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A property of the solvable radical
in finitely decidable varieties

by

Paweł M. Idziak (Kraków) and Matthew Valeriote (Hamilton, ON)

Abstract. It is shown that in a finitely decidable equational class, the solvable rad-
ical of any finite subdirectly irreducible member is comparable to all congruences of the
irreducible if the type of the monolith is 2. In the type 1 case we establish that the
centralizer of the monolith is strongly solvable.

An equationally defined class V of algebras is said to be finitely decidable
if the first order theory of the class of finite members of V is recursive (or
decidable). An advance in the study of finitely generated finitely decidable
equational classes was obtained by the first author and can be found in
[4]. In that paper a list of conditions is produced which is shown to be
both necessary and sufficient for a finitely generated congruence modular
equational class to be finitely decidable. One of the conditions in the list is:

(†) The centralizer of the monolith of any finite subdirectly irreducible
algebra in the equational class is comparable to every congruence of
the algebra.

In this paper we establish the necessity of this condition under the assump-
tion of finite decidability in a congruence modular setting. Note that if V is
a congruence modular equational class then the only types (in the sense of
tame congruence theory) which can appear in the finite algebras in V are 2,
3 and 4.

If A is a finite irreducible algebra whose monolith µ has type 3, 4, or 5
then the centralizer of µ is 0A and so the condition (†) automatically holds.
Thus, the only interesting cases are when the type of 〈0A, µ〉 is 1 or 2. We
suspect, but have no proof, that (†) holds even when the type of the monolith
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is 1. In this paper we offer a proof of the type 2 case. We also show that an
important feature of the type 2 case holds in the type 1 case as well.

In [5] it is shown that if the monolith of a finite irreducible algebra is of
type 2 and the algebra generates an equational class which is not hereditarily
undecidable then the centralizer of the monolith is equal to the solvable
radical of the algebra. Note that the solvable radical of a finite algebra is
the largest solvable congruence of the algebra. We establish in the type 1
case that the centralizer of the monolith is a (strongly) solvable congruence.

For the basic facts on general algebraic structures which we assume in
this paper, please consult [2]. For detailed information on tame congruence
theory and on decidability, the books [3, 1, 7] are recommended.

We would like to list some terminology and notation which we use
throughout this paper and which may not be familiar to the reader. If D is a
subalgebra of AX (for some X) which contains all of the constant elements
â, for a ∈ A, then we call D a diagonal subalgebra of AX (â is the element
of AX which takes on the value a at all coordinates x ∈ X). If p(x) is a
polynomial operation of the algebra A, then the operation on D which acts
coordinatewise like the operation p is a polynomial operation of D. When
the context is clear, we will also denote this operation by p(x). If D is a
diagonal subalgebra of AX and U is a subset of A then D(U) will denote
the set D ∩ UX .

The transfer principles are tame congruence theoretic conditions on a
finite algebra which have proven to be quite useful in the study of decidabil-
ity.

Definition 1. Let A be a finite algebra and let i, j be two distinct
integers between 1 and 5. We say that A satisfies the (i, j) transfer principle
if whenever α, β and γ are congruences of A with α ≺ β ≺ γ and typ(α, β) =
i and typ(β, γ) = j, then there is some congruence δ lying below γ and
covering α with typ(α, δ) = j.

The question of which transfer principles must hold in a finitely decid-
able equational class is greatly simplified by the fact that in such a class,
types 4 and 5 cannot occur (see [3]). There are examples of finite algebras
which generate finitely decidable equational classes and for which the (1,3)
and (2,3) transfer principles fail. All other relevant transfer principles must
hold in a finite algebra which generates an equational class which is finitely
decidable.

Theorem 2 ([9, 8]). Let B be a finite algebra with Vfin(B) not heredi-
tarily undecidable. Then the minimal sets of B of type 2 and 3 have empty
tails, and the (1,2), (2,1), (3,1) and (3,2) transfer principles hold in B.
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Theorem 3. Let A be a finite irreducible algebra with monolith µ of
type 2. If SPfin(A) is not hereditarily undecidable then the centralizer of µ
is comparable to all congruences of A.

Proof. As noted earlier, since A lies in a finitely decidable equational
class, the only types which can appear as labels in Con A are 1, 2, and 3.
If the centralizer of µ fails to be comparable to all congruences of A, then
by the result of Jeong mentioned earlier, we know that the solvable radical
of A has this same defect.

It follows that there is some prime quotient 〈α, β〉 of A of type 3 with α
solvable and with β incomparable to the solvable radical of A. Choose such
a prime quotient with α as small as possible in Con A. Since α is solvable
and β is not comparable with the solvable radical, there is some solvable
cover γ of α. Since the (2,1) transfer principle holds in A and the monolith
of A is of type 2, we have typ(α, γ) = 2.

Let B = {0, 1} be an 〈α, β〉-minimal set, U an 〈α, γ〉-minimal set and V
a 〈0, µ〉-minimal set. According to Lemma 4.30 from [3], it is not possible
that U or V contain any type 3 minimal set. In fact, neither of these sets
can properly contain the range of a nonconstant idempotent polynomial, so,
in particular, β|U ⊆ α. Of course, it is possible that the 〈α, β〉-minimal and
the 〈0, µ〉-minimal sets coincide, and in that case we choose U and V to be
equal.

Since µ is the monolith of A, for any pair 〈c, d〉 ∈ µ|V and for any
distinct elements a and b from A there is a polynomial p with p(a) = c and
p(b) = d. We are using the fact that A|V is a Mal’tsev algebra, which follows
because the tail of V is empty. For a similar reason, A|U is also Mal’tsev.
Furthermore, the congruence generated by 〈0, 1〉 is equal to β, due to the
minimality of the type 3 prime quotient 〈α, β〉. From this it follows that for
any two α-related elements, a and b, from either U or V , there is a unary
polynomial p with p(0) = a and p(1) = b.

Under the assumption that the theorem is false, we will be able to seman-
tically embed the class of finite graphs into SPfin(A). Fix a pair of elements
(a, b) ∈ γ|U \ α and let (c, d) be a pair of elements from µ|V \ 0A. Let p(x)
be some unary polynomial of A with range contained in V and such that
p(a) = c and p(b) = d.

Let G = 〈G,E〉 be a finite graph and let X = G ∪ E ∪ {∞}. Here, E
consists of a set of 2-element subsets of G. We may assume that this union
is a disjoint one. Let D be the diagonal subalgebra of AX generated by the
sets {0, 1}X and {fv : v ∈ G}, where for v ∈ G, fv is the function from X
to {a, b} defined by

fv(x) =

{
b if x = v,
b if v ∈ x ∈ E,
a otherwise.
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Since there is a polynomial of A which maps 0 to c and 1 to d, and since
{0, 1}X ⊆ D, we also have {c, d}X ⊆ D and this polynomial can be used to
define, in a first order way, a boolean algebra on D({c, d}).

Even though not all of the generators of D are constant modulo γ, it
follows that all of the elements in D(U) have this property.

Claim 3.1. Let f ∈ D(U). Then f is constant modulo γ.

Since f ∈ D(U), there is some polynomial t(x, y) of A with range con-
tained in U , some {0, 1}-valued functions bi and some vj ∈ G, such that

f = t(fv1 , . . . , fvn , b1, . . . , bm).

(We are applying the polynomial t of A componentwise in the above display.
This operation is a polynomial of D since D is a diagonal subalgebra of
A. We will continue this practice throughout the proof.) Since β|U ⊆ α,
componentwise f is α-related to t(fv1 , . . . , fvn , 0̂, . . . , 0̂), an element of D(U)
which is γ-constant. Since α ⊆ γ, we conclude that f is also γ-constant.

We now set out to show that we can define, in a first order way, the
elements of D(U) which are two-valued, modulo µ. Once this has been ac-
complished, it will be a fairly straightforward exercise to specify the semantic
embedding.

Claim 3.2. Let S be a subset of U or V that is contained in some
α-class. Then the set D(S) is definable by some first order formula.

Let S = {s0, s1, . . . , sk} and let d(x, y, z) be a Mal’tsev polynomial for
U or V , depending on whether S is a subset of U or V . Let x + y be the
polynomial d(x, s0, y). Then f ∈ D(S) if and only if there are some unary
polynomials of A, g1, . . . , gk and some elements b1, . . . , bk from D({0, 1})
such that

• gi(0) = s0 and gi(1) = si for all i ≤ k,
• bi ∧ bj = 0̂ for all i < j ≤ k (where ∧ is the meet operation of the

boolean algebra on D({0, 1})), and
• f = g1(b1) + g2(b2) + . . .+ gk(bk) (associating to the left).

We leave the detailed verification of this to the reader. Since A has only a
finite number of unary polynomials and D({0, 1}) is definable as the range of
a unary polynomial of A, the above condition is clearly first order definable.

An immediate consequence of the above claim is that the α-constant
elements in D(U) or D(V ) are definable by first order formulas CONU

α (x)
and CONV

α (x) since both D(U) and D(V ) are first order definable.

Claim 3.3. There is a first order formula TWO(x) that defines a sub-
set of the elements of D(U) which are 2-valued modulo µ, and the subset
contains the generators fv for all v ∈ G.
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It is not hard to see that the elements f = fv for some v ∈ G have the
following first order properties:

• ¬CONU
α (f) and f ∈ D(U),

• p(f) ∈ D({c, d}) and p(f) is not constant,
• for each polynomial g of A with range contained in V , if CONV

α (g(f))
then g(f) ∈ D({u, v}) for some (u, v) ∈ α|V ,
• for each pair of polynomials g(x) and h(x) of A, if g(f) and h(f) are
{c, d}-valued and are both nonconstant, then either g(f) = h(f) or
g(f) = h(f)′, where x′ is the boolean complement of the {c, d}-valued
function x in the boolean algebra definable on {c, d}X .

It is also true that if an element of D satisfies all of the above conditions then
there are two (γ \ α)-related elements x and y from U such that {x, y} ⊆
range(f) ⊆ (x/µ) ∪ (y/µ). To see this, let f be an element of D which
satisfies the above conditions. Since ¬CONU

α (f) holds, we find that modulo
µ, f takes on at least 2 values.

To reach a contradiction, suppose that the elements u, v, and w are
contained in the range of f and that pairwise none of these elements are
µ-related. By an earlier observation, there is a polynomial g(x) of A such
that g has range contained in V and g(u) = c and g(v) = d. Since c and d
are µ-related and u and v are not, it follows that g(γ|U) ⊆ α. By Claim 3.1
we conclude that g(f) is constant modulo α, i.e., CONV

α (g(f)) holds. Thus,
g(f) must be {c, d}-valued.

There are two cases to consider, and both can be handled similarly.
Either g(w) = g(v) = d or g(w) = g(u) = c. In the former case, choose some
polynomial h(x) of A with range contained in V and with h(w) = c and
h(v) = d. By applying the argument from the previous paragraph, we see
that h(f) is {c, d}-valued. By construction though, it turns out that g(f) is
not equal to either h(f) or h(f)′, a contradiction.

Therefore the conjunction of the above properties defines the sought after
formula.

An immediate consequence of the previous claim is that if µ is trivial on
the set U , then the formula TWO defines a collection of 2-valued functions
in D(U) which contains the generators fv, v ∈ G. In the event that µ|U 6= 0U ,
we have U = V (by our assumptions) and so the polynomial p collapses µ|U
into 0. So, in both cases, if D |= TWO(f), then the functions f modulo µ
and p(f) have the same “shape”.

Let GEN(f) be a first order formula which is equivalent to the following
conditions:

• TWO(f),
• the meet of p(f) and χG is an atom in the Boolean algebra on D({c, d}),
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• the meet of p(f) and χ∞ equals ĉ in the Boolean algebra on D({c, d}),
where χG is the {c, d}-valued element of D that takes on the value d on the
set G and c elsewhere, and χ∞ is c-valued except at ∞, where it takes on
the value d.

Claim 3.4. D |= GEN(fv) for all v ∈ G, and for all h ∈ D, if D |=
GEN(h) then p(h) = p(fv) for some v ∈ G.

By construction, one part of this claim is easy to establish, and for the
other, assume that D |= GEN(h). Then there is some polynomial t of A
with range contained in U , elements bi from D({0, 1}) and distinct vj ∈ G
such that

h = t(fv1 , . . . , fvn , b1, . . . , bm).

As in the proof of Claim 3.1 we see that h is componentwise α-related to
t′(fv1 , . . . , fvn), where t′(x) = t(x, 0, 0, . . . , 0). Moreover, from Claim 3.1
we know that h is constant modulo γ. Since TWO holds for h, there
must be two elements x and y of U which are γ \ α-related and such that
{x, y} ⊆ range(h) ⊆ x/µ ∪ y/µ. Without loss of generality we may assume
that h(∞) = x, and so p(x) = c.

Since p(h)∧χG is an atom, there is exactly one v ∈ G with p(h)(v) = d.
It follows that (h(v), x) 6∈ µ, since p(x) = c, and so h(v) is µ-related to y.
Without loss of generality, we may assume that h(v) = y. Using a similar
argument, we can show that for every w 6= v, h(w) is µ-related to x.

We now show that the vertex v must be equal to one of the vertices
v1, . . . , vn that are used to produce h. If this is not the case, then evaluating
h at v we find that

y = h(v) α t′(fv1(v), . . . , fvn(v))

= t′(a, a, . . . , a)

= t′(fv1(∞), . . . , fvn(∞))

α h(∞) = x,

a contradiction. By rearranging the variables of t we may assume that v = v1.
We have now established the following facts:

y = h(v) α t′(b, a, . . . , a),

x α h(vi) α t′(a, a, . . . , a, b, a, . . . , a)

for i > 1, and
x = h(∞) α t′(a, a, . . . , a).

By the fact that γ is Abelian over α, the above can be used to show that

t′(b, a, . . . , a, b, a, . . . , a) α t′(b, a, . . . , a, a, a, . . . , a)
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and

t′(a, . . . , a, b, a, . . . , a, b, a, . . . , a) α t′(a, . . . , a, b, a, . . . , a, a, a, . . . , a).

To complete the proof of this claim we must show that for any edge
e ∈ E, p(h)(e) = d if and only if v ∈ e. Assume that e = {v, w} belongs to
E. Then

h(e) α t′(b, a, . . . , a, z, a, . . . , a) α t′(b, a, . . . , a) α y,

where z is either b or a depending on whether w = vi for some i or not.
Thus, p(h)(e) = d. On the other hand, if the edge e does not contain v, then
arguing in a similar fashion, we conclude that h(e)αx and so p(h)(e) = c.

We conclude that p(h) = p(fv) as required.

The vertices of the graph G can be represented by the elements of
D({c, d}) which satisfy the following formula VER(f):

∃h (GEN(h) ∧ f ≈ p(h))

and the edge relation of G can be recovered from D by the following formula
EDGE(f, g):

VER(f) ∧VER(g) ∧ f 6≈ g ∧ [f ∧ g 6= ĉ ].

Thus, up to isomorphism, we can recover the graph G from D using the
formulas VER and EDGE and so SPfin(A) is hereditarily undecidable.
This contradicts our hypothesis, and so we conclude that the centralizer of
µ must be comparable to all congruences of A.

As noted earlier, Jeong has shown that if A is a finite irreducible with
monolith µ of type 2 then the centralizer of µ is equal to the solvable radical
of A if the equational class generated by A is finitely decidable. Here we
establish a weaker result in the type 1 case.

Theorem 4. Let A be a finite irreducible algebra with strongly abelian
monolith µ and with Vfin(A) not hereditarily undecidable. Then the central-
izer of µ is a strongly solvable congruence.

This theorem will follow from a sequence of lemmas which we now
present. In order to set them up, let A be a finite (not necessarily irre-
ducible) algebra with congruences

0A ≺ µ ⊆ α ≺ β
such that α is strongly solvable, typ(α, β) = 3, and {0, 1} is an 〈α, β〉-
minimal set with β = CgA(0, 1), for some elements 0 and 1 from A.

We will show that if M is any 〈0A, µ〉-trace and if {0, 1}2 centralizes M2

over 0A (or C({0, 1}2,M2; 0A)) then A generates an hereditarily undecidable
equational class.
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Kearnes and Kiss [6] show that besides the usual notion of centrality,
there are others which play a significant role in the study of general alge-
bra. One of them is the rectangulation relation, R(L,R; δ); it is defined for
symmetric binary relations L and R and a congruence δ on an algebra A as
follows:

• For all polynomials t(x1, . . . , xn, y1, . . . , ym) of A and all (ai, bi) ∈ L
and (cj , dj) ∈ R for i ≤ n and j ≤ m, if (t(a, c), t(b, d)) ∈ δ then
(t(a, c), t(a, d)) ∈ δ.

Let T be the tolerance of A generated by (0, 1). Our proof of Theo-
rem 4 is divided into three pieces, with the main division being whether or
not R(T,M2; 0A) holds. Under our centrality assumption, this condition is
equivalent to the following holding for all a, b ∈M :

• For all polynomials t(x, y) of A, if t(a, 0) = t(b, 1) then t(a, 0) = t(b, 0).

Lemma 5. If R(T,M2; 0A) holds then T ∩ µ = 0A.

Proof. If T ∩ µ 6= 0A then there is a polynomial p(x) of A with p(0) =
a 6= b = p(1) and with a, b ∈ M . By modifying an argument due to Jeong
([5], Lemma 9), we can show that the class of finite boolean triples can be
semantically embedded into Vfin(A), contradicting our assumption.

Let F be the subalgebra of A3 generated by the diagonal and {0, 1}3 and
let c0 = (0, 0, 0), c1 = (1, 0, 0), c2 = (0, 1, 0) and c3 = (0, 0, 1). For i ≤ 3, let
di = p(ci).

Claim 5.1. For i = 1, 2, 3, the set Ni = {c0, ci} is a type 3 minimal set
of F.

Since F contains all of {0, 1}3 and the diagonal, and since {0, 1} supports
all of the boolean operations as restrictions of polynomials of A, it follows
that the induced algebra of F on Ni is polynomially equivalent to a boolean
algebra.

Furthermore, since {0, 1} is the range of some idempotent polynomial
of A, we can easily construct an idempotent polynomial of F with range Ni.
If we let βi be the congruence of F generated by Ni and αi some subcover
of βi then it follows that Ni is a minimal set with respect to the pair 〈αi, βi〉.

Let Γ be the congruence of F generated by {d1, d2, d3}2.

Claim 5.2. The Γ -class of d0 is a singleton, and so (d0, di) 6∈ Γ for
i = 1, 2, 3.

It suffices to show that if s(x) is a polynomial of F such that s(di) = d0

then s(dj) = d0 for all i, j between 1 and 3. For example, suppose that
s(d1) = d0 and consider s(d2). Since s is a polynomial of F, there is a
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polynomial r(x, y) of A and elements σi from {0, 1}3 such that s(x) = r(x, σ)
for all x ∈ F .

From the equality s(d1) = d0 we gather that

r(b, γ0) = r(a, γ1) = r(a, γ2) = a,

where, for i < 3, γi is the sequence of 0’s and 1’s determined by the ith
component of the tuple σ.

By the rectangularity condition, combined with the fact that {0, 1} sup-
ports a polynomial complementation operation, it follows that r(a, γ0) =
r(b, γ0) = a. Now employing our centrality assumption, we conclude that
r(a, γi) = r(b, γi) = a for all i < 3. The claim follows from these equalities.

Let F′ = F/Γ and set θ0 = α3/Γ , θ1 = (β×α×α)/Γ , θ2 = (β×β×α)/Γ ,
and θ3 = (β × α × β)/Γ . By the previous claim we know that the element
d0/Γ is distinct from the element d1/Γ = d2/Γ = d3/Γ .

Using F′ and the congruences just defined, we can semantically embed
the class of finite boolean triples into the class of all finite powers of F′.
The details of how to accomplish this are identical with those presented by
Jeong in [5] and so will not be presented here.

Lemma 6. If R(T,M2; 0A) fails then SPfinHS(A2) is hereditarily unde-
cidable.

Proof. Let U be a 〈0A, µ〉-minimal set which contains the trace M . Since
the type of 〈0A, µ〉 is 1, the failure of R(T,M2; 0A) can be witnessed by a
binary polynomial t(x, y) and elements a, b ∈M such that:

• t(a, 0) = t(b, 1) and t(a, 0) 6= t(b, 0),
• t has range contained in U ,
• t(x, 0) = x for all x ∈ U ,
• t(x, 1)|U is a permutation of U which is not the identity map.

It would be nice to know that, additionally, t(a, 1) = a and t(b, 1) 6= b, but
this may not be the case. In order to arrange this, we consider a particular
quotient of a subalgebra of A2.

Let B be the diagonal subalgebra of A2 generated by the singleton
{(a, b)} and let δ be the congruence of B generated by {((u, u), (v, v)) :
u, v ∈ M}. Let C be the quotient of B by δ and let c and d denote the
elements (a, a)/δ and (a, b)/δ respectively. We will use 0 and 1 to denote
the elements (0, 0)/δ and (1, 1)/δ of C respectively and will use t(x, y) to
denote the polynomial of C determined by the original t.

Let U denote {(u, v)/δ : (u, v) ∈ U 2 ∩B} and let e(x) be an idempotent
polynomial of C whose range is U . The following observations follow directly
from the construction of C.
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Claim 6.1. (1) The set {0, 1} is the range of an idempotent polynomial
of C and the induced algebra on this set is polynomially equivalent to a
boolean algebra.

(2) (u, v) ∈ U2 ∩ B if and only if u = p(a) and v = p(b) for some
polynomial p of A with range contained in U .

(3) For (u, v), (x, y) ∈ U2 ∩B, ((u, v), (x, y)) ∈ δ if and only if (u, v) =
(x, y) or u = v µ x = y.

(4) t(x, 0) = x for all x ∈ U , t(c, 1) = c and t(d, 1) 6= d.
(5) C({0, 1}2, {c, d}2; 0|U ) holds, i.e., if s(x, y) is a polynomial of C

whose range is contained in U and u and v are {c, d}-sequences then s(0, u)
= s(0, v) if and only if s(1, u) = s(1, v).

(6) If s(x) is a polynomial of C whose range is contained in U then
s|{c,d} depends on at most 1 variable. If this restriction is essentially unary ,
then it is a permutation of U .

We will interpret the class of finite graphs in the class SPfin(C). Let
G = 〈V,E〉 be a finite graph and set X = V × 2. For v ∈ V , let fv ∈ CX be
defined by

fv((w, i)) =
{

1 if v = w,
0 if v 6= w,

and for e ∈ E let fe ∈ CX be defined by

fe((w, i)) =
{
d if w ∈ e and i = 1,
c otherwise.

Let D be the diagonal subalgebra of CX generated by the fv’s and the
fe’s. Note that since {0, 1} supports the boolean operations, D contains all
of the componentwise joins of sets of fv’s. In fact, all {0, 1}-valued elements
of D can be expressed in this way. Furthermore, the vertices of G are in
bijective correspondence with the atoms of the boolean algebra of {0, 1}-
valued elements of D.

Claim 6.2. Each element f ∈ D(U) is of one of the following two dis-
joint sorts:

(1) s(fv1 , . . . , fvm) for some polynomial s of C with range contained in
U and some vertices v1, . . . , vm in V .

(2) s(fe, fv1 , . . . , fvm) for some polynomial s of C with range contained
in U such that s(x, 0, . . . , 0)|U is a permutation, some e ∈ E and some
vertices v1, . . . , vm in V .

Any element f ∈ D(U) is of the form s(fe1 , . . . , fen , fv1 , . . . , fvm) for
some polynomial s of C with range contained in U and some edges and ver-
tices ei and vj . By the previous claim we see that s(x1, . . . , xn, 0, . . . , 0)|{c,d}
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is either constant or essentially unary. In the former case it follows that
s(x, σ)|{c,d} is constant for any sequence σ of 0’s and 1’s. So, in this case we
can express f in the form s′(fv1 , . . . , fvm), for a suitable polynomial s′ of C.
We will say that such an element is of vertex sort.

In the latter case, suppose that s(x1, . . . , xn, 0, . . . , 0)|{c,d} depends just
on its first variable. Then for any sequence σ of 0’s and 1’s the polyno-
mial s(x1, . . . , xn, σ)|{c,d} also depends only on the first variable. So, we can
write f as s′(fe1 , fv1 , . . . , fvm) for some suitably chosen polynomial s′ with
s′(x, 0, . . . , 0)|U a permutation. Such an element will be said to be of edge
sort.

To show that each element in D(U) is assigned a unique sort, it suffices
to find a property which differentiates the two sorts.

Let P denote the set of all polynomials p of C whose range is U and
such that p(x, 0, . . . , 0)|U is a permutation of U . Note that because of our
centrality assumption, it follows that if p ∈ P then p(x, σ)|U is a permutation
of U for any sequence σ of 0’s and 1’s.

If f can be expressed as s′(fv1 , . . . , fvm) then f((w, 0))=f((w, 1)) for all
w ∈ V , while if it can be written in the form s′(fe, fv1 , . . . , fvm) with s′ ∈ P
then f((w, 0)) 6= f((w, 1)) if and only if w ∈ e. This demonstrates that
the two sorts of elements in D(U) provide a partition of this set into two
classes. It also demonstrates that in the latter case, the edge e is uniquely
determined by f .

Claim 6.3. The set of elements of vertex sort and the set of elements of
edge sort are first order definable.

It suffices to show that the former set is definable, since the latter is com-
plementary to it within D(U). Choose finitely many polynomials s1, . . . , sk
of C such that each polynomial s of C has the same range as one of the si’s
on the set {0, 1}.

Since D contains a large variety of {0, 1}-valued functions, an element f
is of vertex sort if and only if

f ∈ D(U) and f = si(g) for some i ≤ k and some gj ∈ D({0, 1}).

Let EDGE be a first order formula which defines the set of elements of
edge sort. Note that D |= EDGE(fe) for any e ∈ E. We know that each
element of edge sort determines a unique edge from the graph G, but this
association may be many-to-one, and so in general the set of elements of
edge sort is not in one-to-one correspondence with E. To remedy this, we
next define an equivalence relation ∼ on the set of elements of edge sort
such that each ∼-class contains exactly one generator fe.
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Consider the following set of permutations of U :

N = {λ : λ(x) = p(x, σ)|U for some polynomial p(x, y) of C

with range contained in U and some sequence σ of 0’s and 1’s

with p(x, 0, . . . , 0) = x for all x ∈ U}.
Our centrality condition ensures that p(x, σ) is a permutation of U if

p(x, 0, . . . , 0) is. Note that this set of permutations is actually a finite sub-
group of the group of symmetries of U and that, by suitably composing
polynomials, we can produce a single polynomial s(x, y) with range con-
tained in U , with s(x, 0, . . . , 0) = x for all x ∈ U and with

N = {s(x, σ)|U : σ some sequence of 0’s and 1’s}.
Define the relation ∼ on the set of elements of edge sort as follows: f ∼ g

if and only if

• EDGE(f), EDGE(g) and there is some polynomial p of C with
p(U) = U and some sequence σ from D({0, 1}) with f = p(s(g, σ)).

Claim 6.4. f ∼ g if and only if there are polynomials t1 and t2 in P,
an edge e ∈ E, and vertices vi and wj ∈ V with f = t1(fe, fv1 , . . . , fvn) and
g = t2(fe, fw1 , . . . , fwm).

Assume that f ∼ g. Then there is a polynomial r of P, an edge e of E
and vertices wj of V with g = r(fe, fw1 , . . . , fwm). The relation f ∼ g implies
that f = p(s(g, σ)) for suitable p and σ. Since the {0, 1}-valued functions in
D can be expressed as boolean combinations of the fv’s, we may replace σ by
a sequence of these elements if we first modify the polynomial s. So, we can
find an element s′ of P and some vertices vi with f = p(s′(g, fv1 , . . . , fvk))
and thus

f = p(s′(r(fe, fw1 , . . . , fwm), fv1 , . . . , fvk)),

as required.
Conversely, suppose f = t1(fe, fv1 , . . . , fvn) and g = t2(fe, fw1 , . . . , fwm).

Since t2(x, σ)|U is a bijection for all {0, 1}-sequences σ, there is a poly-
nomial t′ in P with t′(x, σ)|U the inverse to t2(x, σ)|U for all σ. Thus
fe = t′(g, fw1 , . . . , fwm) and hence f = t1(t′(g, fw1 , . . . , fwm), fv1 , . . . , fvk).

Let p(x) = t1(t′(x, 0, . . . , 0), 0, . . . , 0) and let p′(x) be a polynomial of
C with p′(p(x)) = x for all x ∈ U . Then, for any sequences σ and σ′

of 0’s and 1’s, the function p′(t1(t′(x, σ), σ′))|U is in N . Thus we can find
some sequence σ ∈ D({0, 1}) with p′(t1(t′(g, fw1 , . . . , fwm), fv1 , . . . , fvk)) =
s(g, σ). Finally, f = p(s(g, σ)) as required.

It easily follows from this claim that ∼ is an equivalence relation on
the set of elements of edge sort and that each ∼-class contains a unique
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generator fe. Thus, the set of edges of G is in bijective correspondence with
the set of ∼-classes.

To finish the proof we need only recover the edge relation amongst the
vertices of G. Recall that we have identified the vertices of G with the atoms
in the boolean algebra D({0, 1}). Define D to be the set

{λ ∈ Pol C|U :

λ(U) = U and either t(λ(c), 1) 6= λ(c) or t(λ(d), 1) 6= λ(d)}
and let κ be the cardinality of D. Note that both D and κ are independent
of the graph G.

For v ∈ V and f an element of D with D |= EDGE(f), define Γ (f, fv)
to be the set

{π ∈ Pol C|U : π(U) = U and t(π(f), fv) 6= π(f)}.
Claim 6.5. If f ∼ g and v ∈ V then Γ (f, fv) and Γ (g, fv) have the

same size and no more than κ elements.

If f ∼ g then f = p(s(g, σ)) for some sequence σ ∈ D({0, 1}) and some
polynomial p(x) of C with p(U) = U . Let τ be the sequence of 0’s and 1’s
of the same length as σ, defined by τi = σi((v, 0)). We claim that the map
which sends λ in Γ (f, fv) to λ(p(s(x, τ))|U) is an injection into Γ (g, fv).

Since p(s(x, τ))|U is a permutation of U , certainly our map is an injection.
We need only check that its range is indeed in Γ (g, fv). To do this, we need
to determine if

t(β(g), fv) 6= β(g),

where β = λ(p(s(x, τ))|U). Since t(x, 0) = x for all x ∈ U and t(λ(f), fv) 6=
λ(f), we have t(λ(f), fv)((v, i)) 6= λ(f)((v, i)) for some i = 0 or 1. But then

t(β(g), fv)((v, i)) = t(β(g((v, i))), 1) = t(λ(p(s(g((v, i)), τ))), 1)

= t(λ(p(s(g, σ))), fv)((v, i)) = t(λ(f), fv)((v, i))

6= λ(f)((v, i)) = β(g)((v, i)).

Thus our map is an injection from Γ (f, fv) into Γ (g, fv) and so, by symme-
try, these two sets have the same size.

As there is a unique e ∈ E with f ∼ fe, to finish the proof of this claim
it will suffice to show that Γ (fe, fv) ⊆ D. This follows from the fact that fe
is a {c, d}-valued function.

Claim 6.6. For w ∈ V and e ∈ E, the set Γ (fe, fw) has size κ if and
only if w ∈ e.

Let e = {u, v} and assume that w = u. We will show that D ⊆ Γ (fe, fw)
in this case. If λ ∈ D then t(λ(c), 1) 6= λ(c) or t(λ(d), 1) 6= λ(d). Since
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{fe((w, 0)), fe((w, 1))} = {c, d}, we see that t(λ(fe), fw) and λ(fe) differ at
either (w, 0) or (w, 1), demonstrating that λ ∈ Γ (fe, fw).

Conversely, suppose that w 6∈ e. We need only find some element of D
which is not in Γ (fe, fw). Since t(c, 0) = t(c, 1) = c and t(x, 0) = x for all
x ∈ U , it is not hard to see that t(fe, fw) = fe, demonstrating that the
identity map is not a member of Γ (fe, fw). As the identity map on U is in
D, we have shown that Γ (fe, fw) has fewer than κ elements.

To finish the proof of Lemma 6, we need to find a first order formula
which describes the edge relation on G. Let E(x, y) be any first order formula
which expresses that

• x and y are distinct atoms in the boolean algebra D({0, 1}), and
• there exists some h with EDGE(h) and with Γ (h, x) and Γ (h, y) both

having κ elements.

Then for v, w ∈ V , {v, w} ∈ E if and only if E(fv, fw) holds in D.

One final semantic embedding is needed to complete our proof of The-
orem 4. We state the following lemma in rather general terms since it will
have applications beyond the present situation.

Lemma 7. Let B be a finite algebra which contains a minimal set {0, 1}
with respect to some type 3 prime quotient. Suppose that U is a minimal
set with respect to a type 1 prime quotient 0B ≺ ν and that there is some
polynomial p(x) of B with range contained in U and with {p(0), p(1)} in-
tersecting , but not contained in, some 〈0B, ν〉-trace. Vfin(B) is hereditarily
undecidable if either one of the following conditions holds:

(1) The set {p(0), p(1)} is polynomially isomorphic to {0, 1}.
(2) There is no polynomial q of B with (q(0), q(1)) ∈ ν \ 0B, and for

every polynomial h of B with range contained in U if h(0) 6= h(1) then
{h(0), h(1)} can be mapped onto a 2-element set contained in a proper subset
of U which is the range of some idempotent polynomial of B.

Proof. If case (1) holds then we may assume that 0 and 1 belong to U
and that p is an idempotent map with range U . In either case, let V be some
proper subset of U which is the range of some idempotent polynomial e with
q(x) some polynomial with range V and which separates p(0) and p(1). Let
a = p(0) and b = p(1) and suppose that a belongs to the 〈0A, ν〉-trace N in
U . Choose some other element a′ from N .

Let G = 〈V,E〉 be a finite graph and let ∞1 and ∞2 be two points not
in V . Let X = V ∪ {∞1,∞2} and for e ∈ E, let fe be the function from X
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to {a, a′, b} defined by

fe(x) =

{
b if x ∈ e,
a′ if x =∞2,
a otherwise.

For v ∈ V , let fv be the {0, 1}-valued function in BX defined by

fv(x) =
{

1 if x = v,
0 otherwise.

Let D be the diagonal subalgebra of AX generated by the set of fe’s and
fv’s.

As in the proof of Claim 6.2 of Lemma 6, every element f of D(U) falls
into one of two classes, for some e ∈ E and vi ∈ V :

• t(fv1 , . . . , fvk) for some polynomial t with range contained in U , or
• t(fe, fv1 , . . . , fvk) for some polynomial t with range contained in U and

with t(x, 0, . . . , 0)|U a permutation.

To see why this is so in the present circumstances, consider an element
f ∈ D(U). We can write f as t(fe1 , . . . , fem , fv1 , . . . , fvk) for some polyno-
mial t with range contained in U and for some generators fei and fvj . Now,
t(x1, . . . , xm, 0, . . . , 0)|{a,a′} is either constant or essentially unary since ν
is strongly abelian. In the former case, it follows that f = t(pe1 , . . . , pem ,
fv1 , . . . , fvk) where, for i ≤ m, pei is equal to fei at all coordinates except
∞2, where it takes on the value a. This is because at ∞2, the genera-
tors fvj all take on the value 0. The elements pei are not generators of
D, but they are members of this algebra, since they can be obtained by
applying the polynomial p(x) to a join of an appropriate pair of {0, 1}-
valued generators. The end result of this is that we can express the ele-
ment f as a polynomial of B applied to a number of generators of the
form fv.

The remaining case in this analysis can be handled in a similar manner.
Let us call an element permutational if it falls into the second class.

It is not difficult to see that the permutational elements can be char-
acterized as those elements f of D(U) for which f(∞1) 6= f(∞2). By an
argument similar to the one employed in the proof of Claim 6.3 of Lemma 6
it can be shown that the set of permutational elements can be defined via a
first order formula.

We would like to associate a unique element ofE with each permutational
element but will instead only achieve this for a particular definable collection
of permutational elements which resemble the fe’s with respect to the action
of unary polynomials of B. Let us define the unary relation EDGE(f) by:

• f is permutational,
• q(f) is nonconstant, and
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• there are distinct vertices v and w so that for all unary polynomials
h of B with range properly contained in U , if h(f) is not constant
then h(f) = h(p(fv ∨ fw)) (where ∨ is a polynomial which acts as the
boolean join operation on {0, 1}).

This relation is first order definable since the fv’s coincide with the atoms
in the boolean algebra D({0, 1}) which take on the value 0 at ∞1 and ∞2.

Claim 7.1. For f a permutational element , if D |= EDGE(f) then
q(f) = q(p(fv ∨ fw)) for some unique v, w ∈ V with {v, w} ∈ E. For any
e ∈ E, D |= EDGE(fe).

By design, if e ∈ E then D |= EDGE(fe). On the other hand, suppose
that f is permutational and satisfies EDGE. Let t(x, y) be some polynomial
of B with range contained in U and with t(x, 0, . . . , 0)|U a permutation and
let e ∈ E and v ∈ V with f = t(fe, fv1 , . . . , fvk). Since EDGE holds for f ,
there are v, w ∈ V which witness this. We will show that e = {v, w}.

Suppose not, say u ∈ e \ {v, w}. Let c = f(∞1), c′ = f(∞2) and
d = f(u). Since f is permutational, c = t(a, 0, . . . , 0) 6= t(a′, 0, . . . , 0) = c′

and by suitably rearranging the variables of t we may assume that d =
t(b, 0, . . . , 0, 1, . . . , 1). In case (1) (where 0 = a and 1 = b) it follows that
{c, d} is polynomially isomorphic to {0, 1} and so there is a polynomial h of
B with range equal to {0, 1} and with h(c) = 0 and h(d) = 1. Thus h(f) is
nonconstant and so h(f) = h(p(fv ∨ fw)). But

h(f)(∞1) = h(c) = 0 6= 1 = h(d) = h(f)(u)

and fv ∨ fw(∞1) = fv ∨ fw(u) leads to a contradiction.
In case (2), the fact that c = t(a, 0, . . . , 0) and d = t(b, 0, . . . , 0, 1 . . . , 1)

along with the fact that p maps 0 to a and 1 to b leads to a polynomial h
with range contained in U and with h(0) = c and h(1) = d. By assumption
{c, d} can be mapped onto a two-element subset of U via some polynomial
r(x) with range properly contained in U . Then since EDGE holds for f ,
it follows that r(f) = r(p(fv ∨ fw)). As in the previous case, this leads
to a contradiction, since r(f) takes on different values at ∞1 and u while
r(p(fv ∨ fw)) does not.

We are now in a position to finish the proof of Lemma 7. As noted
earlier, the elements of the graph can be identified with the atoms of the
boolean algebra D({0, 1}) which take on the value 0 at ∞1 and ∞2. From
the previous claim, two vertices v and w will be edge related if and only
if there is some element f of D for which EDGE holds and such that
q(f) = q(p(fv ∨ fw)).

The following lemma will provide a reduction to our earlier results under
certain circumstances.
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Lemma 8. Let B be a finite algebra and let µ ≺ ν and γ ≺ δ be a pair
of prime quotients in the congruence lattice of B with typ(µ, ν) = typ(γ, δ)
= 1. If U is a minimal set with respect to both (µ, ν) and (γ, δ) and R is
any binary relation on B then C(R, ν|U ;µ) iff C(R, δ|U ; γ).

Proof. Assume that C(R, ν|U ;µ) holds and let t(x, y1, . . . , yk) be a poly-
nomial of B and τ and σ be sequences from U with (τi, σi) ∈ δ for i ≤ k. Sup-
pose that (0, 1) ∈ R and that (t(0, τ), t(0, σ)) 6∈ γ but (t(1, τ), t(1, σ)) ∈ γ.
We may assume that t has range contained in U .

Since 〈γ, δ〉 is of type 1, we find that t(0, y) depends, modulo γ, on
exactly 1 variable when restricted to the product of the δ|U -classes which
contain the τi’s. Suppose that this polynomial depends on y1. Then (τ1, σ1) 6∈
γ and the map t(0, y1, τ2, . . . , τk)|U is a permutation of U since it does not
collapse δ|U into γ. Thus t(0, y1, τ2 . . . , τk) does not collapse ν|U into µ and
by C(R, ν|U ;µ) we conclude that t(1, y1, τ2, . . . , τk) has the same property.
This implies that t(1, y1, τ2, . . . , τk) is a permutation of U and so t(1, τ)
and t(1, σ) lie in different γ-classes since τ1 and σ1 do. This contradicts
(t(1, τ), t(1, σ)) ∈ γ and so we are done.

Proof of Theorem 4. By virtue of Theorem 2 we may assume that the
(1,2) transfer principle holds and that all type 3 minimal sets have exactly
2 elements. It follows that all solvable congruences of A are actually strongly
solvable. Suppose that the centralizer of µ is not strongly solvable and let M
be a 〈0A, µ〉-trace contained in a 〈0A, µ〉-minimal set U . Choose β minimal
with α ≺ β a type 3 pair of congruences for some α with C(β,M 2; 0A). Let
{0, 1} be an 〈α, β〉-minimal set and let T be the tolerance of A generated by
(0, 1). By the minimality of β, it follows that CgA(0, 1) = β, and that α is
strongly solvable. By choice, C({0, 1}2,M2; 0A) holds. From Lemmas 5 and
6 we may assume that R(T,M2; 0A) holds and that there is no polynomial
p(x) with (p(0), p(1)) ∈ µ \ 0 (this is equivalent to T ∩ µ = 0A).

Fix some element a in M . Since the congruence µ of A is contained in the
congruence generated by {0, 1}, there must be a polynomial p of A whose
range is contained in U and with p(0) = a 6= p(1). Since (p(0), p(1)) 6∈ µ, we
see that {p(0), p(1)} is not contained in any 〈0A, µ〉-trace of U .

We will show that condition (2) of Lemma 7 holds in order to finish
our proof. Suppose that h is a polynomial of A with range contained in U
and with h(0) 6= h(1). Further, suppose that {h(0), h(1)} cannot be mapped
onto a 2-element subset of any proper subset of U which is the range of an
idempotent polynomial of A.

Let δ be the congruence generated by h(0) and h(1) and let γ be some
subcover of δ. Note that δ 6= µ and so γ 6= 0A. Also, note that δ ⊆ α or else
{h(0), h(1)} would be an 〈α, β〉-minimal set, contrary to our assumptions
on {h(0), h(1)}. Thus δ is a strongly solvable congruence. Since δ|U 6⊆ γ|U ,
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it follows that U contains some 〈γ, δ〉-minimal set V . By our assumption on
h, we see that V must be equal to U and so by Lemma 8 it follows that
C({0, 1}2, δ|U ; γ) holds.

By considering the quotient A/γ we see that we are now in a position
to apply either Lemma 5 or 6 to show that A generates an equational class
which is not finitely decidable. So, condition (2) of Lemma 7 holds and we
conclude that Vfin(A) is hereditarily undecidable.

References

[1] S. Burris and R. McKenzie, Decidability and Boolean representations, Mem. Amer.
Math. Soc. 246 (1981).

[2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, 1981.
[3] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemp. Math. 76,

Amer. Math. Soc., 1988.
[4] P. Idziak, A characterization of finitely decidable congruence modular varieties, Trans.

Amer. Math. Soc. 349 (1997), 903–934.
[5] J. Jeong, Type 2 subdirectly irreducible algebras in finitely decidable varieties,

J. Algebra 174 (1995), 772–793.
[6] K. Kearnes and E. Kiss, Finite algebras of finite complexity , Discrete Math. 207

(1999), 89–135.
[7] R. McKenzie and M. Valeriote, The Structure of Locally Finite Decidable Varieties,

Progr. Math. 79, Birkhäuser, Boston, 1989.
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