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Szpilrajn type theorem for concentration dimension
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Abstract. LetX be a locally compact, separable metric space. We prove that dimTX
= inf{dimLX

′ : X ′ is homeomorphic to X}, where dimLX and dimT X stand for the
concentration dimension and the topological dimension of X, respectively.

1. Introduction. The analytic theory of dimension of sets and mea-
sures is widely investigated and widely used, for example, in the geomet-
ric theory of sets and measures and the theory of dynamical systems. The
most popular one is undoubtedly the Hausdorff dimension. Unfortunately,
all known dimensions of even relatively simple sets are rather hard to cal-
culate.

A. Lasota proposed to study a new concept of dimension of measures
and sets defined by means of the Lévy concentration function (see [5]). This
concept is also related to the mass distribution principle (see [4]). Some
properties of this dimension—called concentration dimension—were given
in [8]. In particular, it was proved that this dimension is strongly related to
the Hausdorff dimension. More precisely, the Hausdorff dimension is always
greater than or equal to the concentration dimension, and under suitable as-
sumptions, they are equal. What is important, the concentration dimension
seems to be easier to estimate or calculate (see [8, 9]).

The connection between Hausdorff dimension and topological dimension
was made evident in the case of Rn by V. G. Nöbeling (see [10]) and in a
more general setting by Szpilrajn in 1937 (see [11]). In this note we prove
a similar result for concentration dimension. Note also that the relation
between Hausdorff dimension and packing dimension was studied in [7].
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2. Notation and preliminaries. Throughout this paper (X, %) de-
notes a locally compact, separable metric space. By B(x, r) (resp. Bo(x, r),
S(x, r)) we denote the closed ball (resp. the open ball and sphere) in X with
centre at x and radius r. For A ⊂ X, the symbols: clA, ∂A, diamA and 1A
stand for the closure, boundary, diameter and characteristic function of A,
respectively. As usual, R stands for the set of all reals and N for the set of
all positive integers. Moreover, R+ = [0,∞) and R+ = [0,∞].

By B(X) we denote the σ-algebra of Borel subsets of X and by M(X)
the family of all finite Borel measures on X. Moreover,M1(X) denotes the
family of all µ ∈ M(X) such that µ(X) = 1, and M≤1(X) is the family of
all measures µ ∈ M(X) such that 0 < µ(X) ≤ 1.

Given an arbitrary function f : A→ R+, where A is a Borel subset of R,
we denote by Ff the set of all Borel measurable functions φ : A→ R+ such
that φ(λ) ≥ f(λ) for λ ∈ A. By the upper integral of f we mean the value

�

A

f(λ) dλ = inf
φ∈Ff

�

A

φ(λ) dλ.

Lemma 1. Let f : (0, b]→ (0,∞], b > 0, be an arbitrary function. Then

b�

0

f(λ) dλ > 0.

Proof. This is standard and left to the reader.

Given a measure µ ∈ M1(X) we define the lower and upper concentration
dimension of µ by the formulas

dimL µ = lim inf
r→0

logQµ(r)
log r

, dimL µ = lim sup
r→0

logQµ(r)
log r

,

where

Qµ(r) = sup{µ(A) : diamA ≤ r, A ∈ B(X)} for r > 0.

Recall that Qµ is the well known Lévy concentration function frequently
used in the theory of random variables (see [5]).

The concentration dimension of X is defined by the formula

(1) dimL X = sup
µ∈M1(X)

dimL µ.

For A ⊂ X and s, δ > 0 define

Hsδ(A) = inf
{ ∞∑

i=1

(diamUi)s : A ⊂
∞⋃

i=1

Ui and diamUi ≤ δ
}

and
Hs(A) = lim

δ→0
Hsδ(A).
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The restriction of Hs to the σ-algebra of Hs-measurable sets is called the
s-dimensional Hausdorff measure. Note that all Borel sets are Hs-meas-
urable. The value

dimH A = inf{s > 0 : Hs(A) = 0}
is called the Hausdorff dimension of the set A. As usual we set inf ∅ = +∞.

The Hausdorff dimension of a measure µ ∈ M1(X) is defined by the
formula

(2) dimH µ = inf{dimH A : A ∈ B(X), µ(A) = 1}.
Finally, recall that if X is a separable metric space, the three princi-

pal topological dimensions (small inductive dimension, large inductive di-
mension and covering dimension) are equal (see [2]). We denote this com-
mon value by dimTX and call it the topological dimension of X. The value
dimTX is an integer greater than or equal to −1, or ∞. It can be defined
by the following recurrent scheme:

(i) dimTX = −1 if and only if X = ∅;
(ii) dimTX ≤ n, n = 0, 1, . . . , if for every x ∈ X and every neigh-

bourhood U of x there is a neighbourhood V of x such that V ⊂ U and
dimT ∂V ≤ n− 1;

(iii) dimT X = n if and only if dimT X ≤ n and it is not true that
dimTX ≤ n− 1;

(iv) dimTX =∞ if dimTX ≥ n for every n ∈ N.

Lemma 2. If dimTX ≥ d+1, where d is an integer greater than or equal
to −1, then there exist x0 ∈ X and λ0 > 0 such that dimT S(x0, λ) ≥ d for
every λ ∈ (0, λ0].

Proof. Suppose, for a contradiction, that for every x0 ∈ X and λ0 > 0
there exists λ ∈ (0, λ0] such that dimT S(x0, λ) ≤ d− 1. Then by the defini-
tion of topological dimension we have dimTX ≤ d, which is impossible.

3. Results

Proposition 3. For every µ ∈ M1(X) we have dimH µ ≥ dimL µ.

Proof. We use an argument similar to that of Proposition 1.2 in [8] (see
also [3, Chapter 3]). Let A ∈ B(X) be such that µ(A) = 1. Set d = dimL µ.
If d = 0, the statement of Proposition 3 is obvious. Suppose now that 0 <
d ≤ ∞ and choose a positive number s < d. Define

ω(r) =
logQµ(r)

log r
for r > 0.

Then obviously

Qµ(r) = rω(r) and lim inf
r→0

ω(r) > s.
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Let r0 ∈ (0, 1) be such that ω(r) > s for every r ∈ (0, r0). Fix r ∈ (0, r0)
and let {Ui} be an arbitrary cover of A satisfying diamUi ≤ r, i ∈ N. We
have

1 = µ(A) ≤
∑

µ(Ui) ≤
∑

(diamUi)s.

Therefore Hsr(A) ≥ 1 for r ∈ (0, r0). Consequently, Hs(A) ≥ 1 and so
dimH A ≥ s. Since s < d was arbitrary, the statement follows.

From (1), (2) and Proposition 3 we immediately obtain

Corollary 4. dimHX ≥ dimLX.

Proposition 5. Suppose that dimTX ≥ d, where d ∈ N ∪ {0}. Then
there exists a Borel measure µ ∈ M≤1(X) such that

(3) µ(B(x, r)) ≤ rd for every x ∈ X and r > 0.

Proof. We use induction on d. For d = 0 condition (3) obviously holds
for every measure µ ∈ M≤1(X). Assume that the statement holds for d = k.
We will prove it for d = k + 1. By Lemma 2 there exist x0 ∈ X and λ0 > 0
such that dimT S(x0, λ) ≥ k for every λ ∈ (0, λ0]. We can assume that
λ0 < 1 and B(x0, λ) is compact. Fix λ ∈ (0, λ0] and set Xλ = S(x0, λ). By
the induction hypothesis there exists a nontrivial Borel measure µ̃λ on Xλ

such that

µ̃λ(Xλ) ≤ 1 and µ̃λ(Bλ(x, r)) ≤ rk for every x ∈ Xλ and r > 0,

where Bλ(x, r) stands for the closed ball in Xλ with centre at x ∈ Xλ and
radius r. Define the measure µλ : B(X)→ [0, 1] by the formula

µλ(A) = µ̃λ(A ∩Xλ) for A ∈ B(X).

Clearly µλ ∈ M≤1(X), suppµλ ⊂ S(x0, λ) and

(4) µλ(B(x, r)) ≤ 2krk for every x ∈ X and r > 0.

Define

αn,i = sup
{
µλ(X) : λ ∈

(
(i− 1)λ0

n
,
iλ0

n

]}
for n ∈ N, i = 1, . . . , n.

Let

(5) νn =
λ0

n

n∑

i=1

µn,i for n ∈ N,

where µn,i = µλn,i with λn,i ∈ ((i− 1)λ0/n, iλ0/n] and such that

(6) µλn,i(X) ≥ αn,i/2.
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Set K = B(x0, λ0). Clearly supp νn ⊂ K and νn ∈ M≤1(X). By (5)
and (6) we have

(7) 2νn(X) = 2νn(K) =
2λ0

n

n∑

i=1

µn,i(K) ≥ λ0

n

n∑

i=1

αn,i.

Consider the function φ : (0, λ0]→ (0,∞) given by

φ(λ) =
n∑

i=1

αn,i · 1((i−1)λ0/n, iλ0/n](λ).

Clearly φ is Borel measurable and φ(λ) ≥ µλ(X) for λ ∈ (0, λ0]. Thus by (7),
the definition of the upper integral and Lemma 1 we have

(8) 2νn(K) ≥
λ0�

0

φ(λ) dλ ≥
λ0�

0

µλ(X) dλ > 0.

Consider the sequence (µn)n≥1 ⊂ M1(X) given by the formula µn =
νn/νn(X), n ∈ N. Since νn ∈ M≤1(X) we can choose a sequence (mn)n≥1

such that νmn(X)→ a as n → ∞. From (8) it follows that a > 0. Since
the supports of νn are contained in a compact set K, passing to a subse-
quence if necessary, we can assume that (µmn)n≥1 converges weakly to some
µ∗ ∈ M1(X). It suffices to verify that the measure µ = aµ∗/2k+1 satisfies
(3) with d = k + 1. To this end, fix x ∈ X and r > 0 and consider the ball
B(x, r). For n ∈ N define

i(n) = minJn and i(n) = maxJn,

where
Jn = {1 ≤ i ≤ n : B(x, r) ∩ S(x0, λn,i) 6= ∅}.

If Jn = ∅ we set i(n) = i(n) = 0. It can be verified that

(9)
λ0

n
(i(n)− i(n)) ≤ 2r +

λ0

n
.

Further, by (5) and the construction of the measure µn,i we have

νn(B(x, r)) =
λ0

n

n∑

i=1

µn,i(B(x, r)) =
λ0

n

i(n)∑

i=i(n)

µn,i(B(x, r)).

Now, using (4) and (9) we obtain

(10) νn(B(x, r)) ≤ λ0

n
2krk(i(n)− i(n) + 1) ≤ 2k+1rk+1 +

λ0

n
2k+1rk.

Since (µmn)n≥1 converges weakly to µ∗, by the Alexandrov theorem
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(see [1]) for every η > 0 we have

µ∗(B(x, r)) ≤ µ∗(Bo(x, r + η)) ≤ lim inf
n→∞

µmn(Bo(x, r + η))

≤ lim inf
n→∞

νmn(B(x, r + η))
νmn(X)

.

Consequently, by (10) and the choice of the subsequence (mn)n≥1 we have

µ∗(B(x, r)) ≤ 2k+1a−1(r + η)k+1,

and since η > 0 was arbitrary, we obtain µ∗(B(x, r)) ≤ 2k+1a−1rk+1. Keep-
ing in mind the definition of µ we obtain µ(B(x, r)) ≤ rk+1. Since x ∈ X
and r > 0 were arbitrary, the proof is complete.

Proposition 6. Let X be a locally compact , separable metric space.
Then there exists a measure µ∗ ∈ M1(X) such that

dimL µ∗ ≥ dimTX.

Proof. We can assume that X 6= ∅. Set d = dimTX. By Proposition 5
there exists a measure µ ∈ M≤1(X) such that µ(B(x, r)) ≤ rd for every
x ∈ X and r > 0. Define µ∗ = µ/µ(X). Clearly µ∗ ∈ M1(X) and

µ∗(B(x, r)) ≤ (µ(X))−1rd for every x ∈ X and r > 0.

Hence Qµ∗(r) ≤ (µ(X))−1rd for r > 0 and consequently

dimL µ∗ = lim inf
r→0

lnQµ∗(r)
ln r

≥ lim inf
r→0

d ln r − lnµ(X)
ln r

= d.

As a consequence of Proposition 6 we immediately obtain

Corollary 7. Let X be as in Proposition 6. Then

dimL X ≥ dimTX.

Corollary 8 (Szpilrajn [11]). Let X be as above. Then

dimHX ≥ dimTX.

Proof. From the inequality dimH X ≥ dimH µ for every µ ∈ M1(X),
Proposition 4 and the definition of the concentration dimension of X it
follows that dimH X ≥ dimLX. From this and Corollary 7 the statement
follows.

Theorem 9. Let X be a locally compact , separable metric space. Then

dimTX = inf{dimLX
′ : X ′ is homeomorphic to X}.

Proof. Set d = dimTX. We can assume that d < ∞. By Proposition 6
for every X ′ homeomorphic to X, we have

(11) dimLX
′ ≥ d.
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On the other hand, it follows from [6, Theorem VII.5] that if we let X ′ range
over all the spaces homeomorphic to X, then

(12) inf{dimH X
′} = d.

The assertion now follows from Corollary 4 and relations (11) and (12).
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