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Kleinberg sequences and partition cardinals below δ1
5

by

Benedikt Löwe (Bonn)

Abstract. The author computes the Kleinberg sequences derived from the three
different normal ultrafilters on δ1

3 .

1. Introduction. Eugene Kleinberg linked the theory of partition cardi-
nals to the Axiom of Determinacy AD by showing that the first ω+1 infinite
cardinals satisfy certain large cardinal properties defined via partition rela-
tions. In fact, his proof did not actually use the Axiom of Determinacy but
some of its consequences.

More generally, Kleinberg showed (for a proof, cf. [Kl77], or [Sch99] for
a more thorough presentation):

Theorem 1.1. Let κ be a cardinal with the strong partition property and
µ be a normal ultrafilter on κ. Let κ1 := κ and κn+1 := (κn)κ/µ. Then

(i) κ1 and κ2 are measurable,
(ii) for all n ≥ 2, cf(κn) = κ2,
(iii) κn is a Jónsson cardinal , and
(iv) sup{κn : n ∈ ω} is a Rowbottom cardinal.

Moreover , if κκ/µ = κ+, then κn+1 = (κn)+ for all n ∈ ω.

Corollary 1.2. Assume AD. Then for all positive natural numbers n,
ℵn is a Jónsson cardinal and ℵω is a Rowbottom cardinal.

Proof. After a brief look at Theorem 1.1 we realize that there is nothing
to show if ℵ1 has the strong partition property and (ℵ1)ℵ1/µ = ℵ2 for some
(the only) normal ultrafilter µ on ℵ1. But the first assertion is a theorem of
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Martin (cf. [Ka94, Theorem 28.12]), the second is a theorem of Solovay (cf.
[Kl77, Theorem 2.9]).

At that time, it was unknown whether there are any natural assumptions
(e.g., the Axiom of Determinacy) under which the conditions of Kleinberg’s
Theorem 1.1 are met except for the case mentioned in the proof of Corol-
lary 1.2.

The deep structural results of Jackson’s computation of δ1
5 immediately

provided additional examples for Kleinberg’s theorem under AD: All odd
projective ordinals δ1

2n+1 are starting points for sequences of successive
Jónsson cardinals derived from the ω-cofinal normal ultrafilter (cf. Theo-
rem 2.6 and Fact 2.5(vii)).

But Kleinberg’s Theorem 1.1 provides us with even more sequences of
Jónsson cardinals starting from δ1

2n+1 since we have as many normal mea-
sures on δ1

2n+1 as we have regular cardinals below it. Where exactly are these
Jónsson and Rowbottom cardinals? Can we compute the cardinality of the
members of these additional Kleinberg sequences?

In this note we shall answer these questions and compute the Kleinberg
sequences derived from the ω1-cofinal and the ω2-cofinal measures on δ1

3. An
important ingredient here is the exact knowledge of cofinalities of successor
cardinals between δ1

3 and δ1
5 provided by [JaKh∞].

2. Prerequisites and the Shifting Lemma. To compute the Klein-
berg sequences, we will use a substantial amount of knowledge about the
behaviour of the projective ordinals and of the combinatorial theory below
δ1

5 under AD. Nevertheless, we try to keep the paper understandable for
readers with a basic understanding of Determinacy and Large Cardinals by
listing all theorems that we shall use later on in this section.

Definition 2.1. A cardinal κ is called a Jónsson cardinal if the parti-
tion relation κ→ [κ]<ωκ holds, i.e., for every partition of [κ]<ω into κ blocks
there is a set H of order type κ with the property that [H]<ω does not meet
all blocks.

A cardinal κ is called a Rowbottom cardinal if for all λ < κ the partition
relation κ → [κ]<ωλ,<ω1

holds, i.e., for every partition of [κ]<ω into λ blocks
there is a set H of order type κ with the property that [H]<ω meets only
countably many blocks.

Jónsson and Rowbottom cardinals are large cardinals in the sense that
their existence implies the consistency of ZFC (and much more). They are
not, however, large in the usual sense. They do not even have to be regular
cardinals; in fact, all of the Jónssons and Rowbottoms appearing in this
paper have cofinality ω.



Kleinberg sequences 71

This is not just a feature of choiceless set theory: In the Př́ıkrý (ZFC)-
model obtained by generically adding a cofinal ω-sequence to a measurable
cardinal, the former measurable cardinal is a Rowbottom cardinal of cofinal-
ity ω. For particular instances of the question “Is ℵλ Rowbottom?” where
λ is of cofinality ω, the consistency strength of a positive answer differs
depending on whether or not you demand that the Axiom of Choice AC
holds (cf. [Koe88] and [ApKoe∞]).

A reader interested in the basic theory of Jónsson and Rowbottom car-
dinals is referred to [Ka94, §7 & §8].

Definition 2.2. A cardinal κ is said to have the strong partition prop-
erty if the partition relation κ → (κ)κ holds, i.e., if for every partition of
[κ]κ into two blocks there is a homogeneous set of order type κ.

Note that the strong partition property cannot hold for any cardinal if
we assume AC: by a result of Erdős and Rado (cf. [Ka94, Proposition 7.1]) no
partition relation can have infinite exponents if the Axiom of Choice holds.

That the strong partition property of κ really is a property with as-
tonishing consequences for the combinatorial theory of κ (or, to put it in
Jim Henle’s words, that it is “one of the most powerful partition properties
known to man” [He79, p. 151]), can be seen in the next result of Kleinberg;
a proof can be found in [Ka94, Theorem 28.10 & Exercise 28.11]:

Theorem 2.3. Let κ be a cardinal with the strong partition property
and λ < κ a regular cardinal. Then Cλκ , the filter generated by the λ-closed
unbounded sets in κ, is a normal ultrafilter on κ. We call Cλκ the λ-cofinal
filter or measure.

In addition, if κ is not weakly Mahlo, then these are the only normal
ultrafilters on κ.

The reader was already informally introduced to Kleinberg sequences in
Theorem 1.1. Now we fix our notation:

Definition 2.4. Let κ be a cardinal with the strong partition property
and µ a normal measure on κ. We then define a sequence of well-ordered
structures 〈κµn : n ≤ ω〉 as follows:

• κµ1 := κ,
• κµn+1 := (κµn)κ/µ, and
• κµω := sup{κµn : n ∈ ω}.

This sequence is called the Kleinberg sequence derived from µ.

As already mentioned in Theorem 1.1, all elements of a Kleinberg se-
quence are Jónsson cardinals, and κω is a Rowbottom cardinal.

We define the projective ordinals by

δ1
n := sup{ξ : ξ is the length of a prewellordering of ωω in ∆1

n}.
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Even before Jackson’s results, a couple of things were known about the
projective ordinals under AD:

Fact 2.5. Let n be a natural number. Assume AD. Then:

(i) (Kunen–Martin 1971) δ1
2n+2 = (δ1

2n+1)+,
(ii) (Kechris 1974) δ1

2n+1 is the cardinal successor of a cardinal of co-
finality ω,

(iii) (Martin–Kunen 1971) all δ1
n are measurable,

(iv) (Martin–Kunen 1971) δ1
2 = ℵ2, δ1

3 = ℵω+1, and δ1
4 = ℵω+2,

(v) (Martin, Paris 1971) δ1
1 → (δ1

1)δ
1
1 , and for all α < δ1

2, the relation
δ1

2 → (δ1
2)α holds,

(vi) (Martin 1971) for all α<ω1 the partition relation δ1
2n+1→(δ1

2n+1)α

holds,
(vii) (Kunen 1971) the ω-cofinal measure Cω

δ12n+1
is a normal measure on

δ1
2n+1 with (δ1

2n+1)δ
1
2n+1/Cω

δ12n+1
= δ1

2n+2, and

(viii) (Martin–Jackson 1980) (δ1
3)δ

1
3/Cω1

δ13
= ℵω·2+1 and (δ1

3)δ
1
3/Cω2

δ13
=

ℵωω+1, and these two cardinals are measurable.

Proof. A proof of all parts except for the last can be found in [Ke78].
Fact 2.5 comprises Theorems 3.12, 3.10, 5.1, §6, Theorem 12.1, Corollary
13.4, Theorems 11.2, 14.3 of [Ke78]. The last assertion is part of [Ja99b,
Chapter 7].

Since the values of δ1
1, δ1

2, δ1
3, and δ1

4 were known, the next open question
was the value of δ1

5. This was the content of the First Victoria Delfino
Problem (cf. [KeMo78]), and was solved by Steve Jackson who computed δ1

5
to be ℵωωω+1 (cf. [Ja88] and [Ja99b]):

Theorem 2.6. Assume AD. Let E be the function recursively defined by
E(0) = 1 and E(n+ 1) = ωE(n). Then for every n ∈ ω,

δ1
2n+1 = ℵE(2n+1)+1,

and all odd projective ordinals have the strong partition property.

This computation gave rise to a detailed analysis of the cardinals between
δ1

3 and δ1
5 that will be used in this note.

The main tool of our computation will be the following theorem, which
is an elaboration of the proof of the “moreover” part in Theorem 1.1:

Ultrapower Shifting Lemma 2.7. Let κ = ℵα < λ = ℵα+β, and let
µ be a κ-complete ultrafilter on κ. Let γ be such that κκ/µ = ℵγ. Suppose
that for all cardinals ν such that κ < ν ≤ λ the following holds:

(i) either ν is a successor and cf(ν) > κ,
(ii) or ν is a limit and cf(ν) < κ.

Then λκ/µ ≤ ℵγ+β.
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Proof. The proof proceeds by induction on β. The case β = 0 is just the
definition of γ.

For the successor step suppose that λ = ℵα+β+1 and that (ℵα+β)κ/µ ≤
ℵγ+β. Pick any η ∈ λκ/µ. Let f : κ → λ be a function representing η, so
η = [f ]µ. Since cf(λ) > κ, we know that ran(f) is bounded in λ, say by
η∗ < λ. Hence η ∈ (η∗)κ/µ.

But Card((η∗)κ/µ) = Card(Card(η∗)κ/µ) ≤ ℵγ+β by the induction hy-
pothesis. Thus every ordinal in λκ/µ has cardinality ≤ ℵγ+β, and conse-
quently, λκ/µ ≤ ℵγ+β+1.

Now we look at the limit step, where χ is a limit ordinal and for all β < χ
we have (ℵα+β)κ/µ ≤ ℵγ+β. We show that (ℵα+χ)κ/µ =

⋃
β<χ(ℵα+β)κ/µ.

This shows the claim, since

Card
( ⋃

β<χ

(ℵα+β)κ/µ
)
≤ sup{Card((ℵα+β)κ/µ) : β < χ}

≤ sup{ℵγ+β : β < χ} = ℵγ+χ.

As the backward inclusion is clear, we proceed to the other direction. Take
η ∈ (ℵα+χ)κ/µ and a function f : κ → ℵα+χ with [f ]µ = η. Let 〈Bδ :
δ < cf(χ)〉 be a partition of ℵα+χ into sets of cardinality Card(Bδ) < ℵα+χ
none of which is cofinal in ℵα+χ (e.g., the intervals determined by a cofinal
sequence of length cf(χ)).

Now define Fδ := (f−1)”Bδ. Then 〈Fδ : δ < cf(χ)〉 is a disjoint partition
of κ into less than κ sets (by assumption on cf(χ)), hence by κ-completeness
there is a δ0 such that Fδ0 ∈ µ.

But Bδ0 was not cofinal in ℵα+χ, so we can set β0 := sup(Bδ0)+1 < ℵα+χ,
and define f0(ξ) := min(f(ξ), β0). Let β1 < χ be the unique ordinal such
that Card(β0) = ℵα+β1 . Then f0 : κ → ℵα+β1+1 and [f0]µ = [f ]µ, hence
η ∈ (ℵα+β1+1)κ/µ.

Note that the assumption of κ-completeness is only used in the limit
step. Consequently, if we strengthen assumption (ii) to “ν is a limit and
cf(ν) < η” for some η < κ, we can weaken the completeness assumption to
η-completeness. This is particularly interesting in the case η = ω1, because
ω1-completeness of any measure is a consequence of “All sets of reals are
Lebesgue measurable” (and thus of AD). So, in the base theory ZF + AD,
we do not have to make any completeness assumptions if the limit cardi-
nals occurring in the applications of the Ultrapower Shifting Lemma have
cofinality ω.

3. Computations of the Kleinberg sequences. By Theorem 2.3, we
have exactly three normal ultrafilters µ0 := Cω

δ13
, µ1 := Cω1

δ13
, and µ2 := Cω2

δ13

on δ1
3, corresponding to the three regular cardinals ℵ0, ℵ1, and ℵ2 below δ1

3.
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Using the fact that δ1
3 has the strong partition property by Theorem 2.6 and

Kleinberg’s Theorem 1.1, we obtain three Kleinberg sequences 〈κµ0
n : n ≤ ω〉,

〈κµ1
n : n ≤ ω〉, and 〈κµ2

n : n ≤ ω〉.
The first of these is completely known—it is derived from the ω-cofinal

filter on δ1
3 and thus satisfies the “moreover” part of Theorem 1.1 by Fact

2.5(vii). Therefore we have κµ0
n = ℵω+n for all n ≤ ω.

By Fact 2.5(viii), we know the values of κµ1
2 = ℵω·2+1 and κµ2

2 = ℵωω+1.
So we are left with computing the higher values of κµ1

n and κµ2
n .

This is made possible by the exact computations of cofinalities below δ1
5

by Jackson and Khafizov in [JaKh∞]:

Theorem 3.1. Suppose δ1
3 < ℵα+1 < δ1

5. Let α = ωβ1 + . . .+ωβn , where
ωω > β1 ≥ . . . ≥ βn, be the normal form for α. Then:

• if βn = 0, then cf(ℵα+1) = δ1
4 = ℵω+2,

• if βn > 0, and is a successor ordinal , then cf(ℵα+1) = ℵω·2+1, and
• if βn > 0, and is a limit ordinal , then cf(ℵα+1) = ℵωω+1.

We now come to the main result of this note:

Theorem 3.2. Assume AD and the above notation. Let n ≥ 1. Then
κµ1
n = ℵω·n+1 and κµ2

n = ℵω+ωω·(n−1)+1.

Proof. Both statements are proved by induction. The case n = 1 is Fact
2.5(viii) as mentioned above.

We start with the sequence 〈κµ1
n : n∈ω〉. By definition, κµ1

n+1 =(κµ1
n )δ

1
3/Cω1

δ13
,

and by induction hypothesis we know that κµ1
n = ℵω·n+1 = ℵω+1+ω·(n−1)+1.

Looking at the Ultrapower Shifting Lemma 2.7 with α = ω + 1, β =
ω · (n− 1) + 1, and γ = ω · 2 + 1, we get

κµ1
n+1 = (κµ1

n )δ
1
3/Cω1

δ13
≤ ℵω·2+1+ω·(n−1)+1 = ℵω·(n+1)+1.

By Theorem 1.1, we know that cf(κµ1
n+1) = ℵω·2+1. But between κµ1

n and
ℵω·(n+1)+1, there is, according to Theorem 3.1, exactly one cardinal with
cofinality ℵω·2+1, and this is ℵω·(n+1)+1 itself. So κµ1

n+1 = ℵω·(n+1)+1.
The case ω2 works exactly the same way: We apply the Ultrapower Shift-

ing Lemma 2.7, this time with α = ω + 1, β = ωω · n+ 1, and γ = ωω + 1,
and then check using Theorem 3.1 that there is only one possibility left.

Note that Theorem 3.2 together with the proof of Lemma 2.7 also gives
some information about the lengths of several other ultrapowers: for in-
stance, suppose that (ℵω·2)δ

1
3/Cω1

δ13
< ℵω·3. In this case, by the proof of Lem-

ma 2.7, κµ1
3 cannot be ℵω·3+1, contradicting Theorem 3.2. Hence (ℵω·2)δ

1
3/Cω1

δ13
= ℵω·3.

Now we are prepared to harvest the fruits of our work:
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Corollary 3.3. Assume AD. Then the cardinals ℵω·n+1 and ℵωω·n+1
are Jónsson for every n ∈ ω. Furthermore, the cardinals ℵω2 and ℵωω·ω are
Rowbottom.

Proof. Immediate from Theorems 3.2 and 1.1.

4. Other cardinals below and beyond δ1
5. There are many more

cardinals between δ1
3 and δ1

5 than the ones we managed to reach with the
three Kleinberg sequences. There is nothing known about large cardinal
properties of these cardinals. For example, nothing is known about ℵω·2+2,
which, incidentally, is the first infinite cardinal of which we do not know
whether it has any large cardinal properties under AD. The results in this
paper might shed some light on the limit cardinals, though: ℵω·3, the first
limit cardinal without known large cardinal properties, is the ultrapower
of a Rowbottom cardinal with a normal ultrafilter according to the remark
after Theorem 3.2. This fact might prove to be useful for a more thorough
investigation of ℵω·3 and comparable cardinals.

Even more interesting seems the glance beyond δ1
5. Jackson [Ja99a] lists

the seven measurable cardinals between δ1
5 and δ1

7 as: δ1
7 =ℵωωω+2, ℵωωω+ω+1,

ℵωωω+ωω+1, ℵωωω ·2+1, ℵ
ωω

ω+1+1, ℵ
ωω

ω·2+1, and ℵ
ωω

ωω+1. These cardinals are
the ultrapowers of δ1

5 with the seven normal ultrafilters on δ1
5, hence they

are the second cardinals in the seven Kleinberg sequences derived from these
filters. To apply Lemma 2.7 to these sequences and compute the Jónsson
cardinals between δ1

5 and δ1
7 only one piece of information is missing: the

analysis of cofinalities corresponding to Theorem 3.1.
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