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Abstract. The Borsuk–Sieklucki theorem says that for every uncountable family
{Xα}α∈A of n-dimensional closed subsets of an n-dimensional ANR-compactum, there
exist α 6= β such that dim(Xα ∩Xβ) = n. In this paper we show a cohomological version
of that theorem:

Theorem. Suppose a compactum X is clcn+1
Z , where n ≥ 1, and G is an Abelian group.

Let {Xα}α∈J be an uncountable family of closed subsets of X. If dimGX = dimGXα = n
for all α ∈ J , then dimG(Xα ∩Xβ) = n for some α 6= β.

For G being a countable principal ideal domain the above result was proved by Choi
and Kozlowski [C-K]. Independently, Dydak and Koyama [D-K] proved it for G being an
arbitrary principal ideal domain and posed the question of validity of the Theorem for
quasicyclic groups (see Problem 1 in [D-K]).

As applications of the Theorem we investigate equality of cohomological dimension and
strong cohomological dimension, and give a characterization of cohomological dimension
in terms of a special base.

1. Introduction. Borsuk [Bo] and Sieklucki [S] investigated dimension
properties of ANR-compacta and proved the following:

1.1. Theorem. Let {Xα}α∈A be an uncountable family of n-dimensional
closed subsets of an n-dimensional ANR-compactum. Then there exist α 6= β
in A such that dim(Xα ∩Xβ) = n.
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It is easy to see that Theorem 1.1 holds for X being the n-cube. Indeed,
the interiors int(Xα) must be nonempty, so there is a pair of indices α 6= β so
that int(Xα∩Xβ) 6= ∅. Hence all n-dimensional manifolds and n-dimensional
polyhedra have the same property. On the other hand, an n-dimensional
compactum may admit an uncountable family {Xα}α∈A of n-dimensional
(closed) subsets such that dim(Xα ∩ Xβ) ≤ n − 1 for all α 6= β in A. For
example, the n-dimensional Menger compactum µn, n ≥ 1, contains a copy
of the product of the n-disk Dn and the Cantor set C. Thus, µn contains
an uncountable family of pairwise disjoint n-dimensional closed subsets.

Choi and Kozlowski [C-K] generalized the Borsuk–Sieklucki theorem by
using cohomological local connectivity and cohomological dimension based
on Alexander–Spanier cohomology with compact supports and with coeffi-
cients in a countable principal ideal domain R. Their theorem states that
if X is a clcn locally compact separable metric space with dimRX = n
and {Xλ}λ∈Λ is an uncountable collection of closed subsets of X with
dimRXλ = n for all λ, then there are two distinct indices µ, λ ∈ Λ such
that dimR(Xµ ∩Xλ) = n.

Independently, Dydak and Koyama [D-K] undertook an effort to gen-
eralize the Borsuk–Sieklucki theorem to cohomological dimension. Here is
their result:

1.2. Theorem. Suppose that a compactum X is clcnR, where n ≥ 1 and
R is a principal ideal domain. Let {Xα}α∈A be an uncountable family of
closed subsets of X. If dimRX = n and dimRXα = n for each α ∈ A, then
there is a pair of indices α 6= β in A such that dimR(Xα ∩Xβ) = n.

Thus, the result of [D-K] drops the assumption of R being countable
and weakens the connectivity of X. However, the proof in [C-K] is more
elegant. The virtue of the proof in [D-K] is that its idea can be applied
to arbitrary groups, which is the goal of this paper. We prove a variant of
Theorem 1.2 in which the principal ideal domain R is replaced by a group
satisfying the descending chain condition. This allows us to deduce a gener-
alization of the Borsuk–Sieklucki theorem for arbitrary groups if X is locally
(n+ 1)-connected.

As an application, we investigate equality of cohomological dimension
and strong cohomological dimension introduced by Kodama [K]. Also, we
give a characterization of cohomological dimension in terms of existence of
a special base.

2. Preliminaries. Let X be a compactum. The cohomological dimen-
sion of X with respect to the abelian group G, denoted by dimGX, is
said to be less than or equal to n (notation: dimGX ≤ n) provided that
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Hk(X,A;G) = 0 for all k ≥ n+ 1 and all closed subsets A ⊂ X, where H∗

is the Čech cohomology theory (see [Dr1,2], [K], or [Ku]).
We are interested in the cohomological dimension where the coefficient

group is the quasicyclic group Qp (sometimes also denoted by Z(p∞)) defined
as follows:

Let p be a fixed prime number. The quasicyclic group Qp is the union
of all pkth roots of unity, where k ranges over all positive integers. There
is another way of describing Qp: for n ∈ N define Z1/pn = {m/pn : m is
an integer modulo pn}. Then Qp is the set

⋃∞
n=1 Z1/pn together with the

abelian group operation + : Qp ×Qp → Qp defined by

m

pn
+

r

ps
=
pk−nm+ pk−sr

pk

where k = max{n, s} and the sum is modulo pk. Observe that each subgroup
Z1/pn can be generated by an element of the form m/pn where m and pn

are relatively prime.
An alternative description of Qp is as the quotient group Q/Z(p), where

Z(p) is the group of all rational numbers m/n so that n is relatively prime
to p. Under this description Z1/pn is the image of the group of all rational
numbers m/pk, where k ≤ n.

2.1. Definition. An abelian group satisfies the descending chain condi-
tion (see [Hun], p. 374) if every decreasing chain B1 ⊃ B2 ⊃ . . . of subgroups
of G stabilizes (i.e., there exists n so that Bi = Bi+1 for all i > n).

2.2. Lemma. (1) The quasicyclic group Qp satisfies the descending chain
condition.

(2) If G1, . . . , Gk satisfy the descending chain condition, then so does
G1 ⊕ . . .⊕Gk.

Proof. (1) is a consequence of the fact that all proper subgroups of Qp
are Z1/pn and Z1/p ⊂ Z1/p2 ⊂ . . . Indeed, if B is a nontrivial subgroup of
Qp and 0 6= m/pn ∈ B, where m and p are relatively prime, then B contains
Z1/pn (as B is generated by m/pn). If B is a proper subgroup of Qp, then
there is the smallest integer k so that B contains Z1/pk but does not contain
Z1/pk+1 . If m/pn ∈ B − Z1/pk , where m and p are relatively prime, then n
cannot be greater than k as B does not contain Z1/pk+1 , a contradiction.
Thus B = Z1/pk .

(2) is essentially Corollary 1.7 in [Hun], p. 374.

It is easy to prove that if G and H are groups, G satisfies the descending
chain condition and f : G→ H is an epimorphism, then H also satisfies the
descending chain condition. Hence if K is a subgroup of a group G satisfying
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the descending chain condition then both K and G/K satisfy the descending
chain condition.

We need to generalize the concept of pro-epimorphisms of [D-K] to ho-
momorphisms of groups.

2.3. Definition. Suppose G is a group and {Gα}α∈J a family of groups.
A homomorphism f : G→∏

α∈J Gα is called a pro-epimorphism if, for any
finite subset F of J , the composition

G
f→
∏

α∈J
Gα

pF−→
∏

α∈F
Gα

is an epimorphism.

The following result is a version of the Basic Lemma of [D-K] for groups
satisfying the descending chain condition.

2.4. Proposition. Let G be a group satisfying the descending chain
condition and let f : G→ ∏

α∈J Gα be a pro-epimorphism, where {Gα}α∈J
is a family of groups. If J is infinite, then there is β ∈ J such that Gβ = 0.

Proof. Consider the subset J ′ = {α ∈ J | Gα 6= {0}} of J . We plan to
show that J ′ is finite. Suppose J ′ is infinite and pick an infinite sequence
αi ∈ J ′, i ≥ 1, of points of J ′. Define Fk, k ≥ 1, as {α1, . . . , αk}. Define
Ak as the kernel of pFn ◦ f for k ≥ 1. Since G satisfies the descending chain
condition, there is n ≥ 2 so that An = An−1. Pick c ∈ Gαn − {0}. Since
pFn ◦ f is an epimorphism, there is d ∈ G so that pFn ◦ f(d) = (0, . . . , 0, c).
That means d ∈ An−1 − An, a contradiction.

The next result is a modification of the Pro Lemma in [D-K] with a
finitely generated module replaced by a group satisfying the descending
chain condition.

2.5. Lemma. Consider a commutative diagram of abelian groups

(∗)
M

∏
α∈JMα

N
∏
α∈J Nα

h

��

f //

∏
α∈J kα

��
g //

so that f is a pro-epimorphism and J is infinite. If im(h) satisfies the
descending chain condition, then there is α ∈ J such that kα : Mα → Nα is
trivial.

Proof. We can apply 2.4 to the homomorphism u = g|im(h) : im(h) →∏
α∈J im(kα) by noticing that u is a pro-epimorphism since f is, and the

diagram (∗) is commutative.
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The following lemma is a version of Lemma 17.3 of [Br] for groups sat-
isfying the descending chain condition.

2.6. Lemma. Consider the commutative diagram of abelian groups

A2 A3

B1 B2 B3

C1 C2

f

��

s //

k

��

h

��

i //

g

��

j //

t //

in which the middle row is exact. If both im(h) and im(k) satisfy the de-
scending chain condition, then so does im(g ◦ f).

Proof. Suppose there is an infinite decreasing sequence A1 ⊃ A2 ⊃ . . .
of subgroups of im(g ◦ f) ⊂ C2. Since im(h) satisfies the descending chain
condition, the chain im(t ◦ h) ∩Ai stabilizes. Without loss of generality, we
may assume im(t◦h)∩Ai = im(t◦h)∩Aj for all i, j. Since im(k) satisfies the
descending chain condition, the chain (k ◦ s)(g ◦ f)−1(Ai) stabilizes. Again,
we may assume (k ◦ s)(g ◦ f)−1(Ai) = (k ◦ s)(g ◦ f)−1(Aj) for all i, j. This
is the same as j(g−1)(Ai) = j(g−1)(Aj) for all i, j. Suppose x ∈ Ai − Aj
for some j > i. Pick x′ ∈ B2 so that g(x′) = x. There is y′ ∈ g−1(Aj) with
j(y′) = j(x′). Pick z′ ∈ B1 with i(z′) = x′−y′. Notice that t(h(z′)) ∈ Ai, so
there is z′′ ∈ i−1(g−1(Aj)) with t(h(z′)) = t(h(z′′)). This implies g(i(z′)) =
g(x′)−g(y′) = g(i(z′′)) ∈ Aj . Thus x = g(x′) = (g(x′)−g(y′)) +g(y′) ∈ Aj ,
a contradiction.

2.7. Definition. A compactum X is said to be cohomology locally n-
connected with respect to an abelian group G (X is n- clcG for short) if for
each point x ∈ X and neighborhood N of x, there is a neighborhood M ⊂ N
of x such that the inclusion-induced homomorphism

inM,N : Hn(N ;G)→ Hn(M ;G)

is trivial, where H∗ is the reduced Čech cohomology theory.
X is said to be clcnG if it is k- clcG for all k ≤ n.

2.8. Theorem. Suppose G is an Abelian group satisfying the descending
chain condition. If X is clcnG, and K and L are closed subsets of X with
K ⊂ int(L), then the image of the inclusion-induced homomorphism ikK,L :
Hk(L;G) → Hk(K;G) satisfies the descending chain condition for k =
0, . . . , n.

Proof. First consider the image of i0K,L. As X is clc0
G and K is compact,

K is contained in the union of finitely many components of L. This means
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that H0(L;G) → H0(K;G) factors through a finite direct sum of copies
of G. By Lemma 2.2, im(i0K,L) satisfies the descending chain condition.

Suppose 2.8 holds for all n < m, X is clcmG , and K and L are closed sub-
sets of X with K ⊂ int(L). Consider the family F of all compact subsets C of
the interior of L so that the image of the inclusion-induced homomorphism
imC′,L : Hm(L;G) → Hm(C ′;G) satisfies the descending chain condition for
some compact neighborhood C ′ of C in int(L). Since X is clcmG , each point
x ∈ int(L) has a compact neighborhood Cx ∈ F . If we prove that F is
closed under taking unions of sets, we are done as K can be covered by a
finite union of elements of F . Suppose C1, C2 ∈ F . Pick a neighborhood C ′j
of Cj in int(L) so that the image of the inclusion-induced homomorphism
imC′j ,L

: Hm(L;G)→ Hm(C ′j ;G) satisfies the descending chain condition for

j = 1, 2. Pick a neighborhood C ′′j of Cj in int(C ′j) for j = 1, 2. Applying
the Meyer–Vietoris exact sequence and Lemma 2.6 to the following diagram
shows that im(imC′′1 ∪C′′2 ,L) satisfies the descending chain condition:

Hm(L;G) Hm(L;G)⊕Hm(L;G)

Hm−1(C ′1 ∩ C ′2;G) Hm(C ′1 ∪ C ′2;G) Hm(C ′1;G)⊕Hm(C ′2;G)

Hm−1(C ′′1 ∩ C ′′2 ;G) Hm(C ′′1 ∪ C ′′2 ;G)

��

//

��

//

��

//

//

The next result is an analog of Theorem 2.2 in [D-K] with a finitely
generated module replaced by a group satisfying the descending chain con-
dition.

2.9. Theorem. Suppose G is an Abelian group satisfying the descending
chain condition. If X is clcnG and A1, A2, B1, B2 are closed subsets of X such
that A1 ⊂ B1, A2 ⊂ B2, A1 ⊂ int(A2) and B1 ⊂ int(B2), then the image
of Hk(B2, A2;G)→ Hk(B1, A1;G) satisfies the descending chain condition
for all k ≤ n.

Proof. Use induction and apply Lemma 2.6 to the commutative diagram

Hn(B2, A2;G) Hn(B2;G)

Hn−1(A;G) Hn(B,A;G) Hn(B;G)

Hn−1(A1;G) Hn(B1, A1;G)

��

//

��

��

//

��

//

//

where A = A1 ∪ A2 and B = B1 ∪B2.
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3. Borsuk–Sieklucki theorem. Using our previous results we are
ready to prove the Borsuk–Sieklucki theorem for groups satisfying the de-
scending chain condition in an analogous way to that of Dydak and Koyama
[D-K] for rings.

3.1. Theorem. Suppose a compactum X is clcnG, where n ≥ 1, and G
is an Abelian group satisfying the descending chain condition. Let {Xα}α∈J
be an uncountable family of closed subsets of X. If dimGX = dimGXα = n
for all α ∈ J , then dimG(Xα ∩Xβ) = n for some α 6= β.

Proof. Suppose that dimG(Xα∩Xβ) ≤ n−1 for each pair α 6= β in J . For
each α ∈ J , there is a closed subset Cα ⊂ Xα such that Hn(Xα, Cα;G) 6= 0,
because dimGXα = n. Let {Ni}∞i=1 be a countable family of closed subsets
of X such that for each closed subset K of X the family {Ni : K ⊂ int(Ni)}
is a basis of neighborhoods of K in X. By the continuity of Čech cohomology,
for each α ∈ J , there is Nk(α) ⊂ int(Nh(α)) such that the inclusion-induced
homomorphism

Hn(Xα,Xα ∩Nh(α);G)→ Hn(Xα,Xα ∩Nk(α);G)

is not trivial.
Since J is uncountable, we may assume that Nk(α) = N for every α ∈ J ,

and Nh(α) = M for every α ∈ J . Namely, we have closed subsets M,N of
X such that N ⊂ int(M) and for every α ∈ J ,

(1) Hn(Xα,Xα ∩M ;G)→ Hn(Xα,Xα ∩N ;G) is not trivial.

On the other hand, since dimG(Xα ∩Xβ)≤n−1 for all pairs α 6=β in J ,

Hn
( ⋃

α∈F
Xα,

( ⋃

α∈F
Xα

)
∩M ;G

)
→
⊕

α∈F
Hn(Xα,Xα ∩M ;G)

is an epimorphism for all finite subsets F ⊂ J .
We note that the inclusion-induced homomorphism

Hn
(( ⋃

α∈F
Xα

)
∪M,M ;G

)
→ Hn

( ⋃

α∈F
Xα,

( ⋃

α∈F
Xα

)
∩M ;G

)

is an isomorphism by the excision axiom, and the inclusion-induced homo-
morphism

Hn(X,M ;G)→ Hn
(( ⋃

α∈F
Xα

)
∪M,M ;G

)

is an epimorphism because dimGX = n. Hence, for all finite subsets F ⊂ J ,

(2) Hn(X,M ;G)→
⊕

α∈F
Hn(Xα,Xα ∩M ;G) is an epimorphism.
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Now we consider the following commutative diagram:

Hn(X,M ;G)
∏
α∈J H

n(Xα,Xα ∩M ;G)

Hn(X,N ;G)
∏
α∈J H

n(Xα,Xα ∩N ;G)
��

//

��
//

Property (2) says that the upper homomorphism is a pro-epimorphism.
By Theorem 2.8, the image of Hn(X,M ;G) → Hn(X,N ;G) satisfies the
descending chain condition. Hence, by 2.5, there exists α ∈ J such that
Hn(Xα,Xα ∩M ;G)→ Hn(Xα,Xα ∩N ;G) is trivial. This contradicts (1).
Therefore there are α 6= β in J such that dimG(Xα ∩Xβ) = n.

3.2. Theorem. Suppose a compactum X is clcn+1
Z and G is an Abelian

group, where n ≥ 1. Let {Xα}α∈J be an uncountable family of closed subsets
of X. If dimGX = dimGXα = n for all α ∈ J , then dimG(Xα ∩Xβ) = n
for some α 6= β.

Proof. Bockstein’s First Theorem (see [Ku]) says that there is a subset
σ(G) (we call it the Bockstein basis of G) of the family of groups consisting
of Q, Z/p (p prime), Z(p) (p prime), and Qp (p prime) such that dimG Y =
max{dimH Y : H ∈ σ(G)} for all Y compact. Hence there is R ∈ σ(G) such
that dimRX = n, dimRXα = n for uncountably many α ∈ J , and R is
either a countable PID or a group satisfying the descending chain condition.
From X ∈ clcn+1

Z the Universal Coefficient Theorem implies X ∈ clcnR.
Therefore, by Theorem 3.1 and [D-K], there are α 6= β in J such that
dimR(Xα ∩Xβ) = n. In particular, dimG(Xα ∩Xβ) = n.

4. Applications. First we give applications of the cohomological di-
mension versions of the Borsuk–Sieklucki theorem to strong cohomological
dimension introduced by Kodama [K] for compacta but which can be gen-
eralized to metrizable spaces without any problem.

4.1. Definition. X has strong cohomological dimension at most n with
respect to an abelian group G, written IndGX ≤ n, provided that for any
pair of a closed subset A ⊂ X and an open subset U containing A, there
exists an open subset V such that

A ⊂ V ⊂ U and dimG ∂V ≤ n− 1.

We define
IndGX = min{n : IndGX ≤ n}.

Kodama proved ([K], Lemma 38-9) that for every 2-dimensional com-
pact ANR X and every nontrivial abelian group G, we have the equality
dimGX = IndGX = dimX = 2, and asked ([K], Problem 38-10): If X is
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a compact ANR, does the equality dimGX = IndGX hold for every abelian
group G?

This problem was affirmatively answered by Dydak and Koyama [D-K].
In this section we will improve some of the results of [D-K] related to

the strong cohomological dimension.

4.2. Theorem. Let G be an abelian group. Suppose that a compactum
X is clcn+1

Z . If dimGX = n, then IndGX = n.

Proof. By Lemma 4.2 of [D-K], it suffices to show that IndGX ≤ n. For
a given closed subset A of X, let

B(A, ε) = {x ∈ X : d(a,A) ≤ ε} and Cε = ∂B(A, ε), ε > 0.

Since Cε ∩ Cδ = ∅ for ε 6= δ, Theorem 3.2 says that dimG Cε = n for only
countably many ε > 0. Hence A has a neighborhood basis {Ui}i≥1 such that
dimG ∂Ui ≤ n− 1 for every i ≥ 1. It follows that IndGX ≤ n.

Remark. Theorem 4.2 improves Theorem 4.4 of [D-K].

Now we are ready to characterize dimG by using bases, which corresponds
to well known facts in usual dimension theory.

4.3. Theorem. Suppose that G is an abelian group and a compactum
X is clcn+1

Z . Then the following statements are equivalent :

(i) dimGX ≤ n,
(ii) X has a countable base B such that dimG ∂U ≤ n− 1 for all U ∈ B.

Proof. The implication (i)⇒(ii) follows from Theorem 4.2. To prove that
(ii)⇒(i) we take a pair A,B of disjoint closed subsets of X. Then there exist
elements U1, . . . , Uk ∈ B such that

A ⊂
k⋃

i=1

Ui ⊂
k⋃

i=1

cl(Ui) ⊂ X \B.

Then the boundary ∂(
⋃k
i=1 Ui) separates A and B and dimG ∂(

⋃k
i=1 Ui) ≤

n− 1. Hence, by Lemma 4.2 of [D-K], dimGX ≤ n.

Remark. Theorem 4.3 improves Theorem 4.6 of [D-K].

References

[Bo] K. Borsuk, Concerning the dimension of ANR-sets, Bull. Acad. Polon. Sci. 9
(1961), 685–687.

[Br] G. E. Bredon, Sheaf Theory , 2nd ed., Springer, Berlin, 1997.
[C-K] J. S. Choi and G. Kozlowski, A generalization of Sieklucki’s theorem, Topology

Proc. 23 (1998), 135–142.



222 M. Boege et al.

[Dr1] A. N. Dranishnikov, Homological dimension theory , Russian Math. Surveys 43
(1988), no. 4, 11–63.

[Dr2] —, Basic elements of the cohomological dimension theory of compact metric spaces,
preprint, 1998.

[D-K] J. Dydak and A. Koyama, Cohomological dimension of locally connected com-
pacta, Topology Appl. 113 (2001), 39–50.

[Hun] T. W. Hungerford, Algebra, Springer, New York, 1974.
[K] Y. Kodama, Cohomological dimension theory , appendix in: K. Nagami, Dimension

Theory, Academic Press, New York, 1970.
[Ku] V. I. Kuz’minov, Homological dimension theory , Russian Math. Surveys 23 (1968),

no. 5, 1–45.
[S] K. Sieklucki, A generalization of a theorem of K. Borsuk concerning the dimen-

sion of ANR-sets, Bull. Acad. Polon. Sci. 10 (1962), 433–436; correction, ibid. 12
(1964), 695.

Instituto de Matemáticas
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