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Almost-free E(R)-algebras and E(A,R)-modules

by

Rüdiger Göbel and Lutz Strüngmann (Essen)

Abstract. Let R be a unital commutative ring and A a unital R-algebra. We in-
troduce the category of E(A,R)-modules which is a natural extension of the category of
E-modules. The properties of E(A,R)-modules are studied; in particular we consider the
subclass of E(R)-algebras. This subclass is of special interest since it coincides with the
class of E-rings in the case R = Z. Assuming diamond 3, almost-free E(R)-algebras of
cardinality κ are constructed for any regular non-weakly compact cardinal κ > ℵ0 and
suitable R. The set-theoretic hypothesis can be weakened.

1. Introduction. In 1958 Fuchs [F2, Problem 45] raised the problem
to characterize those rings R for which EndZ(R+) ∼= R, where R+ is the
additive group of R. Introducing the class of E-rings Schultz [S] gave a
partial solution. Recall that a ring R is an E-ring if the evaluation map ε :
EndZ(R+)→ R given by ϕ 7→ ϕ(1) is a bijection. First examples are subrings
ofQ and pure subrings of the ring of p-adic integers. Schultz characterizedE-
rings of finite rank. The books by Feigelstock [Fe1], [Fe2] and the article [PV]
survey the results obtained in the eighties (see also [Re], [F]). In a natural
way the notion of E-rings extends to modules by calling a left R-module
M an E(R)-module or just E-module if HomZ(R,M) = HomR(R,M) (see
[BS]). It turned out that a unital ring R is an E-ring if and only if it is an
E-module.

E-rings and E-modules have played an important role in the theory
of torsion-free abelian groups of finite rank. For example Niedzwecki and
Reid [NR] proved that a torsion-free abelian group G of finite rank is cyclic
projective over its endomorphism ring if and only if G = R⊕A, where R is
an E-ring and A is an E(R)-module. Moreover, Casacuberta and Rodŕıguez
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[R], [CRT] noticed the role of E-rings in homotopy theory and further results
on E-modules are in [DG2], [MV] and [P].

We want to consider these objects in a more general context of unital
algebras A over commutative unital rings R with the same 1, different from
0, which we keep fixed throughout.

A left A-module M is called an E(A,R)-module if HomR(A,M) =
HomA(A,M). If R = Z then this category E(A,R)-Mod becomes E(A)-
Mod. In particular, A is an E(R)-algebra if RA is in E(A,R)-Mod. This is
equivalent to saying that the evaluation map ε : EndR(A) → A given by
ϕ 7→ ϕ(1) is an isomorphism (see Theorem 2.2). Therefore E(R)-algebras
are natural generalizations of E-rings and we will extend results on E-rings
to E(R)-algebras, e.g. any E(R)-algebra has to be commutative (see Theo-
rem 3.3).

Often E(R)-algebras can be described by tensor products. This is the
case for so-called T (R)-algebras which extend T -rings (see [Fe1, p. 85]).
Recall that A is a T (R)-algebra if the multiplication map m : A⊗A→ A is
bijective and note that any T (R)-algebra is an E(R)-algebra. The converse
does not hold.

After having discussed the basic properties of E(R)-algebras and
E(A,R)-modules and their relationship in Sections 2, 3 and 4 it is clear
that large E(R)-algebras are far from being free as R-modules. Therefore it
is natural to ask whether there exist E(R)-algebras A which are almost-free,
i.e. for which every R-submodule of cardinality < |A| can be embedded into
a free R-submodule of A. A first step was already done by Dugas, Mader
and Vinsonhaler. They proved in [DMV] that any torsion-free p-reduced
p-cotorsion-free commutative ring S may be embedded into an E-ring of
cardinality λ whenever λ is any cardinal such that λ|S| = λ. It can be easily
seen (see [St]) that the constructed E-rings are ℵ1-free provided S is ℵ1-free.
Thus, assuming the continuum hypothesis, we derive the existence of ℵ1-free
E-rings of cardinality ℵ1.

In general, we show that, assuming the diamond axiom, for any reduced
countable domain R which is not a field and for any regular non-weakly
compact cardinal κ > ℵ0 there exist 2κ non-isomorphic almost-free E(R)-
algebras A of cardinality κ (see Theorem 5.6). Moreover, it is shown that
any free R-module can be embedded into an E(A,R)-module M of arbitrary
large cardinality which is almost-free in the sense that any R-submodule
U ⊆ M with |U | < |M | is a submodule of a free R-module F ⊆ M (see
Theorem 5.9). This proves that even almost-free E(A,R)-modules are quite
complex and do not constitute a set, a result parallel to E-modules from [D].

2. The category of E(A,R)-modules. In this section we study the
category of E(A,R)-modules as a natural extension of the category of E-
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modules which has been studied extensively in [D] and [MV]. If A is an R-
algebra then HomR(A,M) admits an A-module structure for any A-module
M . This leads to the following definition:

Definition 2.1. A left A-module M is called an E(A,R)-module if
HomR(A,M) = HomA(A,M).

Recall that an abelian group G is p-local for some prime p if G⊗Q(p) = G
and Q(p) = {z/q | q, z ∈ Z, (q, p) = 1}. Hence, by Definition 2.1 any p-local
abelian group is an example of an E(Q(p),Z)-module. We want to show the
abundance of almost-free E(A,R)-modules, in particular we will see that
they form a proper class. Following [P], [MV] and [S] we first extend basic
properties from E-modules to E(A,R)-modules.

Theorem 2.2. For a left A-module M the following statements are
equivalent :

(i) M is an E(A,R)-module.
(ii) The evaluation map ε : HomR(A,M)→M via ϕ 7→ ϕ(1) is a bijec-

tion.
(iii) For all ϕ ∈ HomR(A,M), ϕ = 0 if and only if ϕ(1) = 0.
(iv) HomR(A/R1,M) = 0.

Proof. First we prove the equivalence of (i) and (ii). If M is an E(A,R)-
module, then each R-homomorphism from A to M is uniquely determined
by the image of 1. Hence the evaluation map ε is a bijection. Conversely, if
ε is a bijection and ϕ ∈ HomR(A,M), then choose any a ∈ A and define
two R-homomorphisms ϕ1, ϕ2 from A to M by

ϕ1(x) = xϕ(a) and ϕ2(x) = ϕ(xa)
for all x ∈ A. Hence ϕ1(1) = ϕ2(1) and ϕ1 = ϕ2. Since a was chosen
arbitrary we obtain ϕ(xa) = xϕ(a) for all a, x ∈ A and thus ϕ is A-linear
and M is an E(A,R)-module.

The equivalence of (i) and (iii) is easy to check and left to the reader.
It remains to show the equivalence of (i) and (iv). The exact sequence

0→ R1→ A→ A/R1→ 0 induces the sequence

(∗) 0→ HomR(A/R1,M)→ HomR(A,M)→ HomR(R1,M)→ 0,

which is exact by (i) and (ii). The equivalence of (i) and (iv) is now clear.

Theorem 2.2 is an easy test for being an E(A,R)-module. Additionally, it
follows that the full subcategory of A-modules formed by E(A,R)-modules is
closed under taking A-submodules. The next lemma shows that this category
is also closed under taking direct sums and extensions.

Lemma 2.3. The full subcategory of A-modules formed by the E(A,R)-
modules is closed under submodules, direct summands, arbitrary direct sums
and extensions.
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Proof. By Theorem 2.2 and an easy projection argument it is easily seen
that the E(A,R)-modules are closed under submodules, direct summands
and arbitrary direct sums. Moreover, if 0 → B → C → D → 0 is an exact
sequence, where B and D are E(A,R)-modules, then it is almost obvious
to see that also C is an E(A,R)-module by using the evaluation map or
applying the five-lemma (see [F1, Lemma 2.3] or [CE]).

By Lemma 2.3 the category of E(A,R)-modules is also closed under
A-isomorphism but in general it is not closed under taking quotients as the
following example shows.

Example 2.4. Let R = Z[x] and choose any homomorphism ϕ : R→ R
which is not Z[x]-linear. By Theorem 5.5 there exists an E(R)-algebra A
containing R and we let D be the completion of Z[x]⊗ A. Take any A-free
resolution

0→ B → C → D → 0

of D. Then B and C are E(A,R)-modules by Lemma 4.1. However D is a
pure injective abelian group and R is pure in A, hence ϕ lifts to ϕ̂ : A→ D
which is not A-linear by choice of ϕ. Hence D is not an E(A,R)-module.

To get further insight into the category of E(A,R)-modules we first have
to consider a proper subclass of the E(A,R)-modules.

3. The class of E(R)-algebras. The notion of E-ring (see [S] or [BS])
extends naturally to E(R)-algebras.

Definition 3.1. An R-algebra A is called an E(R)-algebra if

EndR(A) = EndA(A) ∼= A.

Note that an R-algebra A is an E(R)-algebra if and only if A is an
E(A,R)-module, and E(Z)-algebras are E-rings. But obviously an E(R)-
algebra need not be an E-ring. This is illustrated by

Example 3.2. The quotient field Q of the p-adic integers Jp for some
prime p satisfies

EndJp(Q) ∼= Q 6∼= EndZ(Q)

and |EndZ(Q)| > |Q|. Hence Q is an example of an E(Jp)-algebra which is
not an E-ring.

Our first result is a natural generalization from E-rings to E(R)-algebras
(see also [R] or [CRT]).

Theorem 3.3. For an R-algebra A the following are equivalent :

(i) A is an E(R)-algebra.
(ii) The evaluation map ε : EndR(A) → A (ϕ 7→ ϕ(1)) is an R-algebra

isomorphism.



Almost-free E(R)-algebras and E(A,R)-modules 179

(iii) The R-algebra EndR(A) is commutative.
(iv) The multiplication map µ : A→ EndR(A) given by µ(a)(x) = ax is

a bijection.

Moreover , any E(R)-algebra is commutative.

Proof. The equivalence of (i) and (ii) follows easily from Theorem 2.2.
Moreover, (i) and (iv) are equivalent since µ is a right inverse of the evalu-
ation map ε. To prove that (i) and (iii) are equivalent we first show the last
claim, i.e. any E(R)-algebra A is commutative. If a ∈ A, then we define two
R-endomorphisms ϕ1, ϕ2 of A by

ϕ1(x) = xa and ϕ2(x) = ax

for each x ∈ A. Hence ϕ1(1) = ϕ2(1) and ϕ1 = ϕ2 by (ii), which implies
the commutativity of A. We are now able to prove the equivalence of (i)
and (iii). By the above any E(R)-algebra is commutative and by (ii) the
evaluation map ε is an R-algebra isomorphism. Hence EndR(A) is commu-
tative. Conversely, let EndR(A) be commutative and define ma ∈ EndR(A)
for any a ∈ A by ma(x) = xa. We have to show that the evaluation map
ε is a bijection and it is enough to show injectivity. If ε(ψ1) = ε(ψ2), then
ψ1(1) = ψ2(1) and for any x ∈ A we have

ψ1(x) = (ψ1 ◦mx)(1) = (mx ◦ψ1)(1) = (mx ◦ψ2)(1) = (ψ2 ◦mx)(1) = ψ2(x),

hence ψ1 = ψ2 and ε is injective.

It is important to know that R-summands of an E(R)-algebra are also
A-summands. For this we state

Corollary 3.4. Let A be an E(R)-algebra.

(i) If ϕ is an R-endomorphism of A, then ϕ(A) is a principal ideal in A;
(ii) Any direct sum decomposition of A as an R-module is a decomposi-

tion as an A-module.
(iii) Let S be an R-algebra. If A ∼= S as R-modules, then S is an E(R)-

algebra.

Proof. All facts are easily checked by standard arguments.

Examples of E(R)-algebras follow more easily from the following

Remark 3.5. It is easy to see that if the multiplication map of A is sur-
jective then A is an E(R)-algebra. These algebras are called T (R)-algebras.

Note that the (divisible) Prüfer group Cp∞ can be expressed as a quotient
of two E-rings Q(p)/Z, but EndZ(Cp∞) = Jp, hence Cp∞ is not an E-ring.
This shows that the class of E-rings (in particular of E(R)-algebras) is
not closed under taking quotients. However, the class of T (R)-algebras is
closed under taking quotients (see [Fe1, Observation 4.7.27]). Moreover, the
p-adic integers Jp form an E-ring but not a T -ring. Nevertheless, the classes
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coincide if we restrict to torsion rings (see [Fe1, Theorem 4.7.25]). It is still
open whether EndR(A) ∼= A implies that A is an E(R)-algebra. Partial
results were obtained e.g. in [GS].

4. Connecting the E-structure of algebras and modules. From
Definition 3.1 it follows that any algebra which is an E(A,R)-module is an
E(R)-algebra as well. We want to strengthen this implication and establish
some converse. From this point of view we consider first A-modules over
an E(R)-algebra A. Since any projective A-module is a summand of a free
A-module (see [EM, Lemma 2.3]), we may apply Theorem 2.2 to obtain the
following

Lemma 4.1. Let A be an E(R)-algebra and M a projective left A-module.
Then M is an E(A,R)-module.

This result can be applied to almost-free A-modules.

Definition 4.2. Let M be any R′-module over some ring R′. If κ is any
cardinal, then M is called κ-free if every submodule N ⊆ M of cardinality
|N | < κ can be embedded into a free submodule of N . In particular, M is
called almost-free if M is |M |-free.

Theorem 4.3. Let A be an E(R)-algebra of cardinality κ. Any κ+-free
left A-module is also an E(A,R)-module.

Proof. The proof is easy and left to the reader.

Next we will show that it is no restriction to assume for an E(A,R)-
module that the underlying algebra is already an E(R)-algebra. Therefore
let J(A) be the set of all two-sided ideals I of A such that A/I is an E(A,R)-
module.

Lemma 4.4. Let M be an E(A,R)-module. Then the annihilator
AnnA(M) is an element of J(A).

Proof. If S := A/AnnA(M) then choose ϕ ∈ HomR(A,S). We will show
that ϕ is A-linear. Fix any m ∈ M and for any s ∈ S let as ∈ A be such
that s = [as] = as+ AnnA(M) ∈ S. We define

ϕm : A→M, a 7→ maϕ(a).

First we show that ϕm ∈ HomR(A,M) is well defined. If s = [as] = [ãs]
then as − ãs ∈ AnnA(M) and hence mas = mãs. Thus the definition of ϕm
is independent of the choice of the representative aϕ(a) and therefore ϕm is
well defined. Obviously, ϕm is an R-homomorphism. Hence ϕm is A-linear
by assumption for all m ∈M . We obtain

maϕ(aã) = ϕm(aã) = ϕm(a)ã = maϕ(a)ã
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and thus m(aϕ(aã) − aϕ(a)ã) = 0 for all m ∈M , hence

(aϕ(aã) − aϕ(a)ã) ∈ AnnA(M)

for all a, ã ∈ A. Therefore

ϕ(aã) = [aϕ(aã)] = [aϕ(a)ã)] = [aϕ(a)]ã = ϕ(a)ã,

which proves that ϕ is A-linear and hence S is an E(A,R)-module.

Lemma 4.5. If I ∈ J(A) and M is an E(A,R)-module as well as an
A/I-module, then M is an E(A/I,R)-module.

Proof. If I ∈ J(A) and π : A → A/I is the canonical homomorphism,
then π induces a surjection A/R1 → (A/I)/R(1 + I). Let A0 = A/R1
and I0 = (A/I)/R(1 + I). Now, if M is an E(A,R)-module we obtain, by
Theorem 2.2, the sequence

0→ HomR(I0,M)→ HomR(A0,M) = 0.

Thus HomR(I0,M) = 0 and M is an E(A/I,R)-module by Theorem 2.2.

Corollary 4.6. If I ∈ J(A), then A/I is an E(R)-algebra.

Proof. Follows from Lemma 4.5.

Corollary 4.7. If M is an E(A,R)-module then A/AnnA(M) is an
E(R)-algebra.

Proof. Follows from Lemma 4.4 and Corollary 4.6.

Note that by Corollary 4.7 the algebra A is an E(R)-algebra if a faithful
E(A,R)-module exists. Moreover, in view of Lemma 4.5 and Corollary 4.7
any E(A,R)-module can be considered as an E(A/AnnA(M), R)-module
over the E(R)-algebra A/AnnA(M). So by a change of the algebra argument
we may assume that A is an E(R)-algebra.

5. Almost-free E(R)-algebras and E(A,R)-modules. In the pre-
vious sections we have seen that E(R)-algebras must have commutative
endomorphism ring, which shows non-freeness in a strong sense. Hence it
is interesting to find almost-free E(R)-algebras. This question cannot be
decided in ZFC as there are models of ZFC and Martin’s axiom in which
ℵ2-free modules of cardinality ℵ2 are free (see [GS, Theorem 5.1]). Assuming
the continuum hypothesis the existence of ℵ1-free E-rings of cardinality ℵ1
follows immediately from [DMV] and [St, Theorem 3.3]. Next we want to find
almost-free E(R)-algebras of larger cardinality under a suitable set-theoretic
assumption. As in [DG1] we want to apply a weak version of the diamond
principle which will be explained first. For standard notations we refer to
[EM]. Recall that a subset S ⊂ κ is sparse if S ∩ α is not stationary in α
for all limit ordinals α < κ. A κ-filtration of a set A of cardinality κ is a set
{Aα | α < κ} of subsets of A such that A =

⋃
α<κAα and
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(i) {Aα | α < κ} is a smooth chain, i.e. Aλ =
⋃
ν<λAν for all limit

ordinals λ < κ;
(ii) |Aα| < κ for all α < κ.

Now let E ⊆ κ and {Aα | α < κ} be a κ-filtration of A. Then we consider
two prediction principles.

3κ(E) (diamond): there is a family {Sα | α < κ} such that Sα ⊆ Aα
and, for all X ⊆ A, the set {α ∈ E | X ∩ Aα = Sα} is stationary in κ.

Φκ(E) (weak-diamond): If Pα : P(Aα) → {0, 1} (α ∈ E) is a partition,
then there is a function ϕ : E → {0, 1} such that, for all X ⊆ A, the set
{α ∈ E | Pα(X ∩ Aα) = ϕ(α)} is stationary in κ.

SetsE which satisfy Φκ(E) are called non-small and in particular Φℵ1(ℵ1)
is equivalent to 2ℵ0 < 2ℵ1 (see Devlin and Shelah [DS]). Also recall from
Jensen [J] that 3κ(E) holds in V = L for all non-weakly compact cardinals
κ and all stationary sets E. We combine these results with some from [Sh]
and define

5κ(S) (half diamond): S is non-small and sparse if κ > ℵ1 and cf(λ) = ω
for any λ ∈ S.

Moreover, 5κ will mean that there exists a subset S ⊆ κ such that
5κ(S) holds. Hence we summarize the results on 5κ as follows (see also
[DG1]).

Lemma 5.1. The following hold :

(i) (ZFC + V = L) 5κ holds for all uncountable regular non-weakly
compact cardinals κ > ℵ0.

(ii) (ZFC + 2ℵ0 < 2ℵ1) 5ℵ1 holds.
(iii) (ZFC + 5κ) There are κ disjoint subsets Sβ (β < κ) such that

5κ(Sβ) holds for all β < κ and
⋃
β<κ Sβ is sparse in κ.

By Lemma 5.1 the construction of almost-free E(R)-algebras reduces to
a Step Lemma which we will prove next. It is based on the S-topology of
a free R-module. For the rest of this paper we restrict ourselves to count-
able torsion-free domains which are not fields. They are cotorsion-free as
explained shortly. Let S be a countable multiplicatively closed subset S of
R such that 1 ∈ S. An R-module M is reduced if

⋂
s∈SMs = 0, and M is

torsion-free if ms = 0 implies m = 0 for m ∈M and 0 6= s ∈ S. We assume
that RR is reduced and torsion-free, hence S induces a Hausdorff S-topology
on M by enumerating S = {sn | n ∈ ω} and putting

q0 = 1 and qn+1 = qnsn for all n ∈ ω.
The system qnM (n ∈ ω) generates the S-topology on M and M is naturally
a submodule of its S-adic completion M̂ . Recall that an R-module M is
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cotorsion-free if Hom(R̂,M) = 0 (cf. [EM, p. 134]). A submodule U of M
is S-pure if U ∩ sM = sU for all s ∈ S, hence the S-topology on M induces
the S-topology on U . If U is any submodule of M , then U∗ denotes the
smallest (in this case unique) pure submodule of M containing U . Similarly
U is S-divisible if sU = U for all s ∈ S. In Section 2 we discussed almost-
free modules. However, we will use a stronger version of almost freeness
and say that an R-algebra is polynomial-almost-free if all its subalgebras of
smaller cardinality are contained in a polynomial ring over R. Note that
polynomial-almost-free implies almost-free. The following is the first step of
the final Step Lemma.

Lemma 5.2. Assume that R is a countable torsion-free domain which is
not a field. Let F = R[X] be the polynomial ring over R in a countable set
X = {xi | i ∈ ω} of commuting variables, and let b ∈ RF be a basic element.
Moreover , let Xn = {x0, . . . , xn} and Fn := R[Xn] ⊆ F canonically. Then
there exist two ring extensions F ε of F with the following properties for
ε = 0, 1:

(i) F ⊂ F ε and F ε/F is S-divisible.
(ii) F ε is a polynomial ring over the ring Fn for each n ∈ ω.
(iii) F ε is a polynomial ring over R.
(iv) If ϕ ∈ EndR(F ) extends to both ϕε ∈ EndR(F ε) for ε = 0, 1, then

ϕ(b) = ϕ(1)b.

Proof. By topology any element x ∈ F̂ has a unique representation

x =
∑

m∈T
smm,

where T is a countable set of monomials in X and sm ∈ R̂ are such that, for
all n ∈ ω, sm ∈ qnR̂ for almost all M ∈ T . The support [x] of x is defined
to be

[x] = {m ∈ T | sm 6= 0}.
Note that x = 0 if and only if [x] = ∅. If xn is some variable and x ∈ m, then
we write xn ∈∗ [x] if there is a monomial m ∈ [x] such that xn divides m.
If there is no such monomial in [x] we write xn 6∈∗ [x]. Furthermore, if we
restrict some equation to a monomial that is divisible by xn, then we say
for short that we restrict to xn. By [GM] we can find an S-adic integer
π ∈ R̂ which is algebraically independent over R. Since F = R[X] is a free
R-module we see that π is also algebraically independent over F , i.e.

whenever
n∑

i=0

fiπ
i = 0 where fi ∈ F then fi = 0 for all i ≤ n.

Now let n0 be the least integer such that xn0+n 6∈∗ [b]. We define a “branch”
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element

(1) e :=
∑

k∈ω
qkxn0+k

in the S-adic completion F̂ of F . Obviously [e] ∩ [b] = ∅. We want to show
that the following two pure subrings of F̂ satisfy our claims (here ∗ denotes
purification):

F 0 := F [e]∗ ⊆ F̂ and F 1 := F [e+ πb+ π21]∗ ⊆ F̂ .
First we prove (iv). If ϕ ∈ EndR(F ) extends to both ϕε ∈ EndR(F ε) for

ε = 0, 1, then we have representations

qkϕ
0(e) =

n∑

i=0

fie
i,(2)

qlϕ
1(e+ πb+ π21) =

m∑

i=0

gi(e+ πb+ π21)i(3)

for some k, l,m, n ∈ Z. Absorbing multiples we may assume k = l. Subtract-
ing (2) and (3) we get

(4) qkϕ
1(πb+ π21) =

m∑

i=0

gi(e+ πb+ π21)i −
n∑

i=0

fie
i.

If T :=
⋃n
i=0[fi]∪

⋃m
i=0[gi], then T is finite and hence we can choose xj ∈∗ [e]

such that xlj 6∈∗ T and xlj 6∈∗ [b] ∪ [ϕ1(πb+ π21)] for all l ∈ ω.
If n > m then xnj ∈∗ [en] but it does not appear in the support of any

other element in (4) by the choice of xj . Restricting to xnj shows fn = 0. If
m > n we argue similarly and n = m follows. It is easy to see that in this
case fn = gn and restricting to xn−1

j shows

(5) gn(πb+ π21) + gn−1 − fn−1 = 0 if n > 1.

By algebraic independence of π over F we obtain gn−1 = fn−1and fn = gn
= 0. Inductively fi = gi = 0 for all i > 1 and f1 = g1. Hence (4) reduces to

qkϕ
1(πb+ π21) = g1(e+ πb+ π21) + g0 − g1e− f0.

Since ϕ1 viewed as a homomorphism from F̂ to F̂ is R̂-linear we get

πqkϕ
1(b) + π2qkϕ

1(1) = g1πb+ g1π
2 + g0 − f0.

Using algebraic independence of π over F also g0 = f0, g1 = qkϕ
1(1) =

qkϕ(1), and qkϕ1(b) = qkϕ(b) = g1b. Therefore ϕ(b) = ϕ(1)b by the torsion-
freeness of F̂ and thus (iv) holds.

Next we show (ii) and (iii). By definition

e =
∑

n∈ω
qnxn0+n and a := e+ h =

∑

n∈ω
qnxn0+n + h
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where h = πb + π21. Write h =
∑

i∈ω qih̃i as an S-adic limit. Then let
ek :=

∑
i≥k(qi/qk)xn0+i and ak := ek + (1/qk)hk where hk :=

∑
i≥k h̃i is the

qk-divisible part of h. It follows that

qkek +
∑

n<k

qnxn0+n = e,(6)

qkak +
∑

n<k

qnxn0+n + (h− hk) = a.(7)

Note that h − hk ∈ F for all k ∈ ω and hence it is easy to check that
F [e]∗ =

⋃
k∈ω F [ek] and F [a]∗ =

⋃
k∈ω F [ak].

We claim that

F [e]∗ =
⋃

k∈ω
F [ek] = R[x0, . . . , xn0−1, e0, e1, . . .],(8)

F [a]∗ =
⋃

k∈ω
F [ak] = R[x0, . . . , xn0−1, a0, a1, . . .].(9)

By (6), (7) and h−hk ∈ F it is clear that R[x0, . . . , xn0−1, e0, e1, . . .] ⊆ F [e]∗
and also R[x0, . . . , xn0−1, a0, a1, . . .] ⊆ F [a]∗. To prove the converse it re-
mains to show that F ⊂ R[x0, . . . , xn0−1, e0, e1, . . .] and F ⊂ R[x0, . . . , xn0−1,
a0, a1, . . . .]. By easy calculations

xn0+n = en − snen+1 ∈ R[x0, . . . , xn0−1, e0, e1, . . .]

for all n ∈ ω and thus F ⊆ R[x0, . . . xn0−1, e0, e1, . . .]. Hence (8) holds.
Similarly,

an − snan+1 = xn0+n +
1
qn

(hn − hn+1).

As hn − hn+1 ∈ F and [hn − hn+1] ⊆ Xn0, we now obtain xn0+n ∈ R[x0, . . .
. . . , xn0−1, a0, a1, . . .], which implies F ⊆ R[x0, . . . , xn0−1, a0, a1, . . .] and
thus (9) holds.

It remains to show that R[x0, . . . , xn0−1, e0, e1, . . .] and R[x0, . . . , xn0−1,
a0, a1, . . .] are polynomial rings. Assume that

(∗)
n∑

i=0

riµi = 0

where µi 6=µj (i 6=j) are monomials in the variables {x0, . . . , xn0−1, e0, e1, . . .}
and ri ∈ R such that each ri 6= 0. Write µi as

µi =
n0−1∏

j=0

x
nj,i
j

∏

j∈ω
e
mj,i
j ,

where mj,i = 0 for almost all j. If
∏
j∈ω e

mj,i
j = 1 for all i ≤ n, then (∗)

is a non-trivial linear combination in R[Xn0−1]—a contradiction. Therefore
assume the existence of an i such that

∏
j∈ω e

mj,i
j 6= 1. Let j0 be the least
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integer such that mj0,i 6= 0 for at least one i ≤ n. Then a power of xn0+j0

does not appear in those [emj,ij ] with j 6= j0 but it appears in [e
mj0,i
j0

] for all
i with mj0,i 6= 0. If there exists a unique i0 such that

mj0,i0 = max{mj0,i | i ≤ n} =: max0,

then restricting (∗) to
∏n0−1
j=0 x

nj,i0
j x

mj0,i0
j0

t, where t is any element in the

support of
∏
j 6=j0 e

mj,i0
j , forces ri0 = 0—a contradiction.

Suppose I := {i ≤ n | mj0,i = max0} is a set of at least two elements.
Then choose the least integer j1 > j0 such that mj1,i 6= 0 for some i ∈ I. If
there is a unique i1 ∈ I such that

mj1,i1 = max{mj1,i | i ∈ I} =: max1,

then we restrict (∗) to
∏n0−1
j=0 x

nj,i1
j x

mj0,i1
j0

x
mj1,i1
j1

t, where t is any element in

the support of
∏
j 6=j0, j 6=j1 e

mj1,i1
j , leading to ri1 = 0, again a contradiction.

If i1 is not unique we repeat the above process and since all µi are dif-
ferent we always end up with a contradiction. Therefore R[x0, . . . , xn0−1, e0,
e1, . . .] is a polynomial ring and similarly R[x0, . . . , xn0−1, a0, a1, . . .].

By the same arguments as above, we see that

F [e]∗ = Fn[Xn0 \Xn, ei : i ≥ mn],

F [a]∗ = Fn[Xn0 \Xn, ai : i ≥ mn],

where mn := max{0, n− n0} and thus (ii) holds.
By (6) and (7),

e ≡ qkek and a ≡ qkak modulo F

for all k ∈ ω. Thus F [e]∗/F and F [a]∗/F are S-divisible, hence (i) holds.

We bring Lemma 5.2 into a form suitable for immediate application. Here
the rank of a countable torsion-free domain is the rank of its additive group.

Reduction Lemma 5.3. Assume that R is a countable torsion-free do-
main which is not a field. Let F = R[V ] be a polynomial ring over R of
rank κ ≥ |R| and V be a set of commuting variables. Furthermore, let
ϕ ∈ EndR(F ) \F , i.e. ϕ−ϕ(1) idF 6= 0. Then there exists a subring G of F
with the following properties:

(i) G is a polynomial ring over R.
(ii) F is a polynomial ring over G.
(iii) The rank of G is less than or equal to |R|.
(iv) ϕ�G ∈ EndR(G) \G.

Proof. Let H be a subring of F such that H is a polynomial ring over R
and F is a polynomial ring over H. We define the ϕ-closure of H as follows:
Let H0 := H and denote by H1 the ring pol(H0ϕ) which is the smallest
polynomial ring T over R containing H0ϕ such that F is a polynomial ring
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over T . Inductively, we define Hi+1 := pol(Hiϕ). Moreover, we can write
each Hi as a polynomial ring over R in the form Hi = R[Vi] where Vi is a
subset of V . Let I0 := V0 and Ii+1 := Ii ∪ Vi+1. Then the ϕ-closure of H is
the polynomial ring

Hcl(ϕ) := R[I], where I :=
⋃

i∈ω
Ii.

Clearly Hcl(ϕ) is a polynomial ring over R and F is a polynomial ring over
Hcl(ϕ) in the variables V \ I which contains H. Moreover, Hcl(ϕ) is invariant
under ϕ and hence ϕ�Hcl(ϕ) ∈ EndR(Hcl(ϕ)). If the lemma does not hold
and G0 is any polynomial ring over R such that rk(G0) ≤ |R| and F is a
polynomial ring over G0, then let Gc

0 be the ϕ-closure of G0; hence (i)–(iii)
hold for Gc

0 and ϕ�Gc
0 ∈ EndR(Gc

0). By assumption, ϕ�Gc
0 = g for some

g ∈ Gc
0. But, since ϕ ∈ EndR(F ) \ F , there exists an element f ∈ F such

that (ϕ − g)(f) 6= 0. Let G1 = pol(〈G0, f〉) and Gc
1 = G

cl(ϕ)
1 , a summand

of F which is again a polynomial ring over R such that rk(Gc
1) ≤ |R| and

ϕ�Gc
1 ∈ End(Gc

1). By the same arguments ϕ�Gc
1 ∈ Gc

1 and, since Gc
0 ⊂ Gc

1,
we conclude ϕ�Gc

1 = g. But then (ϕ− g)(f) = 0—a contradiction.

We combine the Reduction Lemma 5.3 and Lemma 5.2 to get the desired

Step Lemma 5.4. Assume that R is a countable torsion-free domain
which is not a field. Let F =

⋃
n∈ω Fn be the union of a chain of polynomial

rings Fn over R of rank κ > ℵ0 such that F is a polynomial ring over R
and each Fn+1 is a polynomial ring over Fn. If b ∈ RF is a basic element ,
then there exist two ring extensions F ε of F with the following properties
for ε = 0, 1:

(i) F ⊆ F ε and F ε/F is S-divisible.
(ii) F ε is a polynomial ring over the ring Fn for each n ∈ ω.
(iii) F ε is a polynomial ring over R.
(iv) If ϕ ∈ EndR(F ) extends to both ϕ ∈ EndR(F ε) for ε = 0, 1, then

ϕ(b) = ϕ(1)b.

5.1. The polynomial-almost-free E(R)-algebras. Using Step Lemma 5.4
and 5κ we will prove the existence of polynomial-almost-free E(R)-algebras
of cardinality κ for every regular non-weakly compact cardinal κ > ℵ0.

Theorem 5.5. (ZFC +5κ) Assume that R is a countable torsion-free
domain which is not a field. For any regular non-weakly compact cardinal
κ > ℵ0 there exists a polynomial-almost-free E(R)-algebra A of cardinality κ.

Proof. We apply Lemma 5.1 to find a set E ⊆ κ satisfying 5κ(E).
Moreover, E decomposes into E =

⋃
β<κEβ, where each Eβ is sparse and

satisfies 5κ(Eβ).
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Now let A =
⋃
ν∈κAν be a κ-filtration of a set A of cardinality κ. In-

ductively we must define a ring structure on Aν for all ν ∈ κ such that
any endomorphism is ring multiplication on many layers. We enumerate
A = {aν | ν ∈ κ} so that aβ ∈ Aβ for all β ∈ κ; we may assume that
|Aν | = |ν|+ |R| = |Aν+1 \Aν | for all ν ∈ κ. Let ν ∈ E. Then cf(ν) = ω and
hence there exists an increasing sequence νn < ν such that supn∈ω νn = ν
and each νn is a successor ordinal, i.e. νn 6∈ E.

The definition of the ring structure is standard and can be found in
[DG1]. Hence we restrict to ϕ ∈ End(Aν). We define P βν (ϕ) ∈ {0, 1} and let
P βν (ϕ) = 0 if the following hold:

(1) Aν is a polynomial ring over R of rank > ω.
(2) Aνn is a polynomial ring over R, Aν is a polynomial ring over Aνn

for all n and Aνn/aβR is a free R-module for almost all n.
(3) ϕ does not extend to F 0 if we apply the Step Lemma to Fn = Aνn ,

b = aβ and ϕ.

Otherwise we let P βν (ϕ) = 1.
Since all Eβ are non-small we derive, by 5κ(Eβ), functions χβ : Eβ → 2

such that
χβ(ϕ) := {ν ∈ Eβ | P βν (ϕ�Aν) = χβ(ν)}

is stationary in κ for all ϕ and β < κ.
Following a routine construction we define inductively a ring structure

on Aν such that

(i) Aν is a polynomial ring over R;
(ii) if % ≤ ν and ν 6∈ E then Aν is a polynomial ring over A%;
(iii) if % ∈ Eβ, supn∈ω %n = %, and A%n/aβR is a free R-module for

some n ∈ ω then we apply the Step Lemma for Fn = A%n , b = aβ and let
A%+1 = Fχβ(%).

If τ is a limit ordinal, then Aτ =
⋃
ν∈τ Aν . Since E is sparse there are

ordinals τν ∈ τ \ E such that Aτ =
⋃
ν<cf(τ)Aτν . By (ii) we conclude that

Aτµ is a polynomial ring over Aτν for all ν < µ < cf(τ). Therefore Aτ is a
polynomial ring over Aτν for all ν < cf(τ) and thus Aτ is a polynomial ring
over R since (i) implies that Aτν is a polynomial ring over R.

It remains to show (ii) for a limit ordinal τ . For % ≤ τ 6∈ E there is τν
such that A% ⊆ Aτν . Hence Aτν is a polynomial ring over A% by (ii) and, as
we have seen above, Aτ is a polynomial ring over Aτν , which implies that
Aτ is also a polynomial ring over A%.

If τ = µ+ 1 is a successor ordinal and µ 6∈ Eβ for all β < τ then choose
a set Vµ of new commuting variables of cardinality µ and define

Aτ = Aµ[Vµ].
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If µ ∈ Eβ for some β ∈ τ then cf(µ) = ω. If Aµn/aβR is not a free R-module
for all n ∈ ω then again set Aτ = Aµ[Vµ]. Now conditions (i) to (iii) hold
trivially. Therefore assume Aµn/aβR is a free R-module for some n ∈ ω
and hence for almost all n ∈ ω. In this case we apply the Step Lemma to
Fn = Aµn and b = aβ and define Aτ = Fχβ(µ). We have to verify (ii). Take
% ∈ τ \ E; then % < µn < µ for almost all n ∈ ω. By induction hypothesis
Aµn is a polynomial ring over A% and the Step Lemma ensures that Aτ is a
polynomial ring over Aµn . Therefore Aτ is a polynomial ring over A%.

Clearly A =
⋃
ν∈κAν is a polynomial-almost-free R-algebra of cardinal-

ity κ by (i) to (iii). It remains to show that EndR(A) = EndA(A). Otherwise
there is ϕ ∈ EndR(A) \A. The set

C := {ν ∈ κ | ϕ�Aν ∈ EndR(Aν) \Aν}
is a cub. Furthermore, ϕ(b) 6= ϕ(1)b for some fixed basic element b = aβ ∈ Aν
(ν ∈ C). Now let ν ∈ C∩χβ(ϕ�Aν) and observe that ϕ�Aν obviously extends
to Aν+1.

By (iii), Aν+1 = Fχβ(ν) (as in the Step Lemma) and (3) tells us that
χβ(ν) = 1 and that ϕ�Aν also extends to F 0. The Step Lemma now shows
that ϕ(b) = ϕ(1)b—a contradiction, and A is an E(R)-algebra.

By an obvious modification of the proof of Theorem 5.5 (see [E] for
details) we derive the following result:

Theorem 5.6. (ZFC +5κ) Assume that R is a countable torsion-free
domain which is not a field. For any uncountable regular non-weakly com-
pact cardinal κ there exist 2κ non-isomorphic polynomial-almost-free E(R)-
algebras A of cardinality κ.

Remark 5.7. Theorem 5.6 shows that for any regular non-weakly com-
pact cardinal κ > ℵ0 there exist 2κ non-isomorphic polynomial-almost-free
E-rings.

5.2. Almost-free E(A,R)-modules. Next we will construct almost-free
E(A,R)-modules which extend a given free R-module M . We must improve
the Step Lemma 5.4.

Extended Step Lemma 5.8. Assume that R is a countable torsion-free
domain which is not a field. Let F = R[X] be the polynomial ring over R
in a set X = {xi | i ∈ ω} of commuting variables, and let b ∈ RF be a basic
element. If Xn = {x0, . . . , xn} then consider Fn := R[Xn] as a canonical
subring of F . Let H =

⋃
n∈ωHn be a chain of free Fn-modules Hn and H

a free F -module of countable rank such that H/Hn is a free Fn-module for
each n ∈ ω. Then there exist two ring extensions F ε of F and two module
extensions Hε of H with the following properties for ε = 0, 1:

(i) F ⊂ F ε and F ε/F is S-divisible.



190 R. Göbel and L. Strüngmann

(ii) F ε is a polynomial ring over Fn for each n ∈ ω.
(iii) F ε is a polynomial ring over R.
(iv) If ϕ ∈ EndR(F ) extends to both ϕε ∈ EndR(F ε) for ε = 0, 1, then

ϕ(b) = ϕ(1)b.
(v) Hε is a free F ε-module such that Hε/Hn is a free Fn-module for all

n ∈ ω.
(vi) If ψ ∈ HomR(F,H) extends to ψε ∈ HomR(F ε,Hε) for ε = 0, 1

then ψ(b) = ψ(1)b.

Proof. The existence of the two ring extensions with (i) to (iv) follows
from Lemma 5.2. Therefore it remains to construct Hε as in the lemma. If
Hε := H ⊗ F ε, then Hε is a free F ε-module for ε = 0, 1. Moreover, Hε/Hn

is a free Fn-module by (ii) since H/Hn is a free Fn-module. This shows (v)
and it remains to prove (vi).

Suppose ψ ∈ HomR(F,H) extends to both ψε ∈ HomR(F ε,Hε) for
ε = 0, 1. We can write H =

⊕
i∈ω hiF , and let πi : H → F be the pro-

jection onto the ith summand. Then ψ =
⊕

i∈ω πiψ where each πiψ ∈
EndR(F ). Hence Hε =

⊕
i∈ω hiF

ε and let πεi be the corresponding projec-
tion with πεiψ

ε ∈ EndR(F ε) which extends πiψ for ε = 0, 1. By (iv) we de-
rive πiψ(b) = πiψ(1)b, hence ψ(b) =

⊕
i∈ω πiψ(b) =

⊕
i∈ω πiψ(1)b = ψ(1)b,

which proves (vi).

The Extended Step Lemma 5.8 is used to improve Theorem 5.5.

Theorem 5.9. (ZFC +5κ) Assume that R is a countable torsion-free
domain which is not a field. If H is a free R-module of rank λ ≥ ℵ0 and κ > λ
is a regular non-weakly compact cardinal , then there exist a polynomial-
almost-free E(R)-algebra A of cardinality κ and an E(A,R)-module M of
cardinality κ which is κ-free as an R-submodule and extends H.

Proof. The existence of A follows from Theorem 5.5. Hence we must find
M . However, due to the combinatorial setting it turns out that we must
construct A and M simultaneously. Hence we begin with two κ-filtrations
A =

⋃
β∈κAβ and M =

⋃
β∈κMβ with |Mν | = |ν| + |R| = |Mν+1 \Mν |

for all ν ∈ κ. As in the proof of Theorem 5.5, we will only concentrate
on the mapping properties and not on prediction of algebra and module
structures.

We adopt the notation on A from the proof of Theorem 5.5 and decom-
pose each Eβ into stationary disjoint subsets EA

β , EMβ . The pair (A,M) is
constructed inductively on each (Aν ,Mν) where Aν is a polynomial ring as
before and Mν is a free Aν-module. If ϕ : Aν → Mν , then (as before) we
want to define P̂ βν (ϕ) ∈ {0, 1} and let the value be 0 if the following holds
(the only interesting case is when ν ∈ EM

β for some β):



Almost-free E(R)-algebras and E(A,R)-modules 191

There is an increasing sequence νn with sup νn = ν such that

(1) Mνn is a free Aνn-module and Mν/Mνn and Aνn/aβR are free R-
modules for almost all n;

(2) if we identify Fn = Aνn , Hn = Mνn , b = aβ in the Extended Step
Lemma, then ϕ : Aν →Mν does not extend to H0.

We set P̂ βν (ϕ) = 1 otherwise.
By 5κ(EHβ ) we obtain choice functions χHβ : EHβ → 2 such that

χH(ϕ) := {ν ∈ EHβ | P̂ βν (ϕ�Aν) = χHβ (ν)}
is stationary in κ. Now define an R-algebra structure on Aν and an Aν-
module structure on Mν subject to the following conditions:

(i) Aν is a polynomial ring over R.
(ii) If % ≤ ν and ν 6∈ EA :=

⋃
β<κE

A
β then Aν is a polynomial ring

over A%.
(iii) If % ∈ EAβ , supn∈ω(%n) = % and A%n/aβR is a free R-module for

some n then we apply the Extended Step Lemma for Fn = A%n , Hn = M%n ,
b = aβ and let A%+1 = Fχ

A
β (%), M%+1 = HχAβ (%).

(iv) Mν is a free Aν-module.
(v) If % ≤ ν and ν 6∈ EH then Mν/M% is A%-free.
(vi) If % ∈ EHβ , supn∈ω %n = %, and A%n/aβR is a free R-module for

some n then we apply the Extended Step Lemma for Fn = A%n , Hn = M%n ,
b = aβ and let A%+1 = Fχ

H
β (%), M%+1 = HχHβ (%).

We obtain two κ-filtrations A =
⋃
β∈κAβ and M =

⋃
β∈κMβ . A by now

routine checking as in Theorem 5.5 shows that A is a polynomial-almost-
free E(R)-algebra of cardinality κ and M is an almost-free (as R-module)
E(A,R)-module of cardinality κ which extends H.
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[S] P. Schultz, The endomorphism ring of the additive group of a ring , J. Austral.

Math. Soc. 15 (1973), 60–69.
[Sh] S. Shelah, On successors of singular cardinals, in: Logic Colloquium 1978, North-

Holland, Amsterdam, 1979, 243–256.
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