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Abstract. If f : G→ H is a group homomorphism and p, q are the projections from
the free product G ∗H onto its factors G and H respectively, let the group Ef ⊆ G ∗H
be the equalizer of fp and q : G ∗ H → H. Then p restricts to an epimorphism pf =
p|Ef : Ef → G. A right inverse (section) G → Ef of pf is called a coaction on G. In this
paper we study Ef and the sections of pf . We consider the following topics: the structure
of Ef as a free product, the restrictions on G resulting from the existence of a coaction,
maps of coactions and the resulting category of groups with a coaction and associativity
of coactions.

1. Introduction. The notion of an action of one group on another has
been studied extensively. In general terms this consists of a homomorphism
G×H → G whose restriction to G is the identity homomorphism and whose
restriction to H is a fixed homomorphism H → G. The dual concept of a
coaction is given by a homomorphism G → G ∗ H (the free product of G
and H) whose compositions with the projections of G ∗ H onto G and H
are the identity homomorphism id and a fixed homomorphism f : G → H,
respectively. The motivation for studying coactions is two-fold. First of all,
in the special case G = H and f = id, a coaction is just a comultiplica-
tion of the group G. This is a basic notion which has been considered by
several authors ([7], [5], [1]). Coactions are natural generalizations of group
comultiplications. Secondly, coactions have been widely studied in the con-
text of algebraic topology. If g : X → Y is a map of spaces and Cg is the
mapping cone of g, then there is a coaction of the suspension ΣX on Cg
given by a map Cg → Cg ∨ ΣX. This has proved to be an extremely useful
tool in homotopy theory (see [6, Chs. 11, 14] and [9, Ch. 2]). Coactions of
groups are the natural analogues of these topological coactions. Moreover,
in a future paper we hope to study functors from the homotopy category to
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the category of groups (such as the fundamental group functor) which carry
topological coactions to group coactions.

In this paper we continue our investigation of group coactions which was
begun in [2]. However, our approach here is different from that of [2]. We con-
sider a fixed homomorphism f : G→ H and the projections p : G ∗H → G
and q : G ∗ H → H and define Ef to be the equalizer of fp and q. Then
p|Ef : Ef → G is a homomorphism, and we easily see that a coaction of H
on G (relative to f) is just a section s : G→ Ef of p|Ef . All of the questions
about coactions which we investigate here are very conveniently expressed
and discussed in terms of sections into the equalizer. In a different form or
in special cases such sections have been considered in [1]–[5] and [7].

In this paper we investigate three natural topics related to Ef . The first
(in §§ 3 and 5) is the structure of Ef with special emphasis on its free factor
decompositions. We show that Ef is the free product of ker f and a free
group. We also investigate subgroups A ⊆ G such that Ef |A is a free factor
of Ef . If A · ker f = G or if A ∩ ker f = 1 then we prove that this always
holds.

Our second topic (§§ 4 and 5) concerns the restrictions on G which result
from the existence of a coaction rel f . A classical result in [5] and [7] states
that in the case G = H and f = id, the identity map, G admits a section
G → Eid (called a comultiplication) if and only if G is free. We extend this
result by showing that G admits a coaction rel f if and only if G is the
free product of a subgroup of ker f and a free group. Also, if A ⊆ G and G
admits a coaction s such that s(A) ⊆ Ef |A, then A is a free factor of G if
and only if Ef |A is a free factor of Ef .

Our final topic deals with homomorphisms of coactions. Let si be a
coaction of Hi on Gi rel fi (i = 1, 2) and let φ1 : G1 → G2 and φ2 : H1 → H2

be a pair of homomorphisms such that f2φ1 = φ2f1. Then φ1∗φ2 : G1∗H1 →
G2 ∗ H2 induces a homomorphism Φ : Ef1 → Ef2 . If Φs1 = s2φ1, we call
(φ1, φ2) a coaction map (G1, s1) → (G2, s2), and say that s1 induces s2.
Then we consider the following questions in § 6: Given Φ as before, and a
coaction s1 on G1, when does it induce a coaction s2 on G2? Conversely,
when is a given coaction s2 induced by some s1?

2. Preliminaries. In this section we present notation and basic facts
in group theory. All groups are written multiplicatively. If G is a group, the
identity is denoted by 1 ∈ G and the inverse of an element g ∈ G is written
g or g−1. For g, g′ ∈ G, the commutator [g, g′] is gg′g g′. If S ⊆ G is a subset
of G, then 〈S〉 is the subgroup generated by S. For subsets S, T of G, [S, T ]
denotes the subgroup generated by all commutators [s, t] with s ∈ S, t ∈ T .
Furthermore, S − T is the set-theoretic difference, i.e., all elements of S
which are not in T . If T consists of a single element t, we write this as S− t.
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A subset X of G is independent if 〈X〉 is a free group with basis X. If
G and H are groups, the free product G ∗ H is defined in the usual way
and the projections are p : G ∗ H → G and q : G ∗ H → H. Moreover,
homomorphisms f : G→ G′ and g : H → H ′ define a homomorphism f ∗g :
G ∗H → G′ ∗H ′. The homomorphisms p and q determine a homomorphism
p× q : G ∗H → G×H into the cartesian product.

Lemma 2.1. The following sequence is exact :

1→ [G,H]→ G ∗H p×q−→ G×H → 1,

and the subgroup [G,H] of G ∗ H is a free group with basis {[g, h] | g ∈
G− 1, h ∈ H − 1}.

The exactness of the sequence is easily proved and the assertion about
[G,H] is shown in [8, p. 196, Exercises 23, 24].

When G = H, we use G′ and G′′ to denote the first and second factors
of G ∗ G and the projections are written p′ and p′′ instead of p and q. On
occasion, we write g′h′′ ∈ G ∗ H or even g′h′′k′′′ ∈ G ∗ H ∗ H, for g ∈ G
and h, k ∈ H. A subgroup A ⊆ G is a free factor if there is a subgroup B
such that G = A ∗ B. It is easy to see that if the group G is free, then this
definition and the definition of a free factor in [7, p. 113, Ex. 8] coincide.

The identity homomorphism of the group G is denoted by idG : G→ G
or just by id. The trivial homomorphism G → H that carries all of G to
1 ∈ H is denoted by 1 : G→ H. A set-theoretic section of a homomorphism
f : G→ H is a function s : H → G such that fs = idH . If s is a homomor-
phism, we call it a section. Now suppose that fi : Gi → Hi, i = 1, 2, are
homomorphisms. Then a map of homomorphisms Φ = (φ1, φ2) consists of
homomorphisms φ1 : G1 → G2 and φ2 : H1 → H2 such that the following
diagram commutes:

(2.2)

G1 H1

G2 H2

f1 //

φ1

��
φ2

��f2 //

We say that Φ = (φ1, φ2) is a map of f1 to f2 and write Φ : f1 → f2.
The following result, whose proof is straightforward, will be used repeat-

edly.

Lemma 2.3. Suppose X and Y are disjoint sets whose union is a basis
of a free group G. If for every x ∈ X, we choose yx ∈ Y , then the set
{xyx | x ∈ X} ∪ Y is a basis of G.

3. Equalizers. Let f : G → H be a fixed homomorphism and p :
G ∗H → G, q : G ∗H → H the two projections.
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Definition 3.1. The equalizer Ef of f is the subgroup {w | w ∈ G ∗H,
fp(w) = q(w)} of G ∗ H (see [2]). The homomorphisms p and q induce
homomorphisms, also denoted by p and q, from Ef to G and H. For every
g ∈ G, denote by ηg the element gf(g) ∈ Ef .

It is obvious that the group [G,H] is contained in Ef . If G = H and
f = id, we denote by Ef by EG and ηg is denoted by ξg = g′g′′ ∈ EG. It is
well known ([5], [1]) that EG is a free group with basis X = {ξg | g ∈ G−1}.

Now let fi : Gi → Hi, i = 1, 2, be homomorphisms and Φ = (φ1, φ2) :
f1 → f2 be a map of homomorphisms (2.2). Then (φ1 ∗ φ2)|Ef1 is a homo-
morphism Ef1 → Ef2 , which we also denote by Φ, and the following diagram
commutes:

Ef1 G1

Ef2 G2

p1 //

Φ

��
φ1

��p2 //

If f : G → H is a homomorphism, then we have maps of homomorphisms
F2 = (idG, f) : idG → f and F1 = (f, idH) : f → idH and hence homomor-
phisms

EG
F2→ Ef F1→ EH .

Definition 3.2. The semi-equalizer Ef of f is the subgroup F2(EG)
of Ef .

It follows immediately that Ef = 〈{ηg | g ∈ G}〉 since F2(ξg) = ηg.
We adopt the following notation for the remainder of this paper: K ⊆ G

is the kernel of f : G → H and I ⊆ H is the image of f . Consider the
group of left cosets G/K and choose a set-theoretic section σ : G/K → G
of the natural epimorphism π : G → G/K such that σ(1) = 1. We let
C = {ĝj | j ∈ J} be the image of σ and hence C is a complete set of coset
representatives of K in G. For any element g ∈ G we also denote by ĝ the
element σπ(g) ∈ G, so that ĝ = ĝj for some j ∈ J . If D ⊆ C, we let ED be
the subgroup of Ef generated by all the ηĝj for ĝj ∈ D. Note the difference
in meaning between ED and EG. However, we have:

Lemma 3.3. The homomorphism F1 : Ef → EH induces an isomorphism
F ′1 : EC → EI .

The proof is straightforward and hence omitted.

Lemma 3.4. The group EG has a basis B1 ∪B2 ∪B3, where F2(B1) = 1,
B2 = {ξk | k ∈ K − 1} and B3 = {ξĝj | ĝj ∈ C − 1}. Consequently ,
Ef = K ∗EC .
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Proof. Let B′1 = {ξg | g ∈ G −K, g 6= ĝj , j ∈ J}. Then we can write
the basis X = {ξg | g ∈ G− 1} of EG as

X = B′1 ∪B2 ∪B3.

By applying Lemma 2.3 twice, we transform B′1 to

B1 = {ξgξĝj ξk | g ∈ G−K, g 6= ĝj , g = kĝj for some k ∈ K − 1, j ∈ J}.
Then the union of the Bi is a basis of EG such that F2(B1) = 1. The second
statement follows by applying F2 to B1 ∪B2 ∪B3.

Next consider the subgroups [G,H] and [G, I] of G ∗H. It is clear that
[G, I] ⊆ Ef .

Lemma 3.5. If g, x ∈ G then

[g, f(x)] = ηgηxgηx.

Consequently , [G, I] ⊆ Ef .
Proposition 3.6. The following sequence is exact :

1→ [G,H]→ Ef p→ G→ 1.

The proof follows from Lemma 2.1.
We next express the equalizer as a free product.

Proposition 3.7. Ef = Ef ∗ [G,H − I].

Proof. The inclusions of Ef and [G,H − I] into Ef define a homomor-
phism α : Ef ∗ [G,H − I] → Ef . We first show that α is one-to-one. It
suffices to show that no cancellation can occur in a subword of the form
(η±1
g [g′, h]±1)±1, where g, g′ ∈ G − 1 and h ∈ H − I. But this follows be-

cause h 6= f(γ) for any γ ∈ G since h 6∈ I. Now we show that α is onto.
Let w ∈ Ef and set g = p(w). Then by Proposition 3.6, w = ηgv for some
v ∈ [G,H]. But [G,H] = [G,H − I] ∗ [G, I] by Lemma 2.1 and [G, I] ⊆ Ef
by Lemma 3.5. Thus α is onto. This completes the proof.

Corollary 3.8. Ef = K ∗EC ∗ [G,H − I].

4. Coactions. We begin by recalling and extending some definitions
from [2]. If f : G→ H is a fixed homomorphism, then a (right) coaction rel
f of H on G is a homomorphism s : G→ G∗H such that ps = idG : G→ G
and qs = f : G → H. A left coaction rel f is similarly defined. We shall
only consider right coactions and call them coactions. In the case G = H
and f = id, a coaction rel f is called a comultiplication of G.

Now let fi : Gi → Hi be homomorphisms, i = 1, 2, and suppose Φ =
(φ1, φ2) : f1 → f2 is a map of homomorphisms.
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Definition 4.1. If si : Gi → Gi ∗ Hi are coactions rel fi, for i = 1, 2,
then Φ is a coaction homomorphism of s1 to s2 (written s1 → s2) if the
following diagram commutes:

G1 ∗H1 G1

G2 ∗H2 G2

φ1∗φ2

��

s1oo

φ1

��
s2oo

i.e., (φ1, φ1 ∗ φ2) is a map of homomorphisms. In the case Gi = Hi, fi = id
and φ1 = φ2, a coaction homomorphism is a cohomomorphism of comulti-
plications as defined in [1, §2]. Let s : G → G ∗H be a coaction rel f and
A ⊆ G a subgroup. If s(A) ⊆ A ∗H, then we say that A is s-stable.

Next we rephrase the definition of coaction, coaction homomorphism
and stability in terms of equalizers. This will be the approach we take in
subsequent sections.

Let f : G→ H be a homomorphism, Ef the equalizer of f and p : Ef → G
the projection. The following result is then obvious.

Lemma 4.2. If s : G → G ∗ H is a coaction rel f , then s(G) ⊆ Ef
and s : G → Ef is a section of p. Conversely , any section σ : G → Ef
determines a coaction by composing σ with the inclusion Ef ⊆ G ∗ H. If
si : Gi → Gi ∗Hi are coactions rel fi, i = 1, 2, and Φ = (φ1, φ2) : f1 → f2 is
a map of homomorphisms, then Φ is a coaction homomorphism of s1 to s2

if and only if the following diagram commutes:

Ef1 G1

Ef2 G2

Φ

��

s1oo

φ1

��
s2oo

Furthermore, if s is a coaction rel f , then A ⊆ G is s-stable if and only if
s(A) ⊆ Ef |A.

We use the same symbol for the coaction G→ G ∗H and for the corre-
sponding section G→ Ef .

We conclude this section by characterizing groups that admit a coaction.
This was begun in [2, Proposition 4.8] and is also implicit in [3, Lemma 15].

Proposition 4.3. Let K be the kernel of f : G → H. Then G admits
a coaction rel f if and only if G = N ∗ L, where N ⊆ K and L is a free
group.

Proof. We have proved in [2] that if G admits a coaction then G = N ∗L
as desired. Suppose that G = N ∗ L and that B is a basis for L. Define a
section s : G→ Ef of p by s(x) = x if x ∈ N and s(b) = ηb for b ∈ B.
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This result should be compared to the analogous one for comultiplica-
tions [7] which asserts that a group admits a comultiplication if and only if
it is a free group.

5. Stability. In this section we investigate when an s-stable subgroup
of G is a free factor of G. We begin by considering a more general question
about equalizers.

Let f : G → H be a homomorphism with kernel K and image I and
let A ⊆ G be a subgroup. We choose CA = {x̂} to be a complete set
of coset representatives of the group AK/K, where 1̂ = 1. Because of the
isomorphism AK/K → A/A∩K we may assume that x̂ ∈ A. We can extend
CA to a complete set C of coset representatives of G/K. Then by Lemma
2.1 and Corollary 3.8 we have

(5.1)
Ef |A = (A ∩K) ∗ECA ∗ [A,H − I] ∗ [A, I − f(A)] and

Ef = K ∗ECA ∗EC−CA ∗ [G− A,H − I] ∗ [A,H − I].

Theorem 5.2. (1) If AK = G, then Ef |A is a free factor of Ef if and
only if A ∩K is a free factor of K.

(2) If A ∩K = 1, then Ef |A is a free factor of Ef .

Proof. (1) If AK = G then I − f(A) = ∅. Therefore by (5.1), if A ∩K
is a free factor of K, then Ef |A is a free factor of Ef . Conversely, if Ef |A is a
free factor of Ef , then A ∩K is a free factor of K by [3, p. 1543, (20)] since
A ∩K = Ef |A ∩K.

(2) Since A ∩ K = 1, we can choose CA to be A itself and so x̂ = x
for all x ∈ A. By (5.1) it suffices to show that ECA ∗ [A, I − f(A)] is a free
factor of Ef . Now we choose the coset representative set C in a special way:
let {gj | j ∈ J} be a complete set of coset representatives of G/AK, with 1
representing AK. Then the set of all gjx with j ∈ J and x ∈ CA = A is a
complete set of coset representatives C of G/K. We have C − CA = {gjx |
gj 6= 1, x ∈ CA}. Let B1 = {ηgj | j ∈ J , gj 6= 1} and B′2 = {ηgjx | j ∈ J,
gj 6= 1, x 6= 1} be subsets of Ef which generate subgroups D1 = 〈B1〉 and
D′2 = 〈B′2〉. Then EC−CA = D1 ∗D′2. A change of basis in B1 ∪B′2 yields a
basis B1 ∪B2, where

B2 = {ηgjηgjx | j ∈ J, x ∈ A, gj 6= 1, x 6= 1}
by Lemma 2.3. Thus, if D2 = 〈B2〉, we have EC−CA = D1 ∗D2.

Now we show ECA ∗ [A, I − f(A)] = ECA ∗D2, which is a free factor of
Ef . Let [y, f(g)] ∈ [A, I − f(A)]. Then g ≡ gjx modulo K, for some x ∈ A
and j ∈ J . Note that gj 6= 1 since f(g) 6∈ f(A). Therefore f(g) = f(gjx)−1

and by Lemma 3.5,
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[y, f(g)] = [y, f(gjx)−1] = ηyηgjxyηgjx = ηy(ηgjηgjxy)−1(ηgjηgjx),

which lies in ECA ∗D2. Thus ECA ∗ [A, I − f(A)] ⊆ ECA ∗D2.
Conversely, if ηgjηgjx ∈ B2, then by Lemma 3.5,

ηgjηgjx = [x, f(gj)]
−1ηx,

which is in ECA ∗ [A, I − f(A)], and this proves the other inclusion.

The following corollary is now clear.

Corollary 5.3. Let s : G → G ∗ H be a coaction rel f . Assume that
A ⊆ G is an s-stable subgroup.

(1) If AK = G, then A is a free factor of G if and only if A ∩K is a
free factor of K.

(2) If A ∩K = 1, then A is a free factor of G.

Remark 5.4. Part (2) of the preceding corollary was proved in [2, The-
orem 3.7] in the special case where K = ker f = 1 and I = im f is a free
factor of H. In particular, if m : G→ G∗G is a comultiplication and A ⊆ G
is m-stable, then A is a free factor of G.

Even if A ∩K is a free factor of G in Theorem 5.2 above, Ef |A may not
be a free factor of Ef , as the following example shows.

Example 5.5. Suppose K0 = 〈x〉 and L = 〈y〉 are infinite cyclic groups.
Let G = K0 ∗ L, H = L and f : G→ H be defined by f(x) = 1, f(y) = y.
Finally, let A = 〈x, y2〉 ⊆ G. Thus K = ker f is the free product of all the
yiK0y

−i, i ∈ Z, and K ∩ A is the free product of the yiK0y
−i for i even,

and so K ∩ A is a free factor of K. However, Ef |A is not a free factor of
Ef . To see this let Z = 〈z〉 be an infinite cyclic group and define the map
r : A ∗H → Z by r(x′) = 1, r((y′)2) = z and r(y′′) = 1. This induces a map
r : Ef |A → Z which maps ηy2 to z. Then any extension r̃ of r to Ef must
send η2

y to z because

r̃(η2
y) = r̃(y′y′′y′y′′) = r̃(y′)r̃(y′) = r((y′)2) = z,

and this is a contradiction (cf. [2, Example 7.3]).

6. Compatibility. Assume we are given coactions si : Gi → Efi and a
map of homomorphisms Φ = (φ1, φ2) : f1 → f2. In this section we consider
the question of when Φ is a coaction homomorphism s1 → s2. More precisely,
we let Φ and one of the two coactions be fixed and ask whether the other
exists so that Φ is a coaction homomorphism. The notation Φ = (φ1, φ2)
holds throughout this section.

Definition 6.1. Suppose fi : Gi → Hi, i = 1, 2, are homomorphisms
and Φ : f1 → f2 is a map of homomorphisms. Let s1 : G1 → Ef1 be a
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coaction; if there exists a coaction s2 : G2 → Ef2 such that Φ is a coaction
homomorphism s1 → s2, then we say that s1 and s2 are compatible. Given
a coaction s2, if there exists a coaction s1 so that Φ is a coaction homomor-
phism s1 → s2, we also say that s1 and s2 are compatible. In the former
case we say s1 induces s2, and in the latter, s2 restricts to s1.

By Proposition 3.6 we have the commutative diagram with exact rows

1 [G1,H1] Ef1 G1 1

1 [G2,H2] Ef2 G2 1

// i1 //

Φ̃
��

p1 //

Φ

��

//

φ1

��
// i2 // p2 // //

where i1 and i2 are inclusions and Φ̃ is the restriction of Φ. Assume that
G1 is free with basis B and let si be coactions as above. We first define a
homomorphism D′B(s1, s2) : G1 → Ef2 by

D′B(s1, s2)(b) = Φ(s1(b))(s2φ1(b))

for every b ∈ B. Then p2D
′
B(s1, s2) = 1 and so D′B(s1, s2) factors through

[G2,H2].

Definition 6.2. If G1 is free with basis B, then the homomorphism
DB(s1, s2) : G1 → [G2,H2] defined by i2DB(s1, s2) = D′B(s1, s2) is called
the difference homomorphism of s1 and s2. If f : G→ H and G is free with
basis X, then the standard coaction sX : G → Ef is defined by sX(x) =
xf(x) = ηx for all x ∈ X.

We often abbreviate DB(s1, s2) to DB or simply D.

Proposition 6.3. Let Φ : f1 → f2 be a map of homomorphisms, G1 a
free group with basis B and s2 : G2 → Ef2 a coaction. Then the following
are equivalent :

(1) There exists a coaction s1 : G1 → Ef1 compatible with s2.
(2) There is a homomorphism u : G1 → [G1,H1] such that Φ̃ ◦ u =

DB(sB, s2).
(3) DB(sB, s2)(G1) ⊆ Φ̃[G1,H1] = [φ1(G1), φ2(H1)].

In particular , if φ1 and φ2 are onto, then (1) holds.

Proof. (1)⇒(2). Given s1 : G1 → Ef1 , define u′ : G1 → Ef1 by

u′(b) = (bf1(b))s1(b)

for every b ∈ B. Then p1u
′ = 1 and so there is a homomorphism u : G1 →

[G1,H1] such that i1u = u′. Clearly, Φ̃ ◦ u = DB.
(2)⇒(3). Obvious.



164 M. Arkowitz and M. Gutierrez

(3)⇒(1). We define a coaction s1 rel f1 as follows. For every b ∈ B, let
DB(b) = Φ̃(eb) for some eb ∈ [G1,H1]. Then set

s1(b) = i1(eb)(bf1(b)).

It follows that s1 is a coaction and Φs1 = s2φ1.

Now we consider when a coaction s1 as above induces a coaction s2. As
before, Φ : f1 → f2. We need some restrictions on φ1 : G1 → G2.

Definition 6.4. The homomorphism φ1 : G1 → G2 of free groups with
kernel N1 and image J1 is called free if disjoint sets X, Y, Ŷ and Z can be
found so that X ∪ Y is a basis of G1, Ŷ ∪ Z is a basis of G2, φ1(X) = 1,
φ1|Y : Y → Ŷ is a bijection and J1 = 〈Ŷ 〉. The quadruple Q = (X,Y, Ŷ , Z)
is called a basis for φ1 (see [2, Definition 6.1]).

Note that N1 is the normal closure of 〈X〉 and G2 = J1 ∗ 〈Z〉. The
following corollary to [8, Theorem 3.3] shows when a homomorphism is free.

Lemma 6.5. If G1 and G2 are free groups of finite rank , then φ1 : G1 →
G2 is free if and only if J1 = imφ1 is a free factor of G2.

Now suppose Φ : f1 → f2 is a map of homomorphisms and φ1 is free
with basis Q. We investigate when a given coaction s1 induces a coaction
s2. We consider the difference homomorphism D = DX∪Y (s1, sŶ ∪Z) : G1 →
[G2,H2].

Proposition 6.6. Let Φ : f1 → f2 be a map of homomorphisms as
above. Assume that φ1 is free with kernel N1 and image J1 and let s1 :
G1 → Ef1 be a coaction. Then the following are equivalent :

(1) There exists a coaction s2 : G2 → Ef2 induced by s1.
(2) There exists a homomorphism v : G2 → [G2,H2] such that v◦φ1 = D.
(3) s1(N1) ⊆ kerΦ.
(4) N1 ⊆ kerD.

Proof. (1)⇒(2). Define v′ : G2 → Ef2 by

v′(ŷ) = s2(ŷ)(ŷf2(ŷ))−1 if ŷ ∈ Ŷ ,
v′(z) = 1 if z ∈ Z.

Then p2v
′ = 1, so v′ induces v : G2 → [G2,H2] with i2v = v′. We show

vφ1 = D by showing v′φ1 = i2D:

v′φ1(x) = 1 = s2φ1(x) = Φs1(x) = i2D(x)

and

v′φ1(y) = v′(ŷ) = s2(ŷ)(ŷf2(ŷ))−1 = Φs1(y)(ŷf2(ŷ))−1 = i2D(y).

(2)⇒(3) and (3)⇒(4) are obvious.
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(4)⇒(1). Define s2 by

s2(ŷ) = (i2D)(y)(ŷf2(ŷ)) if ŷ ∈ Ŷ ,
s2(z) = zf2(z) if z ∈ Z.

By (4), Φs1(x) = i2D(x) = 1 and so s2φ1(x) = 1 = Φs1(x). Also,

s2φ1(y) = s2(ŷ) = i2D(y)(ŷf2(ŷ))

= Φs1(y)(ŷf2(ŷ))−1(ŷf2(ŷ)) = Φs1(y).

Hence s2 is compatible with s1.

Remarks 6.7. (1) Some of the implications of Proposition 6.6 hold
under weaker hypotheses, e.g., (3)⇒(1) can be proved assuming only that
G2 is free and that J1 is a free factor of G2. However, for simplicity we have
made the blanket assumption that φ1 is a free homomorphism.

(2) We note that Proposition 6.6 implies [2, Proposition 5.3] which gives
necessary and sufficient conditions for a coaction s : G → Ef to induce a
comultiplication on H.
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