A Ramsey-style extension of a theorem of Erdős and Hajnal

by
Péter Komjáth (Budapest)

Abstract

If n, t are natural numbers, μ is an infinite cardinal, G is an n-chromatic graph of cardinality at most μ, then there is a graph X with $X \rightarrow(G)_{\mu}^{1},|X|=\mu^{+}$, such that every subgraph of X of cardinality $<t$ is n-colorable.

The Erdős-Hajnal result we would like to generalize states that there are arbitrarily large chromatic graphs omitting short odd circuits ([1]). We reformulate this as follows. If μ is a cardinal, t is a natural number, then there exists a graph X with $X \rightarrow\left(K_{2}\right)_{\mu}^{1}$ such that every subgraph of X on at most t points is bipartite. Here K_{2} is the one-edge graph and $X \rightarrow(Y)_{\mu}^{1}$ denotes that every vertex coloring of the graph X with μ colors admits a monocolored (but not necessarily induced) copy of Y. If we take into consideration another result of Erdős and Hajnal (also in [1]), namely, that if $X \rightarrow\left(K_{2}\right)_{\omega}^{1}$ then X contains every finite bipartite graph, we get the somewhat stronger statement that if $K_{t, t}$ is the complete bipartite graph with bipartition classes of size t, then there exists, for every cardinal μ and every finite t, a graph X with $X \rightarrow\left(K_{t, t}\right)_{\mu}^{1}$ such that all subgraphs of X on less than t vertices are bipartite. This is the result we want to generalize; for any natural number n, we take an arbitrary n-chromatic graph in place of $K_{t, t}$ and we require that all subgraphs on less than t vertices should be n-chromatic. For the proof, we somewhat modify the original Erdős-Hajnal construction (no surprise), we use another Specker-style graph.

Notation. We use the standard set theory notation. If S is a set and μ a cardinal, then $[S]^{\mu}=\{X \subseteq S:|X|=\mu\}$. We write $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}_{<}$ to denote that we enumerate the elements of \mathbf{x} in increasing order.

[^0]Theorem. If n, t are natural numbers, μ is an infinite cardinal, and G is an n-chromatic graph of cardinality at most μ, then there is a graph X with $X \rightarrow(G)_{\mu}^{1},|X|=\mu^{+}$, such that every subgraph of X of cardinality $<t$ is n-colorable.

Proof. Set $a=2 t, b=2 n t+1$. The ground set of the graph X will be $\left[\mu^{+}\right]^{a b}$, the set of $a b$-element subsets of μ^{+}. We join two elements $\mathbf{x}=$ $\left\{x_{1}, \ldots, x_{a b}\right\}_{<}$and $\mathbf{y}=\left\{y_{1}, \ldots, y_{a b}\right\}<$ if there is some $1 \leq k<n$ such that

$$
x_{k a}<x_{k a+1}<y_{1}<x_{k a+2}<y_{2}<\ldots<x_{a b}<y_{(b-k) a}
$$

or the other way round.
Claim 1. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{a b}\right\}<$ and $\mathbf{y}=\left\{y_{1}, \ldots, y_{a b}\right\}<$ are joined and the interval $\left[x_{\alpha}, x_{\alpha+1}\right]$ of \mathbf{x} intersects the interval $\left[y_{\beta}, y_{\beta+1}\right]$ of \mathbf{y} then either $\alpha=\beta+k a$, or $\alpha=\beta+k a+1$, or the other way round.

Proof. Straightforward.
Claim 2. Every subgraph of X with less than t vertices can be n-colored.
Proof. Let H be such a graph. We can assume that H is connected (as otherwise we can split H into connected components). Then the vertices of H can be enumerated as $\left\{\mathbf{v}_{0}, \ldots, \mathbf{v}_{s}\right\}$ (for some s) so that every \mathbf{v}_{i} with $i>0$ is joined to some \mathbf{v}_{j} with $0 \leq j<i$. Set $\mathbf{v}_{i}=\left\{v_{1}^{i}, \ldots, v_{a b}^{i}\right\}_{<}$and define $\xi=v_{2 n t^{2}+t}^{0}$. For every $0 \leq i \leq s$ let $c(i)$ be the largest index for which $v_{c(i)}^{i} \leq \xi$. Clearly, $c(0)=2 n t^{2}+t$. We claim that there exist numbers $1 \leq d_{i} \leq 2 n t-1($ for $0 \leq i \leq s)$ such that

$$
a d_{i}+t-i \leq c(i) \leq a d_{i}+t+i
$$

In fact, we show by induction on i that there exists such a d_{i} with $\left|d_{i}-n t\right| \leq$ $i n$. For $i=0, d_{0}=n t$ does the job. By induction, if we have the statement up to and including i, then using Claim 1 , we find that for some $0 \leq j \leq i$, $c(i+1)$ assumes the value $c(j)+k a$, or $c(j)+k a+1$, or $c(j)-k a$, or $c(j)-k a-1$ for some $1 \leq k<n$. Then we can choose $d_{i+1}=d_{j} \pm k$.

We now show that $f\left(\mathbf{v}_{i}\right)=d_{i}(\bmod n)$ is a good coloring of H. Assume that $f\left(\mathbf{v}_{i}\right)=f\left(\mathbf{v}_{j}\right)$ and they are joined. Again, by Claim 1, for some $1 \leq$ $k<n, c(i)=c(j)+k a$, or $c(i)=c(j)+k a+1$ (or vice versa). From this, we get $\left|a\left(d_{i}-d_{j}-k\right)\right| \leq 2 t-1$, so $d_{i}=d_{j}+k$, and so they do not get the same color.

Claim 3. $X \rightarrow(G)_{\mu}^{1}$.
Proof. Assume that we are given a coloring $F:\left[\mu^{+}\right]^{a b} \rightarrow \mu$ of the ground set. We are going to show that for some color $\tau<\mu$ the complete n-partite graph $K_{\mu, \ldots, \mu}$, with color classes of cardinality μ, is embeddable into the subgraph of those vertices which get color τ.

We define the formulas $\varphi_{0}^{\tau}, \varphi_{1}^{\tau}\left(x_{1}\right), \ldots, \varphi_{i}^{\tau}\left(x_{1}, \ldots, x_{i}\right)$ for all $i \leq a b$ as follows. $\varphi_{a b}^{\tau}\left(x_{1}, \ldots, x_{a b}\right)$ denotes that $x_{1}<\ldots<x_{a b}$ and $F\left(x_{1}, \ldots, x_{a b}\right)=\tau$. If φ_{i+1}^{τ} is defined, we let $\varphi_{i}^{\tau}\left(x_{1}, \ldots, x_{i}\right)$ stand for

$$
\exists^{*} y \varphi_{i+1}^{\tau}\left(x_{1}, \ldots, x_{i}, y\right)
$$

where the quantifier $\exists^{*} y$ reads "there exist μ^{+}elements y such that \ldots ".
Subclaim. There is a $\tau<\mu$ such that φ_{0}^{τ} holds.
Proof. Assume, for a contradiction, that φ_{0}^{τ} is false for every $\tau<\mu$. Spelled out, this means that, for every $\tau<\mu$ there is a bound α_{τ} such that $\varphi_{1}^{\tau}\left(x_{1}\right)$ is false for $x>\alpha_{\tau}$. There is a common bound for all these bounds, so there is an x_{1} for which every $\varphi_{1}^{\tau}\left(x_{1}\right)$ is false. Fix such an x_{1} and proceed. We can find an $x_{2}>x_{1}$ such that $\varphi_{2}^{\tau}\left(x_{1}, x_{2}\right)$ is false for every $\tau<\mu$. Fix such an x_{2}, and continue. Eventually we get a sequence $\left\{x_{1}, \ldots, x_{a b}\right\}<$ such that $F\left(x_{1}, \ldots, x_{a b}\right)=\tau$ is false for every $\tau<\mu$, which is clearly impossible.

For the rest of the proof fix $\tau<\mu$ as in the Subclaim. Using induction we can find an increasing sequence of ordinals $0=\delta_{0}<\delta_{1}<\ldots<\delta_{r}(r<\omega)$ such that if $i<a b, r<\omega, x_{1}<\ldots<x_{i}<\delta_{r}$, and $\varphi_{i}^{\tau}\left(x_{1}, \ldots, x_{i}\right)$ holds then there are μ ordinals $\delta_{r}<y<\delta_{r+1}$ such that $\varphi_{i+1}^{\tau}\left(x_{1}, \ldots, x_{i}, y\right)$ is true. That is, there are μ elements $x_{1}<\delta_{1}$ for which $\varphi_{1}^{\tau}\left(x_{1}\right)$ holds, for each such x_{1} there are μ elements $\delta_{1}<x_{2}<\delta_{1}$ for which $\varphi_{2}^{\tau}\left(x_{1}, x_{2}\right)$ holds, and so forth. (In fact, we could easily continue for μ^{+}steps, but we will not need it.)

For $1 \leq i \leq n, 1 \leq j \leq b, 1 \leq m \leq a$ we let

$$
A_{j m}^{i}=\left[\delta_{r}, \delta_{r+1}\right)
$$

where

$$
r=(i+j)(n+1)(a+1)+m(n+1)+i
$$

i.e., the pairwise disjoint sets $A_{j m}^{i}$ are ordered by $(i+j)$ first, then according to the value of m, and finally by i. In this order, we select from each of these sets μ elements: $x_{\alpha}^{i j m} \in A_{j m}^{i}(\alpha<\mu)$ in such a way that

$$
\varphi_{(j-1) a+m}^{\tau}\left(x_{\alpha}^{i 11}, x_{\alpha}^{i 12}, \ldots, x_{\alpha}^{i 1 a}, x_{\alpha}^{i 21}, \ldots, x_{\alpha}^{i 2 a}, \ldots, x_{\alpha}^{i j 1} \ldots, x_{\alpha}^{i j m}\right)
$$

holds. This can be done by the selection of the δ 's and the way the $A_{j k}^{i}$'s were ordered. Finally, put $\mathbf{x}_{\alpha}^{i}=\left\{x_{\alpha}^{i j m}: 1 \leq j \leq b, 1 \leq m \leq a\right\}$.

Now consider $1 \leq i_{0}<i_{1} \leq n$, say $i_{1}=i_{0}+k$. The relative order of the sets in the families $\left\{A_{j m}^{i_{0}}: 1 \leq j \leq b, 1 \leq m \leq a\right\}$ and $\left\{A_{j m}^{i_{1}}: 1 \leq j \leq\right.$ $b, 1 \leq m \leq a\}$ will be the following (we replace superscript i_{0} by a prime and superscript i_{1} by two primes):

$$
\begin{aligned}
& A_{11}^{\prime}<A_{12}^{\prime}<\ldots<A_{1 a}^{\prime}<A_{21}^{\prime}<\ldots<A_{k+1,1}^{\prime} \\
&<A_{11}^{\prime \prime}<A_{k+1,2}^{\prime}<A_{12}^{\prime \prime}<\ldots
\end{aligned}
$$

i.e., they are in one of the interlacing positions we defined connectivity in X. From this we conclude that if $1 \leq i_{0}<i_{1} \leq n, \alpha, \beta<\mu$, then $\mathbf{x}_{\alpha}^{i_{0}}$ and $\mathbf{x}_{\beta}^{i_{1}}$ are joined, so the vertices $\left\{\mathbf{x}_{\alpha}^{i}: 1 \leq i \leq n, \alpha<\mu\right\}$ give a $K_{\mu, \ldots, \mu}$ in color τ.

References

[1] P. Erdős and A. Hajnal, On chromatic number of graphs and set systems, Acta Math. Acad. Sci. Hungar. 17 (1966), 61-99.

Department of Computer Science
Eötvös University
Kecskeméti u. 10-12
1053 Budapest, Hungary
E-mail: kope@cs.elte.hu

[^0]: 2000 Mathematics Subject Classification: Primary 05C55, 03E05.
 Research partially supported by the Hungarian National Science Research Grant No. T 019367.

