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The fixed point property for some cartesian products

by

Roman Mańka (Warszawa)

Abstract. It is proved that the cylinder X × I over a planar λ-dendroid X has the
fixed point property. This is a partial solution of two problems posed by R. H. Bing (cf.
[1], Questions 9 and 10).

1. Introduction. The principal
objective of this paper is to prove the following

Main Theorem. If X is a planar λ-dendroid then X × I has the fixed
point property.

(For definitions of undefined terms see the following section.)

Remarks. 1. It will be clear from the proof that the conclusion still
holds if I is replaced by any compact absolute retract. Also, we can replace
X by any λ-dendroid each of whose subcontinua has at most one dense arc
component. This is satisfied, for instance, for planar λ-dendroids (see 2.1)
and for λ-dendroids with countably many arc components (see [4]).

2. In a forthcoming paper [11] we shall extend this result to all λ-den-
droids. The principal results and methods of this paper will be included as
the

starting point of the proof.
3. There is a contractible 2-dimensional continuum with the fixed point

property whose product with the unit interval does not have the fixed point
property ([5], cf. [2]).

Now we outline the strategy of our argument. We fix a mapping f :
X × I → X × I. Our task is to find a point (x0, t0) ∈ X × I such that
f(x0, t0) = (x0, t0). To this end, we first observe that there is a subcontinuum
X0 of X minimal with respect to the property f(X0×I) ⊂ X0×I. Without
loss of generality we can assume that X0 = X. Under this assumption,
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(∗) f(Y×I) is not contained in Y×I for any proper subcontinuum Y of X.

Then we notice that f = (f1, f2) where f1 : X× I → X and f2 : X× I → I.
Thus we can define a continuous continuum-valued transformation F : X →
X setting

F (x) = f1({x} × I) for each x ∈ X.
This function, canonically determined by f , is said to be induced

by f . Applying the fixed point property for multi-valued transformations
of λ-dendroids (see 4.2), we get a point y0 ∈ X such that y0 ∈ F (y0). Let Y0

denote the arc component of X that contains y0. It follows that F (Y0) ⊂ Y0

(as f maps Y0 × I into itself). Then F (clY0) ⊂ clY0 (because f maps
(clY0)× I into itself). By (∗) it follows that

(1) Y0 is dense in X.

Now our claim is that f has a fixed point in Y0 × I. To prove this we
assume, on the contrary, the claim is false: there is no fixed point for f in
Y0× I; and we pursue a contradiction. By Theorem 3.1 we get a pursuit ray
R in Y0 for F such that no arc in X contains R. Since R is a pursuit ray we
get L(R) ⊂ F (L(R)), where the limit L(R) is determined with respect to X.
Let a denote the origin of R. Then, by an important property of λ-dendroids
(see Corollary 4.3), we get a point b ∈ X such that b ∈ F (b) and R ⊂ ab. It
follows from the

inclusion that the irreducible continuum ab is not an arc. Let Y1 denote
the arc component of X that contains b. Hence Y1 6= Y0. Since b is a fixed
point of F we infer, as in the case of Y0, that F (Y1) ⊂ Y1 and, analogously,
that

(2) Y1 is dense in X.

By (1) and (2) we see that X contains at least two distinct dense arc compo-
nents. However this contradicts Lemma 2.1; and this contradiction concludes
the argument.

Remark 4. It may be of interest to compare our discussion of the fixed
point property for products with the techniques worked out by Young [14].

2. Preliminaries. All spaces discussed in this paper are Hausdorff,
most of them are metrizable. By a continuum we mean a non-void compact
connected metrizable space. A continuum containing only one point is said
to be degenerate. A continuum is said to be irreducible between two of its
points if no proper subcontinuum contains these points. A continuum X
is said to be unicoherent if for every representation X = A ∪ B, where A
and B are continua, the intersection A ∩ B is a continuum. A continuum
is said to be hereditarily unicoherent if all its subcontinua are unicoherent.
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For any two points a, b of a hereditarily unicoherent continuum X there is
a unique minimal (with respect to inclusion) subcontinuum of X containing
these points, denoted simply by ab. Obviously, ab is irreducible between
a and b. A continuum is said to be decomposable if it can be represented
as a union of two proper subcontinua, otherwise it is indecomposable. A
continuum is hereditarily decomposable if all its non-degenerate subcontinua
are decomposable. Any irreducible hereditarily decomposable continuum Z
admits a canonical upper semicontinuous decomposition D into

disjoint continua with empty interiors, called layers of Z, such that the
quotient space Z/D

is an arc ([7], cf. [8]). The layer containing a point z ∈ Z will be denoted
by [z]Z ; the layers corresponding to the ends of the arc will be called end
layers or ends of Z; Z is irreducible between any two points lying in different
ends.

By a λ-dendroid we mean a continuum that is both hereditarily decom-
posable and hereditarily unicoherent. It is well known that λ-dendroids are
tree-like [3], hence acyclic. Combining this and standard results, one readily
sees that a subcontinuum of the plane is a λ-dendroid if and only if it is
hereditarily decomposable and does not separate the plane. In the proof of
the Main Theorem we refer to the following property of planar λ-dendroids.

2.1. Lemma (Krasinkiewicz–Minc [6]). Every planar λ-dendroid has at
most one dense arc component.

By a ray in a space X we mean the image R = p([0,∞)) of a contin-
uous injection p : [0,∞) → X usually called a parameterization of R. The
canonical linear order ≤ on [0,∞) can be carried over via p to R. Since it
is independent of the parameterization, each ray admits a canonical linear
ordering, also denoted by ≤. The point p(0), independent of the parameter-
ization, is called the origin of R. For x ∈ R, by R(x) we denote the subray
R(x) = {y ∈ R : x ≤ y}. By the limit (in the space X) of the ray R we
mean the set L(R) =

⋂{clR(x) : x ∈ R}. Clearly, clR = R ∪ L(R). One
easily sees that L(R) =

⋂
n clR(xn) for any sequence {xn} cofinal in R. If

X is compact metrizable then L(R) is a continuum. We need the following
property of λ-dendroids:

2.2. Theorem. Let R be a ray with origin a in a λ-dendroid X. Then
R∩L(R) = ∅ and , consequently , R∪L(R) is a continuum irreducible between
a and every point of L(R).

In fact, this is a corollary to the following stronger result.

2.3. Lemma. Let R be a ray in a hereditarily unicoherent continuum X.
If R∩L(R) 6= ∅ then L(R) is an indecomposable continuum and R∩L(R) =
R(x0) for some x0 ∈ R.
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Proof. Let x0 = min(R ∩ L(R)). First note that R(x0) ⊂ L(R) because
R(x) ∪ L(R) is a continuum for each x ∈ R. Hence R ∩ L(R) = R(x0). It
follows that clR(x) = L(R) for each x ≥ x0. Now suppose L(R) = A ∪ B,
where A and B are proper subcontinua of L(R). Then there are points
x0 ≤ x1 < x2 < x3 on R such that x1, x3 ∈ A and x2 ∈ B \ A. Then one
easily sees that A∪x1x3 is a non-unicoherent subcontinuum of L(R), which
contradicts our hypothesis. Hence L(R) is indecomposable, which completes
the proof.

A transformation F assigning to each point x ∈ X a subset F (x) ⊂ X,
often written F : X → X, is called a multi-valued transformation of X.
Obviously, any ordinary function X → X can be treated as a multi-valued
transformation. For any set A ⊂ X we define F (A) =

⋃{F (x) : x ∈ A}.
We are interested only in multi-valued transformation with some regularity
properties. Let us recall some interesting classes. First, for any set S in X,
define

F−1(S) = {x ∈ X : F (x) ∩ S 6= ∅}.
Then define F to be upper semicontinuous if F−1(B) is closed for each closed
set B in X; lower semicontinuous if F−1(U) is open for each open set U
in X; continuous if it is both upper and lower semicontinuous. We call F
continuum-valued , briefly: c-valued , if each F (x) is a continuum in X. Trans-
formations of the latter kind can be treated as functions F : X → C(X),
where C(X) is the hyperspace of subcontinua with the Vietoris topology
(but we must take care because F (A) and F−1 have a different meaning in
this setting). Then F : X → X is continuous if and only if F : X → C(X) is
a mapping. F : X → X is said to preserve locally (resp., arcwise) connected
continua if F (A) is locally (arcwise, resp.) connected continuum for each
locally (arcwise, resp.) connected continuum A in X. A point x0 ∈ X is said
to be a fixed point for a

multi-valued transformation F : X → X if x0 ∈ F (x0). A space X has
the fixed point property if every mapping of X into itself has a fixed point.

By a pursuit ray of a multi-valued transformation F : X → X we mean
a ray R = p([0,∞)) such that there are arbitrarily large numbers t ∈ [0,∞)
with p([0, t]) contained in an arc p(0)qt ⊂ X for some qt ∈ F (p(t)).

An arcwise connected space is said to be uniquely arcwise connected if
for any two distinct points there is a unique arc in this space having these
points as its endpoints.

By N we denote the natural numbers, N = {0, 1, 2, . . .}; I stands for the
unit interval [0, 1].

3. Pursuit rays in uniquely arcwise connected spaces. In this
section we discuss a uniquely arcwise connected space Y and a mapping f :
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Y × I → Y × I with no fixed point . Then f = (f1, f2), where f1 : Y × I → Y
and f2 : Y × I → I. Let F : Y → Y denote the c-valued transformation
induced by f ,

F (x) = f1({x} × I) for each x ∈ Y.
Clearly, F is continuous. We are going to prove the following

3.1. Theorem. There is a pursuit ray R of F contained in no arc in Y.

Remarks. 1. It will be clear from the proof that this theorem is still
valid if I is replaced by any compact absolute retract.

2. By a B-space we mean a uniquely arcwise connected space such that
each ray in it is a subset of an arc in this space. The above yields the
following theorem of Okhezin [12]: the product of a B-space and a compact
absolute retract has the fixed point property .

Proof of Theorem 3.1. First we construct a sequence (x0, s0), (x1, s1), . . .
in Y × I satisfying conditions (1) and (2) below:

(1) f2(xn, sn) = sn, i.e. f(xn, sn) = (x′n, sn) for each n ≥ 0.

Consequently, x′n = f1(xn, sn) is different from xn as f has no fixed point.

(2) (x0x
′
0 ∪ . . . ∪ xn−1x

′
n−1) ∩ xnx′n = {xn} for each n ≥ 1.

(Here ab, for distinct points a, b in Y , stands for the unique arc in Y with
these endpoints.)

To start the construction, we pick an arbitrary point x0 ∈ Y . Then
s0 is defined to be a fixed point of the mapping I 3 s 7→ f2(x0, s) ∈ I.
Clearly, f2(x0, s0) = s0; hence (1) is satisfied for n = 0. Now assume
(x0, s0), . . . , (xm−1, sm−1), m − 1 ≥ 0, have been defined so that (1) and
(2) hold for n = 0, . . . ,m−1. Then one easily sees that Tm−1 = x0x

′
0 ∪ . . .∪

xm−1x
′
m−1 is a tree. It remains to construct a point (xm, sm) satisfying the

conditions:

f2(xm, sm) = sm,(∗)
(x0x

′
0 ∪ . . . ∪ xm−1x

′
m−1) ∩ xmx′m = {xm}.(∗∗)

To this end, note that f1(Tm−1 × I) is a locally connected continuum
which contains x′m−1 = f1(xm−1, sm−1). Since this point also belongs to
Tm−1 the union Tm−1 ∪ f1(Tm−1× I) is also a locally connected continuum.
Hence this continuum is a dendrite because it contains no simple closed
curve. Therefore, by a classical result (see e.g. [13, 4]), there is a mono-
tone retraction r : Tm−1 ∪ f1(Tm−1 × I) → Tm−1. Then (r ◦ f1, f2) maps
Tm−1 × I into itself. Since the product is an absolute retract the mapping
has a fixed point. Define (xm, sm) ∈ Tm−1 × I to be a fixed point of this
mapping, (r ◦ f1(xm, sm), f2(xm, sm)) = (xm, sm). Obviously, (∗) is satis-
fied. We have already noticed that x′m = f1(xm, sm) must be different from
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xm. Since r(x′m) = xm and r is monotone, both points xm, x′m belong to
the continuum r−1(xm) and this continuum meets Tm−1 only at xm. Since
r−1(xm) is a dendrite the arc xmx′m is its subset. Thus (∗∗) is also satisfied.
This completes the construction of the sequence (x0, s0), (x1, s1), . . .

Notice the following corollary to (2):

(3) if xix
′
i ∩ xjx′j 6= ∅ and i < j then xix

′
i ∩ xjx′j = {xj}.

We have the following important property:

(4) for any locally connected continuum A ⊂ Y the set N(A) = {j ∈ N :
xj ∈ A} is finite.

Indeed, suppose N(A) is infinite. Then there are k(1) < k(2) < . . . in
N(A) such that the sequence (xk(1), sk(1)), (xk(2), sk(2)), . . . in A×I converges
to a point (y0, t0) ∈ A × I. It follows from (1) that f2(y0, t0) = t0 because
f2(xk(n), sk(n)) = sk(n) for each n ≥ 1. Hence we must have f1(y0, t0) 6= y0.
Consequently, there exists a small enough locally connected continuum K ⊂
A and an arc L ⊂ I such thatK×L is a neighbourhood of (y0, t0) in A×I and
K ∩ f1(K ×L) = ∅. Therefore, both (xk(n), sk(n)) and (xk(n+1), sk(n+1)) be-
long to K×L for sufficiently large n ≥ 1. Then both xk(n) and xk(n+1) belong
to K, and both x′k(n) = f1(xk(n), sk(n)) and x′k(n+1) = f1(xk(n+1), sk(n+1))
belong to f1(K × L). Since xk(n)x

′
k(n) ∪ xk(n+1)x

′
k(n+1) ∪ K ∪ f1(K × L)

is a locally connected continuum in Y it is a dendrite. On the other hand,
one can easily construct a simple closed curve in this continuum, because
the arcs are disjoint off the point xk(n+1). This contradiction completes the
proof of (4).

Now we are going to study a function µ : N → N reflecting a relation
between the arcs x0x

′
0, x1x

′
1, x2x

′
2, . . . pertaining their intersections. Let us

define
µ(j) = min{i : xj ∈ xix′i}.

Clearly, by (2) we have

(5) µ(0) = 0 and µ(j) < j for j > 0.

Consequently, for each j ∈ N there is k ∈ N such that µk(j) = 0. It follows
that

(6) {0} ⊂ µ−1(0) ⊂ µ−2(0) ⊂ . . . and {0} ∪ µ−1(0) ∪ µ−2(0) ∪ . . . = N.
(Here µ−k = (µk)−1.) We shall see that (4) implies the following:

(7) µ−1(k) is finite for each k ≥ 0.

In fact, since xj ∈ xkx
′
k for each j ∈ µ−1(k) (because µ(j) = k) hence

µ−1(k) ⊂ N(xkx′k). As the latter set is finite by (4), the proof is complete.
Using (7), we can now show by simple induction that

(8) µ−k(0) is finite for each k ≥ 0.
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It follows that

(9) µ−k(0) \ µ−(k−1)(0) 6= ∅ for each k ≥ 0 (µ−0(0) = id−1(0) = {0}).
In fact, otherwise µ−k(0) = µ−(k−1)(0) by (6). This implies µ−n(0) =
µ−(n−1)(0) = . . . = µ−(k−1)(0) for each n ≥ k, contrary to (6) and (8).
Finally, we have

(10) µ maps µ−(k+1)(0) \ µ−k(0) into µ−k(0) \ µ−(k−1)(0) for each k ≥ 0.

Indeed, let j ∈ µ−(k+1)(0) \ µ−k(0). Then µk+1(j) = 0 and µk(j) 6= 0.
Since µk+1(j) = µk(µ(j)) and µk(j) = µk−1(µ(j)) we infer that µ(j) ∈
µ−k(0) \ µ−(k−1)(0).

These properties show that we can construct an inverse sequence

µ−1(0) \ {0} ← µ−2(0) \ µ−1(0)← µ−3(0) \ µ−2(0)← . . .

of non-void finite sets with the bonding maps induced by µ. Hence the limit
of this inverse sequence is non-void. Let (j(1), j(2), . . .) be an element of the
limit. Hence

(11) j(n) ∈ µ−n(0) \ µ−(n−1)(0) and µ(j(n+ 1)) = j(n) for n ≥ 1.

Now we can prove the conclusive fact of this proof:

(12) The union xj(1)xj(2) ∪ xj(2)xj(3) ∪ xj(3)xj(4) ∪ . . . is a pursuit ray in
Y and it is contained in no locally connected subcontinuum of Y .

Indeed, first note that 0 < j(1) < j(2) < . . . by (5) and (11). Hence the
second assertion of (12) follows from (4). Now we shall prove the first one.
Since j(1) > 0 and the sequence of j(n)’s is strictly increasing, (11) implies
xj(n) 6= xj(n+1) for each n ≥ 1. Hence each xj(n)xj(n+1) is an arc. According
to (3) and the definition of µ we also get xj(n)xj(n+1) ∩ xj(n+1)xj(n+2) =
{xj(n+1)} and xj(n)xj(n+1) ∩ xj(n+i)xj(n+i+1) = ∅ for each i ≥ 2. Hence
the union in (12) is a ray. Since xj(n)x

′
j(n) = xj(n)xj(n+1) ∪ xj(n+1)x

′
j(n)

and xj(n)xj(n+1) ∩ xj(n+1)x
′
j(n) = {xj(n+1)}, similar reasoning shows that

xj(1)x
′
j(n) = xj(1)xj(2) ∪ . . .∪xj(n)xj(n+1) ∪xj(n+1)x

′
j(n) is an arc containing

the arc xj(1)xj(n) = xj(1)xj(2) ∪ . . .∪xj(n−1)xj(n). Since x′j(n) ∈ F (xj(n)) for
each n ≥ 1, the ray is a pursuit ray. This proves (12), and completes the
entire proof.

3.2. Theorem. Let R ⊂ Y be a pursuit ray for F which is contained
in no arc in Y. Then for each x0 ∈ R there is x1 ∈ R such that R(x1) ⊂
F (R(x0)).

Proof. Let a be the origin of R and let ≤ be the canonical order on R.
By the hypothesis there is s0 ∈ R and an arc aq0, with q0 ∈ F (s0), such that
x0 ≤ s0 and as0 ⊂ aq0. Since Y is uniquely arcwise connected and R is not
contained in the arc aq0, the set R ∩ aq0 is an arc at0, t0 ≥ s0, because it is
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a compact subset of R. Put x1 = t0. We are going to verify that this point
satisfies the conclusion of our theorem. First notice that x1q0 ∩ R = {x1}.
Let us note that we will get the conclusion of our theorem once we show
that for each x > x1,

(∗) x1x \ {x1} ⊂ F (s0s1) for some s1 > x.

In fact, suppose this holds. Then x1x ⊂ F (s0s1), so x1, x ∈ F (s0s1). Since
s0s1 ⊂ R(x0) we infer that x1, x ∈ F (R(x0)) for each x > x1. Hence it
remains to prove (∗).

Using the hypothesis again, we can find s1 > x on R such that as1 ⊂
aq1 for some q1 ∈ F (s1). This s1 satisfies (∗). Indeed, repeating the above
reasoning we get a point t1 ≥ s1 such that t1q1 ∩ R = {t1}. Since t0q0 ∪
F (s0s1) ∪ t1q1 is an arcwise connected continuum we have t0t1 ⊂ t0q0 ∪
F (s0s1)∪ t1q1. It follows that t0t1 \ {t0, t1} ⊂ F (s0s1) because t0t1 ∩ (t0q0 ∪
t1q1) = {t0, t1}. Since x1x \ {x1} ⊂ t0t1 \ {t0} ⊂ t0t1 \ {t0, t1}, the proof is
complete.

4. Some properties of λ-dendroids. In this section we denote by X
a λ-dendroid and by F an upper semicontinuous continuum-valued trans-
formation of X into itself. We need the following important property of
λ-dendroids.

4.1. Lemma [9, Th. 1]. Let u 6= v be two points of X such that v ∈ F (u)
and [u]uv ∩ F ([u]uv) = ∅. Then there is a point b ∈ X such that b ∈ F (b)
and [u]uv = [u]ub.

In the following section we shall exploit the following two corollaries to
this lemma.

4.2. Corollary [10]. F has a fixed point.

Proof. Let K be a subcontinuum of X minimal with respect to the prop-
erty K ∩F (K) 6= ∅. If K is a one-point set the proof is finished. So, assume
K is non-degenerate, and select a point v ∈ K ∩ F (K). Then v ∈ F (u)
for some u ∈ K. Clearly, by the minimality of K we get K = uv and
[u]uv ∩F ([u]uv) = ∅. Now we can apply 4.1 to get a fixed point b ∈ X for F .

4.3. Corollary. Let R be a ray in X with the origin a. If L(R) ∩
F (L(R)) 6= ∅ then there is a point b ∈ X such that b ∈ F (b) and R ⊂ ab.

Proof. As in the proof of 4.2, there is a subcontinuumK of L(R) minimal
with respect to the propertyK∩F (K) 6= ∅. Let v ∈ K∩F (K); then v ∈ F (u)
for some u ∈ K. If u = v then b = u satisfies the conclusion of the corollary
because ab = clR (see 2.2). Now consider the case u 6= v. By the minimality
of K we have K = uv and [u]K ∩ F ([u]K) = ∅, because [u]K is a proper
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subcontinuum of K. Consequently, by Lemma 4.1 there is a point b ∈ X
such that

b ∈ F (b),(1)

[u]K = [u]ub.(2)

Notice that

(3) no subray of R is contained in ub.

Indeed, otherwise L(R) would be a subcontinuum of ub with empty interior
in ub which would imply L(R) ⊂ [u]ub, contrary to (2) because [u]K is a
proper subset of L(R). Hence

(4) ub ∩R = ∅.
In fact, suppose it is not true. Then, by (3), ub∩clR is not connected because
clR = R ∪ L(R) and R ∩ L(R) = ∅. This is impossible as X is hereditarily
unicoherent. Finally we get

(5) R ⊂ ab.
In fact, ab ⊂ (clR)∪ub. Since clR = R∪L(R) we have ab ⊂ R∪L(R)∪ub.
Since R∩L(R) = ∅, by (4) we get R∩(L(R)∪ub) = ∅. Thus each continuum
in R∪L(R)∪ub connecting the origin of R to b ∈ L(R)∪ub must contain R.
This yields (5).

5. Proof of the Main Theorem. Let X be a planar λ-dendroid and
let f : X × I → X × I be a mapping. We are going to prove that f has a
fixed point. Without loss of generality we can assume that X is minimal with
respect to the property f(X×I) ⊂ X×I. The multi-valued map F induced
by f is continuous and preserves locally connected continua. Moreover, each
F (x) is a dendrite because it is a locally connected continuum containing
no simple closed curve. From the assumption it follows that X is minimal
with respect to the property F (X) ⊂ X. Suppose, to the contrary, that f
has no fixed point.

By 4.2 there is a fixed point y0 for F . Let Y0 be the arc component of
X containing y0. It follows that F (Y0) ⊂ Y0 because the image is arcwise
connected and contains y0. Since F is continuous we infer that F (clY0) ⊂
clY0. By the minimality of X we get

(1) clY0 = X.

By 3.1 and 3.2 there is a ray R ⊂ X satisfying the conditions:

no arc in X contains R,(2)

for each x ∈ R there is x′ ∈ R such that R(x′) ⊂ F (R(x)).(3)
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By upper semicontinuity of F and by (3) we infer that

(4) L(R) ⊂ F (L(R)).

Let a denote the origin of R. By Corollary 4.3 there is a point b ∈ X such
that

b ∈ F (b),(5)

R ⊂ ab.(6)

Combining (2) and (6) we infer that

(7) ab is not an arc.

This implies that b does not belong to Y0. Let Y1 be the arc component of
X which contains b. By (5) we infer that F (Y1) ⊂ Y1. As in the case of Y0

we get clY1 = X. Thus Y0 and Y1 are different dense arc components in X,
which contradicts 2.1. This contradiction completes the proof.
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