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On the weak pigeonhole principle

by

Jan Kraj́ıček (Praha)

Abstract. We investigate the proof complexity, in (extensions of) resolution and
in bounded arithmetic, of the weak pigeonhole principle and of the Ramsey theorem.
In particular, we link the proof complexities of these two principles. Further we give
lower bounds to the width of resolution proofs and to the size of (extensions of) tree-like
resolution proofs of the Ramsey theorem.

We establish a connection between provability of WPHP in fragments of bounded
arithmetic and cryptographic assumptions (the existence of one-way functions). In par-
ticular, we show that functions violating WPHP2n

n are one-way and, on the other hand,
one-way permutations give rise to functions violating PHPn+1

n , and strongly collision-free
families of hash functions give rise to functions violating WPHP2n

n (all in suitable models
of bounded arithmetic).

Further we formulate a few problems and conjectures; in particular, on the structured
PHP (introduced here) and on the unrelativised WPHP.

The symbol WPHPmn (with any n < m ≤ ∞) will denote both propo-
sitional and arithmetic formalisations of the weak pigeonhole principle; in
the latter case I write WPHPmn (R), where R is a binary relation symbol.
The qualification weak means m ≥ 2n and that is the case studied here. The
propositional formalisation is a set of clauses in atoms pi,j for i < m and
j < n:

{pi,0, . . . , pi,n−1}(1)

for each i < m, and

{¬pi,k,¬pj,k}(2)

for each i < j < m and k < n, and

{¬pi,l,¬pi,k}(3)
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NSF (USA) and the MŠMT (Czech Republic), by the grant #A1019901 of the Academy
of Sciences of the Czech Republic, and by the EPSRC fellowship number R/L01176.

[123]



124 J. Kraj́ıček

for each i < m and l < k < n. If m = ∞ we take infinitely many such
clauses for i, j < ω. The arithmetic version WPHPmn (R) is the formula

(∃i < j < m ∃k < n; R(i, k) ∧R(j, k)) ∨ (∃i < m ∀j < n; ¬R(i, j))

∨ (∃i < m ∃l < k < n; R(i, l) ∧R(i, k)).

(The parameter m is omitted in the formula when m =∞.)
Haken [7] proved that any resolution refutation of PHPn+1

n requires at
least exp(Ω(n)) steps. His method was adapted by Buss and Turán [3] to
obtain a lower bound exp(Ω(n2/m)) for WPHPmn . When m ≥ n2 this yields
no lower bound at all, and it remains open what the lengths of resolution
proofs are for these m.

Another line of research concerns systems of bounded arithmetic intro-
duced by Buss [1]. In particular, it is known that the systems T i2(α) are dif-
ferent and there are some non-conservativity results (see Chiari and Kraj́ıček
[4] for an overview). The simplest open conservativity relation is whether
T2(α) (or T 3

2 (α), in particular) is Σb
2(α)-conservative over T 2

2 (α), and vari-
ous bounded formulas that could witness the conjectured non-conservativity
were put forward in Chiari and Kraj́ıček [4, 5], WPHP2n

n (R) and the Ramsey
theorem among them.

The proof of the weak pigeonhole principle in the theory T2(R) by Paris,
Wilkie and Woods [20] formalises in T 3

2 (R) (see Kraj́ıček [10, Thm. 11.2.4]
for this calculation (1)) while it is shown in [4] that WPHP2n

n (R) is not
provable in T 1

2 (R). Hence the provability of WPHP2n
n (R) in T 2

2 (R) is the only
open question (see footnote to Lemma 6.4). Moreover, the proof from [20]
also shows that either all or none of WPHP2n

n (R), WPHPn
2

n (R), WPHP∞n (R)
are provable in T 2

2 (R).
It has been little noticed that these two open problems are, in fact, quite

related. This is because in the well known correspondence between propo-
sitional proof systems and bounded arithmetic theories (in the translation
of Paris and Wilkie [19], see [10, Sec. 9.1] for details) the resolution proof
system corresponds to a theory strictly stronger than T 1

2 (R) but included
in T 2

2 (R), and T 2
2 (R) itself corresponds to an extension R(log) of R (see

Section 1 for the definition).
The present paper gives several results on resolution and bounded arith-

metic, on proof complexity of the WPHP and of the Ramsey theorem. In
particular, we link the proof complexities of these two principles. Further
we give lower bounds to the width of resolution proofs and to the size of
(extensions of) tree-like resolution proofs of the Ramsey theorem.

Although these results are new they are, in my view, in near vicinity of
results and methods that are (or ought to be) known. Therefore I also present

(1) Note that PHP(R) is defined as the onto-version in that calculation.
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several known results and methods, specialized to resolution and T 2
2 (α). For

example, I give an infinitary criterion for R∗(log) lower bounds—an exten-
sion of tree-like R—that is an immediate corollary of a known statement
about search trees from Kraj́ıček [10].

I also show that functions violating WPHP2n
n are one-way and, on the

other hand, one-way permutations give rise to functions violating PHPn+1
n ,

and strongly collision-free families of hash functions give rise to functions
violating WPHP2n

n (all in suitable models of bounded arithmetic). These
results are not difficult but they are perhaps a part of the paper pointing
most towards new promising directions for further research.

I also formulate a few problems and conjectures; in particular, on the
structured PHP (introduced here) and on the unrelativised WPHP.

For background I refer the reader to monograph [10]; I often accompany
original references by a reference to a place in [10]. The conservativity prob-
lem was previously studied in Chiari–Kraj́ıček [4, 5], and I use a few facts
from there.

A convention: The phrase exponential size means size exp(nΩ(1)).

1. Resolution and its extensions. Resolution R is naturally a sub-
system of sequent calculus LK, allowing no connectives except the negation.
The following definition augments R so as to correspond to LK-proofs of
Σ-depth 0 (as defined in [8] or [10, Def. 12.2.3]). (We sometimes use the
union and disjunction signs interchangeably.)

Definition 1.1. (a) R+ is a refutation proof system working with
clauses C formed by conjunctions Di of literals `i,j :

C =
∨

i

Di, Di =
∧

j

`i,j .

The inference rules are:
C1 ∪ {

∧
j `j} C2 ∪ {¬`′1, . . . ,¬`′k}

C1 ∪ C2

provided `′1, . . . , `
′
k are among `j ’s and k ≥ 1, and

C1 ∪ {
∧
j<u `j} C2 ∪ {

∧
j<v `u+j}

C1 ∪ C2 ∪ {
∧
j<u+v `j}

(b) Let f : N → N be a function. The R(f)-size of an R+-proof is the
minimum S such that the proof has at most S clauses and each conjunction
of literals occurring in the clauses has size at most f(S).

We shall abuse the terminology and say R(f)-proofs of size S rather
than R+-proofs of R(f)-size S.
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Obviously, the size ofR(1)-proofs is just the size ofR-proofs, whileR(log)
is the Σ-depth 0 subsystem of LK.

As on various previous occasions I shall denote by a superscript star the
tree-like versions of proof systems: R∗, R(f)∗.

2. Bounded formulas and sets of clauses. The first order formula-
tion of WPHPmn (R) is a

∨∃∧ ∀-formula. In general, negations of formulas
that are built from basic formulas (atomic or their negations) in a relational
language L by first applying

∧
’s and ∀’s and then

∨
’s and ∃’s will translate,

as ¬WPHPmn (R) does, to a CNF-formula, a set of clauses. Let us call such
formulas briefly DNF1-formulas.

Other DNF-like formulas can be obtained from particular second order
formalisations of combinatorial properties. To illustrate this I recall the def-
initions of two principles, the Ramsey theorem and Tournament principle
(cf. [10, p. 233]).

Definition 2.1. (a) RAMn(α) is the Σb
1(α)-formula

[∃i < j < n; α(i, j) 6≡ α(j, i)] ∨ ∃X ⊆ {0, . . . , n− 1}; |X| = b(logn)/2c
∧ [(∀x, y ∈ X; x 6= y → α(x, y)) ∨ (∀x, y ∈ X; x 6= y → ¬α(x, y))]

formalizing Ramsey’s statement n→ (b(logn)/2c)2
2, i.e. that the undirected

graph with vertices n = {0, 1, . . . , n − 1} and edges {{i, j} | α(i, j)} has
a homogeneous subset X (a clique or an independent set) of size at least
b(logn)/2c.

The propositional version RAMn has variables xe for all possible edges
e ∈ [n]2, and the clauses ∨

e∈[X]2

xe and
∨

e∈[X]2

¬xe

for all possible X ⊆ n of size b(logn)/2c.
(b) TOURn(α) is the Σb

1(α)-formula

[∀i < j < n; α(i, j) 6≡ α(j, i)]→
∃X ⊆ {0, . . . , n− 1}; |X| = 2 logn ∧ [(∀x ∈ n \X ∃y ∈ X; α(y, x))

formalizing the Tournament principle: a tournament of size n has a domi-
nating set of size ≤ 2 logn.

The propositional version TOURn has variables xi,j for all possible di-
rected (i, j), i 6= j, and the clauses

xi,j ∨ xj,i and ¬xi,j ∨ ¬xj,i
for all i 6= j, and ∨

i∈n\X

∧

j∈X
¬xj,i

for all possible X ⊆ n of size 2 log n.
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The 2 logn bound in TOURn is somewhat arbitrary and obviously not
optimal. However, it is unknown even if TOURn is provable in full bounded
arithmetic T2(α), even with logn replaced by (logn)O(1) (such a change may
be important for provability).

Both these formulas have a form extending the DNF1-form by allowing
also the second order existential quantifier ∃(2)X(|X| ≤ f(n)) ranging over
subsets X of the universe of size ≤ f(n) (usually f(n) = (logn)O(1)), and
universal quantification ∀i ∈ X bounded to elements of X’s. We shall call
them DNF2-formulas for short.

The propositional versions consist, in general (like for TOURn), of
R(log)-clauses, i.e. clauses formed by conjunctions of literals, the conjunc-
tions having size ≤ f(n). The size of the set of associated clauses is nO(f(n))

if the second order quantifier is restricted to sets of size ≤ f(n). In case
of RAMn and TOURn this is O(logn). Note that the relation A |= Φ, for
Φ a DNF1- or a DNF2-formula in a general language L, is definable by a
Σb

2(L)-formula, provided f(n) = log(n)O(1).

3. Resolution and arithmetic. There are several relations between
subsystems of bounded arithmetic and extensions of resolution. I shall for-
mulate these facts for theories with the smash function #, relating them
to quasi-polynomial size propositional proofs. This is because the theories
with the smash function are the ones most commonly used. However, similar
relations hold for theories without the smash function and polynomial size
propositional proofs.

Theorem 3.1 (Kraj́ıček [8, 1.2 and 2.2], [11, Cor. 6.2]). Let a DNF1- or
a DNF2-formula Φ in a relational language L disjoint from the language of
T2 be provable in (a) T 1

2 (L), or (b) T 2
2 (L), respectively. Then the associated

sets of clauses Φn have quasi-polynomial size refutations in systems (a) in
R∗(log) and in R, or (b) in R(log), respectively.

Proof. Case (b) was proved in [8, 1.2 and 2.2] (or see [10, Lemma 12.2.1]).
Case (a) is a corollary of that proof and was given in [11, Cor. 6.2]. To explain
this let me now recall the main steps of the proof of (b).

An arithmetic proof in T 2
2 (L) translates (after suitable cut-elimination)

into an LK-proof that is tree-like, the number of formulas per sequent is
bounded by a constant, it has quasi-polynomial size, and every formula has
depth ≤ 3 with the depth 3 formulas being conjunctions of disjunctions of
poly-logarithmic size conjunctions.

First, the first two properties are used to eliminate the depth 3 con-
nectives; the resulting proof is polynomially longer and still tree-like. The
tree-likeness is then used to reduce the next level of connectives, again with
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a polynomial increase only, resulting in an LK-proof in which all formulas
are poly-logarithmic size conjunctions. That is the required R(log)-proof.

In case (a), starting with a T 1
2 (L) proof, everything has one less depth.

In particular, the first step yields a quasi-polynomial size R∗(log) proof.
Applying the reduction of the depth via tree-likeness once more yields an
R-proof (see [11, Cor. 6.2]).

The link between arithmetic and proof systems also allows one to lift
independence results to lower bounds and, more importantly, methods of
independence proofs to lower bound proofs. As an example, I shall state a
criterion for lower bounds for R∗(log). The first one is a weaker version of
[10, Lemma 9.5.2] (that lemma concerns search trees (2)).

Theorem 3.2 (Kraj́ıček [10, Lemma 9.5.2]). Let Φ be a DNF1-formula
in a relational language L that can be violated in an infinite structure. Then
the corresponding sets of clauses Φn require exponential size R∗(log)-proofs.

Just as [10, Lemma 9.5.2] generalized (by a different proof) Riis’s inde-
pendence criterion for S2

2(α) (cf. Riis [22] or [10, Sec. 11.3]), the following
fact extends analogously his [22, Thm. 11] (or see [10, Thm. 11.3.4]).

Theorem 3.3. Let Φ = ∃X(|X| = logk(n));φ(X,n) be a DNF2-formula
in a relational language L. Assume that there is an infinite structure in
which ∃X;φ is not witnessed by a finite X. Then Φn require exponential
size R∗(log)-proofs.

While Theorem 3.2 is, in fact, a criterion valid in the iff-form (if ¬Φ
has no infinite model then Φ is provable in the predicate logic alone from
the assumption that the universe has ≥ c points for some c ≥ 1; then use
Theorem 3.1), Theorem 3.3 is not. An example is given by the Ramsey
theorem: Theorem 5.2 yields an exponential lower bound for R∗(log)-proofs
of RAMn while the hypothesis of the theorem obviously fails.

Let us remark that another proof of Theorems 3.2 and 3.3 is possible:
reduce the statements directly to related statements about bounded arith-
metic S2

2(α). Namely, it is sufficient to prove in the theory the soundness of
R∗(log)-proofs. For this one needs to augment the data defining the proof by
a log-depth tree structure simulating a Spira-type search through the tree.

It would be very interesting if an infinitary criterion like these existed
also for R. The only other proof system for which something analogous is
known is the constant-degree polynomial calculus (or Nullstellensatz); the
role of infinite structures is played by Euler structures (see Kraj́ıček [12]).

(2) S. Riis informed me that he is preparing a manuscript on Theorem 3.2 and related
issues.
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Remark. A recent paper by Kullmann [17] contains extensive informa-
tion on R∗.

4. Non-standard models and lower bounds. Let M be an arbitrary
countable model of true arithmetic in the language of T2, and n ∈ M any
non-standard element. Denote by Mn the structure with the universe

⋂

ε

{u ∈M | u < 2n
ε} =

⋃

ι

{u ∈M | u < 2n
ι}

with ε’s ranging over all positive standard rationals and ι’s over infinitesimal
rationals. The structure of Mn consists of the reduct of M to the universe,
together with a unary predicate symbol RX for every bounded subset X ⊆
Mn that is coded in M . (Instead of RX(u), I write u ∈ X.)

Let Ln denote the language of Mn. Note that Mn satisfies induction for
all bounded Ln-formulas.

Let ∀≤b1
∧

denote the set of Ln∪L-formulas built from basic formulas by
conjunctions and bounded universal quantification. Then L − ∀≤b1

∧
is the

least number principle for such formulas.

Theorem 4.1. Let T , P be one of the following pairs of a theory and
a proof system: T 2

2 (Ln, L) and R(log), T 1
2 (Ln, L) + L − ∀≤b1

∧
and R. For

every structure Mn of the form as above the following two statements are
equivalent :

(1) There is an expansion of Mn to a model (Mn, L) of T in which Φn
fails.

(2) Φn requires exponential-size P -proofs.

Proof. This is a standard argument (going back to Paris and Wilkie)
that I repeat here for the reader’s benefit; the novel part is the exact corre-
spondence for the pairs T , P . We also use non-standard models in Section 5.

Assume that the lower bound is not true. By compactness there is a
non-standard model of true arithmetic, non-standard n ∈M , and a P -proof
represented by a bounded coded subset π of Mn such that π is a P -refutation
of Φn in M (and hence in Mn).

Take some expansion (Mn, L) provided by the first statement. This de-
fines an evaluation of atoms of Φn that satisfies all initial clauses in π.
However, π is sound in Mn as the soundness is provable in T . That is a
contradiction.

The opposite implication follows by a model-theoretic argument. Let Cl
be the set of all clauses in M formed from literals occurring in the set of
clauses Φn corresponding to Φ. Let H := Cl ∪{¬C | C ∈ Cl}. We shall
construct a set G ⊆ H such that

(1) All clauses of Φn are in G.
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(2) C or ¬C is in G, for any C ∈ Cl.
(3) If C ∈ G then {`} ∈ G for some ` ∈ C.
(4) If ¬C ∈ G, then {¬`} ∈ G for all ` ∈ C.
(5) If the sequence 〈C0, . . . , Ct〉 of clauses from Cl is defined by an Ln-

relation symbol, t ∈ Mn, then either there is a minimal i0 ≤ t such that
¬Ci0 ∈ G, or {C0, . . . , Ct} ⊆ G.

(6) There are no π and X in Ln such that X ⊆ G and π is a P -refutation
of X.

(We use the name G as, in fact, it is a generic set in an appropriately
defined forcing; see [9] or [10, Sec. 12.7].)

G is built in countably many steps, arranging in M consecutively the
conditions for all C and all sequences 〈C0, . . . , Ct〉 from Mn. The inductive
process can start as the set of clauses of Φn has no P -refutation in Mn, by
hypothesis. The details are as in the case of V 1

1 and EF in [9]; or see [10,
Sec. 9.4]. Note that we could not arrange (5) with tree-like proofs.

G defines, by conditions (2)–(4), an interpretation of L in Mn. Φn fails
by (1), while (5) implies that the expansion is a model of the least number
principle for ∀≤b1

∧
formulas.

This proves the statement for T 1
2 (L)+L−∀≤b1

∧
and R; the case of T 2

2 (L)
and R(log) is analogous.

Remark. The forcing method used for constructions of models of L∃1
and T 1

2 cannot be used to construct suitable expansions. Namely, let P be
the set of all injective maps p : dom(p)→ n coded in M , partially ordered by
inclusion. One uses as forcing notions suitable subclasses Q ⊆ P. A generic
set G ⊆ Q then defines a generic map f :=

⋃
G.

If one forces with the subclass consisting of p’s of standard size then the
generic map f is a bijection between Mn and n, and (Mn, f) satisfies the
minimisation principle for existential Ln(f)-formulas. This was proved by
Paris and Wilkie [19] (or see [10, Thm. 12.7.1]). It is noticed in [10, Sec. 12.7,
pp. 273–274] that taking instead maps p of size bounded above by some nι,
ι a positive infinitesimal rational, yields a bijection f : Mn ↔ n satisfying
the minimisation principle for Σb

1(Ln, f)-formulas (and hence T 1
2 (Ln, f)).

On the other hand, such generic f will never satisfy T 2
2 (f) as, for example,

the formula

∃u1 < u2 < n;

u1 + x = u2 ∧ (∀u1 ≤ v1 < v2 ≤ u2; f(v1) ≡ f(v2) (mod 2))

will be satisfied in the generic extension by any x smaller than some nι,
ι a positive infinitesimal rational, but not by any greater one, and hence
Σb

2(f)-induction fails.
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5. Ramsey theorem. Pudlák [21] showed that RAMn(α) is provable
in T2(α) (in fact, in T 5

2 (α) as computed in [10, Thm. 12.1.3]) by reducing it
to the weak pigeonhole principle for a map definable from α. On the other
hand, Chiari–Kraj́ıček [5] proved that RAMn(α) is independent of T 1

2 (α)
and they put it forward as a candidate for a formula independent of T 2

2 (α)
as well. We derive this conjecture from a hypothesis about the lengths of
proofs of WPHPn

4

n .

Theorem 5.1. Let g : N→ N\{0} be a function. Assume that WPHPn
4

n

requires exponential size R(2g)-proofs. Then RAMn requires exponential size
R(g)-proofs.

Proof. First consider the case g = log n, so that we can use Theorem 4.1;
the general case is explained at the end of the proof.

Let M be, as before, a non-standard model of true arithmetic, and let
n ∈ M be a non-standard number of the form 2s. Take Mn of the form as
earlier, and (Mn, f) the expansion provided by Theorem 4.1, assuming the
hypothesis of the theorem. That is, (Mn, f) is a model of T 2

2 (Ln, f) in which
f maps injectively n4 into n.

By Erdős [6] there is a graph G ∈ M , G = (n,E), containing no homo-
geneous set of size 2s = 2 log n. We shall use E also as the name for the
predicate for E in Ln.

Define in (Mn, f) a graph G′ = (n4, E′) by

xE′y ≡def f(x)Ef(y).

Then E′ is ∆b
1(R,E)-definable, so (Mn, f) satisfies T 2

2 (E′). If RAMn(α)
were provable in T 2

2 (α), or even just RAMn had an R(log)-proof in Mn,
there would be X ′ ⊆ n4, X ′ ∈Mn, of size 2 logn and homogeneous in G′.

Clearly then X := f(X ′) is homogeneous in G. Moreover, as X ′ as well as
f restricted to X ′ are coded in Mn, so is X and we have |X ′| = |X| = 2 logn.
All sets of O(logn) size are coded in a model of S1

2(Ln, f), so X is definable
without f . This contradicts, in M , the choice of G without a homogeneous
set so large.

Finally, note that the argument works equally well for R(g) in place of
R(log), as the (non-)edge {x, y} in G′ is defined as

∨
(f(x) = i ∧ f(y) = j)

with the disjunction over all (non-)edges {i, j} in G, i.e. an R(g)-proof of
RAMn translates into an R(2g)-proof of WPHPn

4

n .

The proof of the following statement is a non-uniform version of the
proof that T 1

2 (R) does not prove RAMn(R) from Chiari–Kraj́ıček [5]. I shall
give it explicitly as we shall use a variant of the argument later on. (It also
gives a hint to a reader not familiar with [10] how Theorems 3.2 and 3.3 are
proved following [10, Sec. 11.3].)

Theorem 5.2. Any R∗(log)-proof of RAMn requires exponential size.
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Proof. Assume an R∗(log)-proof has size 2t and all conjunctions in it
have size ≤ t. Turning the proof upside down we can use it as a search tree.
Namely, given a graph H we walk in the tree from the root (the empty
clause) down to a leaf (an axiom) on clauses false for H. This yields a set
of size at least (logn)/2 homogeneous in H. Moreover, we walk through the
proof tree in the Spira-type fashion: from a node determining a subtree T0 we
go to its node determining a subtree T1 of T0 of size |T0|/3 ≤ |T1| ≤ 2|T0|/3.
Hence the resulting search tree has depth O(t) only.

Let G be the Erdős graph (as in the proof of Thm. 5.1) but on n1/4

vertices. That is, it has no homogeneous set of size ≥ (logn)/2. Walking
through the search tree we shall define a part of a graph H on n vertices.
After k steps we will have a partial isomorphism ψk between ≤ k2t vertices
of H and G. In the (k + 1)st step, querying an R(log)-clause C =

∨
iDi,

Di =
∧
j `i,j , consider two cases.

Either ψk can be extended to make one of Di true, or not. In the former
case answer the query YES and let ψk+1 be a minimal such extension of ψk.
Note that |ψk+1 \ ψk| ≤ 2|Di| ≤ 2t.

In the latter case answer NO and take ψk+1 := ψk.
We may continue with this strategy as long as there is room for the

extensions, i.e. as long as |ψk| ≤ n1/4, for all k.
At the end (i.e. at the leaf) we have a partial isomorphism ψ whose do-

main contains a homogeneous setX of size≥ (logn)/2. That is impossible as
its image in ψ would be a homogeneous set in G but G has no homogeneous
sets so large.

Hence t > 1
2n

1/4.

Theorem 5.2 demonstrates that Theorem 3.3 is not a criterion but only
a sufficient condition, as we cannot use it to prove Theorem 5.2. On the
other hand, there obviously exists an infinite tournament without a finite
dominating set, hence Theorem 3.3 implies

Theorem 5.3. Any R∗(log)-proof of TOURn requires exponential size.

Perhaps I may remind the reader here of an

Open Problem. Does TOURn have polynomial-size (or even subexpo-
nential size) constant-depth Frege proofs?

The clauses of RAMn have size ≤ (logn)2. The following result shows
that the width of any R-proof, i.e. the maximum size of a clause in the proof,
must be n1/4.

Theorem 5.4. Any R-proof of RAMn must have width at least 1
2n

1/4.

Proof. The proof is similar to the proof of Theorem 5.2 but with some
differences. Let π be an R-refutation of RAMn. Assume that the width is w.
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Turning π upside down determines a branching program solving the same
search problem as in the proof of Theorem 5.2.

As before, we construct in steps partial isomorphisms ψk from the n
vertices of H into vertices of the Erdős graph G on n1/4 vertices. They are
constructed differently, however.

Let C0 = ∅, C1, . . . , Ck be the path in π that we walked through so
far in k steps. Let supp(C) be the set of all vertices occurring in edges
corresponding to literals in C. Put ψ0 := ∅. We have dom(ψi) = supp(Ci).

Assume that Ck = C ′ ∪ C ′′ was inferred in π by the inference

C ′ ∪ {pe} C ′′ ∪ {¬pe}
Ck

with e = {i, j}. Put φ := ψk↓(supp(C ′)). If φ can be extended to i, j so that
pe is false in G, take for ψk+1 one such extension. Otherwise take for ψk+1
any extension of ψk↓(supp(C ′′)) to i, j making pe true. In the former case
Ck+1 := C ′ ∪ {pe}, in the latter Ck+1 := C ′′ ∪ {¬pe}.

As |ψk| ≤ 2|C ′ ∪ C ′′| ≤ 2w, this can be done as long as 2w ≤ n1/4.

Remark. Krishnamurthy and Moll [16] consider critical Ramsey for-
mulas: For a given r ≥ 3 take minimal m satisfying the Ramsey relation
m → (r)2

2, and let αr be the Ramsey formula like RAMm but with X’s
ranging over sets of vertices of size r. They proved [16, Cor. 4.1.9] that the
width of R-proofs of αr must be at least m/2− 1. They also proved an ex-
ponential lower bound for Davis–Putnam Procedure (essentially R∗) proofs
of the formulas.

The minimal m satisfies 2r/2 ≤ m ≤ 22r and for r := (logn)/2 it may be
that m� n. Hence our lower bounds for RAMn are stronger statements.

6. WPHP in T 2
2 (R). Let us denote by ontoPHP the onto version of

PHP speaking about bijections rather than injections. The following is well
known.

Theorem 6.1 (Paris, Wilkie and Woods [20]). Let m = 2n or n2 or ∞.

(1) T 3
2 (R) proves any WPHPmn (R).

(2) T 2
2 (R) proves any onto WPHPmn (R).

(3) There are g and h, ∆b
1(R)-definable in S1

2(R), such that S1
2(R) proves

the implications
¬WPHP2n

n (R)→ ¬WPHPn
2

n (g)

and
¬WPHPn

2

n (R)→ ¬WPHP∞n (h)

The same statements hold for the onto version.

By Theorem 3.1 we get
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Corollary 6.2. The onto WPHPmn , for m = 2n, n2,∞, has quasi-poly-
nomial R(log)-proofs.

In fact, as the proof in [8] shows, the conjunctions in the R(log)-proofs
have size only O(logn) rather than generic (logn)O(1).

An immediate corollary of Theorems 6.1 and 3.1 points to a possible
approach to proving resolution lower bounds for WPHPn

2

n and WPHP∞n .
Namely, instead of trying to improve the current methods to m = n2, im-
prove the lower bound for m = 2n from R to R(log).

Corollary 6.3. Assume that WPHP2n
n requires exponential size

R(log)-proofs. Then so do both WPHPn
2

n and WPHP∞n .

By [4], S2
2(f) does not prove ontoWPHPmn (f). Thus the remaining open

problem is whether T 2
2 (f) proves (the non-onto) WPHPmn (f). In this con-

nection it is perhaps interesting to note that Buss–Pitassi [2] proved that
minimum sizes of R-proofs of WPHPmn and ontoWPHPmn are polynomially
related.

Analysing what causes the increase of quantifier complexity in the proofs
of the non-onto version we observe that a function in a model of T 2

2 (f)
violating the principle WPHPn

2

n (f) must be one-way (3).

Lemma 6.4. Let M be a model of T 2
2 (f) + ¬WPHPmn (f), for m =

2n, n2,∞. Then f is one-way in the following sense: the inverse func-
tion f (−1) (defined arbitrarily outside rng(f)) is not ∆b

1(f)-definable in the
model , i.e. it is not computable by a polynomial-time Turing machine with
oracle f even with a polynomial advice. In particular , rng(f) is also not
∆b

1(f)-definable.

To explain this I shall refer to the proof of Theorem 6.1 as given in [10,
Thm. 11.2.3, pp. 213–214].

The formula Ag(r) is Πb
3; however, if the map violating the WPHP is not

onto, then the same construction gives only a Πb
4-formula as the function

`(i, x) is not ∆b
1(f) anymore (because one needs to condition upon whether

or not `(i, x) is in the range of the map). But assuming that the inverse
map f (−1) is ∆b

1(f)-definable, the function `(i, x) is also ∆b
1(f)-definable as

the numbers v, w in the second clause of the definition of `(i, x) (see [10,
p. 214]) are just projections of f (−1)(u). Hence the assumption that f is
not one-way implies that the proof goes through in S3

2(f) and hence also in
T 2

2 (f), contradicting the hypothesis that f violates WPHPn
2

n (f) in a model
of T 2

2 (f).

(3) After this paper circulated for some time, [18] showed that T 2
2 (f) proves

WPHPn
2

n (f) (see http://www.math.cas.cz/̃ krajicek/mpw.ps for a short presentation of
their proof via bounded arithmetic). I keep Lemma 6.4 as the same construction works
for subtheories of T 2

2 (f) corresponding to weaker subsystems of R(logn).
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A simple example of this situation (for a reader not familiar with [10]) is
this: Let f : n× n→ n. Consider the property φ(u) := ∃j < n; f(0, j) = u.
Then φ is Σb

1(f) for all f , but when f is onto n it is, in fact, ∆b
1(f) as it is

equivalent also to ∀i, j < n; f(i, j) = u→ i = 0.
We can complement Lemma 6.4 in a sense.

Theorem 6.5. Let f be a length preserving , injective polynomial-time
function. Assume that f is one-way in the sense of Lemma 6.4, i.e. f (−1) is
not computable by polynomial-size circuits. Then there is a model M of S1

2
and an infinite n in it such that f is an injective map from n into a proper
subset of n. In particular , if we add one value to f , then f violates PHPn+1

n .
In fact , if the hypothesis is satisfied only in a model N of S1

2 then M can be
a Σb

1-elementary extension of N .

Proof. If no such model exists then S1
2 proves for some k ≥ 1:

a ≥ k → [(∃x < a; |f(x)| 6= |x|) ∨ (∃x < y < a; f(x) = f(y))∨
(∀y < a ∃x < a; f(x) = y)].

By Buss’s witnessing theorem (see [1] or [10, Chpt. 7]) there is a polynomial-
time function g(a, y) that on input (a, y) ∈ N×N, a ≥ k and y < a, witnesses
the above implication. As the first two disjunctions in the succedent are
false in N, it actually always finds f (−1)(y). That is a contradiction with the
assumption that f is one-way.

The last part follows after applying the witnessing theorem to S1
2 +

ThΠb1
(N).

A family hy(x) of functions from {0, 1}`(|y|) into {0, 1}`(|y|)−1 is a strongly
collision-free family of hash functions if there is no polynomial-time function
f that on y computes x1 < x2 ∈ {0, 1}`(|y|) with hy(x1) = hy(x2) (cf. [23]).

Theorem 6.6. Let hy(x) be a strongly collision-free family of hash func-
tions. Then there is a model M of S1

2 and an infinite n = 2`−1 in it such
that for some a ∈ M , ha : {0, 1}` → {0, 1}`−1 violates WPHP2n

n . In fact ,
if the hypothesis is satisfied only in a model N of S1

2 then M can be a
Σb

1-elementary extension of N .

Proof. The non-existence of such M implies that S1
2 (or S1

2 + ThΠb1
(N)

respectively) proves

∀y ∃x1, x2; x1 < x2 ∧ hy(x1) = hy(x2).

Buss’s witnessing theorem gives a function f finding in polynomial time
from y a collision x1 < x2 for hy.

An example of a family of functions conjectured to be strongly collision-
free (unless the discrete logarithm is tractable) is the Cham–van Heijst–
Pfitzman family (see [23, Chap. 7]).
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7. Open problems. Surely there are theorems analogous to Theorem
5.1 for other combinatorial principles. For example, the ontoPHP similarly
relates to the Tournament principle: a small dominating set is pulled back
by the bijection from a smaller tournament to a bigger one where no such
small dominating set exists. One may also turn the argument around and
try to prove WPHP by proving (without WPHP) a suitable combinatorial
principle, or by reducing general WPHP to the ontoWPHP in this way. I
shall now try to formalise this type of potential new proof of WPHP by the
informal notion of structured PHP.

For the rest of the discussion let L be a relational language disjoint from
the language of T2. We shall need a suitable class of formulas. The class A
consists of all 2nd order formulas Φ(n) that have the form

Φ(n) := ∃X; |X| ≥ F (n) ∧ φ(X)

where φ is a DNF2-formula (see Section 2) with 2nd order quantifiers ranging
over sets of size (logn)O(1), with all ∀ restricted to 2nd order variables, and
such that:

(1) F (n) = (logn)O(1) and F (n) is definable in S1
2 .

(2) There is k ≥ 1 such that for arbitrarily large n there is an L-structure
A with n points such that A 6|= Φ(nk).

The proof of the following lemma is analogous to the proof of Theo-
rem 5.1.

Lemma 7.1. Let a theory T : S1
2(L) ⊆ T ⊆ T2(L) and a proof system

P be a pair for which Theorem 4.1 holds. Assume that T proves that all
L-structures A satisfy Φ(|A|). Then P admits subexponential size proofs
of WPHPn

k

n . If , moreover , T proves condition (2) above, it also proves
WPHPn

k

n (f).

In the version of the lemma for ontoWPHPmn the formula Φ can be more
general: φ can be any 2nd order formula (with 2nd order quantifiers still
ranging over sets of size (logn)O(1)), the subformula |X| ≥ F (n) can be
replaced by |X| ≤ F (n), and condition (2) can be changed to

(2′) There is k ≥ 1 such that for arbitrarily large n there is an L-structure
A with nk points such that A 6|= Φ(n).

A more generally aimed question is: Is it easier to prove that f : m→ n
cannot be injective assuming that n (or m) is equipped with a structure hav-
ing some particular property? Even more generally, let ϕ(x, y) be a bounded
formula in the language of T2(L). Denote by SϕPHPmn (f) the structured
PHP: If ϕ(m,n) holds then f : m→ n cannot be injective.
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Problem 7.2. Is there ϕ(x, y) such that

(1) there are arbitrarily large n and m ≥ 2n satisfying ϕ(m,n),
(2) SϕPHPmn (f) is provable in T 2

2 (L, f)?

Known methods give a negative answer for m = n+ 1 and T2(L, f), and
for S2

2(L, f).
There are a few more problems that I find interesting and stimulating for

further work. The first one is aimed towards the remark before Corollary 6.3.

Problem 7.3. Prove an exponential lower bound on the size of R(2)-
proofs of WPHP2n

n .

Mentioning R(2) gives me an opportunity to state a conjecture about
the system. For the definition of (monotone) effective interpolation, see [11].
The only constant-depth subsystem of LK for which the status of monotone
effective interpolation is unknown is the depth 1 subsystem (depth 0 is
resolution that admits monotone effective interpolation, while depth ≥ 2
subsystems do not—see [11, Thms. 6.1 and 9.3]).

Conjecture 7.4. R(2) has no (monotone) effective interpolation.

This is related to our main theme by

Theorem 7.5 ([11, Thm. 9.4]). Either R(id) (i.e. depth 1 LK) does not
admit monotone effective interpolation or , for any k, WPHPn

k

n requires ex-
ponential size R-proofs.

To conclude the paper I turn for a moment to unrelativised WPHP. A
very important open problem (next to the finite axiomatisability) about (un-
relativised) bounded arithmetic, formulated by A. Macintyre some twenty
years ago, concerns the provability of (various version of) PHP for functions
definable in the theory by bounded formulas. A few conditional results are
known: PHPn+1

n (f) is not provable in any one T i2 for all such f unless the
polynomial-time hierarchy collapses (by [15], as we would have T i2 = T2),
and further WPHP2n

n (f) is not provable in S1
2 for some polynomial-time

functions (e.g. exponentiation in finite fields) unless the RSA cryptosystem
is not secure (cf. [14]). However, no unconditional results are known.

Definition 7.6. Denote by WPHPn2n the statement that f : n → 2n
cannot be onto.

BT is the theory S1
2 extended by instances of WPHPn2n for all poly-

nomial-time functions f .

BT, a subtheory of T2, is a suitable theory in our context. For example,
T 2

2 (f) can be replaced by BT(f) in Lemma 6.4.

Problem 7.7. Is the theory BT ∀Σb
1-conservative over S1

2?
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By a theorem of A. Wilkie (proved in [10, Thm. 7.3.7] (4)) the functions
Σb

1-definable in BT are computable in random polynomial time. Thus, as-
suming the existence of strong pseudo-random number generators, they are
all polynomial-time. Hence witnessing will not distinguish the theories. So,
in effect, the question is if there are ∀Πb

1-consequences of BT unprovable
in S1

2 .
In this connection it may be interesting to

Problem 7.8. Find a natural extension of EF that would correspond
to BT.

The witnessing theorem for BT also implies that a possible reduction
of general WPHP to ontoWPHP (looked for via structured PHP) cannot
be entirely trivial. This is an observation pointed out to me by N. Thapen.
It was proved in [14] that S1

2 does not prove WPHP2n
n for a particular

polynomial-time function (modular exponentiation) unless the cryptosystem
RSA is not secure. The same proof combined with the witnessing theorem for
BT shows that even BT does not prove it, using the average case complexity
definition of security of RSA. Hence, assuming such security of RSA, one
cannot reduce WPHP2n

n to WPHPn2n, and hence to ontoWPHP2n
n , in S1

2 .
The following conjecture suggests how a model not satisfying BT may

occur. Let G : {0, 1}∗ → {0, 1}∗ be a pseudo-random number generator that
stretches the inputs by one bit and has exponential hardness. Denote by Gl

the restriction of G to inputs of length l (and similarly fl for any function f).

Conjecture 7.9. Any model Mn of the form as earlier , n = 2l in M ,
has a ∆b

1-elementary extension to a model N of S1
2 in which there is a

map f : {0, 1}l → {0, 1}l+1 that is ∆b
1-definable from Gl and that violates

WPHPn2n(f).
In particular , if strong pseudo-random number generators exist then

S1
2 6= BT.

As G is a polynomial-time function and hence itself ∆b
1-definable, the

condition on f just means that f is also ∆b
1-definable. A reference to G thus

seems redundant. However, I believe that there is a construction of f from
G uniform in G and that there are even G for which one can take f := G.

Note that the conjecture also has an implication for the Extended Frege
system EF. In particular, none of the formulas ‖y 6∈ Rng(f)‖l+1(b), b ∈
{0, 1}l+1, has an EF-proof in the model Mn and hence a standard compact-
ness argument yields the next corollary. See [13] for more on this topic.

Corollary 7.10. Assume that G is a strong pseudo-random generator
and f is a function with the properties guaranteed by the conjecture. Then the

(4) See http://www.math.cas.cz/̃ krajicek/upravy.html for a relevant correction.
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tautologies ‖y 6∈ Rng(fn)‖n+1(b) for b ∈ {0, 1}n+1 \ Rng(fn), n = 1, 2, . . . ,
require superpolynomial EF-proofs.
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