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Abstract. We prove that, for every finite-dimensional metrizable space, there exists
a compactification that is Eberlein compact and preserves both the covering dimension
and weight.

1. Introduction. In this paper, we assume that all spaces under con-
sideration are Tikhonov. Usual and undefined terms can be found in [1], [3]
and [4]. It is well known that for every separable metrizable space, there
exists a dimension-preserving metrizable compactification, and for every
Tikhonov space, there exists a compactification preserving both the dimen-
sion dim and weight. However, obviously, no non-separable metrizable space
has a “metrizable” compactification. It seems a natural desire to find some
“nice” class of compact spaces in the sense that not only does every space
in the class have “nice” topological properties, but also for every metriz-
able space, there exists a compactification in the class preserving both the
dimension dim and weight.

A compact space E is said to be Eberlein compact if E is homeomorphic
to a subset of a Banach space with its weak topology. The class of Eberlein
compact spaces plays an important role in functional analysis; and moreover,
it is stable in the sense that it is closed under taking countable products,
closed subsets and continuous images of spaces in this class (see [1]). It is
known that some non-metrizable spaces belong to this class; in fact, the one-
point compactifications of discrete spaces are Eberlein compact. However,
the difference between the class of compact metrizable spaces and the class
of Eberlein compact spaces seems small in the sense that every Eberlein
compact space E has the following properties (see [1]):
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• E contains a metrizable dense Gδ-subset,
• E is a Fréchet space,
• nw(A) = d(A) for every subset A of E, and
• c(E) = w(E).

For a space X, an Eberlein compact space E is said to be an Eber-
lein compactification of X if E contains X as a dense subset. Arkhangel’skĭı
proved that every metrizable space has an Eberlein compactification (see [1]).
Moreover, Dimov presented a characterization theorem for spaces that have
Eberlein compactifications (see [2]). Our purpose is to prove the following
two theorems.

Theorem 1.1. Let M be a finite-dimensional metrizable space. There
exists an Eberlein compactification E of M such that dimE = dimM and
w(E) = w(M).

Theorem 1.2. Let M be an S-weakly infinite-dimensional metrizable
space. There exists an S-weakly infinite-dimensional Eberlein compactifica-
tion E of M with w(E) = w(M).

For the definition of S-weakly infinite-dimensionality, see [4, Prob-
lem 6.1.E(a), Remark, p. 310]. We abbreviate “S-weakly infinite-dimen-
sional” to S-w.i.d.

2. Proofs of the theorems. First, we set our terminology and nota-
tion. The symbols I, Q and N denote the closed unit interval [0, 1], the set
of rational numbers and the set of positive integers respectively. Let τ be an
infinite cardinal. For every α ≤ τ , we put Iα = I× {α}. Moreover, we set

T (τ) =
⋃

α<τ

Iα and T ∗(τ) =
⋃

α≤τ
Iα.

For (x, α), (y, β) in T ∗(τ), we define an equivalence relation ∼ as follows:

(x, α) ∼ (y, β)⇔
{
x = y = 0, or
x = y and α = β.

Denote by S∗(τ) the set of all equivalence classes of ∼, by q the natural
mapping of T ∗(τ) to S∗(τ), by p be the mapping from S∗(τ) to I defined by
p(q(x, α)) = x, and by λ the mapping from S∗(τ) \ {q({(0, α) | α ≤ τ})} to
τ + 1 defined by λ(q(x, α)) = α. For every q(x, τ) in q(Iτ ), we put

B(q(x, τ))=





{
q
( ⋃

α≤τ
U ×{α}

)∣∣∣U is a neighborhood of 0 in I
}

if x= 0,

{
q
( ⋃

α≤τ
U × {α} \

⋃

β∈Γ
Iβ
)∣∣∣U is a neighborhood

of x in (0, 1], Γ is a finite subset of τ
}

if x 6= 0.
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For any other point q(x, α) in S∗(τ), we let B(q(x, α)) be the usual neigh-
borhood base in the hedgehog S(τ) of spininess τ . Now, we equip S∗(τ) with
the topology generated by the neighborhood base B(q(x, α)) at every point
q(x, α) in S∗(τ). Note that S∗(τ) can be obtained from the Cartesian prod-
uct I×ωD, where ωD is the one-point compactification of the discrete space
of cardinality τ , be identifying the set {0} × ωD to a point (this space was
considered by Arkhangel’skĭı [1, Theorem IV.1.25] and in [5]; cf. [4, Prob-
lem 5.3.B(c)]), and S(τ) = q(T (τ)) is the usual hedgehog of spininess τ .

Let σ be the usual metric on S(τ). We define the metric σn on the nth
product of S(τ) by

σn((xi), (yi)) =
n∑

i=1

σ(xi, yi)
2i

for (xi) and (yi) in S(τ)n, and the metric σ∞ on the countable infinite
product of S(τ) by

σ∞((xi), (yi)) =
∞∑

i=1

σ(xi, yi)
2i

for (xi) and (yi) in S(τ)N.
Let C(X,Y ) be the space of all continuous mappings from X into Y

endowed with the complete metric defined by

d̃(f, g) = sup{d(f(x), g(x)) | x ∈ X}
for every pair (f, g) of elements of C(X,Y ), where d is a complete and
bounded metric on Y .

For a subset A of the nth product of S∗(τ), the symbol clnA denotes
the closure of A in the space, and similarly, for a subset B of the countable
infinite product of S∗(τ), the symbol cl∞B denotes the closure of B in the
space.

Lemma 2.1. Every closed subset A of the countable product of S∗(τ) is
Eberlein compact.

Proof. Since being Eberlein compact is preserved by taking countable
products, closed subsets and continuous images of such spaces, and the space
S∗(τ) is Eberlein compact by the fact mentioned in the definition of the space
(cf. also [1, Theorem IV.1.25]), A is Eberlein compact.

Now, we define the subspace K∗n(τ) of S∗(τ)N for every natural number
n as follows:

Definition 2.2. We put

K∗n(τ) = {(si) ∈ S∗(τ)N | |{i ∈ N | p(si) ∈ Q \ {0}}| ≤ n}.
Lemma 2.3. For every compact subset L of K∗n(τ), we have dimL ≤ n.
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Proof. Let Q ∩ (0, 1] =
⋃n+1
i=1 Qi, where Qi is dense in I for every i =

1, . . . , n+ 1, and Qi ∩Qj = ∅ for i 6= j. For every i = 1, . . . , n+ 1, we put

Pi = {(sj) ∈ K∗n(τ) | p(sj) ∈ Qi for some j ∈ N},
Bi = {U | U is open in K∗n(τ) and BdU ⊂ Pi}.

Notice that Bi is a base for K∗n(τ) for every i. Since L is compact, for every
pair (Ei, Fi) of disjoint closed subsets of L (i = 1, . . . , n+ 1), there exists a
finite subset B′i of Bi such that

Ei ⊂
(⋃

B′i
)
∩ L ⊂ cl∞

((⋃
B′i
)
∩ L
)
⊂ L \ Fi.

Let Li = Bd(
⋃

B′i). Then Li is a partition of L between Ei and Fi. Since⋂n+1
i=1 Li = ∅, we have dimL ≤ n.

Now, we define

K = ((0, 1] ∩Q)n+1, J = {(i1, . . . , in+1) | ij ∈ N, and ij 6= ik for j 6= k}.
For K = (q1, . . . , qn+1) ∈ K and J = (i1, . . . , in+1) ∈ J, let

F (K,J) = {(si) ∈ S∗(τ)N | p(sij ) = qj for j = 1, . . . , n+ 1}.

Lemma 2.4. For every closed subset A of S(τ)N, the following are equiv-
alent :

(1) cl∞A ∩ F (K,J) = ∅,
(2) σ∞(A,F (K,J) ∩ S(τ)N) > 0.

Proof. First, we prove (2)⇒(1). Suppose not, and take a point s = (si)
∈ cl∞A ∩ F (K,J). Put δ = σ∞(A,F (K,J) ∩ S(τ)N). Take k such that
1/2k < δ/8. Since s ∈ cl∞A, there exists a point t = (ti) ∈ A such that

{
λ(si) = λ(ti) if λ(si) 6= τ ,
|p(si)− p(ti)| < δ/4 for every i.

We put

ui =
{
si if λ(si) 6= τ ,
q(p(si), λ(ti)) if λ(si) = τ .

We see that u = (ui) ∈ F (K,J) ∩ S(τ)N. We have

σ∞(t, u) =
∞∑

i=1

σ(ti, ui)
2i

≤
k∑

i=1

σ(ti, ui)
2i

+
∞∑

i=k+1

diamσ S(τ)
2i

≤ δ

4
+
δ

8
· 2 =

δ

2
.

This contradicts σ∞(A,F (K,J) ∩ S(τ)N) = δ.
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Now, we prove (1)⇒(2). By Wallace’s theorem (see [3, Theorem 3.2.10]),
for every j = 1, . . . , n+ 1, there exists an open subset Uj of S∗(τ) such that

F (K,J) ⊂
n+1⋂

j=1

π−1
ij

(Uj) ⊂ cl∞
( n+1⋂

j=1

π−1
ij

(Uj)
)
⊂ S∗(τ)N \ cl∞A,

where πl is the lth projection from S∗(τ)N into S∗(τ). By the definition of
F (K,J), we can find a positive number εj such that

q((qj − εj, qj + εj)× λ(sij )) ⊂ Uj
for every j. Put

ε = min{εj | 1 ≤ j ≤ n+ 1}, l = max{ij | 1 ≤ j ≤ n+ 1}.
We have

ε/2l ≤ σ∞(A,F (K,J) ∩ S(τ)N).

Recall that a subset of a space X is said to be residual if it contains a
dense Gδ-subset of X. The proof of Lemma 2.5 is essentially due to Pol [9].

Lemma 2.5. Let X be a normal space and A a closed subset of X
with dimA ≤ n. For every cardinal τ , the set H = {h ∈ C(X,S(τ)N) |
cl∞ h(A) ⊂ K∗n(τ)} is residual in C(X,S(τ)N).

Proof. For every K = (q1, . . . , qn+1) ∈ K and J = (i1, . . . , in+1) ∈ J, we
put

F(K,J) = {f ∈ C(X,S(τ)N) | cl∞ f(A) ∩ F (K,J) = ∅}.
Since

S∗(τ)N \K∗n(τ) =
⋃
{F (K,J) | K ∈ K, J ∈ J},

we have ⋂
{F(K,J) | K ∈ K, J ∈ J} ⊂ H.

By Lemma 2.4, we can see that F(K,J) is an open subset of C(X,S(τ)N).
Hence, it is sufficient to prove that F(K,J) is a dense subset of C(X,S(τ)N).
Take an arbitrary mapping f = (fi) : X → S(τ)N and ε. For every i ∈ N
with i 6= ij , we put gi = fi. Set

F =
( n+1∏

j=1

p−1(qj)
)
∩ S(τ)n+1.

Below, we show that, for every ij, there exists a mapping gij in C(X,S(τ))
such that σ(gij(x), fij (x)) < ε for every x ∈ X, and σn+1(g(A), F ) > 0 for
g = (gij ) : X → S(τ)n+1. Then it is obvious that the mapping g = (gi) from
X into S(τ)N satisfies

cl∞ g(A) ∩ F (K,J) = ∅ and σ̃∞(f, g) < ε.
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Put T = τn+1. For every t = (α1, . . . , αn+1) ∈ T , we put pt =
(q(qj , αj))n+1

j=1 . Notice that F = {pt | t ∈ T}. Take η with

0 < η < min{q1, . . . , qn+1, ε/2}.
For every t = (α1, . . . , αn+1) ∈ T , we put

Ut = {(si) ∈ S(τ)n+1 | λ(si) = αi, |p(si)− qi| < η},
Kt = cln+1 Ut, St = Kt \ Ut.

Write f = (fij ). Then {Ut | t ∈ T} is a discrete collection of open neighbor-
hoods of the points pt in S(τ)n+1 and the family

{f−1(Kt) | t ∈ T} ∪
{
f−1

(
S(τ)n+1 \

⋃

t∈T
Ut

)}

is a locally finite closed covering of X. We consider two cases.

Case 1: qi + η ≤ 1 for every i = 1, . . . , n + 1. For every t ∈ T , the
set St is homeomorphic to the n-dimensional sphere, and since dimA ≤ n,
there exists a mapping ht : f−1(Kt) ∩ A → St such that ht|f−1(St)∩A =
f |f−1(St)∩A. We define h′t : (f−1(Kt) ∩A) ∪ f−1(St)→ St by

h′t(x) =
{
ht(x) if x ∈ f−1(Kt) ∩A,
f(x) otherwise.

Since (f−1(Kt) ∩ A) ∪ f−1(St) is a closed subset of the normal space X,
there exists a continuous mapping gt : f−1(Kt)→ Kt such that

gt|f−1(St) = f |f−1(St), gt|A∩f−1(Kt) = ht.

We have σn+1(gt(A∩f−1(Kt)), pt)≥η. Now, we put g′=f |f−1(S(τ)n+1\⋃t∈T Ut).
Let g : X → S(τ)n+1 be the combination of g′ and the mappings {gt | t ∈ T}.
Then g is continuous. Moreover,

σn+1(g(A), F ) ≥ η, σ(fij (x), gij(x)) ≤ 2η < ε for every x ∈ X.
Case 2: qi + η > 1 for some i = 1, . . . , n + 1. Then there exists a

continuous retraction rt : Kt → St. Set gt = rt ◦ f |f−1(Kt). We define the
mappings g′ and g as in Case 1 and we reach the same conclusion.

Below, the symbol E(M) denotes the set

{h ∈ C(M,S(τ)N) | h is a homeomorphic embedding}
for a metrizable space M with w(M) = τ .

Lemma 2.6 (Toruńczyk, see [9]). If M is a metrizable space with
w(M) = τ , then the set E(M) is residual in C(M,S(τ)N).

By Lemmas 2.3, 2.5 and 2.6, we have the following theorem.
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Theorem 2.7. Let M be a metrizable space with w(M) = τ and
dimM = n. The set

{h ∈ E(M) |dim cl∞ h(M) ≤ n}
is residual in C(M,S(τ)N).

Now, we proceed to prove the residuality of {h ∈ E(M) | dim cl∞ h(M)
≥ n}. To do this, we need some lemmas. Lemma 2.10 will be used again in
the next section. Below, for a positive number ε, a positive integer n and a
subset Y of S(τ)n, N(Y, ε, n) denotes the ε-neighborhood of Y in S(τ)n, and
similarly, for a subset Z of S(τ)N, N(Z, ε,∞) denotes the ε-neighborhood of
Z in S(τ)N. For subsets A and B of S(τ)n with clnA∩ clnB = ∅, a positive
number ε is said to be a separating constant of (A,B) if clnN(A, ε, n) ∩
clnN(B, ε, n) = ∅.

Lemma 2.8. If A, B are subsets of S(τ)n with clnA ∩ clnB = ∅, then
there exists a separating constant of (A,B).

Proof. For simplicity, we give the proof in the case of n = 2. Take subsets
A and B of S(τ)2 with cl2A ∩ cl2B = ∅. For every pair (α, β) in (τ + 1)2,
we put

A(α,β) = (q(Iα)× q(Iβ)) ∩ cl2A, B(α,β) = (q(Iα)× q(Iβ)) ∩ cl2B.

Let p2 : S∗(τ)2 → I2 be defined by p2(q(x1, a1), q(x2, a2)) = (x1, x2). We
can find open subsets U(α,β) and V(α,β) of I2 with

p2(A(α,β)) ⊂ U(α,β), p2(B(α,β)) ⊂ V(α,β), clI2 U(α,β) ∩ clI2 V(α,β) = ∅
for every pair (α, β), and a finite subset Λ of τ with

p2(A(α,β)) ⊂ U(τ,τ), p2(B(α,β)) ⊂ V(τ,τ)

for every pair (α, β) in (τ \ Λ)2. Put

A1 =
⋃
{A(α,β) \ p−1

2 (U(τ,τ)) | α 6∈ Λ and β < τ + 1},

A2 =
⋃
{A(α,β) \ p−1

2 (U(τ,τ)) | α < τ + 1 and β 6∈ Λ},

B1 =
⋃
{B(α,β) \ p−1

2 (V(τ,τ)) | α 6∈ Λ and β < τ + 1},

B2 =
⋃
{B(α,β) \ p−1

2 (V(τ,τ)) | α < τ + 1 and β 6∈ Λ},
F1 = I× {0}, F2 = {0} × I.

We have
p2(A1 ∪B1) ∩ F1 = ∅, p2(A2 ∪B2) ∩ F2 = ∅.

Let % be the metric on I2 defined by

%((x1, x2), (y1, y2)) = 1
2 |x1 − y1|+ 1

4 |x2 − y2|
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for (x1, x2), (y1, y2) ∈ I2 (for general n, the metric % on In should be defined
by %((xi), (yi)) =

∑n
i=1 |xi − yi|/2i). Put

ε1 = min{%(clI2 U(τ,τ), clI2 V(τ,τ)), %(p2(A1 ∪B1), F1), %(p2(A2 ∪B2), F2)}.
For every α in Λ, there exists a finite subset Λα of τ such that

p2(A(α,β)) ⊂ U(α,τ),

p2(B(α,β)) ⊂ V(α,τ),

p2(A(β,α)) ⊂ U(τ,α),

p2(B(β,α)) ⊂ V(τ,α),

for every β in τ \ Λα. For every α in Λ, we put

A(α) =
⋃
{A(α,β) \ p−1

2 (U(α,τ)) | β < τ + 1, β ∈ Λα},

A′(α) =
⋃
{A(β,α) \ p−1

2 (U(τ,α)) | β < τ + 1, β ∈ Λα},

B(α) =
⋃
{B(α,β) \ p−1

2 (V(α,τ)) | β < τ + 1, β ∈ Λα},

B′(α) =
⋃
{B(β,α) \ p−1

2 (V(τ,α)) | β < τ + 1, β ∈ Λα}.
We have

p2(A(α) ∪B(α)) ∩ F1 = ∅, p2(A′(α) ∪B′(α)) ∩ F2 = ∅.
Put

δα = min{%(clI2 U(α,τ), clI2 V(α,τ)), %(clI2 U(τ,α), clI2 V(τ,α)),

%(p2(A(α) ∪B(α)), F1), %(p2(A′(α) ∪B′(α)), F2)}
for every α in Λ, and

δ(α,β) = %(p2(A(α,β)),p2(B(α,β)))

for every pair (α, β). Finally, we put

ε2 = min{δα | α ∈ Λ},
ε3 = min{δ(α,β) | α ∈ Λ, β ∈ Λα},
ε4 = min{δ(β,α) | α ∈ Λ, β ∈ Λα},
ε =1

3 min{ε1, ε2, ε3, ε4}.
This ε is as desired.

Lemma 2.9. Let Xk be a compact space for every k ∈ N, A and B
closed subsets of

∏
k∈NXk, and Πn :

∏
k∈NXk →

∏
1≤k≤nXk the projec-

tion map. If A ∩ B = ∅ then there exists a positive integer n such that
Πn(A) ∩Πn(B)=∅.

Proof. Suppose that there exist points an in A and bn in B such that
Πn(an) = Πn(bn) for every n. Let a be a cluster point of the set {an | n ∈ N}.
We can easily show that a belongs to B.
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Lemma 2.10. Let M be a metrizable space and A and B disjoint closed
subsets of M . The set

S = {h ∈ C(M,S(τ)N) | cl∞ h(A) ∩ cl∞ h(B) = ∅}
is open and dense in C(M,S(τ)N).

Proof. First, we show that S is a dense subset of C(M,S(τ)N). Take
any f = (fi) ∈ C(M,S(τ)N) and ε > 0. Let k be a positive integer with
1/2k < ε. Put

gi =
{
fi (i 6= k),
ψ (i = k),

where ψ : M → S(τ) with ψ(A) ⊆ {q(0, 0)} and ψ(B) ⊆ {q(1, 0)}. Then it
is obvious that g = (gi) : M → S(τ)N satisfies g ∈ S and σ̃∞(f, g) < ε.

Next, we show that S is an open subset of C(M,S(τ)N). Take h ∈ S.
By Lemma 2.9, there exists a positive integer n such that Πn(cl∞ h(A)) ∩
Πn(cl∞ h(B)) = ∅. Since clnΠn(h(A)) ∩ clnΠn(h(B)) = ∅, by Lemma 2.8,
there exists a separating constant ε of (Πn(h(A)),Πn(h(B))). Let h′ ∈
C(M,S(τ)N) satisfy σ̃∞(h, h′) < ε. We have

h′(A) ⊂ N(h(A), ε,∞), h′(B) ⊂ N(h(B), ε,∞).

Since

Πn(h′(A)) ⊂ N(Πn(h(A)), ε, n), Πn(h′(B)) ⊂ N(Πn(h(B)), ε, n),

and ε is a separating constant of (Πn(h(A)),Πn(h(B)), we have

clnΠn(h′(A)) ∩ clnΠn(h′(B)) = ∅.
This implies

cl∞ h′(A) ∩ cl∞ h′(B) = ∅.
Recall that a family {(Ai, Bi) | 1 ≤ i ≤ n} of pairs of disjoint closed

subsets of a space is said to be essential if, for every i and every partition
Li between Ai and Bi,

⋂n
i=1 Li 6= ∅.

Theorem 2.11. Let M be a metrizable space with w(M) = τ and dimM
= n ∈ N. The set

{h ∈ E(M) | dim cl∞ h(M) ≥ n}
is residual in C(M,S(τ)N).

Proof. Since dimM = n, there exists an essential family {(Ai, Bi) |
1 ≤ i ≤ n} of pairs of closed subsets of M . By Lemmas 2.6 and 2.10, the set

{h ∈ E(M) | cl∞ h(Ai) ∩ cl∞ h(Bi) = ∅ for every 1 ≤ i ≤ n}
is residual in C(M,S(τ)N). For every h in this set, the set

{(cl∞ h(Ai), cl∞ h(Bi)) | 1 ≤ i ≤ n}
is essential. Therefore, dim cl∞ h(M) ≥ n.
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Theorems 2.7, 2.11 and Lemma 2.1 yield the assertion of Theorem 1.1.

Now, we investigate the case of infinite-dimensional spaces.

Lemma 2.12 ([4, Problem 6.1.E(c), p. 310]). A weakly paracompact nor-
mal space X is S-w.i.d. if and only if X contains an S-w.i.d. compact subset
L such that each closed subset of X disjoint from L is finite-dimensional.

Notice that compact spaces and metrizable spaces are weakly paracom-
pact.

Theorem 2.13. Let M be an S-w.i.d. metrizable space with w(M) = τ .
The set

{h ∈ E(M) | cl∞ h(M) is S-w.i.d.}
is residual in C(M,S(τ)N).

Proof. Let L be a compact subset of M as in Lemma 2.12. Put

Fn = {x ∈M | d(x,L) ≥ 1/n}
for every n ∈ N, where d is a metric on M that is compatible with its
topology. The dimension of the closed subset Fn is finite. We put l(n) =
dimFn. Set

Hn = {h ∈ C(M,S(τ)N) | cl∞ h(Fn) ⊂ K∗l(n)(τ)},
H =

⋂
{Hn | n ∈ N} ∩ E(M).

The set H is residual in C(M,S(τ)N) by Lemmas 2.5 and 2.6. Take an em-
bedding h in H. Notice that h(L) is an S-w.i.d. compact subset of cl∞ h(M).
By Lemma 2.12, it is sufficient to show that each closed subset A of cl∞ h(M)
that is disjoint from h(L) is finite-dimensional. Since h(L) is compact, there
exists an open subset U of cl∞ h(M) such that A ⊂ U and cl∞ U ∩h(L) = ∅.
Put B = h−1(cl∞ U ∩ h(M)). Since B is a closed subset of M that is dis-
joint from the compact subset L, there exists k such that B ⊂ Fk. By
Lemma 2.3, dim cl∞ h(Fk) ≤ l(k). Since A is a closed subset of cl∞ h(Fk),
A is finite-dimensional.

Theorem 2.13 and Lemma 2.1 give the assertion of Theorem 1.2.
Theorem 2.13 is a counterpart for non-separable spaces of Corollary 4.4

of [8]. Using Lemma 2.12, we can prove the following counterpart of Corol-
lary 4.3 of [8].

Theorem 2.14. Let M be a metrizable space with w(M) = τ which has
the large transfinite dimension trInd. The set

{h ∈ E(M) | cl∞ h(M) is countable-dimensional}
is residual in C(M,S(τ)N).
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Corollary 2.15. Let M be a metrizable space having trInd. There
exists a countable-dimensional Eberlein compactification E of M with w(E)
= w(M).

Remark 2.16. It is known that there exists a countable-dimensional
metrizable space which has no countable-dimensional compactification
(see [6]). The proof of Proposition 2 of [5] yields in fact the statement:
Each countable-dimensional complete metrizable space can be embedded in a
countable-dimensional Eberlein compact space of the same weight.

3. Related topics. In this section, we mention some results that are
related to Lemma 2.10 of Section 2. We use the same terminology as in
Section 2. First, we have

Proposition 3.1. Let M be a metrizable space with w(M) = τ and f
a continuous mapping from M into a compact metrizable space Y . The set

{h ∈ E(M) | there exists a mapping f̂ in C(cl∞ h(M), Y )

such that f̂ ◦ h = f}
is residual in C(M,S(τ)N).

Proof. Let B be a countable base for Y that is closed under taking finite
unions. Let A be the family of pairs of disjoint closures of elements of B.
Since A is countable, the set

{h ∈ E(M) | cl∞ h(f−1(A)) ∩ cl∞ h(f−1(B)) = ∅ for every (A,B) ∈ A}
is residual in C(M,S(τ)N) by Lemmas 2.6 and 2.10. For every h in the set,
there exists a continuous mapping f̂ : cl∞ h(M) → Y such that f̂ ◦ h = f
by Theorem 3.2.1 of [3].

Combining Proposition 3.1 with Theorems 2.7, 2.11 and Lemma 2.1, we
have

Theorem 3.2. Let M be a finite-dimensional metrizable space and (fn)
a sequence of continuous mappings from M into compact metrizable spaces.
There exists an Eberlein compactification E of M such that dimE =
dimM , w(E) = w(M) and every fn has a continuous extension over E.

This theorem is a counterpart for non-separable spaces of Theorem 3.4
of [7].

Similarly, we have

Theorem 3.3. Let M be an S-w.i.d. metrizable space and (fn) a se-
quence of continuous mappings from M into compact metrizable spaces.
There exists an S-w.i.d. Eberlein compactification E of M such that w(E) =
w(M) and every fn has a continuous extension over E.



234 T. Kimura and K. Morishita

We conclude the paper with a result on the Stone–Čech compactification
of a metrizable space.

Proposition 3.4. Let M be a metrizable space. The Stone–Čech com-
pactification βM of M is the supremum of the set of all Eberlein compact-
ifications of M .

Proof. By Lemmas 2.10 and 2.1, for every pair (A,B) of disjoint closed
subsets of M , we can find an Eberlein compactification E of M such that
the closures of A and B in E are disjoint. Therefore, βM is the supremum
of such compactifications.

Remark 3.5. It is known that if the Stone–Čech compactification of a
space X is Eberlein compact, so is X (see [1]).

Remark 3.6. Proposition 3.4 can be extended to the class of all spaces
(not necessarily metrizable) that have Eberlein compactifications.
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