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Abstract. We continue the efforts to characterize winning strategies in various infi-
nite games involving filters on the natural numbers in terms of combinatorial or structural
properties of the given filter. Previous results in the literature included those games where
player II responded with natural numbers, or finite subsets of natural numbers. In this
paper we concentrate on games where player II responds with members of the dual ideal.
We also give a summary of known results on filter games.

1. Introduction

1.1. Overview of the problem. Combinatorial properties of filters have
played an important role in applications of set theory, and the classical no-
tions of a filter being meager, a P-filter or even selective have been around
a long time. These concepts have been generalized in several ways in the
literature, and we will concentrate on various tree and other structural prop-
erties. These combinatorial ideas have their roots in Ramsey theory where
P-points and selective ultrafilters (sometimes called “Ramsey”) have tree
property characterizations. We refer the reader to early papers by Booth [4]
and Grigorieff [7].

In this paper we pursue the investigations from [12] on filter games. Two
players alternate turns in an ω-sequence of innings, and typically, the games
are played with respect to a fixed filter F on the natural numbers. Several
objects are naturally related to a filter—the natural numbers themselves,
the finite subsets of the natural numbers, the dual ideal F ∗ consisting of
the complements of members in the filter, and finally F+ containing subsets
of natural numbers that can be safely added to the filter and still generate
a proper filter. All these possibilities provide many versions of games, for
example one which we label G(F , [ω]<ω,F+), where the first player succes-
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sively chooses members of F , and the second player chooses a finite subset
of that member; at the end of the game the second player is declared the
winner if the union of his responses is a member of F+. The works [1], [2],
[4], [6], [7], [12], [13], and [14] among others contain results on these and
related filter games, and in this paper we concentrate on the mostly missing
analysis when the second player responds with members of the dual ideal
F∗. We present a duality result for games of this sort, an apparently new
flavor of filter combinatorics derived from one of these games, and finally
some counterexamples used to differentiate various games. We also include
a summary of known results on filter games.

Finally, we wish to warmly thank the anonymous referee for a thorough
reading and very valuable comments for improving this paper.

1.2. Standard set-theoretic definitions. Our terminology is standard but
we review the main concepts and notation. The set of natural numbers will
be denoted by ω, and ℘(ω) will denote the collection of all its subsets. Given
X ∈ ℘(ω), we write [X]ω and [X]<ω to denote the collection of infinite or
finite subsets of X respectively. We use the well known “almost inclusion”
ordering between members of [ω]ω, i.e. X ⊆∗ Y if X \Y is finite. A collection
X ⊆ ℘(ω) is said to be downward closed (under ⊆∗) if Y ⊆∗ X ∈ X implies
that Y ∈ X .

We identify ℘(ω) with ω2 via characteristic functions. The space ω2 is
further equipped with the product topology of the discrete space {0, 1}.
A basic neighborhood is then given by sets of the form

Os = {f ∈ ω2 : s ⊆ f}
where s ∈ <ω2, the collection of finite binary sequences. The terms “nowhere
dense”, “meager”, “Baire property” all refer to this topology. Concatenation
of elements s, t ∈ <ωω will be written s∧t.

A filter is a collection of subsets of ω closed under finite intersections,
supersets and containing all cofinite sets; it is called proper if it contains
only infinite sets.

Suppose that X is any collection of subsets of ω. We denote by X+

the set {A ⊆ ω : Ac 6∈ X}. Notice that X is upward closed if and only if
X+ = {Y ⊆ ω : Y ∩X 6= ∅ for all X ∈ X}.

Thus for a filter F , F+ denotes the collection of all sets X such that
〈F ,X〉, the filter generated by F after adding X, is a proper filter; it is
useful to notice that X ∈ F+ if and only if Xc 6∈ F . F∗ = {Xc : X ∈ F} is
called the dual ideal , and equals (F+)c = ℘(ω) \ F+, the collection of sets
incompatible with F . Thus F+ is the co-ideal of F∗, and so F+ is also called
the collection of F-stationary sets. For convenience, we will use F c to denote
℘(ω) \ F . The Fréchet filter is the collection of cofinite sets, denoted by Fr.
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The families F and F+ are dual in a subtle sense: a set X containing
an element of each member of F (resp. F+) must belong to F+ (resp. F).
In particular Fr and [ω]ω are dual in that sense. From more general work of
Aczel [1] and Blass [3], there is a duality between games in which a player
chooses Xk ∈ F while the other player responds with nk ∈ Xk, and games
in which a player chooses Yk ∈ F+ while the other player responds with
nk ∈ Yk. The point is that the statements

(∀X ∈ F)(∃n ∈ X)[φ(n)] and (∃Y ∈ F+)(∀n ∈ Y )[φ(n)]

are equivalent.

1.3. Filter games. We will be interested in infinite filter games that we
generally label G(X ,Y,Z), where X will usually be a filter F or a co-ideal
F+, Y will be either ω, [ω]<ω, F∗, or even Fc, and where Z will typically
be F or F+. Other games with Z equal to F c, or even F∗, do arise but are
mostly uninteresting.

The game G(X ,Y,Z) is played by two players I and II as follows: in
the kth inning, where k < ω, I chooses Xk ∈ X , and then II responds
with a non-empty subset sk of Xk which is a member of Y (identify ω with
{{n} : n ∈ ω} if Y = ω). At the end of the game, II is declared the winner
if
⋃
k∈ω sk ∈ Z.

1.4. Filter properties. We call a tree T ⊆ <ωω an X -tree for some X ⊆
[ω]ω (X will usually be a filter F or F+) if for each s ∈ T , there is an Xs ∈ X
such that s∧n ∈ T for all n ∈ Xs. Similarly we call a tree T ⊆ <ω([ω]<ω)
an X -tree of finite sets for some X ⊆ [ω]ω, if for each s ∈ T , there is an
Xs ∈ X such that s∧a ∈ T for each a ∈ [Xs]<ω. A branch of such a tree is
thus an infinite sequence of finite sets and we will be interested in the union
of such a branch, an infinite subset of ω.

Here are the combinatorial properties of filters that have been (see [12])
or will be considered.

Definition 1. Let F be a filter on ω.

(1) F is called a Q-filter if for any partition of ω into finite sets 〈sk :
k ∈ ω〉, there is an X ∈ F such that |X ∩ sk| ≤ 1 for all k.

(2) F is called a weak Q-filter if for any partition of ω into finite sets
〈sk : k ∈ ω〉, there is an X ∈ F+ such that |X ∩ sk| ≤ 1 for all k.

(3) F is called diagonalizable if there is an X ∈ [ω]ω such that X ⊆∗ Y
for all Y ∈ F .

(4) F is called ω-diagonalizable if there are 〈Xn ∈ [ω]ω : n ∈ ω〉 such
that for each Y ∈ F , there is an n such that Xn ⊆∗ Y .

(5) F is called ω-+-diagonalizable if there are 〈Xn ∈ F+ : n ∈ ω〉 such
that for each Y ∈ F , there is an n such that Xn ⊆∗ Y .
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(6) (a) A set X ⊆ [ω]<ω is called Z-universal (Z will be F or F+) if
for each Y ∈ Z, there is an x ∈ X ∩ [Y ]<ω.

(b) F is called ω-diagonalizable by Z-universal sets if there are
Z-universal sets 〈Xn : n ∈ ω〉 such that for all Y ∈ F , there is
an n such that x ∩ Y 6= ∅ for all but finitely many x ∈ Xn.

(7) F is a P-filter if given any sequence 〈Xn : n ∈ ω〉 ⊆ F , there is an
X ∈ F such that X ⊆∗ Xn for each n.

(8) F is a P+-filter if every F+-tree of finite sets has a branch whose
union is in F+.

(9) F is a weak P-filter if given any sequence 〈Xn : n ∈ ω〉 ⊆ F , there
is an X ∈ F+ such that X ⊆∗ Xn for each n. Equivalently, every
F-tree of finite sets has a branch whose union is in F+.

(10) F is a P-point if it is an ultrafilter that is also a P-filter.
(11) F is Ramsey if any F-tree has a branch in F ; equivalently, F is

both a Q-filter and a P-filter.
(12) F is +-Ramsey if every F+-tree has a branch in F+.
(13) F is weakly Ramsey if any F-tree has a branch in F+.
(14) F has the P (X ,Y,Z) property if

(∀Y0 ∈ Y)(∃X0 ∈ X )(∀Y1 ∈ Y)(∃X1 ∈ X ) . . .
[⋃

n

(Yn \Xn) ∈ Z
]
.

In connection with this last definition, we will only be interested in fil-
ters with the P (F ,F ,F+), P (F ,F+,F+), and P (F+,F ,F) properties. The
property P (Fr,F ,F) is inconsistent with any filter. These notions do not
seem to have appeared elsewhere as far as we know, and their relation with
other properties will become more transparent later in the paper. For the
moment, observe that the following variation in quantifier ordering:

(∀Y0 ∈ F)(∀Y1 ∈ F) . . . (∃X0 ∈ Fr)(∃X1 ∈ Fr) . . .
[⋃

n

(Yn \Xn) ∈ F
]

is equivalent to the P-filter property, and

(∀Y0 ∈ F)(∀Y1 ∈ F) . . . (∃X0 ∈ Fr)(∃X1 ∈ Fr) . . .
[⋃

n

(Yn \Xn) ∈ F+
]

is equivalent to the weak P-filter property.

1.5. Earlier results. Games of the form G(X , ω,Z) and even
G(X , [ω]<ω,Z) have been studied and combinatorial properties of winning
strategies have been described in [2] and [12]. We remind the reader of two
results of [12]that will be used in this paper.

Theorem 2. Fix a filter F and consider the game G(F , [ω]<ω,F). Then

(1) I has no winning strategy if and only if F is a non-meager P-filter.
(2) II never has a winning strategy.
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Theorem 3. Fix a filter F and consider the game G(F , [ω]<ω,F+).
Then

(1) I has no winning strategy if and only if F is a weak P-filter.
(2) II has a winning strategy if and only if F is ω-diagonalizable by

F-universal sets.

2. The ideal version and the duality theorem. Although recent
research concerning these games has been cast in terms of filters, it will be
convenient, and perhaps more natural, to notice that the same games can
be described in terms of ideals.

2.1. Ideal game description. We consider an infinite ideal game labelled
H(I,J ,Z), where I and J will be ideals and Z will usually be a filter or a
co-ideal. The game H(I,J ,Z) is played by I and II in the following way:
in inning k, with k < ω, I chooses Ik ∈ I such that Ik is disjoint from all
previously played sets, and player II responds by selecting Jk ∈ J such that
Jk is also disjoint from all previously played sets. We will say that II wins a
play of the game if

⋃
k∈ω Jk ∈ Z. It is evident that G(F ,J ,Z) is equivalent

to H(F∗,J ,Z) if F is a filter and J is an ideal—the only change being that
in the H game, I plays the complement of the set that she plays in the G
game. The motivation for the change is that in the ideal version, the game
can be thought of as the two players claiming parts of ω for themselves, and
II wins the game if the part that he claims is “large”, where we think of Z
as the collection of large sets.

2.2. The duality theorem. Recall that two games are called dual if a
player has a winning strategy in one game iff the other player has a winning
strategy in the other game. Results on dual games of course allow transfer
principles to pass from one to the other.

Let us concentrate on games in which II is trying to construct a set in
an upward closed family Z. In this case, there is no loss of generality if we
demand that the integer k be chosen by one player or the other in inning k
of a play of the H game. So in this case, II wins if he constructs a set in Z,
while I wins if she builds a set in Z+.

From this point of view, if we consider the two games H(I,J ,Z) and
H(J , I,Z+), the player playing elements of I has the same goal in each
game. So does the player playing J . Thus the only difference between the
games is which player gets to move first. We will say that the two games
H(I,J ,Z) and H(J , I,Z+) are paired. The duality theorem below says that
paired games are dual if the families Z and Z+ are large enough.

Definition 4. If X and Y are collections of subsets of ω, we will say
that X is Y-robust if X \ Y ∈ X for every X ∈ X and every Y ∈ Y.
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Notice that if X is upward closed, then X is Y-robust if and only if X+

is Y-robust.

Lemma 5. Suppose that player I has a winning strategy in H(I,J ,Z),
and suppose that Z+ is J -robust. Then player I has a winning strategy for
that game in which her first move is ∅.

Proof. Suppose £ is I’s winning strategy. Consider a play of the game
H(I,J ,Z):

Inning 0 1 2 . . .

Player I ∅ [£(∅) \ J0] ∪£(J0)£(J0, J1). . .

Player II J0 J1 J2 . . .

Player I’s payoff set after this play of the game is

[£(∅) ∪£(J0) ∪£(J0, J1) ∪ . . .] \ J0,

which is a set in Z+ (as £ is a winning strategy) minus a set in J . As Z+

is J -robust, this payoff set is in Z+, and so I has won the game.

Corollary 6. Suppose that Z+ is J -robust and suppose that player I
has a winning strategy in H(I,J ,Z). Then player II has a winning strategy
in H(J , I,Z+).

Lemma 7. Suppose that player II has a winning strategy in H(I,J ,Z).
Then player I has a winning strategy in H(J , I,Z+).

Proof. For I to win H(J , I,Z+), all she has to do is follow the winning
strategy for II in H(I,J ,Z), assuming that I’s opening move in that game
is ∅.

Theorem 8 (The duality theorem). Suppose that I and J are ideals,
and suppose that Z is upward closed , and both I- and J -robust. Then a
player has a winning strategy in H(I,J ,Z) if and only if the other player
has a winning strategy in H(J , I,Z+). Thus the games H(I,J ,Z) and
H(J , I,Z+) are dual.

Proof. Since (Z+)+ = Z and since Z is upward closed if and only if Z+ is
upward closed, the theorem follows immediately from Corollary 6 and from
Lemma 7 as they show that a winning strategy for either player in H(I,J ,Z)
implies a winning strategy for the opposite player in H(J , I,Z+).

In applying the duality theorem, recall that (under the assumption that
Z is upward closed) Z+ is J -robust if and only if Z is J -robust.
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As we translate this result into the language of filters, let us extend the
notion of robustness in the following way:

Definition 9. If Z is a collection of sets and F is a filter (resp. F+ a
co-ideal), we will say that Z is F-robust (resp. F+-robust) if Z ∩F ∈ Z for
all Z ∈ Z and all F ∈ F (resp. F+).

Theorem 10 (The duality theorem—filter version). Suppose that F and
G are filters and suppose that Z is upward closed. Suppose also that Z is
both F- and G-robust. Then a player has a winning strategy in G(F ,G∗,Z)
if and only if the other player has a winning strategy in G(G,F∗,Z+). Thus
the games G(F ,G∗,Z) and G(G,F∗,Z+) are dual.

Example 11. The following are all examples of dual games, where F is
any filter on ω:

(1) G(Fr, [ω]<ω,Fr) and G(Fr, [ω]<ω,Fr+),
(2) G(F ,F∗,F) and G(F ,F∗,F+),
(3) G(F , [ω]<ω,F+) and G(Fr,F∗,F),
(4) G(F , [ω]<ω,F) and G(Fr,F∗,F+).

3. Results that follow from the duality theorem. In this section
we apply the duality theorem to games of the form G(X ,F ∗,Z), left entirely
untouched in [12].

Corollary 12. Fix a filter F and consider the game G(Fr,F∗,F).
Then

(1) I has a winning strategy if and only if F is ω-diagonalizable by
F-universal sets.

(2) II has a winning strategy if and only if F is not a weak P-filter.

Proof. This is immediate from Theorem 3, as G(Fr,F∗,F) is dual to
G(F , [ω]<ω,F+).

Corollary 13. Fix a filter F and consider the game G(Fr,F∗,F+).
Then

(1) I never has a winning strategy.
(2) II has a winning strategy if and only if F is meager or not a P-filter.

Proof. We notice that G(Fr,F∗,F+) is dual to G(F , [ω]<ω,F), and then
quote Theorem 2.

Proposition 14. Player I never has a winning strategy in G(F ,F∗,F+)
and Player II never has a winning strategy in G(F ,F∗,F).

Proof. Notice that the two games are dual, so I has a winning strategy
in her game if and only if II has a winning strategy in his game. Assume
either player has a winning strategy. Then they both do. Consider a play of
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a game where both players follow the winning strategy. At the end of the
game, II has constructed a payoff set that must be an element of F , as his
strategy is a winning strategy. But as I’s strategy is winning, that payoff set
cannot be in F+, a contradiction.

4. Results that do not follow from the duality theorem. The
following is a straightforward reformulation of the corresponding property.

Proposition 15. II has a winning strategy in the game G(F ,F∗,F+)
if and only if F is P (F ,F ,F+).

Corollary 16. I has a winning strategy in the game G(F ,F∗,F) if
and only if F is P (F ,F ,F+).

Proof. This follows immediately from the previous proposition and the
fact that G(F ,F∗,F+) is paired with G(F ,F∗,F).

Proposition 17. I has a winning strategy in the game G(F+,F∗,F+)
if and only if F is P (F+,F ,F).

Proof. First, assume that F is P (F+,F ,F), and therefore we will use
the fact that

(∀Y0 ∈ F)(∃X0 ∈ F+)(∀Y1 ∈ F)(∃X1 ∈ F+) . . .
[⋃

n

(Yn \Xn) ∈ F
]
.

We describe I’s strategy as follows: I first puts Y0 = ω and uses X0 from
above as the first move.

In the nth inning, after II has responded with some sk ⊆ Xk, sk ∈ F∗,
then I defines Yk+1 = sc

k ∈ F and plays Xk+1 obtained from above.
At the end of the game, we must have

⋃
n(Yn \Xn) ∈ F by assumption,

and since
⋃
k sk is disjoint from that set, we conclude that I has won the

game.
Conversely, assume that I has a winning strategy $ in G(F+,F∗,F+).

We must show that F is P (F+,F ,F), i.e. that

(∀Y0 ∈ F)(∃X0 ∈ F+)(∀Y1 ∈ F)(∃X1 ∈ F+) . . .
[⋃

n

(Yn \Xn) ∈ F
]
.

Ignore the initial Y0 ∈ F for the moment, and let X0 = $(∅). At the kth
inning, after we are given some Yk+1 ∈ F , pretend that II responded with
ak = (Y c

k+1 ∩ Xk) ∈ F∗ in the game G(F+,F∗,F+), and then let Xk+1 =
$(a0, a1, . . . , ak).

Since $ is a winning strategy for I, we must have
⋃
k ak 6∈ F+, and

therefore Y0 ∩ (
⋃
k ak)

c =
⋃
k(Yk \Xk) ∈ F as required.

The following is again a simple reformulation of the corresponding prop-
erty.
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Proposition 18. II has a winning strategy in the game G(F+,F∗,F+)
if and only if F is P (F+,F ,F+).

The following games are not paired in our sense, as F+ is not Fc-robust,
but are dual since strategies for either player are obvious.

Proposition 19. Player II always has a winning strategy in
G(F ,F+,F) and player I always has a winning strategy in G(F c,F∗,F+).

4.1. Winning strategies—summary and pairwise comparability. We sum-
marize in Table 1 the various filter descriptions for winning strategies on fil-
ter games, including duality. These results can be found either in the current
paper, or in [12] or else referenced in that paper.

Moreover, Figure 1 shows the various implications and non-implications
between these properties, and hence between the corresponding winning
strategies of filter games. The implications are almost all straightforward,
either following from the definitions themselves, or through the winning
strategy equivalence. One that remains is

Proposition 20. A filter is meager if and only if it is ω-diagonalizable
by Fr-universal sets.

Proof. We use a standard result of Talagrand [14] showing that a filter
is meager if and only if there is a partition of ω into finite sets such that
each member of the filter intersects all but finitely many elements of the
partition.

Now suppose first that a filter F is ω-diagonalizable by Fr-universal sets,
say 〈Xn : n ∈ ω〉. Define a sequence of integers 〈πn : n ∈ ω〉 such that for
each n, the interval [πn, πn+1) contains an element of each Xi as a subset,
for i ≤ n. Now given Y ∈ F , by assumption there must be some n such
that almost all elements of Xn intersect Y , and we conclude therefore that
Y intersects all but finitely many of the intervals [πn, πn+1).

Conversely, assume that F is meager, and consider a partition X of ω
into finite sets such that each member of the filter intersects all but finitely
many members of the partition. Then X itself is Fr-universal, and by the
assumption it follows that F is ω-diagonalizable by X alone.

To show that the implications shown in Figure 2 are the only provable
ones is more difficult. After the corresponding results in [12], it remains to
consider those mostly concerned with the P (F ,F ,F+) property.

Although we do not have a structural description of filters with the
various P (X ,Y,Z) properties, we have the following information concerning
the games G(F ,F∗,F+) and G(F+,F∗,F+), which do not fall under our
duality result as F+ is not F+-robust unless F is an ultrafilter. A similar
result applies to F∗ and Fc in the case of an ultrafilter F .
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Table 1. Duality and winning strategies for each player. “None” means “Not dual to any
game G(X ,Y,Z)”.

Game Dual to game Filter property Filter property
for player I strategy for player II strategy

G(Fr, ω,F) G(Fr+, ω,Fc) F not a Q-filter Never

G(Fr, ω,F+) G(Fr+, ω,F∗) F not a weak Q-filter F ω-diagonalized

G(Fr, ω,Fc) G(Fr+, ω,F) Never Always

G(Fr, ω,F∗) G(Fr+, ω,F+) F = Fr F 6= Fr

G(F , ω,F) G(F+, ω,Fc) F not Ramsey Never

G(F , ω,F+) G(F+, ω,F∗) F not weakly Ramsey F ω-+-diag.

G(F , ω,Fc) G(F+, ω,F) Never F not a Ramsey
ultrafilter

G(F , ω,F∗) G(F+, ω,F+) F countably generated F not +-Ramsey

G(F+, ω,F) G(F , ω,Fc) F not a Ramsey Never
ultrafilter

G(F+, ω,F+) G(F , ω,F∗) F not +-Ramsey F countably generated

G(F+, ω,Fc) G(F , ω,F) Never F not Ramsey

G(F+, ω,F∗) G(F , ω,F+) F ω-+-diag. F not weakly Ramsey

G(Fr, [ω]<ω,F) G(Fr, [ω]<ω,F+) F meager Never

G(Fr, [ω]<ω,F+) G(Fr, [ω]<ω,F) Never F is meager

G(Fr, [ω]<ω,Fc) G(Fr+, ω,F) Never Always

G(Fr, [ω]<ω,F∗) G(Fr+, ω,F+) F = Fr F 6= Fr

G(F , [ω]<ω,F) G(Fr,F∗,F+) F not a non-meager Never
P-filter

G(F , [ω]<ω,F+) G(Fr,F∗,F) F not a weak P-filter F ω-diag.
by F univ. sets

G(F , [ω]<ω,Fc) G(F+, ω,F) Never F not a Ramsey
ultrafilter

G(F , [ω]<ω,F∗) G(F+, ω,F+) F countably generated F not +-Ramsey

G(F+, [ω]<ω,F) None F not a P-point Never

G(F+, [ω]<ω,F+) None F not a P+-filter F ω-diag.
by F+ univ. sets

G(F+, [ω]<ω,Fc) G(F , ω,F) Never F not Ramsey

G(F+, [ω]<ω,F∗) G(F , ω,F+) F ω-+-diag. F not weakly Ramsey

G(Fr,F∗,F) G(F , [ω]<ω,F+) F ω-diag. F not a weak P-filter
by F univ. sets

G(Fr,F∗,F+) G(F , [ω]<ω,F) Never F not a non-meager
P-filter

G(Fr,F∗,Fc) G(Fr+, ω,F) Never Always

G(Fr,F∗,F∗) G(Fr+, ω,F) Never Always

G(F ,F∗,F) G(F ,F∗,F+) P (F ,F ,F+) Never

G(F ,F∗,F+) G(F ,F∗,F) Never P (F ,F ,F+)
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Table 1 (cont.)

Game Dual to game Filter property Filter property
for player I strategy for player II strategy

G(F ,F∗,Fc) G(Fr+, ω,F) Never Always

G(F ,F∗,F∗) G(Fr+, ω,F) Never Always

G(F+,F∗,F) None F not an ultrafilter Never

G(F+,F∗,F+) None P (F+,F ,F) P (F+,F ,F+)

G(F+,F∗,Fc) G(Fr+, ω,F) Never Always

G(F+,F∗,F∗) G(Fr+, ω,F) Never Always

ω-diag. by F+-univ. diagonalizable−−→

−−−−−→ −−−−−−→

ω-+-diag.−−→

ω-diag.−−−→
by F-univ.−−−−−−−−→

ω-diag.−−→

P (F+,F ,F+) meager ≡ ω-diag. by Fr-univ.

Fig. 1. Logical implications of the various filter properties

Proposition 21. If F is an ultrafilter , then neither player has a win-
ning strategy in the games G(F ,F∗,F+) and G(F+,F∗,F+).

Proof. If F is an ultrafilter, then F = F+ and the games G(F ,F∗,F),
G(F ,F∗,F+), G(F+,F∗,F), and G(F+,F∗,F+) are all identical, and the
result follows.

Although the two games G(F ,F∗,F+) and G(F+,F∗,F+) show simi-
larities and are actually equivalent in case F is an ultrafilter, they are not
equivalent in general as the following result shows.

Proposition 22. There is a P (F,F,F+) filter that is not P (F,F+,F+).

Proof. Let F =
⊗

ω Fr = {A ⊆ ω × ω : (∀n)[{m : (n,m) ∈ A} ∈ Fr}].
Then

X ∈ F+ if and only if (∃n)[{m : (n,m) ∈ X} is infinite].

and

X ∈ F∗ if and only if (∃f ∈ ωω)(∀n)(∀m)[(n,m) ∈ X ⇒ m ≤ f(n)].

Therefore II has a winning strategy in G(F ,F∗F+) by simply making
sure to select infinitely many members of {(0, n) : n ∈ ω}.



170 C. Laflamme and C. C. Leary

But I actually has a winning strategy in G(F+,F∗F+), simply by play-
ing in the nth inning the set

Xn = {(n,m) : m ∈ ω} ∈ F+.

Player II has no choice but to choose only a finite subset of Xn, and at the
end of the game the union of these replies is bounded by a fixed function,
hence in F∗.

Proposition 23. There is a non-meager P (F ,F+,F+) filter.

Proof. Let U be an ultrafilter and let

F =
⊗

Fr

U = {A ⊆ ω × ω : (∀∞n)[{m : (n,m) ∈ A} ∈ U ]},

a non-meager filter. We show II has a winning strategy in G(F+,F∗,F+).
Observe that for X ⊆ ω × ω,

X ∈ F+ if and only if {n : {m : (n,m) ∈ X} ∈ U} is infinite.

So at the nth inning, when I presents II with a set Xn ∈ F+, II chooses n
such that Yn = {m : (n,m) ∈ Xn} ∈ U , and responds with {n} × Yn ∈ F∗.
At the end of the play, Y =

⋃
n Yn ∈ F+ as infinitely many vertical sections

are in U .

Proposition 24. There is a P (F ,F+,F+) filter which is not a weak
P-filter.

Proof. Let F =
⊗

Fr Fr = {A ⊆ ω×ω : (∀∞n)[{m : (n,m) ∈ A} ∈ Fr]}.
Then

X ∈ F+ if and only if {n : {m : (n,m) ∈ X} is infinite} is infinite.

and

X ∈ F∗ if and only if (∃f ∈ ωω)(∀∞n)(∀m)[(n,m) ∈ X ⇒ m ≤ f(n)].

Therefore II has a winning strategy in G(F+,F∗,F+) by making sure,
at the kth inning, to select an infinite subset of some {(n,m) : m ∈ ω} for
some n > k.

But II also has a winning strategy in G(Fr,F∗,F), simply by playing
in the nth inning the set

Xn = {(n,m) : m ∈ ω} ∈ F∗

intersected with I’s move. Then at the end of the game, the union of II’s
replies contains all but finitely many elements of each Xn, and therefore is
an element of F .

The following should perhaps have been included in [12].

Proposition 25. There is a filter F ω-diagonalizable by F+-universal
sets which is not a weak Q-filter.
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Proof. Fix a partition of ω into intervals [πn, πn+1) such that πn+1−πn =
n (or large enough). Let

F = 〈{Xc : (∀n)[|X ∩ [πn, πn+1)| ≤ 1]}〉.
Clearly F is not a weak Q-filter by its very definition. However,

X ∈ F+ if and only if (∀k)(∃n)[|X ∩ [πn, πn+1)| ≥ k],

and therefore II’s winning strategy in G(F+, [ω]<ω,F+) is, after I’s move
X at the kth inning, to select n large enough so that X ∩ [πn, πn+1) has
more than k elements and then reply with that set.

It is worth noticing that the P (F+,F ,F) does not appear in Figure 1.
In fact, it is its negation that brings more interest, as it would be implied
by the P+ property. The fact that it is not entirely vacuous is shown by the
following.

Proposition 26. There is a filter F with the P (F+,F ,F) property.

Proof. Let F =
⊗

ω Fr. Then I wins G(F+,F∗,F+) by blindly respond-
ing in the kth inning with Xk = {(n,m) : m ∈ ω, n ≥ k}.

At the end of the game, II’s replies union to a subset of the plane
bounded by a function, and therefore II’s payoff set is in F ∗.

5. Conclusion and open questions. We know very little about games
of the form G(X ,F c,Z), but we have:

Proposition 27. In the game G(F ,F c,F):

(1) I never has a winning strategy.
(2) II has a winning strategy iff F is not an ultrafilter.

Proof. We first prove (2). Suppose that ω = A0∪A1 with Ai 6∈ F . Player
II’s strategy can be played in 2 innings: II’s response to I’s first move X0 is
X0 ∩A0 6∈ F , and II’s response to I’s second move X1 is X1 ∩A1 6∈ F . But

(X0 ∩A0) ∪ (X1 ∩ A1) ⊇ X0 ∩X1 ∈ F .
Conversely, if F is an ultrafilter, then the game G(F ,F c,F) is equivalent
to both G(F ,F∗,F) and G(F ,F∗,F+), but the last two games are dual to
each other, and therefore II cannot have a winning strategy.

Finally, (1) follows from (2) and the previous paragraph.

Proposition 28. In the game G(Fr,F c,F):

(1) II has a winning strategy iff F is not an ultrafilter.
(2) I has a winning strategy iff F is a P-point.

Proof. If F is not an ultrafilter, then II can follow a 2-inning strategy
as in the previous proposition.
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Conversely, if F is an ultrafilter, then the game G(Fr,F c,F) is equivalent
to G(Fr,F∗,F), which is dual to G(F , [ω]<ω,F+), which is finally equivalent
to G(F , [ω]<ω,F). Therefore by an earlier result quoted above, II does not
have a winning strategy, and in this case I has a winning strategy iff F is a
P-point.

We remark that these last results also prove that the games G(Fr,F c,F)
and G(F+, [ω]<ω,F+) are not dual games.

A couple of natural variations on our game have yet to be examined. For
example, a reasonable question to ask suggested by Eisworth [5] would be
to see what happens if player I plays in one filter and player II plays in
another filter. So the game might look something like G(F ,G+,G).

Another way to classify the games, suggested by Marion Scheepers, would
be to extend the length of the game past an ω sequence of innings, and then
to ask how long a play of the game would have to be to guarantee Player II
a winning strategy.

Another possible variation is to play the game using filters on κ, where κ
is an uncountable cardinal, lengthening the play of the game as appropriate.

We have also been unsuccessful in our attempt to find nice structural
properties of filters that are equivalent to the P (X ,Y,Z) property. We feel
that is the largest open question concerning the pure filter game that we
have investigated in this paper.
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