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A minimal regular ring extension of C(X)

by

M. Henriksen (Claremont, CA), R. Raphael (Montreal)
and R. G. Woods (Winnipeg)

Abstract. Let G(X) denote the smallest (von Neumann) regular ring of real-valued
functions with domain X that contains C(X), the ring of continuous real-valued functions
on a Tikhonov topological space (X, τ). We investigate when G(X) coincides with the ring
C(X, τδ) of continuous real-valued functions on the space (X, τδ), where τδ is the smallest
Tikhonov topology on X for which τ ⊆ τδ and C(X, τδ) is von Neumann regular. The
compact and metric spaces for which G(X) = C(X, τδ) are characterized. Necessary, and
different sufficient, conditions for the equality to hold more generally are found.

1. Introduction. A ring B is said to be (von Neumann) regular if, for
each b ∈ B, there exists an x ∈ B such that bxb = b. If B is a commutative
regular ring, then for each b ∈ B there exists a unique b∗ ∈ B such that
b2b∗ = b and (b∗)2b = b∗. The element b∗ is called the quasi-inverse of b.
See [La] for more background information.

Let X be a nonempty set and let F (X) denote the ring of all real-
valued functions with domain X (with addition and multiplication defined
pointwise). Clearly, F (X) is a commutative regular ring, and if f ∈ F (X)
then f∗ is given by

f∗(x) =
{

1/f(x) if x ∈ coz(f),
0 if x ∈ Z(f).

(Here Z(f) = {x ∈ X : f(x) = 0} and coz(f) = X \ Z(f).)
All hypothesized topological spaces X are assumed to be Tikhonov. For

basic information and undefined notation see [GJ] and [PW]. In particular,
C(X) denotes the ring of continuous members of F (X), and χS denotes the
characteristic function of the subset S of X. Boldface real numbers denote
constant functions.
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If S is a commutative regular ring with a subring R, define GS(R) by

GS(R) =
⋂
{A : R ⊆ A ⊆ S and A is regular}.

Then GS(R) is the smallest regular subring of S that contains R. The fol-
lowing characterization “from below” of GS(R) (see 1.1(a)) can be found by
juxtaposing results in [Ke, 4.2], [O1, Props. 5 and 6], [O2], and [W, Theo-
rem 1, Corollary to Theorem 6]. Clearly, 1.1(b) follows from 1.1(a).

1.1. Theorem. (a) GS(R) = {∑n
i=1 aib

∗
i : ai, bi ∈ R, b∗i is the quasi-

inverse of bi in S}.
(b) |G(R)| = |R|.
Denote GF (X)(C(X)) by G(X). Then G(X) is the smallest regular

subring of F (X) that contains C(X). Explicitly, G(X) = {∑n
i=1 fig

∗
i :

fi, gi ∈ C(X)}.
If X is a space with topology τ , we define τδ to be the underlying set

of X re-topologized by making the Gδ-sets of (X, τ) an open base for this
new topology. Denote (X, τδ) by Xδ. Then C(Xδ) is a regular ring and
C(X) ⊆ C(Xδ) ⊆ F (X) (see [GJ, 4J] and [PW, 1W]). Hence C(X) ⊆
G(X) ⊆ C(Xδ). Furthermore, τδ is the smallest Tikhonov topology α on
X for which τ ⊆ α and C((X,α)) is a regular ring (see [PW, 1W]). Hence
G(X) = C(X,α) for some Tikhonov topology α on X iff G(X) = C(Xδ). If
τ = τδ then X is called a P -space.

The purpose of this article is to describe those spaces X for which
G(X) = C(Xδ). We characterize compact spaces and metric spaces with
this property (see 3.4), and obtain partial results in more general cases.
First we name spaces with this property.

1.2. Definition. A Tikhonov space X is called regularly good (or an
RG-space) if C(Xδ) = G(X).

1.3. Definition. Let X be a space. If f ∈ G(X), we define rg(f) as
follows: rg(f) = min{n ∈ N : there exist gi, hi ∈ C(X) (i = 1 to n) such
that f =

∑n
i=1 gih

∗
i }. We define rg(X) to be sup{rg(f) : f ∈ G(X)}. Note

that rg(X) is either a positive integer or +∞.

1.4. Proposition. Let X be a space. Then rg(X) = 1 iff X is a P -
space.

Proof. If X is a P-space then C(X) = G(X) so rg(h) = rg(h1∗) = 1 for
each h ∈ G(X).

Conversely, suppose rg(h) = 1 for each h ∈ G(X), and let f ∈ C(X).
Then 1+(−f)f∗ ∈ G(X), so by hypothesis there exist g and k in C(X) such
that 1 + (−f)f∗ = gk∗. A straightforward calculation shows that Z(f) =
coz(gk), and so Z(f) is open in X. As Z(f) was an arbitrary zero-set of X,
it follows that X is a P-space (see [GJ, 4J]).
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Observe that, as noted above, if h ∈ C(X) then rg(h) = 1 as h = h(1∗);
however, if f ∈ C(X) then rg(ff∗) = 1 but ff∗ 6∈ C(X) unless coz(f) is a
clopen set of X.

2. Elementary properties of RG-spaces. We begin by collecting
some basic properties of RG-spaces. Later in this section we give some suf-
ficient conditions for a space to be an RG-space.

Recall that a space X is scattered if each subspace of X has an isolated
point, or equivalently, if each subspace ofX has a dense set of isolated points.
Many of the properties of scattered spaces are summarized in Z. Semadeni’s
memoir [Se1], his book [Se2], and in a paper by R. Levy and M. Rice [LR].

Denote the set of isolated points of X by I(X). For an ordinal α define
Dα(X) inductively as follows: D0(X) = X, D1(X) = X \ I(X), Dα+1(X) =
D1(Dα(X)), and Dλ(X) =

⋂{Dα(X) : α < λ} if λ is a limit ordinal.
Clearly,X is scattered iff there exists α0 for whichDα0(X) = ∅. The Cantor–
Bendixson order of the scattered space X, denoted by CB(X), is defined as
follows:

CB(X) = min{α : Dα(X) = ∅}.
(CB(X) is called the dispersal order of X in [LR].)

Observe that CB(X) = CB(D1(X)) + 1 if CB(X) is a successor ordinal,
and that CB(X) is a successor ordinal if X is a compact scattered space.

2.1. Proposition. Let X be a space and let f ∈ G(X). Then:

(a) f is continuous (re X) on a dense open subset of X.
(b) If T ⊆ X then f |T ∈ G(T ) and rg(f |T ) ≤ rg(f).
(c) If T is C-embedded on X then it is G-embedded in X; that is, if

f ∈ G(T ) then there exists F ∈ G(X) such that F |T = f .

Proof. (a) If f =
∑n
i=1 gih

∗
i then f is continuous on the dense open set

X \⋃{bdXZ(hi) : i = 1 to n}.
(b) If h ∈ C(X) then h∗|T = (h|T )∗; the result quickly follows.

2.2. Lemma. A dense subspace of an RG-space X cannot be written as
the union of countably many nowhere dense zero-sets of X.

Proof. Suppose that the RG-space X has the set
⋃{Zi : i ∈ N} as a

dense subspace S, where each Zi is a nowhere dense zero-set of X. Let
A1 = Z1 and if n ≥ 2, let An = Zn \

⋃n−1
i=1 Ai. Then as zero-sets of

P-spaces are clopen, it is easily seen that {Ai : i ∈ N} ∪ {X \ S} is a
partition of X into clopen subsets of Xδ. (We discard empty Ai’s.) Define
f : X → R by f [Ai] = i + 1 and f [X \ S] = {1}. Then f ∈ C(Xδ), so
by hypothesis f ∈ G(X). As S is dense in X, by 2.1(a) there exist k ∈ N
and p ∈ Ak such that f is X-continuous at p. Hence there is an open
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set W of X such that p ∈ W and f [W ] ⊆ (k + 2/3, k + 4/3). Clearly,
W ⊆ Ak ⊆ Zk, which contradicts the hypothesis that intX Zk = ∅. The
result follows.

We now investigate conditions under which a subspace of an RG-space
is an RG-space.

2.3. Theorem. A subspace Y of an RG-space X is an RG-space if any
of the following conditions hold :

(a) Yδ is C∗-embedded in Xδ.
(b) Yδ is Lindelöf (in particular , Y is countable).
(c) Y is scattered and Lindelöf.
(d) Xδ is normal and Y is realcompact and C∗-embedded in X.
(e) |X| ≤ c, the continuum hypothesis holds, and Y is realcompact and

C∗-embedded in X.
(f) Y is a countable union of zero-sets or cozero-sets of X.
(g) Xδ is normal and Yδ is closed in Xδ; in particular , X is paracompact

and scattered , and Yδ is closed in Xδ.

Proof. It suffices to show that C(Yδ) ⊆ G(Y ).
(a) As zero-sets of Xδ are clopen in Xδ, Yδ is completely separated in

Xδ from any zero-set of Xδ that is disjoint from it. Consequently, Yδ is C-
embedded in Xδ by [GJ, 1.18]. Thus if h ∈ C(Yδ), there exists H ∈ C(Xδ)
such that H|Yδ = h. By hypothesis H ∈ G(X). Hence by 2.1(b), h = H|Y
= G(Y ).

(b) Zero-sets of Xδ are clopen subsets of Xδ, since Xδ is a P-space (see
[GJ, 4J]); hence they are completely separated in Xδ from subsets that are
disjoint from them. But by [BH, 4.2], if a Lindelöf subspace of a space S
is completely separated in S from each zero-set of S disjoint from it, then
that subspace is C-embedded in S. Hence if Yδ is Lindelöf, it is C-embedded
in Xδ. Now use (a).

(c) If Y is Lindelöf and scattered, then by [LR, 5.2], Yδ is Lindelöf. The
result now follows from (b).

(d) Let T = clX Y . As Y is dense and C∗-embedded in T , it follows that
Y ⊆ T ⊆ βY (see [GJ, 6.7]). Hence as Y is realcompact, if x ∈ T \ Y then
there is a Gδ-set E(x) of T such that x ∈ E(x) ⊆ T \Y (this follows quickly
from [PW, 5.11(i)]). Let H(x) be a Gδ-set of X for which E(x) = T ∩H(x).
Then X \ Y = (X \ T ) ∪ ⋃{H(x) : x ∈ T \ Y }, and so X \ Y is open
in Xδ. Thus Yδ is closed (and hence C∗-embedded) in the normal space Xδ

([GJ, 3D]). Now use (a).
(e) If we assume the continuum hypothesis, then a P-space of cardinality

no greater than c is paracompact (see the first paragraph of §4 of [LR]),
hence normal. Now use (d).
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(f) Observe that Yδ is clopen in Xδ, and hence C-embedded in Xδ. The
result now follows from (a).

(g) The first assertion follows from (a). If X is scattered and paracom-
pact, then Xδ is paracompact and hence normal (see [LR, 5.1]).

Example 2.10 below, in conjunction with 3.7, shows that the C∗-embed-
ding of Y in X cannot be dropped from the hypotheses of 2.3(e), and that
“Lindelöf” cannot be dropped from the hypotheses of 2.3(c). Example 3.10
shows that “realcompact” cannot be dropped from the hypothesis of 2.3(d)
or 2.3(e). Also, note that Yδ is closed in Xδ if and only if X \ Y is a union
of Gδ-sets of X; this occurs if Y is Lindelöf, or if Y is realcompact and
C∗-embedded in clX Y (see [PW, 5.11(c)(2)]).

2.4. Corollary. Countable subsets of RG-spaces are scattered.

Proof. If S is a countable subset of the RG-space X, but is not scat-
tered, then S has a countable subset T without isolated points. Now T is an
RG-space by 2.3(b), and the singleton sets of T are nowhere dense zero-sets
of T . This contradicts 2.2, so we conclude that S must be scattered.

2.5. Proposition. Compact subspaces of RG-spaces are scattered RG-
spaces.

Proof. Suppose that K is a compact non-scattered subspace of the RG-
space X. Then K has a compact subspace L with no isolated points. Thus
there is a continuous surjection k from L onto the Cantor set C (see
[LR, 3.17], for example). There exists a compact subset M of L such
that k|M = f is an irreducible continuous surjection from M onto C
([PW, 6.5(c)]). Let S be a countable dense subset of C, and let T be formed
by selecting one point from f−1(s) for each s ∈ S. Then T is a countable
subspace of L, and as f is irreducible and C has no isolated points, T will
also have no isolated points. This contradicts 2.4, and we conclude that each
compact subset of an RG-space is scattered. It now follows from 2.3(c) that
compact subspaces of RG-spaces are RG-spaces.

A different proof of 2.5 appears (implicitly) in [RW, 5.7]. We thank the
referee for suggesting the proof used above.

Observe that 2.4 and 2.5 cannot be extended to Lindelöf spaces, as there
exist Lindelöf P-spaces without isolated points (see 3.11).

Recall that a space X is called resolvable if it can be written as the
union of two complementary dense subsets. Also recall that a space X has
countable pseudocharacter (see [Ho]) if each singleton set of X is a Gδ-
set. Since singleton Gδ-sets are zero-sets (see [GJ, 3.11(b)]), evidently X
has countable pseudocharacter if and only if Xδ is discrete if and only if
C(Xδ) = F (X).
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2.6. Theorem. (a) A resolvable space of countable pseudocharacter is
not an RG-space.

(b) If X is an RG-space of countable pseudocharacter and is either
countably compact or a k-space, then X is scattered.

(c) If X is a first countable RG-space, then X is scattered. In particular ,
metric RG-spaces are scattered.

Proof. (a) If X is resolvable and of countable pseudocharacter, let S be a
dense subset ofX whose complement is also dense. Clearly, the characteristic
function χS is nowhere continuous, so by 2.1(a), χS 6∈ G(X). But F (X) =
G(X) (see above).

(b) If X were not scattered it would have a closed subspace Y without
isolated points. As countable compactness and being a k-space are both
closed-hereditary, Y has whichever of these properties X is assumed to have.
But both k-spaces and countably compact spaces without isolated points are
resolvable (see [CG, 6.9 and 8.1]), and Y has countable pseudocharacter since
X has. So Y is not an RG-space by (a) above. Clearly, Yδ is C∗-embedded
in Xδ as each is discrete, so by 2.3(a), X cannot be an RG-space.

(c) First countable spaces are k-spaces (see [PW, 9D(4)]) of countable
pseudocharacter. Now use (b).

We now investigate sufficient conditions for a space to be an RG-space.
Obviously, every P-space is an RG-space. Also, spaces that are “nearly, but
not quite” P-spaces are RG-spaces, as we shall show next. Recall that a
point of a space X is called a P -point of X if each Gδ-set (equivalently, each
zero-set) of X that contains it is a neighborhood of it (see [GJ, 4L]). We
denote by P (X) the set of all P-points of X; clearly, X is a P-space if and
only if P (X) = X.

2.7. Theorem. Let X be a space with exactly one non-P-point. Then
X is an RG-space and rg(X) = 2.

Proof. It suffices to show that C(Xδ) ⊆ G(X). Let X \ P (X) = {r}.
Suppose that k ∈ C(Xδ) and k(r) = 0. Because Xδ is a P-space, Z(k)

is an open Xδ-neighborhood of r. Since Z(X) is an open base for Xδ, there
is a g ∈ C(X) such that r ∈ Z(g) ⊆ Z(k). Let A(0) = X and if 0 < n < ω,
let A(n) = g←[[−1/n, 1/n]]. Then each A(n) contains r in its X-interior.
Further, if x ∈ A(n)\{r}, then A(n) is an X-neighborhood of x as x ∈ P (X).
Thus each A(n) is a clopen subset of X. We define f, g ∈ F (X) as follows:

f(x) =





k(x)
n[|k(x)|+ 1]

if x ∈ A(n) \A(n+ 1),

0 if x ∈ ⋂{A(n) : n ∈ ω};



A minimal regular ring extension of C(X) 7

g(x) =





1
n[|k(x)|+ 1]

if x ∈ A(n) \A(n+ 1),

0 if x ∈ ⋂{A(n) : n ∈ ω}.
It is straightforward to verify that f, g ∈ C(X) and that k = fg∗.

If k(r) 6= 0, let m = k − k(r) and apply the above argument to m to
obtain f, g ∈ C(X) such that m = fg∗. Thus k = fg∗+ k(r) and rg(k) ≤ 2.
By 1.4, rg(X) > 1, so rg(X) = 2.

2.8. Proposition. Let X be the direct sum of the spaces {X(i) : i ∈ I}.
The following are equivalent :

(a) X is an RG-space.
(b) Each X(i) is an RG-space and there is no one-to-one map λ : N→ I

such that rg(X(λ(n))) ≥ n for each n ∈ N.

Proof. (a)⇒(b). By 2.3(a) each X(i) is an RG-space. If a λ of the sort
described did exist, let fn ∈ G(X(λ(n))) be such that rg(fn) ≥ n. Obviously,
there exists F ∈ C(Xδ) for which F |X(λ(n)) = fn for each n ∈ N, and by
2.1(b), F 6∈ G(X). Hence (a) would fail.

(b)⇒(a). If (b) holds there exists m ∈ N such that rg(X(i)) ≤ m for
each i ∈ I. If F ∈ C(Xδ) then by hypothesis F |X(i) =

∑m
j=1 fi,jg

∗
i,j for some

fi,j , gi,j ∈ C(X(i)) (some terms in the sum may be repeated if necessary).
Clearly, F =

∑n
j=1(

⋃{fi,j : i ∈ I})(⋃{gi,j : i ∈ I})∗, so F ∈ G(X).

Recall that a collection of subsets of a space X is called discrete if each
point of the space has a neighborhood meeting at most one set in the col-
lection. A subset {xi : i ∈ I} of X is called strongly discrete if there is a
discrete collection {Ui : i ∈ I} of open sets of X such that xi ∈ Ui for each
i ∈ I. Clearly, a strongly discrete collection of points of a space is a closed
discrete subspace of the space; the converse fails, as we shall see shortly.

2.9. Proposition. If X is a space for which X \ P (X) is a strongly
discrete subset of X (in particular , if X \ P (X) is finite), then X is an
RG-space.

Proof. Let {Ui : i ∈ I} be the discrete collection of open sets provided
by the definition of “strongly discrete set”. (We may assume this collection
is nonempty.) If Ui ∩ (X \ P (X)) = {ri}, find Zi ∈ Z(X) such that ri ∈
intX Zi ⊆ Zi ⊆ Ui (see [GJ, 3.11(b)]). As Zi \ {ri} ⊆ P (X), it follows that
each Zi is clopen in X. As {Zi : i ∈ I} is a strongly discrete collection, it
follows that X \ ⋃{Zi : i ∈ I} is a clopen set of X as well—without loss
of generality attach it to some particular Zi(0). By 2.7, rg(Zi) = 2 for each
i ∈ I, so by 2.8, X is an RG-space.
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We now produce an example to show that the word “strongly” in the
statement of 2.9 cannot be replaced by the word “closed”. We thank Alan
Dow for bringing this example to our attention.

2.10. Example. Let X be the closed unit interval [0, 1] topologized as
follows. For each irrational number y ∈ [0, 1] choose a sequence s(y) of ra-
tional numbers in [0, 1] that converges to y in the usual topology of [0, 1]. A
subset V of X is decreed to be open if, for each irrational number y, V
contains a cofinite subset of s(y) whenever it contains y. One can ver-
ify that this defines a locally compact Hausdorff topology on X, and by
[GJ, 8.18], X and all its subspaces are realcompact. As X is of countable
pseudocharacter, it follows that Xδ is discrete and so |C(Xδ)| = 2c. How-
ever, the rationals are dense in X and so |C(X)| = c. By 1.1(b) it follows
that |G(X)| = c. Hence X is not an RG-space. Clearly, each rational num-
ber is isolated in X and P (X) is the set of rationals in X, while X \ P (X)
is a closed discrete subspace of X.

We now add to our stock of RG-spaces by showing that if X is a scattered
space that is either Lindelöf or perfectly normal, and if CB(X) is finite, then
X is an RG-space.

2.11. Let X be a scattered space that is either Lindelöf or perfectly nor-
mal. Then:

(a) X is an RG-space if and only if D1(X) (= X\I(X)) is an RG-space.
(b) Let j ∈ N. If rg(D1(X)) ≤ j then rg(X) ≤ 2j + 1.

Proof. (a) If X is a Lindelöf scattered RG-space, then it follows from
2.3(c) that D1(X) is an RG-space. If X is perfectly normal, this follows
from 2.3(f).

Conversely, suppose that D1(X) is an RG-space, and that X is scattered
and either Lindelöf or perfectly normal. Suppose that s ∈ C(Xδ); then
s|D1(X) ∈ C(D1(X)δ). Because D1(X) is an RG-space, there exist k ∈ N
and fi, gi ∈ C(D1(X)) such that s|D1(X) =

∑k
i=1 fig

∗
i . Because D1(X) is

closed and hence C-embedded in the normal space X, there exist Fi, Gi ∈
C(X) such that Fi|D1(X) = fi and Gi|D1(X) = gi (i = 1 to k).

Let H =
∑k
i=1 FiG

∗
i ; then H ∈ G(X) ⊆ C(Xδ). Let r = s − H. Then

r ∈ C(Xδ) and Z(r) is open in Xδ as Xδ is a P-space. Clearly, H|D1(X) =
s|D1(X), and so D1(X) ⊆ Z(r).

First assume that X is Lindelöf. Observe that U = {{x} : x ∈ I(X)} ∪
{Z(r)} is an open cover of Xδ. As X is Lindelöf and scattered, Xδ is Lindelöf
by [LR, 5.2]. Thus U has a countable subcover, and hence there is a count-
able subset S = {xn : n ∈ N} of I(X) such that X = {xn : n ∈ N} ∪ Z(r).
As S is an open Fσ-set of the normal space X, there exists m ∈ C(X) such
that coz(m) = S. Let A(n) = {xn}.
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Next assume that X is perfectly normal. Then X \Z(r), being a discrete
open set of X, is a cozero-set of X and can thus be partitioned into countably
many clopen sets {A(n) : n ∈ N} of X. Let m ∈ C(X) such that coz(m) =
X \ Z(r).

In either case, define f, g : X → R by

f(x) =
s(xn)

n[|s(xn)|+ 1]
if x ∈ A(n), f

[
X \

⋃
{A(n) : n ∈ N}

]
= {0},

g(x) =
1

n[|s(xn)|+ 1]
if x ∈ A(n), g

[
X \

⋃
{A(n) : n ∈ N}

]
= {0}.

Clearly, f, g ∈ C(X). Now define t : X → R as follows:

t = (mf)(mg)∗ +
k∑

i=1

FiG
∗
i +

k∑

i=1

(−mFi)(mGi)∗.

By 1.1(a), t ∈ G(X). We claim that s = t. If n ∈ N, then m(xn) 6= 0 and

t(xn) = 1 ·
(

s(xn)
n[|s(xn)|+ 1]

)
(n[|s(xn)|+ 1]) + 0 = s(xn),

and if x ∈ X \ {xn : n ∈ N} then x ∈ Z(r), so

t(x) = 0 +
k∑

i=1

Fi(x)G∗i (x) + 0 = H(x) = s(x).

Thus s ∈ G(X) and so X is an RG-space.
(b) If rg(D1(X)) ≤ j then k ≤ j, and clearly, from the definition of

t, rg(s) = rg(t) ≤ 2j+ 1. As s was an arbitrary member of C(Xδ), it follows
that rg(X) ≤ 2j + 1.

2.12. Theorem. Let X be a Lindelöf or perfectly normal scattered space
of finite Cantor–Bendixson order. Then X is an RG-space and rg(X) ≤
2CB(X) − 1.

Proof. Suppose to the contrary that there exists a Lindelöf (resp. per-
fectly normal) scattered space X of minimal finite Cantor–Bendixson order
k > 0 that is not an RG-space. As noted just before 2.1, CB(D1(X)) = k−1.
Clearly, D1(X) is a scattered Lindelöf (resp. perfectly normal) space, so by
the minimality of k, D1(X) is an RG-space. But by 2.11(a) this implies that
X is an RG-space, contrary to the choice of X. It follows that all Lindelöf
(resp. perfectly normal) scattered spaces of finite Cantor–Bendixson order
are RG-spaces.

If CB(X) = 1 then X is discrete and hence a P-space, so rg(X) = 1 =
2CB(X)−1 (see 1.4). Now suppose that if CB(V ) = j then rg(V ) ≤ 2j−1, and
suppose that X is a scattered Lindelöf space for which CB(X) = j+1. Then
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CB(D1(X)) = j so rg(D1(X)) ≤ 2j−1. Hence by 2.11(b), CB(X) ≤ 2(2j−1)
+ 1 = 2j+1 − 1 = 2CB(X) − 1, which completes the inductive argument.

We leave as an exercise:

2.13. Corollary. If X is a finite union of scattered Lindelöf spaces
of finite CB order , then X is an RG-space.

2.14. Remarks. (a) Observe that the space of Example 2.10 is separ-
able, scattered, and has Cantor–Bendixson order 2, but is not an RG-space.
Hence the hypothesis in 2.11 that X is a Lindelöf (or perfectly normal) space
may not be deleted.

(b) As metric spaces are perfectly normal, and as both Lindelöf and
metric spaces are paracompact, it is natural to ask whether 2.12 holds for
paracompact spaces. We have been unable to answer this question.

3. A characterization of compact or metric RG-spaces. Let X
be a space that is either compact or metric. In this section we prove that it
is an RG-space if and only if it is scattered and has finite Cantor–Bendixson
order. By 2.12, we know that if a space is scattered and of finite Cantor–
Bendixson order, and is either compact or metric, then it is an RG-space.
By 2.5 and 2.6(c) we know that a compact or metric RG-space is scattered.
So it suffices to prove that a compact or metric scattered space of infinite
Cantor–Bendixson order cannot be an RG-space.

3.1. Definition. LetX be a scattered space. For each j ∈ ω inductively
define Dj(X) and Ij(X) as follows:

D0(X) = X, I0(X) = I(X),

D1(X) = X \ I(X) = D0(X) \ I0(X), I1(X) = I(D1(X)),

Dj+1(X) = Dj(X) \ I(Dj(X)), Ij+1(X) = I(Dj+1(X)).

(Note that the definition of Dj(X) is consistent with that preceding 2.1.)

The proof of the following is straightforward and not included.

3.2. Proposition. Let X be a scattered space, let n be a positive inte-
ger , and let CB(X) = n. Suppose that A is a clopen subset of X. Then:

(a) Dn−1(X) 6= ∅ and Dn(X) = ∅.
(b) In−1(X) 6= ∅ and In(X) = ∅.
(c) {Ij(X) : j = 0 to n− 1} partitions X into n discrete subspaces.
(d) If i ∈ {0, . . . , n− 1} then

⋃i
j=0 Ij(X) is a dense open subset of X.

(e) If i ∈ {0, . . . , n − 1} then X \ ⋃ij=0 Ij(X) = Di+1(X), which is
compact.

(f) A ∩ Ij(X) = Ij(A) if j ∈ {1, . . . , n− 1}.
(g) A ∩Dj(X) = Dj(A) if j ∈ {1, . . . , n− 1}.
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3.3. Theorem. Let X be a scattered space that is either compact or
metric, and assume that CB(X) = n. Then there exists s ∈ G(X) for which
rg(s) ≥ n.

Proof. Scattered metric spaces have scattered (in fact ordinal) com-
pactifications (see [Se2] and [Ba]), and compact scattered spaces are zero-
dimensional. Hence as Dn−1(X) is discrete, we can find q ∈ Dn−1(X) and
a clopen subset A of X such that A ∩Dn−1(X) = {q}.

By 3.2(g), Dn−1(A) = {q} and Dn(A) = ∅, so CB(A) = n. If there exists
t ∈ G(A) such that rg(t) ≥ n, then let T : X → R be defined by T |A = t
and T [X \ A] = {0}. Clearly, T ∈ G(X) and rg(T ) = rg(t) ≥ n. It follows
that we may assume without loss of generality that |Dn−1(X)| = 1, for if
the theorem holds for such spaces it will hold for all spaces Y for which
CB(Y ) = n. So we will assume that Dn−1(X) = In−1(X) = {q}.

Consider the following assertion about the integer n:

(∗)n If Y is a metric or compact scattered space and CB(Y ) = n, if
In−1(Y ) = Dn−1(Y ) = {q}, and if λ > 0, then there is s ∈ G(Y )
such that s(q) = λ and if B is a clopen neighborhood of q in Y , then
rg(s|B) ≥ n.

We will verify (∗)n by induction on n. Note that if (∗)n holds then
the theorem follows with X = B and with λ being any positive num-
ber.

If n = 1 then Y = {q} andG(Y ) = C(Y ) and rg(s) = 1 for any s ∈ G(Y ),
and so (∗)1 holds trivially.

Now we will assume that (∗)n holds and prove (∗)n+1. So, let X be a
compact or metric scattered space for which CB(X) = n+1. As noted above,
we may assume that Dn(X) = {q}. Thus Dn−1(X) = In−1(X) ∪ {q}. If X
is compact, then Dn−1(X) is the one-point compactification of the infinite
discrete space In−1(X); if X is metric then Dn−1(X) = clX In−1(X). In
either case there is a sequence (pn)n∈ω of distinct points of In−1(X) that
converges to q.

As X is a zero-dimensional T3 space, there exists a pairwise disjoint
countably infinite family (Bi)i<ω of clopen subsets of X for which Di−1(X)
∩Bi = {pi}. Now Dn−1(Bi) = Bi∩Dn−1(X) = {pi} while Dn(Bi) = Dn(X)
∩ Bi = ∅ (see 3.2(f),(g)), so CB(Bi) = n and Dn−1(Bi) = {pi} for each
i < ω. Observe that q 6∈ ⋃i<ω Bi.

By (∗)n there exists, for each i < ω, si ∈ G(Bi) such that si(pi) = 1 and
such that if Ai is any clopen neighborhood of pi in Bi, then rg(si|Ai) ≥ n.
Evidently, si ∈ C((Bi)δ).

Now define a function s : X → R as follows: s|Bi = si and
s[X \⋃i<ω Bi] = {2}. Now

⋃
i∈ω Bi ∈ coz(X) and hence is clopen in Xδ.
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Thus {Bi : i < ω} ∪ {X \⋃i<ω Bi} partitions Xδ into countably many
Xδ-clopen sets. Clearly, the restriction of s to each of these is Xδ-continuous
and so s ∈ C(Xδ). But X is an RG-space by 2.12, so s ∈ G(X).

Now let A be a clopen neighborhood of q in X. As In−1(X)∪ {q} is the
one-point compactification of In−1(X), A contains all but finitely many pi;
re-labeling if necessary, we may assume that (pi)i<ω ⊆ A.

Assume that rg(s|A) = n. (Clearly, rg(s|A) ≥ n by the definitions of s
and si.) There exist fi, gi ∈ C(A) (i = 1, . . . , n) such that

s|A =
n∑

i=1

fig
∗
i .

As q 6∈ ⋃i<ω Bi, we have s(q) = 2. Consequently, it cannot be true that
gi(q) = 0 for all i ∈ {1, . . . , n}. But s|A is not continuous at q, since q ∈
clX{s(pi) : i < ω}, s(pi) = 1 for each i < ω, and s(q) = 2. Consequently,
gi(q) = 0 for at least one i ∈ {1, . . . , n} (for if gi(q) 6= 0 then g∗i is continuous
at q). Let J = {i ∈ {1, . . . , n} : gi(q) 6= 0}, and set

h =
∑

i∈J
fig
∗
i .

Then h is continuous on a clopen neighborhood E of q. Let I = {1, . . . , n}\J .
Then

(+) s|E = h+
∑

i∈I
(fi|E)(gi|E)∗

and 0 < |I| ≤ n − 1. Clearly, E contains all but finitely many pi, and
gi(q) = 0 for each i ∈ I. So, s|E fails to be continuous at q for the same
reason that s|A was discontinuous at q.

We claim that there exists j ∈ ω such that s(pj) 6= h(pj). To see this,
observe that (s|E)(q) = h(q) as g∗i (q) = 0 for all i ∈ I. So, if our claim
failed, we would have

(s|E)|({pi}i<ω ∩ E) ∪ {q} = h|({pi : i < ω} ∩E) ∪ {q},
which is a contradiction as the function on the left is discontinuous at q (for
the same reason that s|E was), while the function on the right is continuous
at q. Our claim holds.

Suppose pj ∈ E and s(pj) 6= h(pj). By (+) there exists t ∈ I such that
g∗t (pj) 6= 0. Thus gt is continuous on a clopen neighborhood T of pj , and we
see that

s|T = (h+ ftg
∗
t )|T +

∑

i∈I\{t}
(fi|T )(gi|T )∗

(without loss of generality T ⊆ Bj ∩E).
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Now h+ ftg
∗
t |T ∈ C(T ) and |I \{t}| ≤ n−2, so rg(s|T ) ≤ n−1. Letting

Aj be T , we see that this contradicts the inductive hypothesis (∗)n when
i = j.

Hence rg(s|A) ≥ n+ 1 so rg(s) ≥ n+ 1 and our proof is complete.

3.4. Theorem. A compact or metric space is an RG-space if and only
if it is scattered and of finite Cantor–Bendixson order.

Proof. The sufficiency is a special case of 2.12. To prove the converse,
assume that X is a compact or metric scattered space of infinite Cantor–
Bendixson order; then In(X) 6= ∅ for all n ∈ ω. Choose pn ∈ In(X) for each
n ∈ N and set D = (pn)n∈N. For each n ∈ N, put Vn =

⋃n
i=1(Ii(X) \ {pi :

i < n}). By 3.2(c),(d) it follows that Vn is open in X and Vn ∩D = {pn},
so D is a countably infinite discrete subset of X.

Now argue as in the proof of 3.3. As X is a zero-dimensional T3 space,
we can find a family (Bn)n∈ω of pairwise disjoint clopen subsets of X for
which Bn ∩D = {pn} and Bn ⊆

⋃n
i=1 Ii(X) (since

⋃n
i=1 Ii(X) is open and

contains pn). By 3.2(g),D(Bn) =D(X)∩Bn ⊇ {pn} 6= ∅ while D(Bn+1) = ∅,
so CB(Bn) = n+ 1. By 3.3 there exists sn ∈ G(Bn) such that rg(sn|Bn) ≥
n + 1. Define s : X → R by s|Bn = sn and s[X \ ⋃n<ω Bn] = {2}. As
in 3.3, since

⋃
n<ω Bn ∈ coz(X) and hence is clopen in Xδ, it follows that

s ∈ C(Xδ). But if s ∈ G(X), there exists k ∈ N such that rg(s) = k. Thus
rg(s|Bn) ≤ k for each n ∈ N, which contradicts the choice of s whenever
n > k. Consequently, s ∈ C(Xδ) \G(X) and so X is not an RG-space.

3.5. Corollary. If X is an RG-space, then each compact subspace of
X is an RG-space of finite Cantor–Bendixson order.

Proof. This follows from 3.4 and 2.5.

3.6. Example. There are many compact scattered (necessarily count-
able) metric spaces of infinite Cantor–Bendixson order. For example, if N∗
is the one-point compactification of the countably infinite discrete space N
and k is a positive integer, it is a straightforward exercise to prove that
CB((N∗)k) = k+ 1. If X is the one-point compactification of the free union
of (N∗)k as k varies over the positive integers, then clearly X is an example
of the desired sort.

3.7. Example. Open subspaces of RG-spaces need not be RG-spaces.
For example, let X be the space of 2.10 and X∗ its one-point compactifica-
tion. Clearly, X∗ is a compact scattered space and CB(X∗) = 3, so X∗ is
an RG-space by 3.4. However, its open subspace X is not.

3.8. Remark. Countable compact RG-spaces are subspaces of ordinal
spaces. In fact, if X is a countable compact metric space for which CB(X) =
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n, then X is a subspace of the ordinal space [0, ωn−1k], where |In−1(X)| = k.
(See [Se1] and [Ba]).

3.9. Example. Let D ∪ {p} = D∗ be the one-point compactification of
the discrete space D of cardinality ℵ1. As in Example 3.6, we can easily
show that CB((D∗)k) = k + 1 for each positive integer k.

Let H(k) be the free union of ℵ1 copies of (D∗)k and let X be the
one-point compactification of the free union

⊕{H(k + 1) : k ∈ ω}. Then it
is straightforward to show that X is a compact almost P-space, and by 2.5
and 3.4 it fails to be an RG-space, as it has clopen subspaces of CB order
k for each positive integer k. This answers Question 8.3 of [RW] in the
negative.

3.10. Example. In [Mr, 3.11] S. Mrówka gives an example of a sepa-
rable locally compact pseudocompact space X of countable pseudocharac-
ter with the following properties: (1) I(X) is countable and dense in X;
(2) X \ I(X) = D1(X) is discrete and of cardinality c (= 2ℵ0); (3) X is
C∗-embedded in its one-point compactification X∗, i.e. βX = X∗. (In col-
loquial terms, X is a “ψ-like space”; see [GJ, 5I].)

Clearly, βX is scattered and CB(βX) = 3, so by 3.4, βX is an RG-
space. As Xδ is discrete and of cardinality c, it follows that |C(Xδ)| = 2c,
while |G(X)| = |C(X)| = c (as X is separable). Hence X is not an RG-
space. Because X is pseudocompact ([GJ, 6J]), it follows that βX = υX
([GJ, 8A(4)]). Thus C(X) ∼= C(υX) (see [GJ, 8.8(a)]), X is not an RG-
space, and υX is an RG-space. We conclude that whether a space X is an
RG-space is not determined by the ring structure of C(X).

3.11. Example. We present a σ-compact nowhere locally compact
space X for which Xδ is a Lindelöf P-space without isolated points. Al-
though X is the union of countably many RG-spaces, it is not an RG-space
and cannot be embedded in an RG-space.

Let D be an uncountable discrete space, and let D∗ = D ∪ {p} be its
one-point compactification. For each i < ω let D∗i be a copy of D∗, and
let Y =

∏
i<ωD

∗
i , the product of countably infinitely many copies of D∗.

Points of Y will be denoted in boldface, and the ith component of a point
y ∈ Y will be denoted by y(i). The symbol p will denote the point for which
p(i) = p for each i ∈ ω.

Our space X is defined to be the following subspace of Y :

{y ∈ Y : {i < ω : y(i) 6= p} is finite}.
If F is a finite subset of ω, we define X(F ) to be {x ∈ X : if i 6∈ F

then x(i) = p}. Clearly, X(F ) is homeomorphic to the finite product∏{D∗i : i∈F}, and hence is compact and scattered, as well as nowhere dense.
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Clearly, X =
⋃{X(F ) : F is a finite subset of ω}. As ω has countably

many finite subsets, it follows that X is σ-compact.
By 5.7 of [LR], X(F )δ is Lindelöf for each finite subset F of ω. Since

the topology that X(F ) inherits from Xδ is just the Gδ-topology X(F )δ, it
follows that Xδ is a union of countably many Lindelöf subspaces and thus
is Lindelöf.

To show that Xδ has no isolated points, it clearly suffices to show that
no Gδ-set of Y meets X in a singleton set. Without loss of generality we
can confine our attention to Gδ-sets of Y formed by intersecting countably
many canonical basic open sets of Y . If a ∈ X and {i ∈ ω : a(i) 6= p} = F ,
then the smallest possible such Gδ-set of Y that contains a will have the
form

G =
∏

i∈F
{ai} ×

∏

i∈ω\F
(D∗i \Gi),

where each Gi is a countable subset of Di. Clearly, if j ∈ ω \ F and d is
arbitrarily chosen in D, and if the point e in Y is defined by: e(i) = a(i) if
i ∈ F , e(j) = d, and e(i) = p if i ∈ ω \ (F ∪ {j}), then e ∈ (G ∩X) \ {a}.
Thus a cannot be isolated in X and our claim is verified.

Observe that C(Xδ) = Baire(X) by 5.5 of [LR]. It is easy to demonstrate
that both X and Y \X are dense in Y , and so X is nowhere locally compact.

Finally we show that X is not an RG-space. Let {d(n) : n ∈ ω} be a
faithfully indexed countable subset of D. For each n ∈ ω let

E(n) = {dn} ×
( n∏

i=2

D∗i
)
×
∏

i>n

{p(i)}.

Clearly, E(n) is homeomorphic to
∏n
i=2 D

∗
i , and for n ≥ 2 it is easy to

prove by induction that CB(
∏n
i=2 D

∗
i ) = n. Furthermore, E(n) ⊆ X for

each n ∈ ω.
Let E =

⋃{E(n) : n < ω}. Clearly, Π←1 [{dn}] is clopen in Y (here Π1

denotes the projection map onto the first factor), and (Π←1 [{dn}] ∩X) ∩E
= E(n). Thus each E(n) is a compact clopen subset of E. As CB(E(n)) = n,
it follows from 3.3 and 2.8(b) that E is not an RG-space.

Now the argument used to prove that Xδ is Lindelöf shows that Eδ is
Lindelöf. But E is not an RG-space, so by the contrapositive of 2.3(b) it
follows that X is not an RG-space and in fact cannot be embedded in an
RG-space.

4. Questions. We have been unable to answer several reasonably obvi-
ous questions. Some are fundamental, while others are more technical. The
most basic question is the following.
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4.1. Question. Must every RG-space contain a P-point?

Observe that since cozero-sets of RG-spaces are also RG-spaces (see
2.3(f)), an affirmative answer to 4.1 implies that each RG-space would con-
tain a dense set of P-points.

If the answer to 4.1 is affirmative, then so is that to 4.2 below.

4.2. Question. If a space X can be expressed as a union of nowhere
dense zero-sets of X, does it follow that X is not an RG-space?

4.3. Question. Is every normal weakly Lindelöf scattered space of finite
Cantor–Bendixson order an RG-space?

(Recall that a space is weakly Lindelöf if each open cover of the space
has a countable subcollection whose union is dense in the space. Lindelöf,
separable, and ccc spaces (i.e. spaces having no uncountable family of pair-
wise disjoint open subsets) are all weakly Lindelöf. Example 2.10 shows that
the answer to 4.3 is “no” if “normal” is dropped from the list of hypotheses.
We do not know whether “weakly Lindelöf” can be dropped. An affirmative
answer would generalize 2.12.)

4.4. Question. Can the normality hypothesis be dropped from 2.3(d)?

4.5. Question. If a space X is an RG-space, must υX be an RG-space?
(Example 3.10 shows that the converse fails.)
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