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Sets with doubleton sections,
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Abstract. A Borel subset of the unit square whose vertical and horizontal sections
are two-point sets admits a natural group action. We exploit this to discuss some questions
about Borel subsets of the unit square on which every function is a sum of functions of the
coordinates. Connection with probability measures with prescribed marginals and some
function algebra questions is discussed.

Introduction. Given non-empty sets X and Y , a subset of X × Y is
called a matching if it is the graph of a one-to-one map of X onto Y . The
question as to which subsets S of X × Y contain a matching has been of
combinatorial and set-theoretic interest [12]. By a theorem of D. König [11],
if each section Sx = {y ∈ Y : (x, y) ∈ S}, x ∈ X, and Sy = {x ∈ X :
(x, y) ∈ S}, y ∈ Y , consists of exactly n elements (n finite; for infinite n see
[8]), then S contains a matching. In particular, if each section Sx, x ∈ X, and
Sy, y ∈ Y , is a doubleton then S contains a matching. A natural question,
whether a Borel subset S of [0, 1]× [0, 1] with doubleton sections contains a
matching which is a Borel set, was settled in the negative by M. Laczkovich
[12].

Call a subset S ⊂ X × Y good if every complex-valued function f on S
is of the form

f(x, y) = u(x) + v(y), (x, y) ∈ S,(1)

where u and v are functions on X and Y respectively. Such sets occur in
connection with some problems in ergodic theory and have a description [3].
It turns out that some very natural questions about good Borel sets have
their answers in the facts about Borel sets with doubleton sections and one
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of the purposes of this paper is to exhibit this connection. Ergodic theory
intertwines the discussion and partly the paper continues the theme of [10].

In Section 1 we give the preliminaries and some crucial examples. Some
basic facts about sets with doubleton sections are discussed in Section 2 while
good sets are discussed similarly in Section 3. In Section 4 some natural
questions about good Borel sets are answered, nearly fully, partly using
results of Section 2. In Section 5 we define sequentially good measures and
show that such measures admit good Borel sets as support.

After this paper was written, K. P. S. Bhaskara Rao pointed out to
us that this work is connected with some old as well as recent literature
on extreme points of doubly stochastic probability measures with the same
marginals. Indeed, among other things, our discussion inadvertently isolates
and articulates the set-theoretic content of some of this work, especially,
in the basic note of J. Lindenstrauss [13] and the papers of V. Beneš and
J. Štěpán [1, 2], J. Štěpán [20] and there is some overlap with the work
of K. Hestir and S. Williams [7]. We also mention papers [4] and [18] with
reference to doubly stochastic matrices and the beginnings by Birkhoff and
von Neumann. Section 6 discusses this connection briefly. Further, M. H.
Vasavada brought to our notice some literature on the question of the density
of a sum of two function algebras, especially the papers of D. Marshall and
A. O’Farrell [15, 16] which are relevant to the theme of this paper. This is
discussed in Section 6 as well.

The notion of loopfree subsets of R2 is central in these papers as it
is in this paper, but it is not explicated that these sets are precisely the
good sets in our sense and that they coincide with sequentially good sets
(see 3.3). This observation at set-theoretic level simplifies some proofs based
on measure-theoretic estimates and allows an improved Borel-set-theoretic
analysis. Finally, for Borel sets with doubleton sections, apart from Theo-
rem 4.8, we are able to complete some discussions of [16, pp. 358–361], [1,
pp. 39–41] (see 6.5, 6.6).

It is a pleasure to acknowledge referee’s suggestions, and discussions with
K. P. S. Bhaskara Rao, which led to considerable improvement of the paper.

1. Notation and preliminaries

1.1. Let X and Y be non-empty sets and S ⊂ X × Y . For x ∈ X and
y ∈ Y , the sets

Sx = {(x, y) : (x, y) ∈ S}, Sy = {(x, y) : (x, y) ∈ S}
are called x- and y-sections of S respectively. This definition of sections
differs from the usual one (used above to state König’s theorem) and will be
more convenient for our purpose. Let πX and πY denote the usual projections
from X × Y onto the spaces X and Y respectively.
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Note that S ⊂ X × Y contains a matching if and only if there exist
one-to-one maps f : πX(S)→ πY (S) and g : πY (S)→ πX(S) whose graphs
are contained in S. The “only if” part of this statement is clear. For the “if”
part, the result follows from the standard proofs of the Schröder–Bernstein
theorem ([19, p. 5]). Let Π be a partition of a set S. The equivalence relation
defined by Π will also be denoted by Π, so it is clear what is meant when we
write xΠx′ or Π ⊂ S×S. A subset C of S which intersects each member of
Π in exactly one point is called a cross-section of Π (or of the equivalence
classes of Π). Suppose S ⊂ X × Y with πX(S) = X and πY (S) = Y . Then
the collections {Sx : x ∈ X} and {Sy : y ∈ Y } are partitions of S and
any set C ⊂ S which is simultaneously a cross-section of {Sx : x ∈ X} and
{Sy : y ∈ Y } is a matching of S.

We say that S has doubleton sections if all sections Sx and Sy are two-
point sets. We give below some examples of such sets relevant to the paper.

1.2. Example. The circumference S of the circle with center (1/2, 1/2)
and radius 1/2 together with corner points (0, 0) and (1, 1) is contained in
[0, 1]× [0, 1] and has doubleton sections.

1.3. Example. Let X = Y = Z. The zig-zag set

S = {(n, n− 1) : n ∈ Z} ∪ {(n, n) : n ∈ Z} ⊂ Z× Z
has doubleton sections.

1.4. Examples. (i) ([2]) Let 0 < θ < 1. Let L, M , N respectively be
the line segments in [0, 1]× [0, 1] joining (θ, 0) to (1, 1− θ), (0, 0) to (1, 1),
(0, 1 − θ) to (θ, 1), and let R be the union of L, M , N . In order to ensure
that each section is a doubleton we require that L contains (θ, 0) but not
(1, 1− θ), M contains (0, 0) but not (1, 1), and N contains (0, 1− θ) but not
(θ, 1). Thus S = R \ {(θ, 1), (1, 1 − θ), (1, 1)} ⊂ [0, 1) × [0, 1) is a set with
doubleton sections. (See Figure 1.)
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(ii) More generally one can replace N ∪ L in the above example by the
graph G of an invertible (Lebesgue) measure preserving uniquely ergodic
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transformation T on [0, 1) with the property that Tx 6= x for any x. One
can define a natural probability measure on M ∪ G whose marginals are
Lebesgue.

1.5. Example ([12]). Let 0 < u < 1/2, and let R denote the boundary
of the rectangle with vertices A0(1, 1−u), A1(1−u, 1), A2(0, u), and A3(u, 0).
Let S = R ∪ {(0, 0), (1, 1)}. (See Figure 2.) Then S ⊂ [0, 1] × [0, 1] is a set
with doubleton sections.
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1.6. The set S of Example 1.3 is good (as defined in the introduction).
To see this, fix any complex-valued function f on S. If we put u(0) = c,
where c is an arbitrary constant, then v(0) = f(0, 0) − c. Having defined
v(0), we see that u(1) = f(1, 0)−v(0) and v(1) = f(1, 1)−u(1). Proceeding
thus we see that u and v are uniquely defined as soon as we fix the value
of u(0). We shall see later that sets S of Examples 1.4 and 1.5 are good if θ
and u are irrational, and the one in Example 1.2 is not.

1.7. Now assume that X and Y are Polish spaces and S ⊂ X×Y Borel.
Several natural questions arise. Suppose S admits a matching as is the case,
for example, when S has doubleton sections. Is it then true that S admits a
Borel matching? Or assume that S is good. Is it then true that in formula
(1), u and v can be chosen to be Borel whenever f is Borel? Later we shall
study these problems systematically.

We close this section by giving some descriptive-set-theoretic results that
will be needed. Concepts and notation used from descriptive set theory are
standard and we refer the reader to [9] or [19] for this. For a metrizable
space X, BX will denote its Borel σ-algebra. A partition Π of X into Borel
sets is said to be countably generated if there exist Borel sets {Bn : n ∈ N}
such that for every x, x′ in X,

xΠx′ ⇔ ∀n (x ∈ Bn ⇔ x′ ∈ Bn);

equivalently, Π is induced by a Borel map f : X → [0, 1]. Such partitions
are easily seen to be Borel, i.e., Π ∈ BX×X . We shall need the following
results on the existence of a Borel cross-section of partitions into Borel sets.



Sets with doubleton sections 137

1.8. Theorem (Lusin, [19, p. 205]). Let X, Y be standard Borel spaces
and let B ⊂ X×Y be a Borel set. Suppose Bx is countable for every x ∈ X.
Then πX(B) is Borel and there is a Borel map f : πX(B)→ Y whose graph
is contained in B.

1.9. Corollary. Let X, Y be standard Borel spaces and f : X → Y a
countable-to-one Borel map. Then f(X) is Borel.

1.10. Corollary. Let X be a standard Borel space and Π a Borel par-
tition of X with each member of the partition countable. Then Π is countably
generated if and only if Π admits a Borel cross-section.

Proof. Suppose Π is countably generated. Then there is a Borel map
f : X → [0, 1] inducing Π. The set

S = {(t, x) ∈ [0, 1]×X : f(x) = t}
is Borel and St is countable for all t. By Lusin’s theorem (1.8), we get a
Borel map s : f(X)→ X whose graph is contained in S. The set

C = {x ∈ X : s(f(x)) = x}
is a Borel cross-section of Π. Conversely, suppose Π admits a Borel cross
section, say B. Then f defined by

f(x) = b ⇔ xΠb, b ∈ B,
is Borel measurable since the graph of f is π−1

Y (B) ∩ Π, which is a Borel
set. (A function is Borel measurable if and only if its graph is.) Clearly Π is
induced by f , hence countably generated. (Note that this part of the proof
does not require the partition elements to be countable.)

1.11. Theorem (Novikov, [19, p. 204]). Let Π be a Borel partition of
a standard Borel space X with each member of Π compact. Then Π admits
a Borel cross-section, hence is countably generated. In particular, if each
member of Π is finite then Π admits a Borel cross-section.

1.12. Theorem. Let X, Y be Polish spaces and S ⊂ X ×Y a Borel set
with sections Sx countable. Then the set

U = {x ∈ X : Sx is a singleton}
is Borel.

Proof. Write S =
⋃
nGn, where Gn’s are pairwise disjoint and graphs

of functions from Borel subsets of X to Y ([19, p. 210]). It is easily checked
that

U =
⋃

n

[
πX(Gn) \

⋃

m6=n
πX(Gm)

]
.

This completes the proof.
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2. Sets with doubleton sections

2.1. Let X and Y be Polish spaces and S ⊂ X × Y be a Borel set with
doubleton sections. For each (x, y) ∈ S there exists a unique (x, y′) ∈ S with
y 6= y′ and also there exists a unique (x′, y) ∈ S with x 6= x′. For such an
S the maps v : (x, y) 7→ (x, y′) and h : (x, y) 7→ (x′, y) are Borel measurable
bijections on S with h2 = v2 = e, where e denotes the identity map on S.

Let G be the (non-abelian) group generated by v and h and let G0 be
the cyclic subgroup of G generated by hv. Label the members of G as

. . . , g−2n = (vh)n, g−2n+1 = h(vh)n−1, . . . , g−1 = h, g0 = e,

g1 = v, g2 = hv, . . . , g2n = (hv)n, g2n+1 = v(hv)n, . . .

The subgroup G0 is the set of elements of this group with even subscripts.
It is an abelian normal subgroup of G and admits only two cosets, namely,
G0 and

vG0 = G0v = hG0 = G0h = {g2n+1 : n ∈ Z}.
For any (x, y) ∈ S, the G-orbit G(x, y) of (x, y) is a union of two G0-orbits:

G(x, y) = G0(x, y) ∪G0(v(x, y)).

If C is a set which meets each G-orbit in exactly one point, then C ∪ vC is
a set which meets each G0-orbit in exactly one point. Thus, if the orbits of
G in S admit a Borel cross-section, say C, then the orbits of G0 in S admit
a Borel-cross section C ∪ vC. On the other hand, if the orbits of G0 in S
admit a Borel cross-section, say C, then C intersects each G-orbit in exactly
two points. By 1.11, this partition of C admits a Borel cross-section, say D.
Then D is a Borel cross-section of G-orbits in S. Thus the partition of S
into G-orbits admits a Borel cross-section if and only if the partition of S
into G0-orbits does.

2.2. If M is a matching (not necessarily Borel), then clearly

M ∩ hM = M ∩ vM = ∅, while M ∪ hM = M ∪ vM = S.

Any M satisfying these conditions is a matching. This is equivalent to saying
that a set M is a matching for S if and only if M is G0-invariant and

M ∩ hM = ∅, M ∪ hM = S.(2)

Clearly M is a Borel matching if and only if M is a G0-invariant Borel set
satisfying (2).

If, using the axiom of choice, we select a cross-section C of the G-orbits,
then M =

⋃
g∈G0

gC is a G0-invariant set satisfying (2), so that M is a
matching for S. So a matching M always exists, but it need not be Borel. If
the partition of S into G-orbits admits a Borel cross-section C then clearly
M is a Borel matching. In particular, if each G-orbit is a finite set, or more
generally, if the partition into G-orbits is countably generated, then we know
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from 1.10 that the G-orbits admit a Borel cross-section, so in this case S
admits a Borel matching.

2.3. The condition that the partition of S into G-orbits admits a Borel
cross-section, or equivalently, that the partition is countably generated, is
not necessary for the existence of a Borel matching. To see this consider the
set S of Example 1.4 with θ irrational. The G-orbits of points in S are count-
able and they induce a partition on M consisting of the orbits of the map

Θ : (x, x) 7→ (x+ θ (mod 1), x+ θ (mod 1)).

Since θ is irrational, this is the Vitali partition of M and so it does not
admit a Borel cross-section ([19, 3.4.18]), hence the partition of S into G-
orbits does not admit a Borel cross-section. However, the diagonal M is a
Borel matching for S.

2.4. A probability measure m on S is called G-quasi-invariant if m(A)
= 0 implies that m(gA) = 0 for all g ∈ G. Further, we say that G acts
ergodically with respect to m (or m is ergodic under G) if for any G-invariant
Borel set A, either m(A) = 0 or m(S \A) = 0. If S admits a Borel matching,
say M , then, since (2) is satisfied, for any G-quasi-invariant measure m we
have m(M) > 0, m(S \M) > 0, and since M is G0-invariant, m cannot be
G0-ergodic. We have proved: if S admits a Borel matching then no G-quasi-
invariant probability measure can be ergodic under the G0-action.

We do not know if the converse of this holds. However this allows us to
exhibit an example, due to Laczkovich [12], of a Borel set S with doubleton
sections which does not admit a Borel matching. Indeed, the set S of 1.5 with
u irrational does not admit a Borel matching: the measure µ which agrees
with the normalized linear measure on R and gives zero mass to singletons
(0, 0), (1, 1) is ergodic under the action of G0, since, as proved in [12], this
action is conjugate to the action z 7→ e2πiuz on the circle group.

2.5. Although the set S above does not admit a Borel matching, one
can use an argument as in Rokhlin’s lemma to show that given ε > 0, there
exists a Borel set M ⊂ S such that M∩hM = M∩vM = ∅ and µ(M∪hM),
µ(M ∪ vM) > 1− ε, i.e., one can obtain an approximate Borel matching of
size as large as one wishes.

2.6. We note that in Examples 1.4(i), (ii) the G-action is uniquely er-
godic but the G0-action is not uniquely ergodic, there being two ergodic
components (with respect to G0), while in Example 1.5 the G0-action is
uniquely ergodic. This phenomenon holds in general. More precisely, if S
is a good Borel set in the unit square with doubleton sections, and if the
G-action is uniquely ergodic and measure preserving with respect to an
atomfree probability measure m, then either the G0-action admits exactly
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two ergodic components or the G0-action is uniquely ergodic. Further it is
easy to show that in the first case the G0-action is conjugate to the G0-action
on the set S described in 1.4(ii), for a suitable T . Thus, when the G0-action
admits two ergodic components we have a complete description of the G- as
well as G0-actions. We do not know a similar description when the G0-action
is uniquely ergodic.

2.7. Remark. Let n ≥ 2 be an integer. Divide the rectangle [0, n]×[0, n]
into n2 rectangles of equal size. Fix an irrational u, 0 < u < 1/2. In each of
these rectangles construct a rectangle R as described in 1.5. Call this set T .
(Figure 3 shows T for n = 2.) Remove from T the linked component (see the
next section for the definition) of each of the corners (e.g., A0, A1, . . . , A15
in Fig. 3) of the rectangles. Call the set so obtained S. Set X = π[0,n](S).
Then X is cocountable in [0, n] and S ⊂ X×X is a Borel set whose sections
Sx, x ∈ X, and Sy, y ∈ X, are of cardinality 2n. So S admits a matching.
But it does not admit a Borel matching. To see this, one first notes that if S
has a Borel matching, so does T . Finally one constructs a Borel matching of
T ∩ ([0, 1]× [0, 1]) from that of T . This is not possible as has been observed
earlier. It is an open question whether a similar set exists for odd integers. In
particular it is not known whether there exists a Borel set S ⊂ [0, 1]× [0, 1],
not admitting a Borel matching, and such that the sections Sx, Sy are of
cardinality 3.
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3. Good sets

3.1. Definition. Let S ⊂ X×Y . Two arbitrary points (x, y), (z, w) in
S ⊆ X × Y (S is not necessarily good) are said to be linked (and we write
(x, y)L(z, w)) if there exists a finite sequence of points (x1, y1), (x2, y2), . . . ,
(xn, yn) in S (called a link of length n joining (x, y) to (z, w)) such that
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(i) (x1, y1) = (x, y), (xn, yn) = (z, w);
(ii) for any 1 ≤ i ≤ n− 1 exactly one of the following equalities holds:

xi = xi+1, yi = yi+1;

(iii) for any i, 1 ≤ i ≤ n − 2, it is not possible to have xi = xi+1 = xi+2
or yi = yi+1 = yi+2.

The relation L is an equivalence relation, as can be verified, and has
appeared earlier [16, 8]. An equivalence class of L is called a linked component
of S. If (x, y) ∈ S, then the equivalence class to which (x, y) belongs is called
the linked component of (x, y). Two points (x, y), (z, w) ∈ S are said to be
uniquely linked if there is a unique link joining (x, y) to (z, w). A linked
component of S ⊆ X × Y is said to be uniquely linked if any two points
in it are uniquely linked. If (x0, y0), . . . , (xn, yn) is the unique link joining
(x0, y0) to (xn, yn), then we say that (xn, yn) is at a distance n from (x0, y0).
By a trivial link joining (x, y) to itself we mean the link consisting of the
singleton {(x, y)}. A non-trivial link joining (x, y) to itself is called a loop.
It is easy to see that a linked component is uniquely linked if and only if it
has no loops. If a set S admits a loop then it contains a loop of smallest
length which is necessarily odd.

3.2. Theorem. A subset S ⊂ X × Y is good if and only if each of its
linked components is uniquely linked.

Proof. If linked components are not uniquely linked then S admits a loop
(x0, y0), (x1, y1), . . . , (x2n, y2n) = (x0, y0). It is easy to see that if f : S → C
can be written in the form u(x) + v(y) then

f(x0, y0)− f(x1, y1) + · · ·+ f(x2n−1, y2n−1) = 0.

Since not every function f : S → C satisfies this, S is not good.
In order to prove the “if” part we may assume that S consists of only one

uniquely linked component. Let f : S → C be arbitrary. Fix (x0, y0) ∈ S,
and let (x0, y0), (x1, y1), . . . , (xn, yn) = (x, y) be the link joining (x0, y0)
to a point (x, y) ∈ S. Starting with u(x0) = c it is easy to see how to
define u(xn), v(xn) (see 1.6) so that u(x) + v(y) = f(x, y). Since S has no
loops, u(x) and v(y) are well defined for all (x, y) ∈ S and they satisfy
f(x, y) = u(x) + v(y).

Remark. For a function f on a good set S one can write down for-
mulas for u and v which satisfy (1). Let C be a cross-section of the linked
components of S and let a generic point (x, y) ∈ S be linked to a point
(x0, y0) ∈ C by the link (x0, y0), (x1, y1), . . . , (xn, yn) (= (x, y)). Assume
that this link begins by moving in the vertical direction, so that x0 = x1.
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We define, with n = 2k or 2k + 1,

u(x) = u(xn) =
2k∑

j=0

(−1)jf(xj, yj)− v(y0), v(y) = f(x, y)− u(x),

and note that (1) holds. One can write down similar formulas in case the
link joining (x0, y0) to (xn, yn) begins with the first step in the horizontal
direction, i.e., if x0 6= x1. Outside X \ πXS and Y \ πY S, we can define u, v
arbitrarily.

3.3. Call a set S ⊂ X × Y sequentially good if every complex-valued
function f on S is the pointwise limit of a sequence of functions of the form
un(x) + vn(y), (x, y) ∈ S, n = 1, 2, . . . , with un, vn defined on X and Y
respectively. From the last theorem it is easily observed that a set is good ⇔
it is sequentially good ⇔ each of its finite subsets is good ([10]). Further , if
S has doubleton sections, then S is good whenever each G-orbit is infinite.

4. Good Borel sets

4.1. Assume now that X and Y are Polish spaces and that S ⊂ X × Y
is a Borel set such that every Borel function f on S is of the form (1). Then
S is good, for otherwise S will admit a loop L (a finite set, hence a Borel
set) and we can define a Borel function f on S which cannot be written in
the form f(x, y) = u(x) + v(y) on L, hence on S.

4.2. The following descriptive questions naturally arise concerning a
good Borel set S and its partition Π into linked components.

A) Is Π countably generated?
B) If Π is countably generated, is the quotient σ-algebra on the linked

components standard Borel?
C) If f is a Borel function on S, can one choose functions u and v on X

and Y respectively which satisfy (1) to be Borel measurable?
D) If S is a good set then, as proved in [7, 3], we can write S as a union of

two graphs G and H of functions defined on subsets of X and Y respectively.
Can one choose the graphs G and H to be Borel sets if we know in addition
that S is a Borel set?

4.3. Without the knowledge about Borel sets with doubleton sections
one would be inclined to conjecture that questions A), C) and D) have
affirmative answers, but all the questions above have negative answers.

(i) For question A) we look at Example 1.4 with θ irrational. The linked
components of S are uniquely linked and they form orbits of the action of
G on S. The partition induced by the linked components on the diagonal
M = {(x, x) : 0 ≤ x < 1} is the Vitali partition, which is not countably
generated. So Π is not countably generated.
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(ii) For question B), let S be the graph of a Borel function from X to
Y whose image is analytic but not Borel. Then the quotient Borel structure
on the partition Π into linked components of S is isomorphic to the Borel
structure on πY (S). So it is countably generated, but is not standard Borel.
It would be interesting to construct such an example with πX(S), πY (S)
Borel.

(iii) For question C) we revert to the set S of Example 1.4 with θ ir-
rational and take f = IM , where IM is the indicator function of M . As-
sume that u and v are functions on [0, 1) satisfying (1). We show that u,
hence v, cannot be Borel measurable. Fix (x0, y0) (= (x0, x0)) ∈M and let
(xk, yk) = gk(x0, y0), where gk is as defined in 2.1. Note that f(xk, yk) = 0
or 1, depending on whether k is odd or even. Note that for k ≥ 0, x2k = x2k+1
and

u(x2k) =
2k∑

j=0

(−1)j1M (xj , yj)− v(y0) = k + 1− v(y0).

For k < 0, x2k = x2k+1, and

u(x2k+1) = u(x2k) =
−2k−1∑

j=1

(−1)j+11M (x−j, y−j) = k + 1− v(y0).

The set {x2k : k ∈ Z} is the orbit of x0 under the map

Θ : x 7→ x+ θ (mod 1).

The map k 7→ u(x2k) is strictly increasing and has range Z − v(y0). The
inverse image u−1([0, 1)) intersects each Θ-orbit in exactly one point, whence
it is a cross-section of the Vitali partition, consequently not a Borel set. So
u cannot be Borel measurable.

The proof in fact shows that if S is a good set with doubleton sections,
admitting a Borel matching M , and such that the partition into linked com-
ponents is not countably generated, then u and v for IM cannot be chosen
to be Borel functions.

(iv) To answer question D) in the negative, let S be the Laczkovich set
(see 1.5) with u irrational. Since u is irrational, each G-orbit (hence each
linked component of S) is of infinite cardinality, so S ⊂ [0, 1]×[0, 1] is a good
Borel set. Suppose S = G∪H, a union of graphs of Borel functions on Borel
subsets of X and Y respectively. Note that πX(H) = X and πY (G) = Y .
Write

G1 = {(x, y) ∈ G : h(x, y) ∈ G},
G2 = {(x, y) ∈ G1 : πX(x, y) < πXh(x, y)}, G3 = G \ hG2.

Note that πY (G3) = πY (G) = Y , and G3 is the graph of a one-to-one
function on Y . Thus, there exists a one-to-one Borel map f : Y → X whose
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graph is contained in S. By symmetry, there also exists a one-to-one Borel
map g : X → Y whose graph is contained in S. From standard proofs of
the Schröder–Bernstein theorem ([19, p. 5]), it follows that S admits a Borel
matching and this is a contradiction.

Remark. That it may not always be possible to choose these graphs
to be Borel measurable follows (among other things) from an example of
V. Losert [14] (see [1, 20]). However the above example is simpler.

4.4. We will now show that if the linked components of a good Borel
set S admit a Borel cross-section, then the questions A), B), C) and D)
above have positive answers (see also [7]). However, before proving this, it is
necessary to give the partition Π of linked and uniquely linked components
a careful look.

Let S ⊂ X × Y be a Borel set (not necessarily good). Let

Sn = {((x1, y1), . . . , (xn, yn)) : (xi, yi) ∈ S, 1 ≤ i ≤ n}.
Define πi : Sn → S, 1 ≤ i ≤ n, by

πi((x1, y1), . . . , (xn, yn)) = (xi, yi).

An element
s = ((x1, y1), . . . , (xn, yn)) ∈ Sn

is a link joining (x1, y1) to (xn, yn) with x1 = x2 if and only if finitely many
conditions of the form

πXπ1(s) = πXπ2(s), πY π1(s) 6= πY π2(s),

πXπ2(s) 6= πXπ3(s), πY π2(s) = πY π3(s), . . .

are satisfied. Similarly, we can describe the set of all links s of length n with
y1 = y2.

Thus the set Qn of points ((x1, y1), . . . , (xn, yn)) in Sn which form a
link in S is a Borel subset of Sn. The set Qn of all pairs ((x1, y1), (xn, yn))
obtained by projecting Qn is therefore an analytic set. It consists of all
pairs ((x, y), (z, w)) such that (x, y) is linked to (z, w) by a path of length
n. The set Π =

⋃∞
n=1Qn, which is the set of all pairs ((x, y), (z, w)) with

(x, y)L(z, w), is therefore an analytic set. The horizontal and vertical sec-
tions of Π are the linked components of S and they are also analytic sets.

The following example, due to the referee, shows that in general the
partition into linked components need not be a Borel equivalence relation.
LetX = Y = R, and letB ⊂ [0, 1]×[0, 1] be a Borel set such that πX(B) = A
is not Borel. We may assume that (0, 0) ∈ B. We put C = {0} × [0, 1],
D = {(x,−x) : x ∈ [0, 1]}, and S = B ∪C ∪D. The set S is Borel. Let E be
the linked component containing (0, 0). We claim that E ∩D = {(x,−x) :
x ∈ A}. Indeed, if (x,−x) ∈ E∩D then any link (x1, x1), . . . , (xn, yn) joining
(x,−x) to (0, 0) must have (x2, y2) ∈ B, so that x2 = x1 = x ∈ πX(B) = A.



Sets with doubleton sections 145

On the other hand, if x ∈ A then there is a y such that (x, y) ∈ B and then
(0, 0), (0, y), (x, y), (x,−x) is a link joining (0, 0) to (x,−x). Since A is not
Borel, it is clear that E is not Borel either, and then the same is true for Π.
(This answers a question posed in [10, pp. 389–390].)

Now, assume that S is good, or equivalently, uniquely linked. Then the
above projection from Qn to Qn is in fact one-to-one, so that by 1.9, Qn

is Borel. Hence, the equivalence relation Π and all the linked components
of S are Borel. We have proved: if the linked components of S are uniquely
linked , then the equivalence relation L (which is the same as Π) is a Borel
equivalence relation.

Let S be a good Borel set and assume further that the partition Π of
S admits a Borel cross-section, say C. The function f : S → C given by
f(x) = c whenever xΠc, c ∈ C, is Borel (see 1.10), it induces the partition
Π and the quotient σ-algebra on Π is isomorphic to the σ-algebra on C, by
a result of Blackwell and Mackey ([19, 4.5.10]). Thus questions A) and B)
have affirmative answers if Π admits a Borel cross-section.

4.5. We continue with the assumption that the linked components of
the Borel measurable S are uniquely linked and that they admit a Borel
cross-section C. The maps πX and πY are one-to-one on C. The set

Rn = {((x1, y1), . . . , (xn, yn)) ∈ Qn : (x1, y1) ∈ C} = π−1
1 (C) ∩Qn

is a Borel set. Since linked components are uniquely linked, the projection
πn is one-to-one on Rn. Therefore the set Cn = πnRn is Borel and consists
of points (z, w) ∈ S which are joined to some point in C (which is unique)
by a path of length n. Clearly S =

⋃∞
n=1Cn, the union being disjoint,

and C1 = C.
Given (xn, yn) ∈ Cn, there is a unique (x1, y1) ∈ C in the linked compo-

nent of (xn, yn), so the link ((x1, y1), . . . , (xn, yn)) is uniquely determined.
Hence the map Bn−1 : (xn, yn) 7→ (xn−1, yn−1) is well defined and Borel
from Cn into Cn−1. Indeed Bn−1 = πn−1 ◦ π−1

n |Cn. (Here πn is restricted
to Rn and π−1

n is considered from Cn to Rn.) More generally, the maps
Bn−i : Cn 7→ Cn−i given by (xn, yn) 7→ (xn−i, yn−i), 1 ≤ i ≤ n, are Borel
measurable.

4.6. Now let f be a complex-valued Borel function on S. Let v be an
arbitrary complex-valued Borel function on πY C. Then the formulas for u
and v given in 3.2 can be expressed in terms of f , v|πXC and the maps Bk,
and so they are Borel measurable. We have proved [7, 10]:

Theorem. If S is a good Borel set and the linked components admit a
Borel cross-section then we can write every complex-valued Borel function
f on S in the form (1) with u, v Borel measurable.

Similarly one can prove:
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4.7. Theorem. If S is a good Borel set and the partition into linked
components admits a Borel cross-section, then S can be expressed as a union
of two Borel measurable graphs G and H, G being the graph of a Borel
function defined on a Borel subset of X and H being the graph of a Borel
function defined on a Borel subset of Y .

We do not know whether the conclusion of Theorem 4.6 is valid under the
weaker hypothesis that the linked components are countably generated. If
the linked components are the orbits of a continuous action of a Polish group
then the answer is affirmative in the light of a theorem of Burgess ([19, 5.6]),
according to which such group actions admit a Borel cross-section whenever
the partition into orbits is countably generated. On the other hand, it seems
plausible that the conclusion of Theorem 4.6 fails if the linked components
are not countably generated. We show this for Borel sets with doubleton
sections. In other words we prove:

4.8. Theorem. Let S ⊂ X × Y be a good Borel set with doubleton
sections such that its partition Π into G-orbits is not countably generated.
Then there is a Borel set M ⊂ S such that IM cannot be expressed as u(x)+
v(y), (x, y) ∈ S, with u, v Borel measurable. In particular , the Laczkovich
set admits such a set M .

Proof. Recall that G is the countable group generated by v and h and we
have enumerated G in Section 2.1. Also G0 denotes the group generated by
hv. Since S is good there are no loops, and since the G-orbits are precisely
the linked components, we see that the G-action is free in the sense that
g(x, y) = (x, y) only if g = e. Now, adapting the method of Glimm and
Effros ([17, 21]), one can construct a Borel set D ⊂ S such that

(i) Π ∩D is not countably generated,
(ii) for any (x, y) ∈ D, g2k(x, y) ∈ D for infinitely many positive and

infinitely many negative k,
(iii) for any (x, y) ∈ D, g2k+1(x, y) 6∈ D for any k. (See Theorem 4.10.)

The Borel set M =
⋃
g∈G gD has doubleton sections and admits a Borel

matching given by
⋃
g∈G0

gD. To see this, it is enough to verify that

M ∪ hM = M ∪ vM =
⋃

g∈G
gD, M ∩ hM = M ∩ vM = ∅,

which is easily done. Moreover, by property (i) of D, the partition of⋃
g∈G gD into linked components is not countably generated. So, as in the

solution of question C) above, the function IM cannot be expressed as u+ v
with u, v Borel. This proves the theorem.

Remark. Since the linked components of a Borel set with doubleton
sections are countable, by 1.10, they admit a Borel cross-section whenever
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they are countably generated. In such a case, by 4.6, u,v can be chosen
to be Borel measurable for Borel measurable f . Thus, for Borel sets with
doubleton sections we can choose u and v to be Borel measurable for Borel
f if and only if the linked components are countably generated.

4.9. It remains to show that under the hypothesis of Theorem 4.8 a set
D with the required properties can be constructed. By a theorem of Ramsay
and Mackey ([21], [17, Chapter 8], [19, Section 3.2]), we can give S a Polish
topology which generates the σ-algebra BS and for which each g ∈ G is a
homeomorphism. A point (x, y) ∈ S is called recurrent if there exist gn ∈ G,
n = 1, 2, . . . , such that for all n, gn(x, y) 6= (x, y) but gn(x, y) → (x, y).
A result of B. Weiss ([21], [18, Chapter 9]) states that if a countable group
of homeomorphisms on a Polish space does not admit a recurrent point then
the partition into G-orbits admits a Borel cross-section. We will use this fact
in the proof of the next theorem.

4.10. Theorem. Let S ⊂ X × Y be a good Borel set with doubleton
sections such that the partition Π into G-orbits does not admit a Borel
cross-section. Then there exists a Borel set D ⊂ S such that for all (x, y) ∈
D, g2k(x, y) ∈ D for infinitely many positive k and for infinitely many
negative k, while g2k+1(x, y) 6∈ D for all k. Further Π ∩D is not countably
generated.

Proof. We give S a Polish topology as in 4.9. Since the G-orbits do not
admit a Borel cross-section, we know that the G0-orbits do not admit a Borel
cross-section. Hence there is an (x0, y0) ∈ S which is a recurrent point for
the G0-action. For a set A ⊂ S, and (x, y) ∈ A, we say that (x, y) is of even
index relative to A if the smallest positive integer n such that gn(x, y) ∈ A
is even. Note that if every (x, y) ∈ A is of even index then for all (x, y) ∈ A
the integers n ∈ Z such that gn(x, y) ∈ A are even.

We will construct a Cantor-like Borel set D ⊂ S each of whose points has
even index. Moreover the partition Π ∩D will not be countably generated.
We construct inductively Borel sets C(1) ⊃ C(2) ⊃ . . . ⊃ C(k) ⊃ . . . such
that their intersection, say C, when modified by a countable set, will be our
set D.

Let (x0, y0) be a recurrent point for τ := hv. Let N(0) be a neighbour-
hood of (x0, y0) such that (a) the closures of N(0), hN(0), vN(0), hvN(0),
vhvN(0) are pairwise disjoint, (b) the diameters of all these sets are less
than 1. Write N(1) = hvN(0) and let n(0) = 1. Let n(1) > 1 be the first
integer such that τn(1)(x0, y0) ∈ N(0). Since (x0, y0) is a recurrent point,
such an integer exists. Let N(0, 0) be a neighbourhood of (x0, y0) such that
(a) the closures of N(0, 0) and τn(1)N(0, 0) are contained in N(0), (b) the
closures of the open sets {gi(N(0, 0)) : 0 ≤ i ≤ 4n(1)} are pairwise disjoint,
(c) the diameters of {gi(N(0, 0)) : 1 ≤ i ≤ 4n(1) + 2} are less than 1/2.
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Define

N(0, 1) = τn(1)N(0, 0), N(1, 0) = hvN(0, 0),

N(1, 1) = hvτn(1)N(0, 0) = τn(1)+1N(0, 0).

Note that the closures of N(1, 0), N(1, 1) are contained in N(1).
Write

C(1) = N(0) ∪N(1),

C(2) = N(0, 0) ∪N(0, 1) ∪N(1, 0) ∪N(1, 1) ⊂ C(1).

Now vN(0, 0) is disjoint from C(1), hence from C(2), and since hvN(0, 0) =
N(1, 0), the index of any point in N(0, 0) with respect to C(2) is 2, which
is even. Since

vhvN(0, 0), hvhvN(0, 0), . . . , v(hv)(n(1)−1)N(0, 0)

are disjoint from each N(i, j), while

(hv)n(1)−1hvN(0, 0) = (hv)n(1)N(0, 0) = N(0, 1),

we see that the index of any point in N(1, 0) with respect to C(2) is 2n(1),
which is even. Since vN(0, 1) is disjoint from C(1), hence from C(2), while
hvN(0, 1) = N(1, 1), we see that the index of any point in N(0, 1) with
respect to C(2) is 2, which is even. Thus the index of any point in N(0, 0)∪
N(0, 1) ∪N(1, 0) with respect to C(2) is even.

Suppose for a positive integer k ≥ 1 we have chosen integers n(1) < . . . <
n(k) with n(j) > n(1) + . . . + n(j − 1), and suppose further that for each
positive integer p ≤ k and each p-term sequence (ε1, . . . , εp) of zeros and ones
we have chosen open sets N(ε1, . . . , εp) satisfying (x0, y0) ∈ N(0, . . . , 0p) and
the following six conditions:

(1) N(ε1, . . . , εp) ∩N(ε′1, . . . , ε
′
p) = ∅ if (ε1, . . . , εp) 6= (ε′1, . . . , ε

′
p).

(2) clN(ε1, . . . , εp+1) ⊂ N(ε1, . . . , εp), where cl is the closure operator.
(3) diamN(ε1, . . . , εp) < 1/p.
(4) If i1, . . . , il are the places where 1 occurs in (ε1, . . . , εp), then

N(ε1, . . . , εp) = τn(i1)+...+n(il)N(0, . . . , 0p)

where 0p indicates that the length of the sequence of zeros is p.
(5) The closures of the sets giN(0, . . . , 0p), 0 ≤ i ≤ 4n(p), are pairwise

disjoint.
(6) If Cp =

⋃
N(ε1, . . . , εp), where the union is over all p-term sequences

of zeros and ones, then the index of any (x, y) ∈ Cp − N(1, . . . , 1p) with
respect to Cp is even.

Let n(k + 1) be the first positive integer such that

τn(k+1)(x0, y0) ∈ N(0, . . . , 0k).
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From (5) and the fact that n(k) > n(1) + · · ·+ n(k − 1), we see that

n(k + 1) ≥ 2n(k) > n(k) + n(k − 1) + · · ·+ n(1).

Let N(0, . . . , 0k+1) be a neighbourhood (x0, y0) such that the closures of
{giN(0, . . . , 0k+1) : 0 ≤ i ≤ 4n(k + 1)} are pairwise disjoint. The size of
N(0, . . . , 0k+1) can be further reduced, if necessary, to ensure that conditions
(A) and (B) given below are satisfied:

(A) cl(τn(k+1)N(0, . . . , 0k+1)) ⊂ N(0, . . . , 0k).
(B) Define N(0, . . . , 0, 1k+1) = τn(k+1)N(0, . . . , 0k+1). More generally,

let (ε1, . . . , εk+1) be a (k + 1)-tuple of zeros and ones and let j1 < . . . < jl
be the places of 1 in (ε1, . . . , εk+1). Define

N(ε1, . . . , εk+1) = τn(j1)+···+n(jl)N(0, . . . , 0k+1).

We choose N(0, . . . , 0k+1) so that for each N(ε1, . . . , εk+1),

diamN(ε1, . . . , εk+1) < 1/(k + 1).

Note that n(k + 1) and the open sets N(ε1, . . . , εk+1) satisfy:

(I) n(k + 1) > n(1) + · · ·+ n(k).
(II) clN(ε1, . . . , εk+1)⊂N(ε1, . . . , εk). We see this as follows: if εk+1 =0

then

clN(ε1, . . . , εk+1) = cl τn(j1)+···+n(jl)N(0, . . . , 0k+1)

⊂ τn(j1)+···+n(jl)N(0, . . . , 0k) = N(ε1, . . . , εk),

while if εk+1 = 1 and if j1, . . . , jl are the places where 1 occurs in (ε1, . . . , εk),
then

clN(ε1, . . . , εk+1) = cl τn(j1)+···+n(jl)+n(k+1)N(0, . . . , 0k+1)

⊂ τn(j1)+···+n(jl)N(0, . . . , 0k) = N(ε1, . . . , εk).

(III) diamN(ε1, . . . , εk+1) < 1/(k + 1). Further,

N(ε1, . . . , εk+1) ∩N(ε′1, . . . , ε
′
k+1) = ∅

whenever (ε1, . . . , εk+1) 6= (ε′1, . . . , ε
′
k+1).

(IV) If i1, . . . , il are the places where 1 occurs in (ε1, . . . , εk+1), then

N(ε1, . . . , εk+1) = τn(i1)+···+n(il)N(0, . . . , 0k+1).

(V) The closures of giN(0, . . . , 0k+1), 0 ≤ i ≤ 4n(k + 1), are pairwise
disjoint.

(VI) Let C(k + 1) =
⋃
N(ε1, . . . , εk+1), where the union is taken over

all (k + 1)-tuples of zeros and ones. Let (ε1, . . . , εk+1) 6= (1, . . . , 1k+1) and
let (x, y) ∈ N(ε1, . . . , εk+1). If ε1 = 0, then

N(ε1, . . . , εk+1) ⊂ N(ε1, . . . , εk) ⊂ . . . ⊂ N(0, . . . , 0k) ⊂ N0,
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so that v(x, y) 6∈ Ck+1, while

hvN(ε1, . . . , εk+1) = N(1, . . . , εk+1) ⊂ Ck+1,

so that (x, y) has index 2 (hence even) with respect to Ck+1.

If (x, y) ∈ N(ε1, . . . , εk+1) and if

ε1 = ε2 = . . . = εp = 1, εp+1 = 0, 2 ≤ p+ 1 ≤ k + 1,

then the closures of the sets

vτn(1)+···+n(p)N(0, . . . , 0p+1), hvτn(1)+···+n(p)N(0, . . . , 0p+1)

and so on up to the set

vτn(p+1)−1N(0, . . . , 0p+1)

= vτn(p+1)−(n(1)+···+n(p))−1τn(1)+···+n(p)N(0, . . . , 0p+1)

are disjoint from the closure of N(ε′1, . . . , ε
′
p+1) for all (ε′1, . . . , ε

′
p+1), hence

disjoint from Ck+1, while

τn(p+1)−(n(1)+···+n(p))τn(1)+···+n(p)N(0, . . . , 0p+1)

= τn(p+1)N(0, . . . , 0p+1) = N(0, . . . , 0, 1p+1).

Thus

τ (n(p+1)−(n(1)+···+n(p)))N(ε1, . . . , εk+1) = N(0, . . . , 0p, 1p+1, εp+2, . . . , εk+1),

and the above considerations show that the index of any (x, y) ∈ N(ε1, . . .
. . . , εk+1) (where ε1 = 1, . . . , εp = 1, εp+1 = 0, 2 ≤ p + 1 ≤ k + 1) with
respect to C(k + 1) is even, being equal to 2(n(p+ 1)− n(1)− · · · − n(p)).
Now let C =

⋂∞
k=1C(k), which, with induced topology, is homeomorphic to

{0, 1}N. Indeed if (x, y) ∈ C, then there is a unique infinite sequence {εk}∞k=1
of zeros and ones such that {(x, y)} =

⋂∞
k=1N(ε1, . . . , εk), while given any

sequence of {εk}∞k=1 of zeros and ones the set
⋂∞
k=1N(ε1, . . . , εk) is a unique

point of C by the Cantor intersection theorem. Let φ denote the map from
{0, 1}N to C given by

φ({εk}∞k=1) =
∞⋂

k=1

N(ε1, . . . , εk).

For each k,

φ({ε1} × · · · × {εk} × {0, 1} × {0, 1} × · · ·) = C ∩N(ε1, . . . , εk),

so that φ is indeed a homeomorphism. Let E be the countable subset in
{0, 1}N of sequences which eventually terminate in all zeros or all ones. Let
F = {0, 1}N \ E. Let D = C \ φ(E) = φ(F ). We now show that for any
(x, y) ∈ D, gi(x, y) ∈ D for infinitely many i, positive and negative, and
each such i is even. Let {εk}∞k=1 be a sequence of zeros and ones not in E
and let (x, y) = φ(ε1, ε2, . . .), which is in D. Then (x, y) ∈ N(ε1, . . . , εk) for
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every k. If ε1 = 0, then v(x, y) 6∈ C, since it is not in N0, but hv(x, y) ∈
N(1, ε2, . . . , εk) for all k so that hv(x, y) = φ(1, ε2, ε3, . . .) ∈ D and the index
of (x, y) with respect to D is even. Assume now that ε1 = 1 and let p be
the integer such that ε1 = 1, . . . , εp = 1, εp+1 = 0, i.e., p + 1 is the first
integer with εp+1 = 0. Then (x, y) ∈ N(ε1, . . . , εp+1, εp+2, . . . , εn) for every
n ≥ p+ 1. Equivalently,

(x, y) ∈ τn(1)+···+n(p)N(0, . . . , 0p, 0p+1, εp+2, . . . , εn).

Now for all n ≥ p+ 1, the sets

vτn(1)+···+n(p)N(0, . . . , 0p, 0p+1, εp+2, . . . , εn),

hvτn(1)+···+n(p)N(0, . . . , 0p, 0p+1, εp+2, . . . , εn)

and so on up to

vτn(p+1)−1N(0, . . . , 0p, 0p+1, εp+2, . . . , εn)

are disjoint from C, hence also disjoint from D. On the other hand, for all
n ≥ p+ 1,

τn(p+1)N(0, . . . , 0p+1, εp+2, . . . , εn) = N(0, . . . , 0p, 1p+1, εp+2, . . . , εn),

i.e.,

τn(p+1)−(n(1)+···+n(p))τn(1)+···+n(p)N(0, . . . , 0p, 0p+1, εp+2, . . . , εn)

= N(0, . . . , 0p, 1p+1, εp+2, . . . , εn),

i.e.,

τn(p+1)−(n(1)+···+n(p))N(1, . . . , 1p, 0p+1, εp+2, . . . , εn)

= N(0, . . . , 0p, 1p+1, εp+2, . . . , εn).

We thus see that if i < 2(n(p+ 1)− (n(1) + · · ·+ n(p))) then gi(x, y) 6∈ D,
while if i = 2(n(p+ 1)− (n(1) + · · ·+ n(p))) then

gi(x, y) =
∞⋂

n=p+1

N(0, . . . , 0p, 1p+1, εp+2, . . . , εn)

= φ(0, . . . , 0p, 1p+1, εp+2, . . . , εn, . . .) ∈ D,
which shows that the index of (x, y) is even, being equal to 2(n(p + 1) −
(n(1) + · · ·+ n(p))).

Since a point (x, y) ∈ D is φ(ε1, ε2, . . .) for some (ε1, ε2, . . .) ∈ F , and
since zeros and ones occur infinitely often in this sequence, we see that there
are infinitely many even positive integers i with gi(x, y) ∈ D. Further there
are no odd i with this property. Indeed, if ε1 = 0 then the index of (x, y) is
2n(1), while if ε1 = 1, then the index of (x, y) is 2(n(p+ 1)− n(1)− n(2)−
· · · − n(p)), where p is the first integer with εp+1 = 0. Since every point in
D is the image of a point in D ∩ N(0, . . . , 0n) under a suitable power of τ
(which depends on n), we see that gk(x, y) ∈ D for infinitely many negative
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even integers k. It remains to show that Π ∩D is not countably generated.
Let σ : F → F be defined by

σ(εk)∞k=1 = (0, . . . , 0p, 1, εp+2, εp+3, . . .),

where p ≥ 1 is the first integer with εp+1 = 0. The invertible Borel map σ
is ergodic with respect to the Haar measure on {0, 1}Z restricted to F , so
its orbits form a partition Q of F which is not countably generated. Since
Π ∩D = φQ, Π ∩D is not countably generated. This proves the theorem.

4.11. Remark. Let U be a good Borel set such that for each (x, y) ∈ U
there are points (x, y′), (x′, y) ∈ U with x 6= x′, y 6= y′. By repeated use of
the axiom of choice it is possible to construct a set S ⊂ U (not necessarily
Borel) with doubleton sections and intersecting each linked component of U .
It is natural to ask if one can construct S to be Borel measurable. In this
connection we mention a result of L. Harrington, A. Kechris and A. Louveau
[6] which says that if a Borel equivalence relation L on [0, 1] is not countably
generated then there is a Borel subset A of [0, 1] such that the partition A∩L
is isomorphic to the Vitali partition of [0, 1].

We close this section by giving a result on the existence of a Borel cross-
section of the partition Π of a good Borel set S into its linked components.
If the linked components are finite then, by 1.11, Π admits a Borel cross-
section; if the linked components are countable andΠ is countably generated
then too Π admits a Borel cross-section by 1.9.

4.12. Theorem. Let S be a good Borel set with sections Sx, x ∈ X, and
Sy, y ∈ Y , countable. Suppose for every linked component C there exists an
n such that every link contained in C is of length at most n. Then Π admits
a Borel cross-section.

Proof. We shall define Borel sets Gn,Hn, Vn, n = 0, 1, . . . , such that⋃∞
n=0(Gn ∪Hn ∪ Vn) will be a Borel cross-section of Π. Set S0 = S. Define

G0 = {(x, y) : (S0)x and (S0)y are both singletons}.
By 1.12, G0 is Borel. Note that G0 is the union of those linked components
of S that are singletons. We define H0,V0 as follows: Set T0 = S0 \G0 and

E = {x ∈ X : (T0)x is a singleton}.
By 1.12, E is Borel. Let

T ′0 = T0 ∩ (E × Y ),

B = {((x, y), (x′, y), (x′, y′)) ∈ T ′0 × T0 × T0 : x 6= x′, y 6= y′},
T ′′0 = {(x, y) ∈ T ′0 : ∃(x′, y), (x′, y′) ∈ T0 (x 6= x′ & y 6= y′)}.

Since S has countable sections, each B(x,y) is countable. Further, T ′′0 is the
projection of B. Therefore, by Lusin’s theorem (1.8), T ′′0 is Borel. Set D =
T ′0 \ T ′′0 . Note that D is the union of all those linked components that are
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contained in a horizontal line. Since D ⊂ S, each Dy is countable for all y.
We take H0 to be the graph of any Borel function from πY (D) to X which is
contained in D. We define V0 similarly except that we interchange the role
of X- and Y -coordinates.

Note that the union of G0, D and the union of all the linked components
of S that are contained in a vertical line is a Borel set, say D0. Now set
R1 = S0 \D0. Note that

πX(R1) ∩ πX(D0) = ∅ = πY (R1) ∩ πY (D0).

Also note that R1 is Borel and it is the union of all those linked components
C of S that contain at least one link of length 3.

We next define G1,H1, V1. Let

A = {x ∈ X : (R1)x is a singleton},
B = {y ∈ Y : (R1)y is a singleton}.

By 1.12, A and B are Borel sets. The set R1 ∩ ((A × Y ) ∪ (X × B)) is the
set of all (x, y) ∈ R1 that occur at the ends of a maximal link. Set S1 =
R1 \ ((A×Y )∪ (X×B)). We define G1, H1 and V1 from S1 in the same way
we defined G0, H0 and V0 from S0. Note that (G0∪H0∪V0)∪ (G1∪H1∪V1)
is a Borel set picking up exactly one point from all those linked components
C such that every link contained in C is of length at most 4.

Proceeding similarly we define Gn,Hn, Vn for n ≥ 2 by induction on n
such that for every n,

⋃
i≤n(Gi ∪Hi ∪ Vi) picks up exactly one point from

all the linked components not containing any link of length greater than 2n.
Since for every linked component C of S there exists an n such that every
link contained in C is of length at most n,

⋃∞
n=0(Gn ∪ Hn ∪ Vn) will be a

Borel cross-section of Π and the proof is complete.

We do not know if the above result is true under the weaker assumption
that S has no infinite link.

5. Sequentially good measures

5.1. Definition. Let m be a probability measure on Borel subsets of
X × Y , with X, Y Polish, and call m sequentially good if every bounded
Borel function is a pointwise a.e. limit of a sequence fn, n = 1, 2, . . . , of
functions of the form

fn(x, y) = un(x) + vn(y),

with un, vn Borel measurable but not necessarily bounded.

5.2. Remark. This definition of sequentially good measure is weaker
than the one given in [10] and seems more appropriate. The proof given in
[10], that a sequentially good measure admits a good Borel set as support
is valid with the new definition as well and we briefly recall this proof here.
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Let S ⊂ X × Y and let A be an algebra of complex-valued functions closed
under conjugation, separating points and containing the constants. If every
function f in A is of the form

f(x, y) = lim
n→∞

(un(x) + vn(y))(3)

then S is good, for otherwise S will admit a loop L on which every function
f ∈ A|L is of the form (2). Since L is a finite set, by the Stone–Weierstrass
theorem A|L coincides with all functions on L, and in the light of (2) above,
L is sequentially good, hence good. The contradiction shows that S is a
good set. This simple observation implies that a sequentially good measure
admits a good Borel set S as support. For if m is sequentially good, we let
S be a Borel set of full measure on which

IA(x, y) = lim
n→∞

(un(x) + vn(y)), (x, y) ∈ S,(4)

holds for A in a countable fieldA of Borel subsets of X×Y separating points.
Then (3) will hold also for finite linear combinations of IA, A ∈ A, with
complex coefficients. These functions form an algebra of functions closed
under conjugation. Further they separate points and contain the constants.
So S is a good Borel set which supports m. We have proved:

5.3. Theorem. If m is sequentially good then m admits a Borel support
S which is good.

5.4. Examples. Any probability measure on the sets of Examples 1.4
and 1.5 is sequentially good (with θ, u irrational respectively). We prove this
for the set S of 1.5. A similar proof works for the other case.

Let Sn = S \ Cn, where Cn is an open segment of S of length 1/n with
Cn+1 ⊂ Cn for all n. Then Sn ⊂ Sn+1 with the union of Sn’s equal to S
a.e. Let gk, k ∈ Z, be the enumeration of the group G as in Section 2.1.
Since the G-action is ergodic, for any (x, y) ∈ S and any n, gk(x, y) ∈ Cn for
infinitely many positive k and for infinitely many negative k. This implies
that linked components of Sn have finite cardinality, so by 1.11 they admit
a Borel cross-section. By 4.6 every Borel function on Sn is of the form u+ v
with u, v Borel measurable. If f is a bounded Borel function on S, then

f |Sn(x, y) = un(x) + vn(y), (x, y) ∈ Sn,
with un, vn Borel measurable. Further

f |Sn(x, y) = f(x, y)ISn(x, y), (x, y) ∈ Sn.
(There is a logical difference between the two sides since f |Sn is defined on
Sn while fISn is defined on all of S.) So

fISn = un(x) + vn(y), (x, y) ∈ Sn,
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and since fISn(x, y) → f(x, y) for (x, y) ∈ S, we see that any probability
measure on S is sequentially good.

5.5. It is natural to ask whether any probability measure supported on
a Borel set without loop is sequentially good and more strongly whether any
bounded Borel function f defined on such a set is of the form

f(x, y) = lim
n→∞

(un(x) + vn(y)), (x, y) ∈ S,

with un, vn Borel measurable.

6. Connection with simplicial measures

6.1. Let X,Y be Polish spaces. A probability measure µ on X × Y
(whose marginals are denoted by µ1 and µ2) is called simplicial if it is an
extreme point of the convex set of all probability measures on X ×Y whose
marginals are the same as those of µ. A basic theorem of Lindenstrauss
states that a probability measure µ on X × Y is simplicial if and only if the
collection of functions of the form

f(x, y) = u(x) + v(y), u ∈ L1(X,µ1), v ∈ L1(Y, µ2),

is dense in L1(X × Y, µ).
It is clear from this that a simplicial measure is sequentially good, hence

by 5.3 it admits a good Borel set as support.

6.2. It is easy to see that if λ and ν are continuous probability measures
on [0, 1] then any Borel set with positive λ× ν measure admits a loop with
four points. Indeed, if A is such a set then there exist two distinct points
x and x′ such that the sections Ax = {y : (x, y) ∈ A}, Ax′ = {y : (x′, y)
∈ A} intersect in a set of positive ν-measure and since ν is continuous,
we can find two distinct points y, y′ in this intersection. Clearly the points
(x, y), (x, y′), (x′, y′), (x,′ y) form a loop in A. Since a simplicial measure
admits a good Borel support, hence a Borel set not admitting a loop, we
see that a simplicial measure is singular to λ × ν, where λ and ν are any
continuous probability measures on X and Y respectively.

This result, due to Štěpán [20], is a strengthening of a similar result due
to Lindenstrauss [13], but their proofs are more involved.

6.3. A Borel set E ⊂ X×Y is called a set of marginal uniqueness (briefly
an MU-set) if every probability measure µ supported on E is an extreme
point of the convex set of all probability measures on X×Y with marginals
same as those of µ. Clearly any Borel subset of an MU-set is an MU-set,
and since a loop is not an MU-set, we see that an MU-set cannot contain
a loop. Therefore an MU-set is a good set. Further, if S is a good Borel set
whose linked components admit a Borel cross-section then S is an MU-set.
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To see the latter, let C be a Borel cross-section of the linked components
of S and let Sn be the points (x, y) ∈ S linked to a point in C by a path
of length ≤ n. Then Sn ⊂ Sn+1 and

⋃∞
n=1 Sn = S. For any bounded Borel

measurable function f on S, fISn → f in the Lp norm of any probability
measure on S, 1 ≤ p < ∞. Moreover if vn is chosen to vanish on the y
coordinates of points in C, then un, vn in the solution of fISn = un + vn are
bounded (by the Remark in 3.2), hence in Lp, 1 ≤ p <∞, of any probability
measure on S. Clearly, then, the functions of the form u(x) + v(y) with u, v
bounded and measurable are dense in Lp, 1 ≤ p < ∞, of any probability
measure on S. In particular this holds for p = 1. the By Lindenstrauss’
theorem we see that S is an MU-set (see also [7, Theorem 20]).

6.4. For a probability measure µ on X × Y with marginals µ1 and µ2,

(L1(X,µ1) + L1(Y, µ2))⊥ =
{
φ ∈ L∞(X × Y, µ) :

�

X×Y
fφ dµ =

�

X×Y
gφ dµ = 0, f ∈ L1(X,µ1), g ∈ L1(Y, µ2)

}
.

This shows that

(L1(X,µ1) + L1(Y, µ2))⊥ = {φ ∈ L∞(X × Y, µ) :

φ+ dµ, φ− dµ have the same marginals}.
(In case µ is simplicial, the left hand side, hence the right hand side, van-
ishes.)

Now assume that µ is supported on a good Borel set S with doubleton
sections. If f ∈ L1(X×Y, µ), then f+f ◦v ∈ L1(X,µ1), f+f ◦h ∈ L1(Y, µ2).
If φ is in (L1(X,µ1) + L1(Y, µ2))⊥, then

�

X×Y
fφ dµ = −

�

X×Y
f(φdµ) ◦ v,

�

X×Y
fφ dµ = −

�

X×Y
f(φdµ) ◦ h,

whence φ+dµ, φ−dµ are G0-invariant and they can be distinct only if the
G0-action admits two distinct invariant probability measures. These obser-
vations and those of 2.6 allow us to conclude:

(i) if there is no G-invariant probability measure on S then S is an
MU-set;

(ii) if the G-action on S is uniquely ergodic then S is an MU-set if and
only if G0 is also uniquely ergodic;

(iii) finally, decomposing S into G-invariant Borel sets on each of which
the G-action is uniquely ergodic, we see that S is an MU-set if and only if
each G-invariant uniquely ergodic component of S is also G0-ergodic.

This completely describes the Borel sets with doubleton sections which
are also MU-sets.
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6.5. Now let S be a compact subset of the unit square, let C(S) denote
the space of continuous complex-valued functions on S, and let C1 and C2
denote the subspaces of continuous functions which depend on x alone and
y alone respectively. The question as to when C1 + C2 is dense in C in the
uniform norm is discussed in [15, 16]. It is clear that this holds if and only if
(C1 +C2)⊥ is empty. This in turn holds if and only if S is an MU-set. So, by
6.3, if S is good and the linked components of S admit a Borel cross-section
then C1 + C2 is dense in C(S) in the uniform norm. In [15] this is proved
under the assumption that S has no loops and the linked components are
compact, a condition which implies that the linked components admit a
Borel cross-section (see 1.11).

For compact MU-sets it is clear that Lp(X,µ1) + Lp(Y, µ2) is dense in
Lp(S, µ), 1 ≤ p < ∞, where µ is any probability measure on S. Finally, if
S is a compact set with doubleton sections then C1 + C2 is dense in C(S)
under uniform norm if and only if every G-ergodic probability measure on
S is also G0-ergodic.
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Delhi, and Birkhäuser, Basel, 1998.

[18] G.-C. Rota and L. H. Harper, Matching theory. An Introduction, in: Adv. Probab.
Related Topics 1, P. Ney (ed.), Dekker, New York, 1971, 169–215.

[19] S. M. Srivastava, A Course on Borel Sets, Grad. Texts in Math. 180, Springer, New
York, 1998.
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