplication by the Euler
characteristic x(G/H) of G/H.If H is a maximal p-toral subgroup of G, then
X(G/H) is prime to p. Hence, if H"(X/H, F,) = 0, then H"(X/G, F,) = 0.

(iii) The classes D(Z) and D(F),) satisfy A2. This follows from Theo-
rems 1 and 2 of [O1].

The next result describes the case when P = 7,(G) and A is one of the
classes from 1.3. The statement (i) is a special case of 0.3. For a finite group
G, this result is proved in 2.11 of [S1]. The statement (iii), for finite groups,
finite G-CW-complexes and F,-acyclic spaces, is proved in [We].

1.4. PROPOSITION. Let X be a G-CW-complex such that all its isotropy
groups contain a non-trivial p-subgroup. Then:

(i) X/G is contractible (resp. R-acyclic) if X is contractible (resp. R-
acyclic) for all closed subgroups H containing a non-trivial normal p-toral
subgroup.

(ii) X/G is Fp-acyclic if, for every H € S,(G), X* is F,-acyclic.

(iii) If dim X < oo and, for every non-trivial p-toral subgroup H of G,
XH is Z-acyclic (resp. Fy-acyclic), then X /G is Z-acyclic (resp. Fy-acyclic).

Proof. T,(G) is a concave set of p-subgroups of G. By 1.2(ii), Nz, (@) =
N, (G) so (i) follows. The statement (ii) is a consequence of 1.2(iii) because
St,(a) = Sp(G), and (iii) follows from 1.2(iv).

1.5. COROLLARY. If G is a compact Lie group with a non-trivial p-
subgroup, then the space BA,(G)/G is contractible.

Proof. 1t is proved in 6.1 of [JM2] that there are only finitely many
conjugacy classes of elementary abelian p-subgroups in G. If € BA,(G),
then G, = NEyN...NNEy, where E; € A,(G) and Ey < ... < Ej, s0 Ey C
G, C NEy. For every H € N,(G), the space (BA,(G)) = B(A,(G)H) is
contractible. For G finite this follows from 2.1.2 of [We|. The proof for any
compact Lie group is similar. The space A,(G) is a disjoint union of its
NH/H-orbits. Let

AP(G>2E = {E/ S .Ap(G) E C El}.

There exists a non-trivial normal p-toral subgroup P of H such that NH is
a subgroup of NP. Indeed, let () be the intersection of all maximal p-toral
subgroups of H. Then N H is a subgroup of NQ. Let Qg be the component
of the identity of (). We can take P = Qg if Qg is non-trivial. If Qy = e,
then we can take as P the intersection of all Sylow p-subgroups of @. In this
case P is the maximal normal p-toral subgroup of H. It follows from A3 of
[JMO] and 7.6 of [JM1] that if P’ € 7,(G), then the center Z(P') of P’ is
also in 7,(G). Let E be the maximal elementary abelian p-subgroup of Z(P).
Then E C H C NH C NE, NH C NCE and, for every E' € A,(G)¥,
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E'NCE = E'F is a non-trivial group. The poset map hg : A,(G)? —
(A,(G)T N A,(CE))>k such that hg(E') = (E' N CE)E whenever E' €
Ap(G)H, is continuous because it is an NH/H-poset map. The map Bhg
is the composition of the homotopy equivalences BA,(G)? — B(A,(G)" N
A,(CE)) and B(A,(G)" N A,(CE)) — B((A,(G)" N A,(CE))>k). The
space B((A,(G)? N A,(CE))sE) is contractible because A, (G)%,, has the
final object E. Now we can apply 1.4(i). -

If G is finite and a normal subgroup H of GG contains a non-trivial p-
subgroup then it was proved in [Dw] that the space BA,(G)/H is F,-acyclic.
In 1.6 we will prove that this space is contractible.

Let K, (G) denote the set of all subgroups H of G satisfying the condition
that, for every maximal p-toral subgroup P in G, H N Z(P) contains a non-
trivial p-subgroup. If H € K,(G) and H C H', then H' € K,(G). If H is a
normal subgroup of G which, for every maximal p-toral subgroup P of G,
contains a non-trivial normal p-toral subgroup P’ of P, then H € K,(G).
Indeed, H N ZP contains P'F, hence it contains a non-trivial p-group. If G
is finite and a normal subgroup H of G contains a non-trivial p-subgroup,
then H belongs to K,(G). It was proved in [Dw] that in this case HN P is a
normal subgroup of P and a Sylow p-subgroup of H so H N Z(P) contains
a non-trivial p-subgroup. The following result is a generalization of 1.5.

1.6. PROPOSITION. Let G be compact Lie group with a non-trivial p-
subgroup. If H € IC,(G) then the space BA,(G)/H is contractible.

Proof. The result is a consequence of 1.4(i). It follows from the definition
that N,(H) C N,(G), hence, as in the proof of 1.5, for every Hy € N,(H),
BA,(G)Ho is contractible. If z € BA,(G), then H, contains a non-trivial
p-subgroup. Indeed, let G, = NEy N ... N NEy, where E; € A,(G) and
FEy < ... < Ej. Let P be a maximal p-toral subgroup of G such that E; C P.
It follows from the definitions that HNZP C HNNEyN...NNE, = H,.
The assumption that H € IC,,(G) now implies that H, contains a non-trivial
p-subgroup.

2. Homotopy decompositions over (sd W)/G. Let C be a topological
category. For any two functors Y : C — Top and Y’ : C°? — Top, the
topological space Y/ x¢ Y is the coequalizer of the two natural maps

po.pr: J[ Y(e)xY'(¢) = J] V() x Y'(c)
a:c—c! ceC
induced by the maps
po(@)(y,9) = Y(@)y,y),  pi(@)(y,9) = (v, Y ()y).
In particular hocolim¢ Y = B(— | C) x¢ Y, where ¢ | C is the “under”
category of the morphisms ¢ — ¢ of C.
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If G; and G5 are groups and Y : C — G1-Top, Y’ : C°P — G5-Top, then
G1 x Go acts in a natural way on Y/ x¢ Y. If G; = e then we obtain a
Go-action.

Let G be a Lie group and let X be a G-CW-complex. Let S(G, X)
denote the set of isotropy groups of X and Sy(G,X) = S(G,X) U {G}.
The full subcategory of Og whose objects are the orbit spaces G/H, where
H € S(G,X), is denoted by O(G, X). The G-map spaces will be denoted
by Mapg(—, —).

Let Fi, F5 : G-CW — G-CW be functors such that

Fi(X) = Mapg(—, X) xog Fi,  Fi(f) = Mapg(—, f) xo¢ Fi

whenever f : X — X’. In the formulas above the restriction of F; to the
subcategory Og of G-CW is denoted by the same letter. We will need the
following fact.

2.1. PROPOSITION. Let 7 : F1 — F5 be a natural transformation of func-
tors induced by its restriction to Og. If , for every G/H € O(G, X), 7(G/H)
is a G-homotopy equivalence, then so is T(X) : F1(X) — F»(X).

Proof. Since the Og-orbits of the functor Map.(—, X) have the form
Mapg(—,G/G,), where z € X, the restriction of Map(—, X) to O(G, X)
is a free functor in the sense of [DF1] and

Fi(X) = Mapg(—, X) xo(e,x) Fi-
This can be proved by induction on the dimension of X. Assume that the
n-skeleton of X, denoted by X,,, is equal to the pushout
D" xT, — S" "' xT, — X,

where T;, is a disjoint union of G-orbits from O(G, X) and the left arrow is
the cofibration induced by the natural inclusion S"~! — D", Then F;(X,,)
is equal to the homotopy pushout

D™ x Fz(Tn) — S™ x Fl(Tn) — Fi<Xn71)-
This implies that, if 7(X,,—1) is a homotopy equivalence then so is 7(X,,).
Now one can use the fact that 7(X) = hocolimy,en 7(X5,).

2.2. ExaAMPLES. (i) Let K be a G-CW-complex. Let F=(H(—),H'(-)) :
C — Cg be a functor such that, for every isotropy group G’ of X, the map

hOCOlimcEC K XH(c) (G/G/)Hl(c) — K/G/
is a homotopy equivalence. Then so is the map
hOCOlimcec K X H(c) XH/(C) — K Xaq X.

(ii) Let f : K3 — K3 be a cellular map of G-CW-complexes. If, for every
isotropy group H of X, f/H : K1/H — Ky/H is a homotopy equivalence,
thensois f xg X : K1 xg X — Ky xg X.
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(iii) Let V be a G-subposet of S(G). Using the fact that for every G’ € V,
hocolimg, reoy, (G/G)" = B(G/G' | Oy) ~ x,

we obtain the decomposition described in 0.0(ii).

(iv) Let F = (H(—),H'(—)) : C — Cq be a functor such that, for every
isotropy group G’ of X, the map

hocolim.ce G X g (¢) (G/G’)H/(C) — G/G
is a G-homotopy equivalence. Then so is the map
hocolimeee G X (e X", x,

In this section we will assume that W is a topological G-subposet of
S(G) and that all elements of W are finite subgroups of G. This implies
that the orbit spaces d,,W/G are discrete and that W satisfies the condition
that w < gw, where g € G, implies that w = gw.

Let H be a closed subgroup of G. We will use the notation

Wy ={H eW:H C H}.

If H is a compact Lie group then the topology on Wy induced from W is
equal to the topology induced from S(H). This follows from the fact that
(G/H)H /NH' is discrete (cf. the proof of I1.5.7 in [Br2]).

2.3. PROPOSITION. Let X be a G-CW-complex such that all its isotropy
groups are compact.

(i) If, for every x € X, the map K X, B(Wg,) — K/G, is a homotopy
equivalence, then there is a homotopy decomposition
..... oesaw/c K Xnmon..ovm, X7~ K xg X.

(ii) If, for every x € X, the map G xg, B(Wqg,) — G/G, is a G-
homotopy equivalence, then there is a G-homotopy decomposition

hocolim( g,

hocolim(sr, .. w1, jesaw/c G XNHo...oNH, X" =~ X.

Proof. Let

Fle(X) = hocolimy g, m,yjesaw/c K XNHon..anm, X

It follows from the definitions that Fj (X) = K x¢ FL(X).
If X =% = G/G, then there is a G-homotopy equivalence

H,)]esd W/G G/(NHO n... ﬂNHn) ~ BW.

Indeed, F((*) is the classifying space of the category W[G] whose ob-
jects are the pairs ([w.],[g]), where [w.] € sdW/G, [¢] € G/(NHoN...N
NH,), w. = (Hyp,...,H,). The category W[G] is a topological poset with
an action of G defined by the action of G on G/G,. and there is an
equivariant isomorphism of topological G-posets F' : W[G| — sd W such
that F(Jw.],[g]) = gw.. Hence we have equivariant homotopy equivalences

-----

F¢ (%) = hocolimy(g,

-----
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F/.(x) ¥ BW|G] ~ BsdW. Let N be the category whose objects are finite
posets [n] = {0 <1 <...<n} and whose morphisms are the injective poset
maps. Let Fiy : N — G-Top be the functor such that Fy ([n]) = sd,, W
consists of all injective poset maps [n] — W. Let A,, be the standard n-
dimensional simplex. Then A(_y is a free functor on the category N. This
implies that there are equivariant homotopy equivalences

BsdW =~ hocolimy Fyy = Ay xn sd(_y W ~ BW.

There is a natural G-CW-complex structure on BW such that the poset
sdW/G = (sd W) /G is equal to the poset of the G-cells of BW. For K = x
we obtain homotopy equivalences

B((sdW)/G) = F'(%) = Fi(+)/G ~ B(sd W) /G ~ (BW)/G.

The inclusions X » — X induce a map px(X) : Fj-(X) — K xg X. The
map pg(X) is a G-map and px(X) = K x¢ pg(X). Let mx : FL(X) —
F(.(*) ~ BW be the natural G-projection. To obtain the result it is suf-
ficient to prove that, for every = € X, the map px(G/G,) is a homotopy
equivalence. This follows from the fact that, for every closed subgroup H of
G, mx induces an H-homotopy equivalence pg' (G/H)(H) — BWpg. Indeed,
consider the natural projection f,. : G Xnm,n..nNmH, (G/H)% — G/H.
Then G X NHoN...NNH,, (G/H)H" =G xg f;l(H> Let

Y(w.,H)={g€G:gH,g ' CH}/(NHyn...NNH,)
CG/(NHyn...NNH,).

Then there is an H-isomorphism  : Y (w., H) — f,1(H) such that u([g]) =
[9,g 1 H]. The space

pél(G/H)(H) = hOCOIim[w.]Esd wW/G Y(wa H)

is the classifying space of the category W[H| whose objects are the pairs
([w.],[g]), where [w.] € sd W/G, [g] € Y(w.,H). W[H] is a topological sub-
poset of W[G] and the restriction of Fyy gives us an H-poset isomorphism
W[H] — sd Wg. Now we can use the H-homotopy equivalence B sd Wy ~
BWpy to conclude that px(G/H) is homotopy equivalent to the projection
K xpg BWy — K/H (which implies (i)) and that pg(G/H) is G-homotopy
equivalent to the projection G x g BWy — G/H (which implies (ii)).

The following result is an immediate consequence of 2.3.

2.4. COROLLARY. Let X be a G-CW-complex such that all its isotropy
groups are compact. Let W be a G-poset of finite subgroups of G such that
the space Bsd W/G is contractible. Suppose that A is thick and satisfies the
condition Al.
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(i) Suppose that, for every x € X, the map K xg, B(Wqg,) — K/G,
is a homotopy equivalence and that, for every (Hy, ..., H,) € sd W, we have
K XNHyn..nNH, XPn € A. Then K xg X € A.

(ii) Suppose that, for every x € X, the space
B(Wg,)/Gy = BsdWg, /Gy
is contractible and that X* € A whenever
He{NHyN...NNH,NG" : (Hy,...,H,)€sdW,
G' € 8(G,X), H, CG'}.
Then X/G € A.

2.5. ExAMPLES. (i) Let X be a G-CW-complex such that all its isotropy
groups are finite. Then there exists a G-homotopy decomposition

hocolimy(zr, . w1, yjesd (G, x) /¢ G XNHon..oNH, X" = X

-----

because, for every = € X, the space BS(G, X)q, is G,-contractible.

(ii) Suppose that, for every z € X, y € K, G, € Sc(G) and G, NGy €
Kp(Gg). Then there is a homotopy equivalence

hocolimy(g,, .. 5, yjesd A, (@)/¢ K XNBon...onE, X7 2 K xg X,

This is a consequence of 2.3, 2.2(ii) and 1.6. In particular, for K = % we
obtain 0.1.

(iii) Let G be compact Lie group with a non-trivial p-subgroup. Let
P be the poset of all non-trivial finite p-subgroups of G. Then the space
(BP)/G is contractible. This follows from (ii) and from the fact that, for
every (Ey,...,E,) € sd A,(G), the space B(P) is contractible whenever
E,<H<NEyn...NNE, because P'E,, € PH if P’ ¢ PH.

(iv) Let X be a G-CW-complex such that all its isotropy groups are
compact and contain a non-trivial normal p-subgroup. Then there exists a
G-homotopy decomposition

hocolim(g,, .. g, )jesd A,(G)/G G XNEon...anE, X~ X

because, for every € X, the space BA,(G;) is G, contractible. This follows
from the fact that the poset A,(G)%* is non-empty (cf. the proof of 1.5),
and that, for every isotropy group H of BA,(G.), the map BA,(G,)" — *
is a homotopy equivalence because all isotropy groups of BA,(G;) contain
non-trivial normal p-subgroups.

One can prove this fact using similar methods to those in 1.5. Let E be
a non-trivial, normal, elementary abelian p-subgroup of G,. Let W be the
G-poset of all subgroups of G, of the form E'E" where E' € A,(G,) and
E" is a subgroup of E. Then BW is G,-contractible.
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Let G be a finite group. If P is a concave G-poset of p-subgroups of G,
then P¢ is the G-subposet of P such that P € P° if and only if P € P and
@(P) ¢ P. Here (P) denotes the Frattini subgroup of P. If P = 7,(G),
then P° = A,(G).

2.6. PROPOSITION. Let G be a finite group. Let P’ be a concave G-poset
of p-subgroups of G. Let X be a G-CW-complex such that all Sylow p-
subgroups of its isotropy groups are in P’. Suppose that P is a G-poset
of p-subgroups of G such that P’ C P C P’. Then there is a homotopy
equivalence

pojesapc X/ (NPoN...NNP,) ~ X/G.

Proof. The space B(P')/G is contractible. (This is a generalization of
Corollary 2.6.1 of [We], which states that B(P’)/G is Fp-acyclic.) Indeed,
if € B(P'), then G, = NPy N ...N NPy, where P, € P’ and P, <
... < Py, so Sylow p-subgroups of G, are in P’. It is proved in [We] (2.1.2)
that, for every H € Np/, the space B(P')¥ is contractible. Thus we can
apply 1.2(ii) to the class C. Proposition 1.7 of [TW] implies that the H-map
B(Pu) — B(Pj};), induced by the inclusion of H-posets of subgroups, is an
H-homotopy equivalence. The proof of this fact is similar to the proof of
2.1(i) of [TW]. Hence B(Py)/H ~ B(P})/H and the space B(Py)/H is
contractible. Now we can use 2.1.

hocolim(p,

-----

The following result is an immediate consequence of 2.6. It is stronger
than 1.2.

2.7. COROLLARY. Let G be a finite group. Let P and X satisfy the as-
sumptions of 2.6. Suppose that A is thick and satisfies the condition Al
and that one of the following conditions holds:

(i) Xt /(NPyn...N NP,) € A whenever (Py,...,P,) € sdP,
(ii) X € A whenever
He{NPN...NNP,NG" :(Py,...,P,) €sdP,
G € S8(G,X), P, CG'}.
Then X/G € A.

2.8. COROLLARY. Let G be a finite group. Let P be a G-poset of p-
subgroups of G such that A,(G) C P. If, for every x € X andy € K, G,
contains a non-trivial p-subgroup and G, N G, € K,(Gy), then there is a
homotopy equivalence

hocolimp,,... p.)jesap/c¢ K Xnpon..anp, X7 = K xg X.

Proof. This result is a consequence of 2.5(ii). Let P be a non-trivial
p-subgroup of G. It follows from [TW], 1.7 and 2.1, that there is an H-
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homotopy equivalence B(A,(G)g) — B(Pu) whenever H is a subgroup of
G and contains a non-trivial p-subgroup. Now we can use 2.1 and 2.3.

3. Categories associated to G-posets. Let K be a G-CW-complex.
Every equivariant cellular map f : X7 — X5 of G-CW-complexes induces
maps f(H,H') : K xg X' — K xyg X' where (H,H') € W(Q), i.e.
H H € §(G) and H C NH'.

For every functor F' = (H(—),H'(—)) : C — Cg we have maps

é: : hocolimece K x gr() X9 = K x¢ Xi,
fr : hocolimece K X (¢ XlH,(C) — hocolimeec K X (¢ X2H,
such that fp = hocolim.cc f(H(c),H'(c)) and f(G,e)p1 = ¢pa2fr. It follows
from general homotopy colimit theory that, if f(H(c), H'(c)) are homotopy
equivalences for all ¢ € C, then the map f(G,e) : K xg X1 — K xg X2 is a
homotopy equivalence. This motivates the following definition.

(e)

3.0. DEFINITION. Let S be a G-poset of closed subgroups of G. A G-
subposet W of W(G) is (S, K)-essential if, for every equivariant cellular
map f : X — Y of G-CW-complexes with all isotropy groups in S, the
condition that K xg XH# — KxugYH isa homotopy equivalence for every
(H,H') € W implies that K xg X — K x¢ Y is a homotopy equivalence.

In particular, if W is (So(G, X), K )-essential and K x5 X#' — K/H is
a homotopy equivalence whenever (H, H') € W, then K xg X — K/G is a
homotopy equivalence.

The results of previous sections enable us to exhibit many non-trivial

examples of essential posets. Our main tool will be the following consequence
of 2.2(i).

3.1. PROPOSITION. Suppose that
F = (H(=), H'(=)) : C = Co(W, dy(c)
is a functor such that for every G' € S, the map
hocolimeec K X gr(c) (G/GHYT') S K&
is a homotopy equivalence. Then the poset W is (S, K)-essential.

3.2. ExaAMPLES. (i) Let P be a concave G-subposet of p-toral subgroups
of G such that all maximal p-toral subgroups of elements of S are in P.
Then it follows from 1.1 that the poset Wp = {(H,P) : P C H C NP,
PeP, HeS.(G)}is (S, *)-essential.

(ii) The poset Wy (o) = {(H,E): EC H C NE, E €S8, H € S(G)}
is (S¢(G), x)-essential. Let Sk (G) be the poset of all compact subgroups
H of G with non-trivial p-subgroups and such that H N Gy € K,(H) for
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every k € K. Then the poset Wy () is also (Sk(G), K)-essential. This is a
consequence of 2.5(ii).

(iii) Let f : X — Y be an equivariant cellular map of G-CW-complexes
such that, for every compact subgroup H of G with a non-trivial normal
p-toral subgroup, the map f7 : X — YH is a homotopy equivalence. This
implies that, for every (H, H') € Wy, (q), the map fH" is an H-homotopy
equivalence so the map K x g X " S KxpYH isa homotopy equivalence.
If all isotropy groups of points of X and Y are in Sk (G), then, by (ii), the
map Fr(f) : K xg X — K X¢g Y is also a homotopy equivalence. In the
case when K = x we obtain 0.3(i).

Now we describe a construction of topological categories C associated to
topological G-posets and some examples of functors C — C¢ defined on such
categories. We show that the known homotopy and homology decomposi-
tions can be obtained using this construction.

Let W be a topological G-poset such that W/G is a discrete topological
space. Let d : W — S(G) be a G-poset map such that, for every w € W, dw
is a subgroup of G,. It follows that dw is a closed normal subgroup of G,.
The G-poset maps with the above property will be called admissible maps.
Let Co(W, d) be the topological category whose objects are the elements of
W and whose morphism spaces are defined by

Morc,, (w,a)(w,w') = {g € G:w < gw'}/dw' C G/dw'.

The composition of [¢g] : w — w" and [¢'] : v’ — w" is [gg'] : w — w". The
categories Cq (W, d), for discrete groups G, are studied in [S1-3], [JS].

3.3. ExaAMPLES. (i) Let W(G) denote the G-subposet of S(G) x W whose
elements are all pairs (H,w) where w € W and H C Gy. Let dy (g
be the admissible map W(G) — S(G) such that dy (g)(H,w) = H. Let
Ca(W(G),dw ) = Ca(W). It follows from the definitions that Cg(x) =
O¢. If pw : W(G)/G — S(G)/G is the map induced by the natural pro-
jection, then, for every closed subgroup H of G, p;Vl([H]) =WH/NH. (In
the notation of [T], Ca(W) = SHGOG WH.) The space W(G)/G is discrete
if, for every H € S(G), WH /NH is discrete. Hence if, for every w € W,
(G/Gw) /N H is discrete then W(G)/G is a discrete space. This is, in par-
ticular, the case when, for every w € W, G, is compact (cf. I1.5.7 of [Br2]).

(ii) Let d : W — S(G) be an arbitrary admissible function. Then there
exists an inclusion j4 : Ca(W,d) — Co(W) such that ji(w) = (dw,w) and
the image of j4 is a full subcategory of Co(W).

(iii) For W = S(G)°?, W(G) = W(G) and Co(W) = Cq. Let V be a
G-set of subgroups of G. Denote by W(V') the G-subposet of W(G) such
that (H,H') € W(V) if and only if H,H" € V and H C H’. The full
subcategory of Cg whose object set is W(V') will be denoted by C(V). If
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p:W({V)/G — S(G)/G is induced by the natural projection, then, for every
closed subgroup H of G, p~'([H]) = V(>H)/NH, where V(> H) is the set
of all elements of V' which contain H. (That is, C(V) = SHEoV V(>H).)
Hence the space W(V) is discrete if, for every H, H' € V, H C H' implies
that (NH'\(G/H')?)/NH is discrete. In particular, if V is a G-poset of
compact subgroups of G, then W(V')/G is discrete (IL.5.7 of [Br2]).

(iv) Let U be a G-space and let W be a G-poset of non-empty finite

subsets of U. There exists an admissible function dy such that, for every
w e W7 dU’U) = ﬂuew Gu

There exists a functor Oy : Cq (W, d) — Og such that Oy4(w) = G /dw for
every w € W, and O4([g])(¢’'dw) = ¢'gdw’ for every morphism [g] : w — w’
of Cq(W,d). We will use the notation

Eg(VV, d) = hOCOhmwecc(W,d) G/dw

Let d : W — S(G) be a G-poset map. Then, for every w € W,
dw C G € Nd'w. Hence there exists a functor (d,d’) : Ca(W,d) — Cq
such that (d,d")(w) = (dw, d'w).

Let G’ be a subgroup of G. We will use the notation

Waog ={weW :dwCG'}.

Wa ¢ will be considered as a G’-poset. The admissible function dg/ :
Wy o — S(G’) will be defined in such a way that, for every w € Wy ¢,
dow =G Nduw.

3.4. LEMMA. Let G’ be a closed subgroup of G such that Wy ¢/ /G’ is a
discrete space. Then there exists a G-homotopy equivalence

hOCOIimeCG(W,d) G X dw (G/G/)d/w ~ G Xaqr EG/(Wd’,G’7 dc;/).
Proof. Let
Ry, = More,, (w,q)(—, w) = |_| Morw (—, gw) = G X gy Mory (—, w),
[g]€G/dw

where | ;e /a, Morw (—, gw) is topologized as a subspace of G//dw. Then
for every functor T': Cq(W,d) — G-CW, Ry, x¢qw,a) T = T(w).
Hence
Ry Xeowa) G Xa—) (G/G) ) = G x40 (G/G)T
=G Xgpw {9€G:dgwCG}G)=GxcY
where Y = {g: d'gw C G'}/dw is a G’'-subspace of G/dw.
We will consider Cqr(Wyr v, de) as a subcategory of Cq (W, d). Then

YV =Ry Xep (W grdgn G /der ()
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and R,, after restriction to Co/(Wa ¢/, dg) is equal to
|_| MOrCG, (Wd/,G/,dG/)(_Mgw)'
[gdw]eY /G’
Let Eq = B(— | Cq(W,d)). Then E; is a Cq(W, d)-CW-complex whose
orbits have the form R,,. Hence,
hocolimy,eccq, (w,d) G X dw (G/G’)d/w = Eq Xcow,a) G Xa(—) (G/G’)d/(*)
=G xq (Ba Xeyr Wy grdgn G /der (=)
The functor Eq after restriction to the category Cq/ (War v, dg) remains
free in the sense of [DF1]. Hence there exists a G’-homotopy equivalence
Ea Xcg (W grdiy) G /der (=) = hocolimyee, (w, gr.der) G /derw.

3.5. PROPOSITION. Suppose that, for every G' € S, Wy ¢ /G’ is a dis-
crete space and the map

hocolimy,ec, (W, o1 der) K/dgw — K/G'
1s a homotopy equivalence. Then:
(i) The map
hocolimyece (w.ay K Xaw X4¥ — K xq X

18 a homotopy equivalence if X is a G-CW-complex and the isotropy groups
of X are in S.
(ii) The G-poset {(dw,d'w) : w € W} is (S, K)-essential.
Proof. Let Fy : G-CW — G-CW be a functor such that
Fy (X) = hOCOlimwGCG(Wd) G X dw Xd/w.
It follows from 3.4 that, for every G’ € S, there are homotopy equivalences
K xX¢g Fd/(G/G/) ~ K X hOCOlimeCG/(Wd/ ardar) G'/dw NG’

:hOCOIimeCG/(Wd/ )K/dG/wZK/G/IKXG G/G/

ardar
Now, it is sufficient to apply 2.2(i) and 3.1.

We now describe some special cases of 3.5.

3.6. ExaMPLES. (i) Let W be a topological G-poset satisfying the con-
dition that w < gw implies w = gw. Assume that the spaces d,W/G are
discrete. Let ds : sd W — S(G) be an admissible function such that

dsw. =Gy, =Gy N... NGy, .

The natural projection sd W — (sd W)/G induces a natural equivalence of
categories Cg(sdW,ds) — (sdW)/G. Tt follows from the definitions that
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there is a G-homotopy equivalence
hOCOlimCG(Sd W,ds) G/ds(—) — BW.

If W is a G-subset of S(G), then dy(Hy,...,H,) = NHyN...N NH, and
d'(Hy,...,H,) = H,. Hence 3.5 can be considered as a generalization of 2.3.

(ii) Let W be a G-subposet of S(G). Then G, = Ngw = Nw. If
d: WP — S(G) is an arbitrary admissible function, then we can take
d'w = w whenever w € W. Let d. : W — S(G) be an admissible map
such that, for every w € W, d.w = Cqw = Cw. Then Cq(W°P,d.) = Cw
is the category whose objects are elements of W and whose morphisms are
the group homomorphisms which are restrictions of inner automorphisms
of G. Let X be a G-CW-complex such that all its isotropy groups are com-
pact. If the space hocolimyec,,, H/Cnw is H-contractible whenever H is
an isotropy group of X, then the map

hocolimyec,, G Xcgw X — X
is a G-homotopy equivalence. If the map
hocolimyecy,,, K/Crpw — K/H

is a homotopy equivalence whenever H is an isotropy group of X, then the
map

hocolimyecy, K Xcpw X¥ — K Xg X
is also a homotopy equivalence.

(iii) Let W = A,(G). Then Cq(Ap(G)°P,d.) = A,(G). If H is a com-
pact Lie group with a non-trivial p-subgroup, then there is an H-homotopy
equivalence

hOCOlimEeAp(H) H/CHE >~ gOZp(H)
where Z,(G) is the poset of all compact subgroups of G with a non-trivial
central p-subgroup and

SOZP(H) = E‘H(ZZP(IJ)7 ld) = hOCOhmH/H’GOZP(H) H/H/
Indeed, for every H' € Z,(H), the space (hocolimgea, (m) H/CyE)T =
B(H/H' | Og4,) is homotopy equivalent to B(H' | d.) = B(A,(CrH')) and
hence is contractible. This implies that there is a G-homotopy equivalence
hOCOlimEGAP(G) G XCcE XE ~ X
whenever all isotropy groups of X are in Z,(G).
3.7. EXAMPLE. Let V be a G-subset of S(G) such that W(V)/G is dis-

crete. Let
TV(X) = hocolim(H’H/)ec(v) G XH XH .

This construction is natural in X and S(G,ry (X)) C V. The G-maps G x g
XH" — X define a natural transformation of functors py : rv — Idg-cw.
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There exists a G-homotopy equivalence (natural in X)

rv(X) — B(Mapg(G/e, —), Ov, Mapg(—, X))
where B(—, —, —) is the bar construction described in Section 3 of [HV] and
in Section 4 of [Dw].

If G’ € V, then the map py(X)¢ : ry(X)¢ — X is a homotopy
equivalence. Indeed, in this case we have homotopy equivalences
(hOCOIim(H,H’)eC(V) G XH XH/)GI ~ hOCOhm(H,H’)EW(V(ZG’)) XH/ ~ XG,.
Suppose that all isotropy groups of X are in V. Then py (X) : ry(X) — X is
a G-homotopy equivalence and gives us a G-homotopy decomposition of X

hOCOhm([_LH/)EC(V) G XH XH/ ~ X
from 0.0(i). If f: X; — X5 is an equivariant map of G-CW-complexes and,
for every H € V, f7 : XH — XH is a homotopy equivalence, then 7y (f)
is a G-homotopy equivalence because, for every (H,H') € W(V), H acts
trivially on X' Hence, for every K, W(V) is (V, K )-essential.

It follows from the definitions that py (X)/G gives us a homotopy de-
composition of X/G from 0.0(ii):

hocolimg /g co,, XH ~ hocolim g, gryec(v) XH ~ X/G
and that
gOV = EG(‘/, ld) = hOCOlimg/He@V G/H
= hOCOhm(H,H/)eC(V) G/H = ’r’v(*).

Let G’ be a closed subgroup of G and let V' be a G-subposet of S(G) such
that the spaces W(V)/G and W(Ve/)/G' are discrete. The following two
results are consequences of 3.5 and the fact that C(V) = Ca(W(V), dw(c))
and rv (x) = EgW(Va), dw(a))-

3.8. COROLLARY. There exists a G-homotopy equivalence

hocolim(HﬂH/)ec(V) G X H (G/G/)Hl ~ G Xar EG’(W(VG’)’dW(G/))-

3.9. COROLLARY. Let f: X1 — Xs be a G-cellular map such that, for
every H € V, fH is a homotopy equivalence.

(i) If, for every isotropy group G' of X;, the map rv,, (*) — * is a
G'-homotopy equivalence, then the maps

hOCOhm(H7H’)€C(V) G XH XlH/ — X;
and f are G-homotopy equivalences.

(i) If, for every isotropy group G" of X, the map K xgiry,, (x) — K/G'
is @ homotopy equivalence, then the maps

hocolim g gneeovy K xu X' — K xg Xi

and idg Xgf are also homotopy equivalences.
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3.10. EXAMPLE. Let X be a G-CW-complex. It follows from 3.6(iii) and
2.5(iv) that there are G-homotopy equivalences

TZP(G)<X> ~ hOCOHmEEAp(G) G XCcE )(E7
rar () (X) = hocolimg,, . B,)jesd 4, (G)/G G XNEo...aNE, X7
3.11. EXAMPLE. Let G be a discrete group. Let V' be a G-poset of sub-
groups of G satisfying the condition that v < gv implies v = gv. Let
d: VP — S(G) be an admissible function. It is proved in [JS] that, for
every admissible function d” : W — S(G), there exists a natural G-map
Eg(W,d") — BW which is a homotopy equivalence. This implies that if,
for every isotropy group G’ of X, the space BV<¢ is contractible, then the
G-maps
hOCOhm(H,H/)eC(V) G XH XH, — X,
hocolimpyec,, (vor,a) G Xan XH X
are homotopy equivalences and that, for every free G-CW complex K, we
have homotopy decompositions
hocolim g gyecvy K xu X' ~ K x¢ X,
hocolimpecg (vor,a) K xag X7 ~ K x¢ X.
Here Veew ={H €V : H < G'}.
3.12. REMARK. One can generalize the above result of [JS] and construct
G-maps (natural in X)
hOCOlim(H7Hl)€C(V) G X H XH, — Y,
hOCOlimHeCG(VOp’d) G XdH XH — Y,
where
Y = hocolimy,.....m,)jesd v/G G X NHon...onm, X,

which are homotopy equivalences. Hence, for every free G-CW-complex K,
we have homotopy equivalences

K x¢g rv(X) = hocolimy g, . m,)esavic K XNwon..onm, X,

-----

hOCOIimHeCG(VOp7d) K XdH XH

~ hocolimyp,, .., i, )jesav/c K X NHon..aNH, X7

4. h¢,-decompositions of G-CW-complexes. Let G be a Lie group
and let h{, be a generalized G-cohomology theory. Let hO¢ be the category
whose objects are the same as the objects of Og and whose morphisms
are the G-homotopy classes of the morphisms of O¢g. Let M be a functor
from the category hOZ to the category Ab of abelian groups. The ordinary
equivariant cohomology of a G-CW-complex Y with coefficients in M will
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be denoted by H (Y, M). These cohomology groups, in the case when G
is a finite group, was defined in [Brl]. The case of a Lie group is described
in [Wi] and in the appendix of [JMO]. For any generalized G-cohomology
theory h¢, on G-CW, there is a spectral sequence

HE (Y, hg (=) = hg ™™ (Y).

For every closed subgroup H of GG, the H-cohomology theory such that
iy (X') = h&(G xg X') whenever X' is an H-CW-complex will be de-
noted by hj;. This gives us a functor hj‘q(_)(X H /(_)) defined on the homo-
topy category hC associated to C. This functor can be considered as coef-
ficients of the generalized cohomology theory h¢,(— x¢ (G X g (-) XH/(_)))
defined on the category of free C-CW-complexes in the sense of [DF1], i.e.
C-CW-complexes with orbits of the form Morc(—,¢). For every contravari-
ant functor M : hC — Ab, H*(C, M) = Tory(Z, M) is equal to the Bredon
cohomology groups Hj(B(— | C),M) (Sections 4 and 5 of [DF1]). Recall
that

hocolimeee (G x g (=) X)) = B(= 1 €) x¢ G x -y X',

Let W be a G-subposet of W(G). Let F = (H(—),H'(-)) : C —
Ca(W,dw(c)) be a functor such that the map

pr(X) : hocolimeee G X (¢ xH (@ _ x
is an hg,-decomposition of X, i.e. the map
h§(X) — hg(hocolimeee G X (e XH' ()

is an isomorphism. It follows from 5.3 of [DF1] that there exists a spectral
sequence

H™(C, by (X)) = hgt(X).

The results of this section describe and use this spectral sequence in many
examples.

We remark that if X = % and F' = G/H(—) : C — Og, then we obtain
the spectral sequence of the generalized cohomology theory Ay, on Y =
hocolim.c¢ F(c).

Let f: X1 — X3 be a G-CW-complex map and let pp(X;) be an hf;-
decomposition of X; for ¢ = 1,2. If, for every ¢ € C, h;,(c)(XQH (C)) —
Wi (XlH/(C)) is an isomorphism then the map h*(f) : h§(X2) — hE(XH)
is an isomorphism. This motivates the following definition.

4.0. DEFINITION. Let § be a G-subposet of S(G). Let W be a G-sub-

poset of W(G). We will say that W is (S, h§;)-essential if, for every equiv-
ariant cellular map f : X — Y of G-CW-complexes whose isotropy groups
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are all in S, the condition that k% (YH') — h% (X*™') is an isomorphism
whenever (H, H') € W implies that hf,(Y) — hf(X) is an isomorphism.

In particular, if W is (So(G, X), hiy)-essential and h%(x) — hi (X7)
is an isomorphism whenever (H', H) € W, then h}(x) — h&(X) is an
isomorphism.

The following result can be used to construct many non-trivial examples
of h¢.,-essential posets.

4.1. PROPOSITION. Let F' = (H(—),H'(-)) : C — Co(W,dw () be a
functor such that for every G' € S, the map

hocolimecc G X g1y (G/GHH'© — G/¢
is an hg,-equivalence. Then:

(i) The map pr(X) is an h§,-decomposition of X if all isotropy groups
of X are in S.
(ii) The poset W is (S, h{,)-essential.

Proof. Let
hgi(X) = hi(hocolimeee G X H(e) XH'(C))_

Then pr induces a natural transformation p* : hf, — h{ of G-cohomology
theories. If the assumption of the proposition holds, then p*(X) is an iso-
morphism. Hence pp(X) is an h-equivalence.

Let R be a commutative ring. The generalized G-cohomology theories
from the category G-CW to the category R*-Mod of graded R-modules will
be called R-G-cohomology theories.

Let V' be a G-poset of compact subgroups of G. Recall that C(V) is a
full subcategory of C; whose objects are the elements of the poset W(V') of
pairs (H, H') such that H is a subgroup of H' and H' € V.

4.2. PROPOSITION. Let hf, = {h"}nen be an R-G-cohomology theory.
Let § and V' be G-posets of compact subgroups of G such that, for every
H € S, hi;(x) — hi(rv, () is an isomorphism. Then:

(i) The G-poset W(V') is (S, h§,)-essential.

(ii) Let f: X — 'Y be a map of G-CW-complexes whose isotropy groups
are all in S. If, for every H € V, the map X" — YH is an R-equivalence,
then hi(Y) — hi(X) is an isomorphism.

Proof. (i) is a consequence of 3.8 and 4.1(ii).

(ii) Propositions 4.1(i) and 3.8 imply that, for every G-CW-complex X
whose isotropy groups are in S, there exists a spectral sequence

H™(C(V), k(X)) = hgH(X).
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This spectral sequence is natural in X. The assumption implies that, for
every (H,H') € C(V), the map h%; (Y1) — h%(XH) is an isomorphism
because H C H'. Hence the map X — Y is an hf,-equivalence.

4.3. EXAMPLES. Let h}(X) = H*(K x¢ X,R). Then hi(G/H) =
H*(K/H,R).

(i) Let K =%, R = F),. It is proved in [JMO] (1.2, 2.2, 2.12) that, if H
is a compact Lie group and dim H > 0, then the space EO1, (g) = er(H)(*)
is Fp-acyclic. Let S4(G) denote the set of all compact subgroups H of G
such that dim H > 0. Let f : X — Y be a map of G-CW-complexes whose
isotropy groups are all in S4(G). If, for every non-trivial p-toral subgroup
H of G, the map f# : X# — Y# is an F,-homology isomorphism, then
so is f. In particular, let G be a compact Lie group. If all isotropy groups
of X are in S4(G) and, for every non-trivial p-toral subgroup H of G, X
is Fp-acyclic, then X is F)-acyclic.

(ii) Let A,(G) = A,(G) U {e}. If H € Z,(G) and E € A, (H), then the
space EO0 4, (m)/E = 80A;(H)/E is contractible. Let f : X — Y be a map
of G-CW-complexes whose isotropy groups are all in Z,(G). Suppose that,
for every E € A,(G), f¥ is an R-homology isomorphism and that, for every
ke Kand x € XUY, G, NGy is an elementary abelian p-subgroup of G,.
This implies that, for every z € X UY, the map K X, £EO04,c,) — K/G,
is an R-homology isomorphism. Hence the map K xg X — K Xg Y is an
R-homology isomorphism.

(iii) Let K = . Then we obtain 0.3(ii) as a consequence of 4.2 and 1.4.

Let h(X) = H*(K x¢ X, F)). In this case there is a spectral sequence
HE (K, H™(X %6 (=), Fp)) = he™(X).
Hence if, for all maximal p-toral subgroups P of isotropy groups of K, X/P
is Fp-acyclic, then h{,(X) = H*(K/G, F),) = h{(*). We will use this fact in
the following examples.

4.4. EXAMPLES. Let hf, = H*(K xg —,F),). Let f : X — Y be an
equivariant cellular map of G-CW-complexes with compact isotropy groups.

(i) Let S,,(G) be the poset of all subgroups of p-toral subgroups of G, and
let S,(G) be the subposet of S;,(G) consisting of all subgroups which contain
a non-trivial p-subgroup. Let H be a compact subgroup of G. Then h}; (%) =
hE(TsI;(H)(*)) because, for every p-toral subgroup P of H, TS;(H)(*)/H is
F,-acyclic. It follows from Section 3 of [JO] that the maps HJ(x,h};) —
H?}(rsé( i) (%), %), where m > 0, are isomorphisms. Hence so are the maps
Hi(x, b)) — Hy(rs; (), ). From 3.3 of [JO] and 1.2 and 2.2 of
[JMO], it follows that the map rz(z)(*) — 75 (s (*) induces isomorphisms
in h}; and Hj;(—,h%). This implies that the maps hf(Y) — hE(X) and
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HE(Y, hg) — HE(X, h) are isomorphisms if, for every p-toral subgroup P
of G, fF is a mod p homology isomorphism.

(ii) Suppose that, for all n > 0, H" (K, F},) = 0. Let n > 0. In this case
h(H/e) = 0 and (i) implies that the map Hy; (x, hyy) — Hy (rz, ) (%), h)
is an isomorphism. Hence H (Y, hg) — HE(X, hy) is an isomorphism if,
for every non-trivial p-toral subgroup P of G, f¥ is a mod p homology
isomorphism.

(iii) Suppose that K is Fj-acyclic. Then, for every H/H' € Oy, h%; (H/H')
= F, and h%(—) is the constant functor after restriction to Op. It follows
from 1.2 and 2.2 of [JMO] and Proposition 2 and Theorem 3 of [O1] that
the map

H (v, (H)(5)/H, Fy) — B (i () H, Fy)

is an isomorphism. By (ii), so is hj(rz, () — hj‘q(rTP/(H)(*)). Suppose
that all isotropy groups of X and Y contain non-trivial p-subgroups. If,
for every non-trivial p-toral subgroup P of G, fF is a mod p homology
isomorphism, then, for all natural n, the maps HE (Y, hg) — HE(X, hE)
and H"(K xq Y, F,) - H"(K x¢g X, F},) are isomorphisms. In particular,
we obtain 0.4. If G is a compact Lie group, then we can take X = BA,(G),
Y = (cf. the proof of 1.5) to obtain 0.5.

(iv) Let K be a G-CW-complex such that, for every k£ € K and for
every p-toral subgroup P of G, G N P is an elementary abelian p-group.
Suppose that K is Fp-acyclic. (In particular, we can take K = EG.) If
all isotropy groups of X and Y contain non-trivial p-subgroups and, for
every E € A,(GQ), f¥ is a mod p homology isomorphism, then K xg X —
K x¢ Y is a mod p homology isomorphism. Indeed, it follows from 4.3(ii)
that K xgrr,(@)(X) — K Xg7r1,(6)(Y) is a mod p homology isomorphism.
Now we can use the fact that, by (iii), K x¢ rz,(@)(X) — K xg X is a mod
p homology isomorphism.

4.5. EXAMPLES. Let G be a discrete group and A a Z(G)-module. We
will consider the Bredon cohomology theory hf, = H(—, M a), where M (—)
= Homy ) (Z(—), A). Hence

Hg (X, Ma) = H" (Homg () (Ci(X), A))
where C,(X) is the ordinary cellular chain complex of X. For every G/H €
Og, we have h,(G/H) = Ma(G/H) = Af.

(i) Let G be a finite group. Suppose that there is a non-trivial p-subgroup

P of G such that every element of P acts trivially on A. Then

HE(ISp(G), Ma) = AC = Hg (%, Ma).
Indeed, My is a Hecke functor and it follows from the results of [Wal]

that if A is an R(G)-module and, for every subgroup H of G, X/H is R-
acyclic, then H} (X, Ma) = A€ Let H be a normal subgroup of G with
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a non-trivial p-subgroup and let G’ = G/H. If A’ is a Z(G")-module, then
H: (|1S,(G)|/H, Ma) = A'S" because, by 2.8, |S,(G)|/H' is contractible
whenever H C H' C G.

(ii) Let G be a discrete group. Let S4(G) denote the set of all finite
subgroups H of G with a non-trivial p-subgroup P such that every element
of P acts as identity on A. Suppose that all isotropy groups of X and Y
are in S4(G). The map HA(Y, M4) — HE(X, My) is an isomorphism if, for
every compact subgroup H of G with a non-trivial normal p-toral subgroup,
fH is a homology isomorphism.

(iii) Let A be an F,(G)-module. Let K be a G-CW-complex. Suppose
that all isotropy groups of points of X and Y are finite. In this case the
maps h(K xY) — hi (K x X) and

HG(Y, he (K x (=) = He (X, he (K % (=)))

are isomorphisms if, for every p-subgroup P of G, f¥ is a mod p homology
isomorphism. This is a consequence of the fact that, for every Hecke functor
M :OF — Fy-Mod, M(G/G) = Hé(TT;;(G),M) (1.29 of [S3]).

Let W be a topological G-poset satisfying the condition that w < gw,
where g € G, implies that w = gw. Let d : W — S(G) be an admissible
function and let d’ : WP — S(G) be a G-poset map. The next result follows
immediately from 3.4 and 4.1.

4.6. PROPOSITION. Suppose that, for every isotropy group H of the ac-
tion of G on X, the space Wy g /H s discrete and the map

Wy (%) — by (hocolimyec, (w,, ,;.dm) H/H N dw)
is an isomorphism. Then so is the map
hi&(X) — h(hocolimyecy (w.ay G Xdw X4 )
and there is a spectral sequence
H™ (Co(W,d), by (XT)) = hg ™ (X).

4.7. EXAMPLE. Let K be a G-CW-complex. Suppose that, for every
x € X, the map

H*(K/Gy, R) — H*(hocolim,ec,, (War e, i) K/G,Ndw,R)
is an isomorphism. Then so is the map
H*(K xg X, R) — H*(hocolim,,ecq (w.a) K Xaw X¥ ¥, R)
and there is a spectral sequence

H™(Ca(W,d), H"(K xq—y X7 R)) = H™"(K x¢ X, R).
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In particular, if, for every isotropy group H of X, BCy(Wa p,dm) is R-
acyclic, then there is a spectral sequence

H™(Ce(W,d), H"(X*"™ /dw, R)) = H™"(X/G, R).

4.8. EXAMPLES. Let W be a poset of closed subgroups of G satisfying
the condition that w < gw implies w = gw and such that the spaces d,, W/G
are discrete. Let d : WP — S(G) be an admissible function.

(i) Suppose that the map
hy (%) — h}[(hOCOhmwecH(Wﬁlp,dH) H/dw)
is an isomorphism whenever H is an isotropy group of X. Then the map
ha(X) — hz(hocolimwGCG(Wop7d) G Xgw XY)
is an isomorphism and there is a spectral sequence
H™(Ca(WP, d), hi,, (X™)) = hgg™(X).
(ii) Suppose that the map
W (%) = hy (BWh)
is an isomorphism whenever H is an isotropy group of X. Then the map
h&(X) — hg(hocolimyy, jesaw/a G X G, X“™) = hg(hocolimy,, esaw X ™)
is an isomorphism and there is a spectral sequence
H™(sdW/G, k¢, (X)) = hG T (X).

(iii) Let G be a discrete group. Let K be a free G-CW-complex. Suppose
that the map
K xy BWy — K/H
is a mod p homology isomorphism whenever H is an isotropy group of X.
Then, similarly to 3.11, the map
hOCOlimCG(Wop,d) K X dw XY > K Xa X
is a mod p homology isomorphism.

4.9. EXAMPLES. Let W = A,(G). Let X be a G-CW-complex such that
all its isotropy groups are compact and contain non-trivial p-subgroups. Let
K be an Fj-acyclic G-CW-complex.

(i) Let d = d.. Then Cq(A,(G)°P,d.) = A,(G). Suppose that, for every
isotropy group H of the action of G' on X, the map hi; () — h3;(EOz, (m))
is an isomorphism. Then it follows from 3.6(iii) that the map

h&(X) — h(hocolimpea, @) G Xcor X7)
is an isomorphism and there is a spectral sequence
H™(A,(G), gGE(XE)) = hE T (X).
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Let hf = HAH(K xg —, Fp). It follows from 4.4(iii) that if H is a com-
pact subgroup of G and contains a non-trivial p-subgroup, then hj; (%) =
h1(EOz, (). Hence there is a mod p homology isomorphism

hOCOIimwGAP(G) K XCaw XY > K Xaq X,
and there exists a spectral sequence
HM(A(G), H™(K X X, Fy)) = H™V (K x6 X, F).

If K = EG, then we obtain the case investigated in [H1,2].
(ii) The map

hOCOlim[E.]ESdAP(G)/G K XGE. XE" — K Xaq X
is a mod p homology isomorphism and there is a spectral sequence
H™(sd A, (G)/G, H" (K xg, X" F,)) = H"™(K xg X, F,).

In particular, if A is one of the classes By (F),) or D(F},) described in 1.3
and, for every (Ey,...,E,) € sd A,(G), K XNEyn..ANE, XEn e A, then
KxgX e A
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