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Continuous pseudo-hairy spaces and
continuous pseudo-fans

by

Janusz R. Prajs (Opole and Pocatello, ID)

Abstract. A compact metric space X̃ is said to be a continuous pseudo-hairy space
over a compact space X ⊂ X̃ provided there exists an open, monotone retraction r :

X̃
onto−→ X such that all fibers r−1(x) are pseudo-arcs and any continuum in X̃ joining

two different fibers of r intersects X. A continuum YX is called a continuous pseudo-fan
of a compactum X if there are a point c ∈ YX and a family F of pseudo-arcs such that⋃
F = YX , any subcontinuum of YX intersecting two different elements of F contains c,

and F is homeomorphic to X (with respect to the Hausdorff metric). It is proved that for
each compact metric space X there exist a continuous pseudo-hairy space over X and a
continuous pseudo-fan of X.

Investigation of pseudo-arcs started from the construction [5] of Knas-
ter’s hereditarily indecomposable continuum in 1922. In fact, being chain-
able, Knaster’s continuum is a pseudo-arc [2]. In the sense of Baire category
pseudo-arcs are known to be the most common compact connected spaces,
contained in: n-manifolds (n > 1), the Hilbert cube, the Menger curve,
its higher dimensional analogues etc. They could be compared to the irra-
tionals among the real numbers. Therefore, extraordinary properties of the
pseudo-arc could be expected throughout the topology of separable metric
spaces. However, most of known results on the pseudo-arc deal either with
its internal properties, or with its position in the plane.

Among the results concerning the pseudo-arc there is the Bing–Jones
construction [3] of the circle of pseudo-arcs, i.e. of a curve admitting an
open mapping onto a circle with terminal pseudo-arcs as all fibers. Later
Lewis [8] generalized this construction so that the circle is replaced by any
1-dimensional continuum, and asked whether all curves admitting a con-
tinuous decomposition into pseudo-arcs with a fixed curve as quotient are
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topologically unique. In a previous paper [9] the author answered this ques-
tion in the negative constructing a selectible circle of pseudo-arcs, i.e. a curve
admitting an open monotone retraction onto a circle S with pseudo-arcs as
all fibers, such that no two fibers are joined by a continuum outside of S. In
the same paper this result was extended to any curve instead of the circle.

Dimension 1 is an essential limitation in the constructions of Bing–Jones–
Lewis, if terminality of the fibers is to be preserved. Indeed, any continuum
admitting a continuous decomposition into terminal nondegenerate curves
must be 1-dimensional. If these curves are tree-like, the dimension of the
quotient cannot be greater by Theorem 8, p. 136 of [4].

The selectible curves of pseudo-arcs from [9] have, in a sense, “almost
terminal” fibers, i.e. they behave like terminal continua everywhere outside
of the distinguished selector. Therefore any extension of the results of [9] to
higher dimensional spaces seemed rather unexpected to the author. Never-
theless, in this paper we show that for any metric compactum X (actually,
for any separable metric space—see Remark 2) there exists a space X̃ ad-
mitting an open monotone retraction r onto X with pseudo-arcs as all fibers
r−1(x), such that no two of them can be joined with a continuum outside
of X. Since the constructed spaces need not be curves any more, we call X̃
a continuous pseudo-hairy space over X.

Though being fibers of such constructions seems to be very rare among
continua, the continuous pseudo-hairy space over the pseudo-arc (and its
further iterations) occur to have this property (comp. a comment in the
final part of [9]).

When we shrink the set X to a point in the pseudo-hairy space X̃, a
tree-like (or more precisely, star-like, see Proposition 18) curve is obtained.
It is a one-point union of a compact family F of pseudo-arcs (a “bouquet”
of pseudo-arcs) such that F is homeomorphic to X. We call it a continu-
ous pseudo-fan of X, and the distinguished point joining the pseudo-arcs is
called the vertex of the pseudo-fan. By the results of this paper any metric
compactum (of any dimension) has such a representation (see Theorem 16)
in the form of a star-like curve. So, these representations are embeddable in
R3 (where R is the real line). Thus we obtain, in a sense, a reduction of the
“world” of all metric compacta to the “world” of some special star-like curves
in R3. Though we can represent higher dimensional compacta in terms of
subsets of R even (continuous images of the Cantor set, or geometrically,
encoding with sequences of 0-1 numbers), our representation seems to be
more intuitive because we can “see” the space X in the topological struc-
ture of its continuous pseudo-fan. Namely, F (homeomorphic to X) is the
family of all maximal pseudo-arcs, or equivalently, of all maximal irreducible
subcontinua with the vertex as a point of irreducibility.
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The continuous pseudo-fans can be represented in the form of an inverse
limit lim←−(Xn, fn), where Xn’s are n-ods and fn’s are piecewise linear, light
mappings preserving the vertices of Xn’s. The proof of this is existential
only, so we have the following problem.

Problem 1. Find a method to represent the continuous pseudo-fans of
particular spaces (say : an arc, an n-cube, the Menger curve, the Hilbert
cube, etc.) in the form of the inverse limit of n-ods with piecewise linear
bonding mappings preserving the vertices.

This paper is a continuation of an earlier study [9]. Here we apply some
essential tool proved in that paper (Th. 3 of [9]), and use some new ones to
construct a special decomposition of the product of the unit segment and
the infinite-dimensional torus Sω into pseudo-arcs so that the continuous
pseudo-hairy space over this torus can be derived from the decomposition.
The methods developed may have other applications (see Remark 1). The
main result follows by the universality of Sω among all metric compacta. In
the last section we collect some basic observations on pseudo-hairy spaces
and pseudo-fans.

Preliminaries. Only metric spaces are considered. For any space X
the space of all nonempty continua in X with the Hausdorff metric dH is
denoted by C(X). The symbol Lim stands for the limit of closed sets with
respect to the metric dH. Mappings are assumed to be continuous.

For any compact space X define

ξ(X)=sup{min{dH(K,K∪L), dH(L,K∪L)} : K,L∈C(X) and K∩L 6= ∅}.
Observe that if ε > ξ(X), then X is ε-hereditarily indecomposable in the
sense of [9], and X is hereditarily indecomposable if and only if ξ(X) = 0.

A compact space X̃ is said to be a pseudo-hairy space over X ⊂ X̃ if
there is a retraction r : X̃ → X such that each fiber r−1(x) is a pseudo-arc,
and each continuum intersecting two different fibers r−1(x), r−1(y) intersects
X. Such a set X is then called the base of the pseudo-hairy space X̃. If,
additionally, r is an open mapping we say that X̃ is a continuous pseudo-
hairy space over X.

A continuum Y is said to be a pseudo-fan provided there are a point
c ∈ Y (called the vertex of Y ) and an upper semicontinuous family F of
pseudo-arcs in Y such that

⋃F = Y and any continuum in Y joining two
different elements of F contains c. Observe that then P1 ∩ P2 = {c} for
any two different pseudo-arcs P1, P2 in F . If, additionally, the family F is
homeomorphic (in the sense of the Hausdorff distance) to some compactum
X, we say that Y is a continuous pseudo-fan of X. Let f : X → Y be
a surjective mapping, and let DX , DY be decompositions of the spaces X
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and Y , respectively. We say that f transforms DX onto DY provided DX =
{f−1(D) : D ∈ DY }. For any mapping f : X → Y with X ⊂ Y we define

d(f) = sup{d(x, f(x)) : x ∈ X},
and if d(f) < ε, we say that f is an ε-pushing. A family of mappings fα :
Xα → Yα is said to be uniformly equicontinuous provided for any ε > 0
there is a δ > 0 such that d(fα(x), fα(y)) < ε for each α and each pair
x, y ∈ Xα with d(x, y) < δ.

A finite family of sets is called an ε-chain (resp. ε-star cover) provided
its elements have diameters less than ε and its nerve is an arc (resp. a finite,
connected, acyclic graph with at most one ramification point).

For a sequence xn of real numbers we use the following standard notation:
lim supxn = limn sup{xm : m > n}, lim inf xn = limn inf{xm : m > n}.

Inverse sequences converging in complete metric spaces. In this
section basic tools are prepared to prove the main result of the paper. They
may also have other applications (see Remark 1).

Let Kn be a sequence of closed subsets of a metric space X and let
fn : Kn+1 → Kn be mappings. We say that the inverse sequence (Kn, fn)
converges in the space X provided that:

(i) the limits LimKn ⊂ X and limxn in X exist for each (x1, x2, . . .) ∈
lim←−(Kn, fn), and the function h(x1, x2, . . .) = limxn is a homeomorphism
between lim←−(Kn, fn) and LimKn; and

(ii) identifying lim←−(Kn, fn) and LimKn by the homeomorphism
h(x1, x2, . . .) = limxn, the projections of the inverse limit uniformly con-
verge to the identity on LimKn.

The following result provides a sufficient condition for the convergence of
an inverse sequence in a complete metric space. Formulated in other terms,
this theorem was proved in [1] (Th. I) for compact spaces. A closely related
idea was applied in [9] (Th. 4). We omit the proof.

Theorem 1. Let X be a complete metric space and fn : Kn+1 → Kn be
a sequence of surjective mappings for closed subsets Kn of X such that :

(a) for each ε>0 there exists an integer i>0 such that diam{xi, xi+1, . . .}
< ε for every thread (x1, x2, . . .) ∈ lim←−(Kn, fn); and

(b) the mappings fi ◦ fi+1 ◦ . . . ◦ fi+j for all i, j are uniformly equicon-
tinuous.

Then the inverse sequence (Kn, fn) converges in X.

We sketch a general inductive procedure which leads to a sequence of
mappings satisfying conditions (a) and (b) of Theorem 1. The procedure
implicitly appears in [1] (Lemmas 1, 2 and Th. III), and in [9] (the proof
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of Th. 5). Now we extract it for convenience with a view to possible future
applications.

A procedure of constructing inverse sequences converging in complete
metric spaces. Let X be a complete metric space. There is an inductive
procedure of choice of closed sets Kn in X and surjective mappings fn :
Kn+1 → Kn which satisfy condition (∗) below; the procedure leads to the
inverse sequence (Kn, fn) which converges in X.

(∗) At any inductive step, when sets K1, . . . ,Kn and mappings f1, . . .
. . . , fn−1 are already fixed, there is an εn > 0 such that any closed set
K ⊂ X with a uniformly continuous surjective mapping f : K → Kn

satisfying d(f) < εn can be taken for Kn+1, and f can be taken
for fn.

Indeed, fix a uniformly continuous surjection f1 : K2 → K1.
For any integer n > 0 and any mapping f : A → B define δ(f, n) =

inf({1/n} ∪ {d(x, y) : x, y ∈ A and d(f(x), f(y)) ≥ 1/n}). Observe that a
family of functions fα is uniformly equicontinuous if and only if for each n,

inf
α
δ(fα, n) > 0.

Let ε1 = 1. Assume mappings f1, . . . , fn−1 and numbers ε1, . . . , εn−1 are
already defined. Define gij = fi ◦ fi−1 ◦ . . . ◦ fj−1 : Kj → Ki for i < j. Let

εn = min({εn−1/2} ∪ {1
5δ(gij, n) : i < j ≤ n}).

Then we choose any closed set Kn+1 ⊂ X with a surjective uniformly
continuous mapping fn : Kn+1 → Kn satisfying d(fn) < εn. This completes
the construction.

One can prove that δ(gij, n) ≥ εn for all i, j, n with i < j. This implies
the uniform equicontinuity of all mappings gij, and thus (b) of Theorem 1
is satisfied. Condition (a) follows from εn+1 ≤ εn/2 for each n. Hence the
inverse sequence (Kn, fn) converges in X by Theorem 1.

Let X be a complete metric space, and Φ be a family of uniformly con-
tinuous surjective mappings between closed subsets of X such that

(A) if an inverse sequence (Kn, fn) converges in X and fn ∈ Φ, then the
projections pn : LimKn = lim←−(Kn, fn)→ Kn belong to Φ.

For any two closed sets K,L ⊂ X define

σ(K,L) = inf({diamX} ∪ {d(f) : f ∈ Φ and f maps K onto L}).
Note that σ need not be symmetric, and possibly σ(K,L) =∞.
Define the following two convergences for closed sets in X.
We write limσKn = K provided limσ(Kn,K) = 0, and invlimσKn = K

provided limσ(K,Kn) = 0. The symbol invlimσ should be distinguished
from lim←−, denoting the usual inverse limit.
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Let G be a family of closed subsets of X and let ψ be a real function
on G. Consider the following kind of semicontinuity of ψ on G:

(B) if invlimσKn = K, then lim inf ψ(Kn) ≥ ψ(K);

and the following property:

(C) for any K ∈ G there exists a sequence Kn ∈ G such that limσKn

= K and limψ(Kn) = 0.

The proof of the following is straightforward.

Example 2. For any family G of compact sets the function ξ (defined
in the Preliminaries) satisfies condition (B).

Theorem 3. Let G be a family of closed sets in a complete metric space
X such that G is closed with respect to the invlimσ convergence, let ψm be a
sequence of nonnegative functions on G, and let G0 ⊂ G. If condition (B) is
satisfied for each ψm and condition (C) is satisfied in G0 for each ψm, then
for each K ∈ G0 there is a sequence Kn ∈ G such that limσKn = K and
ψm(Kn) = 0 for each m, n.

Proof. Let mi be a sequence in which each positive integer appears in-
finitely many times. Let n be a positive integer andK ∈ G0. Define L1,n = K.
Applying the inductive procedure described after Theorem 1 and property
(C) we find a sequence Ln,i of members of G0 and a sequence of surjec-
tions fn,i : Ln,i+1 → Ln,i such that

∑∞
i=1 d(fn,i) < 1/n, the inverse sequence

(fn,i, Ln,i) converges in X with respect to i, and limi ψmi(Ln,i) = 0. Namely,
at each iductive step we additionally assume that d(fn,i) < 1/(n2i+1) and
ψmi(Ln,i) < 1/i. Let Kn = lim←−i(fn,i, Ln,i), and let fn : Kn → K be the
projection onto the first coordinate with respect to this inverse limit. Let
m > 0 be an integer. Using the projections of the inverse limit to the sets
Ln,i satisfying mi = m and applying (B) to the mapping ψm, we see that
ψm(Kn) = 0. Thus ψm(Kn) = 0 for each m. Applying this argument for
each n we have limσKn = K.

Now we introduce similar concepts for families of compact sets that form
continuous (or upper semicontinuous) decompositions of a complete metric
space. We leave the same symbols to lay stress on the similarities of these
two approaches.

The following general observation is a consequence of the definition of the
convergence of an inverse sequence. Notice that, though in this observation
the mapping fn, for any n, need not be 1-1, according to the definition it
induces a 1-1 function between the collections Dn+1 and Dn.

Observation 4. Let Dn be a sequence of continuous (resp. upper semi-
continuous) decompositions of a complete metric space X into compact sets
and let fn : X → X be surjective mappings such that fn transforms Dn+1
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onto Dn. Suppose that the inverse sequence (Xn, fn), where Xn = X for
each n, converges in X, and let Di ∈ Di for some fixed i. Define inductively
Dn−1 = fn−1(Dn) for n ≤ i, and Dn+1 = f−1

n (Dn) for n ≥ i. Then the in-
verse sequence (Dn, gn), where gn = fn|Dn+1, converges in X. The family of
limits LimDn, for all sequences {Dn} defined as above, forms a continuous
(resp. upper semicontinuous) decomposition of X.

Fix a family Φ of uniformly continuous surjective mappings f : X → X
which satisfies condition (A) for Kn = X. If D1, D2 are two continuous (or
upper semicontinuous) decompositions of a complete metric space X, define

σ(D1,D2) = inf({diamX} ∪ {d(f) : f ∈ Φ transforms D1 onto D2}).(1)

Note that σ need not be symmetric, and possibly σ(D1,D2) =∞.
Define the following two convergences for continuous (or upper semicon-

tinuous) decompositions of X.
We write limσ Dn = D provided limσ(Dn,D) = 0, and invlimσDn = D

provided limσ(D,Dn) = 0. As in the previous case, the symbol invlimσ

should not be confused with lim←−.
Let Ĝ be a set of continuous (or upper semicontinuous) decompositions

of a complete metric space X into compact subsets, and let ψ be a real
function on Ĝ. Consider the following kind of semicontinuity of ψ on Ĝ:

(B1) if invlimσDn = D, then lim inf ψ(Dn) ≥ ψ(D);

and the following property:

(C1) for any D ∈ Ĝ there exists a sequence Dn ∈ Ĝ such that limσ Dn =
D and limψ(Dn) = 0.

The proof of the following theorem uses Observation 4. The argument is
similar to the one of Theorem 3, so we omit it.

Theorem 5. Let Ĝ be a set of continuous (or upper semicontinuous)
decompositions of a complete metric space X into compact subsets such that
Ĝ is closed with respect to the invlimσ convergence, let ψm be a sequence of
nonnegative functions on Ĝ, and let Ĝ0 ⊂ Ĝ. If condition (B1) is satisfied
for each ψm and condition (C1) is satisfied in Ĝ0 for each ψm, then for each
D ∈ Ĝ0 there is a sequence Dn ∈ Ĝ such that limσ Dn = D and ψm(Dn) = 0
for each m, n.

Remark 1. Many well known and extensively studied topological prop-
erties of compacta can be described by some nonnegative functions ψ sat-
isfying condition (B) (or condition (B1), when decompositions are consid-
ered) such that a space X has the property if and only if ψ(X) = 0. We
have already mentioned one such property: the hereditary indecomposabil-
ity represented by the function ξ. Other examples are: dimension less than
n, arc-likeness, tree-likeness, P -likeness (where P is a class of polyhedra),
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atriodicity, hereditary unicoherence, etc. Normally, properties of compacta
preserved by inverse limits have such representations, and they are a natural
domain for applications of the results of this section. In the next section,
proving the main result of the paper, we give an example of such an appli-
cation.

Main result. Let S be the unit circle {(x, y) ∈ R2 : x2 + y2 = 1} with
the Euclidean metric d, and A be the annulus [0, 1]×S. Define the set A0 =
{0, 1} × S and the family MA of all surjective mappings f : A → A such
that f(p) = p for each p ∈ A0, and observe thatMA satisfies condition (A).

The following lemma was shown in [9] (Theorem 3). Actually, it was
proved for the product R × S, and ε-hereditary indecomposability is ob-
tained for the intersections of the fibers with a given bounded subset of
R× S. However, taking [0, 1] for the compactification of R, the set U there
sufficiently large and ε sufficiently small, the lemma below follows. A related
idea is also implicit in Lemmas 5.2 and 5.3 of [6]. The symbol π denotes the
projection of A onto its second coordinate.

Lemma 6. For any ε > 0 there exists a homeomorphism h ∈ MA such
that :

(a) the mapping fh : A → A defined by fh(x0, x1) = (x0, π(h−1(x0, x1)))
is an ε-pushing , and

(b) ξ(h([0, 1]× {x})) < ε for each x ∈ S.
We say that two decompositions of the same space are topologically equiv-

alent provided that there is an autohomeomorphism of the space transform-
ing one decomposition onto the other.

For any two continuous decompositions D1,D2 of A define σ(D1,D2)
according to the definition (1), where Φ =MA.

Let Γ0 be the family of all decompositionsD ofA topologically equivalent
to the decomposition D0 = {[0, 1] × {x} : x ∈ S} such that there exists a
homeomorphism in MA transforming D onto D0.

Define Γ as the set of all continuous decompositions D of A into arc-like
continua such that each element D of D intersects A0 at exactly two points
that have the same second coordinate, and D is irreducible between these
two points. We have Γ0 ⊂ Γ .

Observe that the set Γ is closed with respect to the invlimσ convergence.
Indeed, assume D = invlimσDn, where D is an upper semicontinuous decom-
position of A into compacta and Dn ∈ Γ . Let fn : A → A be the mappings
in MA guaranteed by the definition. Since ε-pushings that transform one
upper semicontinuous decomposition onto another for sufficiently small ε
must preserve discontinuity, we infer that D is continuous. The mappings
fn are identities on A0 and the images of any two different elements of D
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are disjoint, thus each element of D intersects A0 at exactly two points hav-
ing the same second coordinate. The mapping fn transforms an element D
of D onto an element Dn of Dn which is irreducible between the points of
intersection with A0 for each n. So D has the same property. Since the Dn’s
are chainable, so is D.

Next, for any decompositionD ∈ Γ define the number ξ(D) = sup{ξ(D) :
D ∈ D}. This number measures the decomposability of subcontinua of the
elements of D. All elements of D are hereditarily indecomposable if and only
if ξ(D) = 0.

Note that the mapping fh in Lemma 6 transforms the decomposition
{h([0, 1]×{x}) : x ∈ S} onto the decomposition D0. Thus Lemma 6 implies
the following one, which proves property (C1) for ξ in Γ0.

Lemma 7. For each D ∈ Γ0 there exists a sequence Dn in Γ0 such that
D = limσ Dn and lim ξ(Dn) = 0.

By Example 2 the function ξ on Γ satisfies condition (B1).
Applying Theorem 5 for the above-defined σ for the families Γ and Γ0

we obtain the following theorem, which is a reformulation of the main result
of [9] (Theorem 7).

Theorem 8. For each D ∈ Γ0 there is a sequence Dn in Γ such that
D = limσ Dn and ξ(Dn) = 0 for each n.

For any K ∈ C(A) define α(K) = inf{d(x, y) : x ∈ K and y ∈ A0}. Let
D ∈ Γ , p ∈ A, I(p,D) be the element of D containing p, and (0, x), (1, x) be
the two points of the intersection I(p,D) ∩ A0. The function πD(p) = x is
an open monotone mapping onto S. Let Ii(p,D) be the unique continuum
in I(D, p) irreducible between p and (i, x) for i ∈ {0, 1}. For any nonempty
set A ⊂ A define δD(A) = diamπD(A).

Fix a Whitney mapping w : C(A) → [0,∞). For any D ∈ Γ define the
function γD : A → R by

γD(p) = w(I(p,D))− w(I0(p,D)) + w(I1(p,D))
2

.(2)

Observe that γD is nonnegative, and

lim γD(pn) = 0 if and only if lim(w(I(pn,D))− w(I0(pn,D))) =(3)

lim(w(I(pn,D))− w(I1(pn,D))) = 0.

For any K ∈ C(A) define γD(K) = inf{γD(p) : p ∈ K}. Finally let

βD(K) = min{α(K), δD(K), γD(K)} for K ∈ C(A),

β(D) = sup{βD(K) : K ∈ C(A)}.
We will prove that the function β, similarly to ξ (see Lemma 7), satisfies

condition (C1) for Γ0.
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Lemma 9. For each D ∈ Γ0 there exists a sequence Dn in Γ0 such that
D = limσ Dn and limβ(Dn) = 0.

Proof. It suffices to prove the lemma for D = D0 (all other elements of
Γ0 are topologically equivalent to D0).

Take the decompositions Dn guaranteed by Lemma 7 for D0. Suppose
this sequence does not have the required property. Then there is an ε ∈
(0, 1/2) and a sequence {Kn} ⊂ C(A) such that βDn(Kn) > ε for each n. We
observe that the mappings πDn uniformly converge to the projection π onto
the second coordinate S. Thus diamπ(Kn) > ε/2 for almost all n (assume
this inequality holds for all n). For any n take a continuum Ln ⊂ Kn such
that diamπ(Ln) = ε/2. Taking a subsequence, we assume that LimLn = L
for some continuum L ∈ C(A). Thus π(Ln) is a sequence of arcs in S
converging to an arc xy in S with d(x, y) = ε/2. Let z be the midpoint of the
arc xy and An=π−1

Dn(z). By Lemma 7 we have lim ξ(An)=0. Therefore there
are two different points rn, sn ∈ An \ {(0, z), (1, z)} such that the ordering
(0, z), rn, sn, (1, z) agrees with the ordering of An, and lim d(rn, (1, z)) =
lim d(sn, (0, z)) = 0. Since α(Ln) ≥ α(Kn) > ε, the arc rnsn ⊂ An must
intersect Ln for almost all n. Let Bn, Cn be arcs in An irreducible between
(0, z), rn, and between sn, (1, z), respectively. We have LimAn = LimBn =
LimCn = Lim rnsn. This implies that limn(sup{γDn(p) : p ∈ rnsn}) = 0.
So lim γDn(Ln) = 0, and thus lim γDn(Kn) = 0. Hence limβDn(Kn) = 0, a
contradiction.

We prove that the function β satisfies condition (B1).

Lemma 10. For any sequence D,D1,D2, . . . in Γ such that invlimσDn
= D we have β(D) ≤ lim inf β(Dn).

Proof. Assume that β(D)>ε. Then there is a K∈C(A) with βD(K)>ε.
Let fn : A → A be mappings in Γ transforming D onto Dn with
lim d(fn) = 0, and let Kn = fn(K). We have lim inf α(Kn) > ε. We also
observe that the projections πDn uniformly converge to the projection πD,
and thus lim inf δDn(Kn) > ε. Note that the function w(I(fn(p),Dn)) uni-
formly converges to w(I(p,D)) on K. We also have

lim supw(Ii(fn(p),Dn)) ≤ w(Ii(p,D))(4)

for each p ∈ K and i ∈ {0, 1}. Therefore lim inf γDn(fn(p)) ≥ γD(p). More-
over, the estimate (4) for the sequences sup{w(Ii(fn(p),Dn)) : n > m} is
uniform (it depends on m only—does not depend on p) by the uniform
convergence of the mappings fn. Thus we also have

lim inf γDn(Kn) ≥ γD(K) > ε.

Hence lim inf β(Dn) > ε. The proof is complete.
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Let P be the infinite product [0, 1] × Sω. Define P0 = {0, 1} × Sω, and
consider the family MP of all surjective mappings f : P → P such that
f(p) = p for each p ∈ P0. Observe that MP satisfies condition (A).

For P we define similar concepts to those defined for the annulus A. In
some cases we keep the same symbols as those used for A.

For any two continuous decompositions D1,D2 of P define σ(D1,D2)
according to the definition (1), where Φ =MP .

Let Ω0 be the family of all decompositions of P topologically equivalent
to the decomposition D0 = {[0, 1] × {x} : x ∈ Sω}, such that the homeo-
morphism defining this equivalence belongs to MP .

Define Ω as the set of all continuous decompositions D of P into arc-like
continua such that each element D of D intersects P0 at exactly two points
which have all but the first coordinate the same, andD is irreducible between
these two points. We have Ω0 ⊂ Ω.

For any K ∈ C(P) define α(K) = inf{d(x, y) : x ∈ K and y ∈ P0}. Let
D ∈ Ω, p ∈ P, I(p,D) be the element of D containing p, and (0, s), (1, s) be
the two points of the intersection I(p,D) ∩ P0, where s = (s1, s2, . . .) ∈ Sω.
The function πn,D(p) = sn is an open monotone mapping onto S. For any
nonempty set A ⊂ P and any n ∈ {1, 2, . . .} define δn,D(A) = diamπn,D(A).
Let Ii(p,D) be the unique continuum in I(D, p) irreducible between p and
(i, s) for i ∈ {0, 1}.

Fix a Whitney mapping w : C(P) → [0,∞). For any D ∈ Ω define the
function γD : P → R by (2). Observe that γD is nonnegative and it satisfies
condition (3).

For any K ∈ C(P) define γD(K) = inf{γD(p) : p ∈ K}. Finally, let

βn,D(K) = min{α(K), δn,D(K), γD(K)} for K ∈ C(P),

βn(D) = sup{βn,D(K) : K ∈ C(P)}.

Applying Lemma 7 for the two initial coordinates of P, we have the
following lemma, which states property (C1) for the function ξ in Ω0.

Lemma 11. For each D ∈ Ω0 there exists a sequence Dn in Ω0 such that
D = limσ Dn and lim ξ(Dn) = 0.

The next two lemmas formulate properties (C1) and (B1) for the func-
tions βn in Ω0 and Ω, respectively. Their proofs easily follow from the cor-
responding ones of Lemmas 9 and 10. We present a construction that leads
to the proof of Lemma 12. The proof of Lemma 13 is left to the reader.

Lemma 12. For each D ∈ Ω0 and for each n ∈ {1, 2, . . .} there exists a
sequence Dm in Ω0 such that limσ Dm = D and limm→∞ βn(Dm) = 0.
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Proof. First we observe that the mapping

p 7→
(
w(I0(p,D))
w(I(p,D))

, π1,D(p), π2,D(p), . . .
)

defines a homeomorphism h : P → P belonging to MP . Let D′m be the
decompositions of A guaranteed by Lemma 9 for the decomposition D0. Fix
an integer m. In P we define a decomposition D′′m such that each element D′′

of D′′m is composed of the points having the first and the (n+1)st coordinates
identical to the coordinates of the points of some element D′ of D′m while
the other coordinates of the points of D′′ are constant. Finally, we define
Dm = {h−1(D′′) : D′′ ∈ D′′m}. The decompositions Dm satisfy the conclusion
of the lemma.

Lemma 13. For any sequence D,D1,D2, . . . in Ω such that invlimσDm
= D and any n ∈ {1, 2, . . .} we have βn(D) ≤ lim inf βn(Dm).

Now we apply Theorem 5 for the functions ψ1 = ξ, ψ2 = β1, ψ3 = β2, . . .
to obtain the main result of this paper.

Corollary 14. For any D ∈ Ω0 there exists a sequence Dm of decom-
positions in Ω such that limσ Dm = D and 0 = ξ(Dm) = β1(Dm) = β2(Dm)
= . . . for each m ∈ {1, 2, . . .}.

Let D∗ be one of the decompositions Dm guaranteed by Corollary 14.
Since D∗ ∈ Ω, the elements of D∗ are arc-like, and the set P ′0 = {0} × Sω is
a continuous selector of this decomposition. Thus the quotient space of this
decomposition is homeomorphic to Sω. The elements of D∗ are hereditarily
indecomposable (ξ(D∗) = 0), so these elements are pseudo-arcs [2].

Let K ∈ C(P \ P0) be a continuum that intersects two different ele-
ments of D∗. We have βn,D∗(K) = 0, and α(K), δn,D∗(K) > 0 for some n.
So γD∗(K) = 0. By the definition of γD∗(K) the continuum K contains
a sequence of points pm such that lim(w(I(pm,D∗)) − w(I0(pm,D∗))) =
lim(w(I(pm,D∗))− w(I1(pm,D∗))) = 0. Thus we have the following special
property of D∗.

Property 15. If a continuum K in P \ P0 intersects two different ele-
ments of D∗, then there is a sequence {pm} ⊂ K such that lim(w(I(pm,D∗))
− w(I0(pm,D∗))) = lim(w(I(pm,D∗))− w(I1(pm,D∗))) = 0.

To obtain the announced pseudo-hairy spaces, fix an a > 0 such that
a < inf{w(D) : D ∈ D∗} and take the family

Da = {D ∈ C(P) : D ⊂ D∗ for some D∗ ∈ D∗, and w(D) = a}.
As in [9] (after Th. 7) we prove that Da is a continuous decomposition

of P into pseudo-arcs. Define the compactum

Ha =
⋃
{D ∈ Da : D ∩ P ′0 6= ∅}.
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By the continuity of Da the elements of Da contained in Ha form a
continuous decomposition ofHa into pseudo-arcs. The set P ′0 is a continuous
selector for this decomposition. Let r : Ha → P ′0 be the retraction induced
by this selection. Thus the quotient space is homeomorphic to Sω. For any
p ∈ Ha we have w(I(p,D∗))− w(I0(p,D∗)) ≥ inf{w(D) : D ∈ D∗} − a > 0.
Therefore any continuum in Ha joining two different elements of Da must
intersect P ′0 by Property 15. Hence Ha is a continuous pseudo-hairy space
over the set P ′0.

Now we are ready to formulate the main result of the paper.

Theorem 16. For any nonempty compact metric space X there exist a
continuous pseudo-hairy space over X and a continuous pseudo-fan of X.

Proof. Since the product Sω, as well as the Hilbert cube, is a universal
separable metric space, we may assume thatX is contained in P ′0 = {0}×Sω.
Take r−1(X) for X̃. The mapping r restricted to X̃ induces a continuous
pseudo-hairy structure on X̃. Finally, the quotient space X̃/X, obtained by
shrinking X to a point, is the required continuous pseudo-fan of X.

Remark 2. We can naturally generalize the notions of a continuous
pseudo-hairy space X̃ and of a continuous pseudo-fan of X to any separable
metric space X (assuming that r−1(K) is compact if K ⊂ X is compact).
Then Theorem 16 remains valid for all separable metric spaces. The proof
is similar.

Basic observations on pseudo-hairy spaces and pseudo-fans.
Now, we collect a number of observations on the classes of spaces intro-
duced in this paper. Some of them deal with all pseudo-hairy spaces and all
pseudo-fans (not necessarily continuous).

First, we record the following obvious facts. We omit the proof.

Proposition 17. (a) For any connected pseudo-hairy space X̃ different
from the pseudo-arc, its base X and the retraction r inducing the pseudo-
hairy structure of X̃ are uniquely determined.

(b) For any pseudo-fan Y different from the pseudo-arc, its vertex c and
the family F of pseudo-arcs inducing the pseudo-fan structure of Y are
uniquely determined. Moreover , if Y is a continuous pseudo-fan of a space
X, then X is topologically unique.

Next, we prove the following proposition which says that pseudo-fans are
star-like (thus tree-like) curves.

Proposition 18. For any pseudo-fan Y and for any ε > 0 there exists
an ε-star cover C of Y such that the vertex of Y belongs to the ramification
link of C.
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Proof. Let Y be a pseudo-fan with vertex c, and let F be the family
of pseudo-arcs inducing the pseudo-fan structure of Y . First, we will show
that

(5) for any δ > 0 and any P ∈F there exists a δ-chain BP = {B1, . . . , Bk}
of open sets in Y such that P ⊂ B∗ = B1∪ . . .∪Bk, bdB∗ ⊂ B1 and
c ∈ B1 \B2.

Indeed, take a δ-chainA1, . . . , Ak of open sets in Y such that c ∈ A1\clA2

and P ⊂ A∗ = A1 ∪ . . . ∪ Ak, and take an open neighborhood G of c
with clG ⊂ A1 \ clA2. Since each nondegenerate subcontinuum of Y \ G
is a pseudo-arc and P is a maximal pseudo-arc in Y , each component K
of P \ G is a component of Y \ G. Thus such a K has a neighborhood
UK ⊂ A∗ satisfying bdUK ⊂ A1 \ clA2. The family {UK}, for all compo-
nents K of P \G, is an open covering of P \G in Y . By the compactness of
P \ G there are components K1, . . . ,Kn of P \ G such that P \ G ⊂ U ∗ =
UK1 ∪ . . . ∪ UKn and bdU∗ ⊂ A1 \ clA2. We take B1 = G ∪ (A1 ∩ clU∗)
and Bi = Ai ∩U∗ for i ∈ {2, . . . , k}. These sets have the properties required
in (5).

Fix any ε > 0. For any P ∈ F take an (ε/3)-chain open covering BP
with the two initial links B0,P , B1,P and the union B∗P satisfying (5). By
the compactness of Y there is a finite sequence P1, . . . , Pl ∈ F such that
B∗P1
∪ . . . ∪B∗Pl = Y .

Finally, we modify these chain coverings to obtain the required star
cover. Namely, we take C0 =

⋃l
i=1(B0,Pi ∪ B1,Pi), and the finite family

{Ci : i ∈ {1, . . . , l}} defined as follows: we let Vi = B∗Pi \ clB0,Pi for
i ∈ {1, . . . , l} and

Ci = {B \ (V1 ∪ . . . ∪ Vi−1) : B ∈ BPi and B0,Pi 6= B 6= B1,Pi}.
The reader can verify that the family {C0} ∪ C1 ∪ . . . ∪ Cl is the required
ε-star cover of Y .

Observe that the above proposition implies that each pseudo-fan is an
inverse limit of n-ods (for varying n) with bonding maps preserving the ram-
ification point. In particular, pseudo-fans are tree-like and 1-dimensional, so
they are embeddable in R3. Thus such “simple” spaces keep the whole in-
formation on all separable metric spaces (comp. Proposition 17).

Among these spaces there appear a continuous pseudo-fan of the Hilbert
cube YH such that for any compactum X there is a continuous pseudo-fan
YX of X contained in YH . Observe that the pseudo-fans YH and YX have
the same vertex, and each pseudo-arc in YX is contained in some pseudo-arc
from the pseudo-fan structure of YH .

We record some dimension properties of pseudo-hairy spaces and pseudo-
fans.
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Proposition 19. For any pseudo-hairy space X̃ over a compact space
X and for any pseudo-fan YX of X we have dim(X̃−X) = dimYX = 1 and
dim X̃ = max{1,dimX}.

In fact, the space X̃−X is locally compact and has only pseudo-arcs for
its nondegenerate subcontinua, and YX is the one-point compactification of
X̃ −X, thus the conclusion follows.

Theorem 20. For any compact space X embeddable in Rn, there exists
a continuous pseudo-hairy space X̃ over X embeddable in Rn+1.

Indeed, we embed X in the product [0, 1]n. Next, we embed this product
in Sn and repeat the main construction for [0, 1]×Sn instead of [0, 1]×Sω.

The following result was obtained in [9] (Ths. 8 and 16).

Theorem 21. There exists a plane continuous pseudo-hairy space X̃
over a nondegenerate continuum X if and only if X is either an arc, or a
simple closed curve.

W. Lewis proved in [7] the following property of the pseudo-arc: for
any sequence Pn of pseudo-arcs converging to a pseudo-arc P (in the sense
of the Hausdorff distance) there are homeomorphisms hn : Pn → P such
that lim d(hn) = 0. Let pn ∈ Pn and p ∈ P with lim pn = p. By the ho-
mogeneity of the pseudo-arc, and by the Effros’ theorem, we can take the
homeomorphisms hn additionally satisfying hn(pn) = p. This implies the fol-
lowing homeomorphic continuity of the pseudo-hairy structure of continuous
pseudo-hairy spaces and continuous pseudo-fans.

Theorem 22. (a) Let X̃ be a continuous pseudo-hairy space over a
compactum X with the retraction r : X̃ → X inducing the pseudo-hairy
structure of X̃. For each ε > 0 there exists a δ > 0 such that for each
pair of points p, q ∈ X̃ with d(p, q) < δ there exists a homeomorphism
h : r−1(r(p))→ r−1(r(q)) which is an ε-pushing such that h(p) = q.

(b) Let Y be a continuous pseudo-fan with the family F of pseudo-arcs
inducing the pseudo-fan structure of Y . For each ε > 0 there exists a δ > 0
such that for each pair of points p, q ∈ Y , if p ∈ P ∈ F , q ∈ Q ∈ F and
d(p, q) < δ, then there exists a homeomorphism h : P → Q which is an
ε-pushing such that h(p) = q.

We end the paper with the following natural question. (It is known that
the answer is affirmative if X is 0-dimensional.)

Question 2. Given a compactum X, is the continuous pseudo-hairy
space over X topologically unique? Is the continuous pseudo-fan of X topo-
logically unique?
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