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A conjecture on the
unstable Adams spectral sequences for SO and U

by

Kathryn Lesh (Schenectady, NY)

Abstract. We give a systematic account of a conjecture suggested by Mark Ma-
howald on the unstable Adams spectral sequences for the groups SO and U. The conjec-
ture is related to a conjecture of Bousfield on a splitting of the F2-term and to an algebraic
spectral sequence constructed by Bousfield and Davis. We construct and realize topolog-
ically a chain complex which is conjectured to contain in its differential the structure of
the unstable Adams spectral sequence for SO. A filtration of this chain complex gives rise
to a spectral sequence that is conjectured to be the unstable Adams spectral sequence for
SO. If the conjecture is correct, then it means that the entire unstable Adams spectral
sequence for SO is available from a primary level calculation. We predict the unstable
Adams filtration of the homotopy elements of SO based on the conjecture, and we give an
example of how the chain complex predicts the differentials of the unstable Adams spectral
sequence. Our results are also applicable to the analogous situation for the group U.

1. Introduction. In this paper, we consider the unstable Adams spec-
tral sequence (UASS) of the group SO at the prime 2. In particular, we give
a systematic account of a conjecture suggested by Mark Mahowald concern-
ing the calculation of the differentials in this spectral sequence. We give
a geometric realization of the conjecture in the form of a tower with the
2-completion of SO as inverse limit. Our tower comes equipped with a map
from the destabilization of the stable Adams tower for the infinite delooping
of SO. We use this map and theorems of Bousfield on hg-towers in unstable
Ext to predict the Adams filtrations of the unstable homotopy of SO. Our
results are equally valid for the group U, and thus differentials and unstable
filtrations can be predicted for this group as well. Of course, the homotopy
of SO and U is well known by Bott periodicity, and what is of interest is
the workings of the UASS, not the end result.

Before we describe our results and conjectures, we establish some nota-
tion. We work entirely at the prime 2, all cohomology will be taken with
mod 2 coefficients, and all spaces will be taken to be completed at 2 as
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appropriate. Let A be the mod 2 Steenrod algebra, let U be the category
of unstable A-modules, and let K be the category of unstable A-algebras.
There is a functor U : U — K, described by Massey and Peterson [M-P],
which takes the free unstable A-algebra on an unstable A-module. This
functor is left adjoint to the forgetful functor from unstable A-algebras to
unstable A-modules.

In general, the unstable Adams spectral sequence for a space X has the
form

Eyt = ExtS (H*X,H*S") = m_,X,

where Ext is a derived functor in the nonabelian category K. However, for a
space X with the property that H*X = U(N) for some N € U, the unstable
Adams spectral sequence has the form

Ey' = Exti (N, Y'Fo) = 1o X.

We will follow the stable notation and write Ext§’ (N, Fy) for ExtS, (N, Z'Fs).

We will be discussing the unstable Adams spectral sequence for the spe-
cial orthogonal group SO and indicating modifications to be made to the dis-
cussion for the unitary group U. Let Mo, = H* RP>, with nonzero elements
z; in dimension ¢ and A-action Sq’ z; = (;):L’i+j; then H*SO = U(My).
Hence the unstable Adams spectral sequence for SO takes the form

Exty (Moo, Fo) = 1 4SO.

Let a(7) be the number of ones in the dyadic expansion of i, and filter M, by
M,, = {z; | a(i) < n}. This filtration leads to a spectral sequence converging
to the Ey-term of the UASS:

Exty (M, /Mp—1,F2) = Exty (Moo, Fa).

It is a conjecture of Bousfield from the 1970s that this spectral sequence
collapses, giving

Exty" (Moo, Fo) @Ext (M, /M, _1,Fs).

A similar conjecture for the Eg—term of the UASS for the group U arises
from the fact that if we take Mo, = H*YCP°, then H*U = U(M), and
in this case also, My, can be filtered by dyadic expansion of the dimension
of the elements.

In this paper, we use the destabilization of the stable Adams resolution of
the connective so spectrum to construct a chain complex whose constituent
parts are minimal resolutions of the filtration quotients M,,/M,_1. When
realized topologically using the Massey—Peterson theorem [M-P], this chain
complex gives a tower of spaces whose inverse limit is SO (2-completed),
and whose homotopy spectral sequence collapses at Fs. The E1-term of the
homotopy spectral sequence is @ Exty" (M, /M,_1,F2), a very large vector



space, while Fy = F, is the associated graded to m,SO, a rather small
vector space (m;SO = 7Z for i = 3 mod 4, and Z/2 for i = 0 or 1 mod 8).
Hence the spectral sequence has a very complicated d;, but the complete
calculation of dj is part of the computation of the chain complex, a primary
level calculation. The conjecture suggested by Mahowald (Conjecture 5.1)
is that in a certain precise sense, this d; differential contains all the differ-
entials in the UASS. Because the tower comes equipped with a map from
a modified Postnikov tower for SO, it is possible to use theorems of Bous-
field on unstable Ext to predict where the homotopy of SO is represented,
and this, in turn, allows a prediction of the unstable Adams filtration of
those elements. It is the hope of the author that in the future it will be
possible to manipulate this tower by an elaboration of methods of [Lesh] to
prove Conjecture 5.1. Extensive knowledge of differentials in the UASS for
SO would allow the computation of differentials in other unstable Adams
spectral sequences by naturality. For example, it should be possible to re-
cover a form of Hopf invariant one from the model’s calculation of the UASS
for SO.

The splitting conjecture of Bousfield was discussed and an algebraic
model for the UASS for U and SO constructed in [B-D]. However, the model
was considered strictly on an algebraic level and was not realized topolog-
ically. Although the author believes that the spectral sequence of [B-D] is
the same as that of the current work, the advantages of the model described
here seem to be the following. First, the construction of the model is essen-
tially formal, and very similar to the standard construction of the spectral
sequence converging to the derived functors of a composite functor. All of
the differentials can be calculated by a primary level calculation that is a
strictly mechanical process. Second, the model comes equipped with a topo-
logical realization. It seems that in order to prove that the model actually
does give the UASS, it will be necessary to have such a realization.

The rest of this paper is organized as follows. In Section 2, we give
some background on the stable and destabilized Postnikov towers of so,
as well as some algebraic preliminaries. In Section 3, we construct a tower
of spaces and an associated chain complex that models the UASS for SO.
In Section 4, we study the homotopical properties of the tower. Finally,
in Section 5 we use theorems of Bousfield to predict the unstable Adams
filtration of elements of 7,50, we give a counterexample to a conjecture
of [B-D], we draw some conclusions about what may be necessary to prove
Conjecture 5.1, and we give an example of a differential in the UASS that
is predicted by our methods.

2. Preliminaries. In this section, we review algebraic properties of the
category of unstable A-modules, we recall the Massey—Peterson theorem,



and we consider the cohomology of the stages of the destabilized Adams
tower of so.

We begin by reviewing properties of the algebraic looping functor (2 :
U — U and its iterates. (See also [M-P].) The functor {2 : U — U is the left
adjoint to the suspension functor X' : U — U. Given an unstable A-module
M, the module 2M can be calculated as the largest unstable quotient of
the desuspension of M:

QM = (57" M)/(£" Sqy M),

where Sqgz = Sql*! 2. The functor {2 is not exact, but it can have at most
one nonzero derived functor, which we denote by £2{. The module 2{ M can
be expressed as a regrading of the kernel of Sqq on M. In particular, if Sq
acts freely on M, then Q%M = 0. We write (2" for the n-fold iterate of {2,

and we write (2" for the jth derived functor of 2", There is a composite
functor spectral sequence (the Singer spectral sequence) (27 Q;M = in; M
which allows us to calculate derived functors of 2™ inductively. For any
unstable module M, _QJ”M =0 for j > n.

We will also need the following routine lemma.

LEMMA 2.1. Let g : Ny — Ny be a map of unstable A-modules. If im(g)
is Sqq-free, then the natural map 2ker(g) — ker(£2g) is a monomorphism.
If in addition Na is Sqg-free, then there is a short exact sequence

0 — Rker(g) — ker(2g) — 02 cok(g) — 0.

Proof. The map 2¢ factors as 2N; — 2im(g) — 2N, and since {2 is
right exact, 2N; — 2im(g) is an epimorphism. Thus there is a short exact
sequence

(2.1) 0 — ker[f2N; — 2im(g)] — ker(£2g) — ker[f2im(g) — 2N3] — 0.
To calculate the left-hand term, observe that the short exact sequence
0 — ker(g) —» Ny — im(g) — 0
gives rise to an exact sequence
21 im(g) — Rker(g) — 2N; — 2im(g) — 0.

Thus if 2{ im(g) = 0, then ker[2N; — 2im(g)] = 2ker(g), proving that
2ker(g) injects into ker({2g).
Consider the right-hand term of (2.1). The short exact sequence

0 — im(g) — N2 — cok(g) — 0
gives rise to a long exact sequence
0 — 0] im(g) — 21 Ny — 2] cok(g) — 2im(g) — 2Ny — 2 cok(g) — 0.
If 21Ny =0, then ker[2im(g) — §2N3] = 2 cok(g). m



REMARK 2.2. Suppose that M is an unstable A-module, that N; and
Ny are unstable projective A-modules, and that we are given a map M —
2ker(N; — N3). Then we can consider the composition

M — Qker(Ny — Ny) — ker(£2N; — 2N3) — 2Ny,

and so ker[M — 2ker(N; — Ni)| = ker(M — 2N;). We will use this
remark frequently in Section 3.

Going in the opposite direction from looping, we define a “delooping”
on free modules. If we write F'(n) for the free unstable A-module on a
single generator in dimension n, then we define BF(n) = F(n + 1). Given
a free unstable A-module P, we write BP for the free unstable A-module
whose generators are one dimension higher than those of P, and we see that
{2BP = P. Note that “delooping” is not a functor on U, because given a
map g : P, — Py, there is no canonical choice of map Bg : BP; — BPy with
2Bg = g. In most cases where we will use this notation, P will itself be an
iterated looping, and BP will simply mean one fewer loops: P = 2N and
BP = ('7IN.

We remind the reader of the content of the Massey—Peterson theorem,
which we will need to use repeatedly. Essentially, this theorem says that un-
der favorable conditions, the Serre spectral sequence for a fibration behaves
much like the long exact sequence in cohomology for a stable cofibration.

Because H*K(Z/2,n) = U(F(n)), if P is a projective unstable A-module
we write K P for the Eilenberg-MacLane space with H*KP = U(P).

DEFINITION 2.3. We call a map X — K P Massey—Peterson if the fol-
lowing hold:

(a) There is an unstable A-module M with H*X = U(M).

(b) There is a map f : P — M that induces the map on cohomology.
That is, H*KP — H*X is U(f).

(¢) im(H*KP — H*X) is contained in a polynomial subalgebra of H*X.

(d) X is simple and of finite type.

We think of the topological map X — K P as realizing f, and by abuse
of notation we call the topological map f as well. If Y is the homotopy
fiber of a Massey—Peterson map f : X — KP, then the Massey—Peterson
theorem says that H*Y = U(N), where there is a short exact sequence (the
fundamental sequence of f)

0 — cok(f) = N — Rker(f)— 0.

The short exact sequence does not, in general, split as A-modules, although
U(N) does split as an algebra into the tensor product of U(cok(f)) and
U(2ker(f)).



We begin our discussion of SO by describing the stable Postnikov tower
of s0, which is very close to its stable Adams resolution (!). We know H*so =2
YA/ASq?, and if we write A = A/ASq!, the stable Postnikov tower of so
realizes the acyclic complex of stable A-modules

(2.2) L= IBAS YA S 294 5 A S DA,

Each term is monogenic and the differentials run cyclically through the list
Sq?, Sq?, Sq°, Sq®. Only the fact that A is not projective keeps this chain
complex from being the Adams resolution. Next we destabilize the stable
Postnikov tower for the spectrum so by taking the zero space of the infinite
loop spectrum at each level of the tower. We obtain the unstable Postnikov
tower for SO, a tower of spaces { X, } (Figure 1) with very nice cohomological
properties summarized in the following lemma. (Recall that M, is the nth
filtration of My, = H* RP> by dyadic expansion.)

LEMMA 2.4 ([Long]). (1) holim, X, ~ SO.

(2) The k-invariants in the tower {X,} are Massey—Peterson maps.

(3) ker(H*X,, —» H*X},,11) = ker(H*X,, — H*SO).

(4) im(H*X,, » H*X,+1) 2 im(H*X,, — H*SO) 2 U(M,).

SO
K(F(8)) X4 K(F(10))
K(F(7)) X3 K(F(9))
K(F(3)) Xo K(F(8))
K(F(1)) X1 K(F(4))

Fig. 1. The Postnikov tower for SO

(*) An appropriate reference for the remainder of the section is [Long].



However, we will be interested in the destabilization, not of the Postnikov
tower for so, but of the Adams tower. The only difference this introduces is
that instead of having only one homotopy group in each dimension, we have
to introduce the copies of the integers one Z/2 at a time (building up the
completion Z%). To do this, take a projective resolution of each term in (2.2),
take the total complex, and destabilize. The realization of this projective
chain complex will have the form of Figure 2. An exercise in homological
algebra shows that the tower has the same cohomological properties as those
of the Postnikov tower which were summarized in Lemma 2.4:

SO)

K(F®)& F(T) @ F(3) —— v, — K(F(10)& F(8) & F(4))
K(F(M&F@3) —2- vy —2 K(F(9)® F(8)® F(4))
K(F@3) —2— Y, —2 K(F(8)®F(4))

K(F(1) 2= v, 8 K(F@4))

Fig. 2. The destabilized Adams tower for SO

LEMMA 2.5. (1) holim, Y, ~ SO3.

(2) There is an unstable A-module Z,, with H*Y,, = U(Zy,), and ky, is a
Massey—Peterson map.

(3) ker(H*Y,, —» H*Yp4+1) = ker(H*Y,, —» H*SO).

(4) im(H*Y,, — H*Y,11) = im(H*Y,, — H*SO) = U(M,).

REMARK 2.6. (1) For the reader interested in carrying out this calcula-
tion in detail, we note that the issues are the same as those laid out in the
proofs of Proposition 4.1 and Proposition 4.3.

(2) Let P, be the unstable projective such that K P, is the homotopy
fiber of ¥;, — Y,,_1. Thus P, = F(1), P, = F(3), Ps = F(7) ® F(3), etc. It



is a consequence of Lemma 2.5(4) that
Q%ker(BP, — P,_1)
im(BPyi1 — Py
(3) The filtration quotients M, /M,_1 have been calculated in terms of
generators and relations [Massey]:

M, /M, 1 = F(2" —1)/Sq',Sq%,...,Sq

= Mn/Mn—l-

2n—2

3. A chain complex model for the UASS. In this section, we use
{Y,,}, the destabilized Adams tower of so, to construct a tower {E,} that
also has SO% as its inverse limit, but that involves in its k-invariants the
unstable resolutions of the filtration quotients M,,/M,,_;. The tower {E,}
will come equipped with a map {Y,,} — {E,}, which will allow us to cal-
culate where the homotopy of SO is represented in the homotopy spectral
sequence of { £y, }. This in turn will allow us in Section 5 to make predictions
about unstable Adams filtrations in the homotopy of SO.

We need a considerable amount of notation. Choose a minimal projective
U-resolution DY of M, /M,_1. The tower we are going to build will have
the form

EnJrl

l

KDy®...0" 'D,_|)— E, — KB(D}™ @...0 Q"D})

n—1
Note that DI will make its first appearance at the nth stage of the tower.
Because the module D;* appears in the tower as £2°D}', we avoid excessive

loops in our notation by letting C* = 2°D!" and BCP* = -1 D". We write
L,=@®; ,C]_,, and our tower will have the form

En—l—l

!

KL, — En — KBLy 41

We define the following filtration, along with similar filtrations of BL,,
and 2L,

n
FL,=&HcCi .
i=j

Thus Cf = F_p L, C F_(y_1yLn € ... C F_1Ly = Ly,

The tower of spaces {F,} that we construct in this section has the fol-
lowing properties. Recall from Lemma 2.5 that Z,, is the unstable A-module
such that H*Y, = U(Z,), and from Remark 2.6 that P, is the unstable
projective such that Y, is the homotopy fiber of a map Y,,_1 — KBP,.



(1) There exists an unstable A-module F,,_; with H*E,,_1 = U(F,-1),
and F, is the homotopy fiber of a Massey—Peterson map E,,_1 — KBL,,.
(2) There are commuting diagrams of Massey—Peterson maps

Kpr,, —— Y,.1 —— KBP,

| | !

KL, , —— E, 1 —— KBL,
induced by commuting diagrams of unstable A-modules

BL, —— F,1 —— Lp1

o

BP, —— Z,.1 —— P

(3) ker(BL,, — F,,—1) = ker(BLy,, — Ly_1).
(4) cok(BL,, — F,_1) — cok(BP,, — Z,_1) is an isomorphism.
(5) Algebraic properties of the map f,, are described in detail below.

Property (3) is analogous to Lemma 2.5(3); both say that the k-invariants
do not kill any cohomology that comes from lower down in the tower. Prop-
erty (4) is related to Lemma 2.5(4), and arranges for the towers {F,}
and {Y,,} to give the same filtration of H*SO.

To describe the last set of properties we recall that by the Massey—
Peterson theorem, if E,,_; is the fiber of a Massey—Peterson map FE,,_os —
KBL,_1, then the fundamental sequence for E,,_q is

0 — cok(BLy—1 — Fy_9) — F,—1 — Qker(BL,—1 — F,—2) — 0,

where the right-hand term is the contribution of the fiber, KL, 1, to
H*E,_1. The next space, F,, will be the fiber of a Massey—Peterson map
E, 1 — KBL,, and our last requirement is on the composition of the
k-invariants, KL,y — FE,_1 — KBL,. Let f, denote the composite
BLn — Fn—l — ler(BLn_l — Fn_g) = ler(BLn_l — Ln_g). The
final requirement on the tower {E,} is detailed below:

(5) fn has the following algebraic properties:
(a) fy is filtration preserving.
(b) For 1 <j <mn,on F_j/F_(j;) the map Eo(f,) is the map
- C"ryl,—j—2)
that comes from looping down the differential in the resolution
DI — M, /M;_;.
() Eolker(fu) 2 ker(Eo(f)).

BC)_, — Qker(BCY

n—j—1



We will use Remark 2.2 freely throughout this section. In particular,
Remark 2.2 together with requirement (5) tells us that the associated graded
of ker(f) is F_j/F_(j11)(ker(fy)) = ker(BCiij — erz—j—l)-

The construction of {E,} is inductive. For the first stage we observe
that P, = L1 = C&, and we define L1 — Pj; to be the identity map. Thus
Y1 = KP;, = KL, = E1, and the requirements are certainly satisfied in this
case. Observe that Py = Z; = F1 = L;.

At the next stage, Ly = CZ @ C}; we want a commuting diagram

BLy —— L1 =F, B(C¢e®C}) —— C}
h2l :l i.e. th Zl
BP2 —_— Pl = Z1 BP2 _— Pl

We define BC3 — C} to be zero, and BC{ — C} by the differential
for C!. The composite BCl1 — C’é = P — cok(BP, — Pp) = M is
zero because BCl1 — C& — M begins a resolution, and so the compos-
ite BC{ — C} — Py factors through BP,. We use this factoring to define
hs : BLy — BP, on the factor BC}. To define hy on the factor BC’g, choose
a class zo € ker(BP, — Pp) that, when looped, gives the generator of the
quotient Qker(BP, — Py)/im(BPs — P) = Msy/M;. This gives us the
desired commuting diagram above. If we look at the topological realization
Y, —— KBP

! !

Ey —— KBL,
the properties required for £y — KBLo are easily verified by inspection,
and we take homotopy fibers in the diagram to obtain the space Fo together
with a map Yo — Fs and maps of fundamental sequences

0 — cok(BLy — Ly) — F» — Qker(BLy — L1) — 0

!

0 — cok(BPy — P)) — Zy — 2ker(BP, — P;) — 0

For an inductive hypothesis, we assume that for ¢ < n we have defined
spaces F; and maps f; satisfying the required conditions, and we seek to
define E, 1. Thus we have maps BP,11 — Z, and F,, — Z, induced by
Y, — KBP,4+1 and Y,, — E,, respectively. We need to define a commuting
diagram

BL,t1 —— F,

ST

BP, .1 —— Zyp



and verify that when we realize it by a diagram of spaces

Y, —— KBP,,;

! !

E, — KBLpi1

taking horizontal fibers gives rise to a space E,+1 and a map Y,11 — En41
that satisfy the inductive hypotheses.

Consider the ladder of fundamental sequences for Y, and E,:

0 — cok(BL,, — F,,_1) — F,, — Qker(BL, — F,,_1) — 0

(3.1) | | |

0 — cok(BP, — Zy_1) — Zyp — 2ker(BP, — Z,—1) — 0

Lemma 2.5(4) yields 2ker(BP, — Z,—1) = 2ker(BP, — P,_1), and by
the inductive hypothesis 2 ker(BL,, — F,_1) = 2ker(BL,, — Ly,_1). Our
strategy is to construct a commuting diagram

BLni1 —— Qker(BLy — Ly_1)

(3.2) hn+1l rzhnl
BP,.1, —— Qker(BP, — P,_1).

This will give a map of BL,4+; into the right-hand term of the top fun-
damental sequence in (3.1), and then we will lift to F,, using projectivity
of BLy 1. We will make the construction in such a way that 2h,, induces
an isomorphism between the cokernel of BL,; — ker(BL,, — L,_1)
and the cokernel of BP,, 1 — 2ker(BP, — P,_1), which we know to be
M,,/M,,_1. This will lead to condition (4) for the tower {E),}.

To construct diagram (3.2), we compute {2 ker(BL,, — L,_1). From indu-
ctive hypothesis (5), we know the associated graded of ker(BL,, — L,_1),
and since {2 commutes with cokernels, we know that 2ker(BL, — L,_1)
has associated graded

F_j/F_(j+1) = Qker[BC)_; — Qker(BC?
= Qker(BC)_, — C?_._)).

—j—1 Ci—j—?)]

We first define a filtration preserving map gn4+1 : BLp+1 — 2ker(BL,, —
Ly—1) as follows. On the lowest filtration, F_(,;1) = BC(T)LH, let gn+1 be
zero. In filtration —j, let g1 : BC’TJ;fjJrl — ker(BL, — Ly,_1) lift the
natural map

BCY — ler(BCi_j Yo

n—j+1 mejo1) = Foj/F_ (1) (2ker(BLy — Lp—1))



to F_j(f2ker(BLy, — Ln-1)). Note that F_,(2ker(BL, — Ly_1)) = C§
splits off from (2ker(BL, — L,_1). We can take gp41 : @7:_11 BC’le_j
— C to be zero, and the only factor on which g,41 : BLy,41 — Cf is

nonzero is BCT.
LEMMA 3.1. gpn41 is filtration preserving and cok(gn41) = My /My—1.

Proof. gn+1 is filtration preserving by its construction. To calculate the
cokernel, we first consider the cokernel on the level of the associated graded.
For j > 1, in filtration F_;/F_(; ) we have
BCib_jJrl — ler(BC’fl_j — Cfl_j_l),
that is,

2"ID] . = Qker(Q"ITID)_— "ITID) ).

By definition, D — M;/M;_q is a resolution, and so for j < n the homology
at thfz middle of the thrge—term sequence 2777 *1Dil TR n—J *1Dil i
Q"_J_lDfl_j_1 is Qg:g_le/Mj_l, which we know is zero since n — j >
n — j — 1. Hence the map

Qi-1pJ

n—j—1mJ n—j—1mJ
1 — ker((2 anj — 02 D

nfjfl)
is a surjection. Looping preserves surjections, and hence
BCfH.+1 — _ler(BCihj — Cifjfl)
is a surjection.

Thus the cokernel of Eo(gn+1) is zero on F_j/F_(; 1 for j < n. Consider
Jj = n:on F_, we have defined g,,11 to be the differential BCT — C{, whose
cokernel is M,,/M,_1. Since we have taken g,i1 to be zero from higher
filtrations into F_,,, we find that cok(gn+1) = My, /M,_1 as desired. =

Recall that the cokernel of BP,, 11 — Q2ker(BP, — P,_1) is M, /M,_;
(Remark 2.6). To get diagram (3.2), we must have a map fp41 : BLpt1 —
Q%ker(BL,, — Ly_1) whose cokernel is M, /M, 1 and whose composition
with 2h, factors through BPF, 1. So far, we have a map ¢p41 : BLp11 —
Q%ker(BL,, — L,_1) whose cokernel is M, /M,_1, but the composition of
gn+1 With £2h,, does not necessarily factor through BP, 1. To adjust g,+1,
consider the composite

@)= BC)_;. = BLpy1 " Qker(BLy — Ly_1)

s Qker(BP, — Po_1) — My /My_.
Choose a lift of the composite across the epimorphism C§ — M, /M,_1.
We define fy,+1 : BLyy1 — 2ker(BL, — L,_1) as the sum of g,4; with

the lift @"~| BC/

e il Cy. Observe that f,, 1 is the same as gn4+1 on



the factors BC’SJrl and BCT of BL, 1, and further, the adjustment added
t0 gn41 to obtain f,41 strictly lowers filtration; thus f,11 and g,4+1 induce
the same map on the associated graded. By construction, 2h, o fh4+1 :
@?:1 BC’fl_jJr]L — Qker(BP, — P,_1) composes to zero in M,,/M,,_1, and
so £2hy, o fn41 factors through BP, 1. We define hy+1 : BLyy1 — BPpy1 to
be the sum of this factoring with a map BC’(’)"‘Jrl — BP, 41 that hits a class
Zn41 whose looping generates 2ker(BP,+1 — P,)/im(BP,y2 — Pyy1) =
M1 /My,

LEMMA 3.2. The commuting diagram

BLns1 " Qker(BLy — Ln_1)

hn+1J/ thl

dnt1

BP,y1 —— 2ker(BP, — P,_1)
induces an isomorphism
cok(fnt1) = cok(dp1).
Proof. By the construction of h,, : BL, — BP, at the previous stage,
Q%ker(BL,, — Lyp—1) — cok(dp4+1) = My /My

is an epimorphism. On the other hand, the cokernel of Eq( f+1) is My, /M, —1
in filtration —n and zero in higher filtrations, and so {2h,, induces an iso-
morphism cok(fp4+1) = cok(dp+1). =

COROLLARY 3.3. Ep(ker f11) = ker(Eo(frn+1)).

Proof. The result follows from the proof of the preceding lemma, since
we established that Eo(cok fr+1) = cok(Eo(frt1)). =

We are ready to define the k-invariant that takes us from E,, to Fj,41.
Let ky+1 be alift of f,, 41 across the epimorphism F,, — 2ker(BL,, — L,_1)
that comes from the fundamental sequence for E,,.

LEMMA 3.4. k,41 can be chosen to give a commuting diagram

BLyy1 —% F,
hn+ll J/
BP,y1 —— Z,

Proof. The choice of the lift k,41 can be adjusted if necessary by a
routine diagram chase. Use the ladder of fundamental sequences



0 — cok(BL,, — F,,_1) — F,, — Q%ker(BL, — F,—1) — 0

I ! I

0 — cok(BP, — Z,—1) — Zy, — Qker(BP, — Zp,_1) — 0

in which the left vertical arrow is an isomorphism by induction, and the
commuting diagram

BLns1 2™ Qker(BLy — Ln_1) = Qker(BLy — Fy_1)

hn+1l thl

BPuy Y Qker(BP, — Po_i1) = Qker(BPy — Zn_1).
The remaining task for this section is the verification of the inductive
hypotheses. Let
Y, —— KBP,1

(3.3) l |

E, — KBLni1

be a homotopy commutative diagram of spaces that realizes the commu-
tative diagram of Lemma 3.4, let E,11 be the homotopy fiber of F, —
KBLy,+1, and let Y41 — Fp4+1 be the map between the homotopy fibers.
By construction, E, — KBL,+1 is a Massey—Peterson map, because the
image of BL,y1 — F, injects to 2ker(BL, — L,—1) C Ly, and thus is
Sqg-free. The commuting square (3.3) is a map between Massey—Peterson
maps by construction, and thus we get the first two inductive hypotheses
immediately.

LEMMA 3.5. ker(k,y1) = ker(fny1).

Proof. fn11 is the top composite in the commuting diagram

BLni1 2% R, Qker(BLy — Ln_1)
hn+1J( l thl
BPpis Zn Qker(BP, — Po_1).

Certainly ker(ky+1) C ker(f,+1). Suppose = € ker(f,+1); then
hnt1(x) € ker[BP,4+1 — 2ker(BP, — P,_1)] = ker[BP,11 — Z,,]

by Lemma 2.5(4). Thus k,41(z) € ker(F,, — Z,). However, by inductive
hypothesis (4) and the ladder (3.1) of fundamental sequences for Y, and
E,, ker[F,, — Qker(BL,, — L,_1)] = ker[Z,, — 2ker(BP, — P,_1)]. Thus
kn+1(.%') =0.u

LEMMA 3.6. cok(BLy41 — F),) = cok(BPy+1 — Zy).



Proof. Apply the Snake Lemma to the ladder of short exact sequences

0— 0 — BP,+1 — BP,1 — 0

I | I

0 — cok(BP, —» Zy—1) — Z, — Q%ker(BP, — P,_1) —0

By Lemma 2.5, ker(BP,11 — Z,) = ker[BP,4+1 — Qker(BP, — P,_1)],
and so the cokernels of the vertical maps form a short exact sequence. The
same reasoning applied to BL, 1 and the fundamental sequence for F,, gives
a commuting ladder of short exact sequences

0 — cok(BL,, — F,—1) — cok(BLp4+1 — F,) — cok(fn41) — 0

I

0 — cok(BP, — Zp—1) — cok(BP,+1 — Z) — cok(dp+1) — 0

The leftmost column is an isomorphism by the inductive hypothesis and the
right-hand column is an isomorphism by Lemma 3.2. u

COROLLARY 3.7. The natural map h_H)ln F, — hi>nn Zn 1S an 1somor-
phism.

Proof. Consider

F, —_— Zn,

l !

Fn—‘rl — n+1

| l

hLQn F, —— lim, 2,

o~

By the preceding lemma, im(F,, — F,41) im(Z, — Zp4+1), and by
Lemma 2.5, im(Z,, — Z,41) = im(Z,, — Z,4;) for j > 1. The corollary
follows. =

4. Homotopical properties of {E,}. In this section we give the ho-
motopical and homological properties of the tower {E,}. We prove that it
has inverse limit SO} and that its homotopy spectral sequence collapses at
the Fs-term. Notation is continued from Section 3.

PROPOSITION 4.1. The map of towers {Y,} — {E,} induces a homotopy
equivalence on the homotopy inverse limits.

Proof. We already know from Corollary 3.7 that the map of towers
induces an isomorphism hi)nn H*E, — hi>nn H*Y,. Although cohomology
is not in general well related to inverse limits, an application of [Lannes,



Lemme 3.2.3] tells us that in our situation,
H* holim,, Y;, = lim, H*Y, and H* holim,, £, & lim, H*E,,.
The essential ingredients that allow the use of Lannes’s lemma are:

(1) For all n, the spaces Y,, and E, are connected and have mod 2
cohomology that is finite in each dimension.

(2) The towers of groups {mY,} and {7 E,} are constant.

(3) The towers of groups {H1Y,,} and {H1 E,} are constant.

The proposition then follows by observing that hﬁmn Y, — h&mn E,
is a mod 2 cohomology isomorphism, and the source and target are each
2-complete, being built from mod 2 Eilenberg—MacLane spaces by fibra-
tions. m

COROLLARY 4.2. holim,, E,, ~ SO%.
0lir

Our next goal is Corollary 4.5, in which we prove that the homotopy
spectral sequence of {E,} collapses at the Es-term. This follows by using
a homological argument to show that the map {Y,,} — {E,} induces an
isomorphism at Es of the homotopy spectral sequences, and then observing
that the homotopy spectral sequence of {Y,} does in fact collapse at Es.
The following proposition performs the main technical calculation.

ProproSITION 4.3. The following ladder gives a homology isomorphism
at the middle term:

BLyi1 _fn Ly, n 9L,

hn+ll thl thnfll

dn £2d.
BPyy1 — P, —" QP,,

That is, 2h,, induces an isomorphism
ker(2f,) ., ker(£2d,)
im(frr1)  im(dngr)
Proof. The proof is inductive. For n = 1, we take Py = Ly = 0 and the

result is easily established by direct calculation. Suppose that the proposi-
tion is true for

BL, —— L,_1 —— 2L,

| | |

BP, —— P,_1 —— 2P,
and consider the next stage. By Lemma 3.2, we already know that
Qker(BL, — Ly—1) ., 2ker(BP, — P,_1)
im(BLny1 — L) im(BP,y1 — P,)




Let iy, : Q2ker(BL, — erl) — ker(L,, — §2L,_1) be the natural map
Q%ker(f,) — ker(£2f,), let i1, be the induced map on cokernels, and consider
the diagram of exact sequences

fn+1 ler(BLn — LTL—].)
BL, Qker(BLy — Ly :
1 = Qker(Blo = L) im(BLo+1 — Ln) ’
| . y
Ker(Ly — 2Ln_
BLyy1 —— ker(L, — 2L,_1) er(Ln = ) 0

im(BLny1 — L)

By Lemma 2.1 and the Snake Lemma, i; and 7;, are monomorphisms and
cok(iy) = cok(iy) = 2} cok(BL, — L,_1). The same argument with
ip : Rker(BP, — P,_1) — ker(P, — {2P,_1) and the corresponding
map of cokernels, ip, shows that ip is a monomorphism and cok(ip) =
2} cok(BP,, — P,_1). Consider the diagram

1%

leI‘(BLn — Ln—l) .leI‘(BPn — Pn—l)

im(BLp4+1 — Ly) im(BP,+1 — P,)
| ol

ker(L,, — 2L,_1) ker(P, — 2P,_1)

im(BLyps1 — L) im(BP,1 — P,)

We already know that the top row is an isomorphism. Since i;, and ip are
monomorphisms, the corollary will be established by the Five Lemma if we
prove that the diagram induces an isomorphism cok(iy) — cok(ip). Thus
we must show that 2} cok(BL,, — Ly—1) = 1 cok(BP,, — P,_1).

The three-term sequence BL,, — L,,_1 — §2L,,_o gives us a short exact
sequence

ker(Ln—l - QLn—2) . Ly _ Ly
im(BL,, — L,_1) im(BL,, — Ln—1)  ker(Lp,_1 — 2L, 2)

The middle term is cok(BL,, — Ly,_1), and the right-hand term is Sqq-free,
because it injects into {2L,,_s, which is itself Sqy-free. This argument and a
similar one applied to BP,, — P,_1 — 2P, _o give us

ker(L,—1 — QLn_Q)]

Ql
! [ im(BL,, — Lyp_1)
_Ql ker(Pn_l — QPn_Q)

" im(BP, — P,_1) |’

1

2} cok(BL,, — Ly_1)

I

1 cok(BP,, — P,_1)

and these are isomorphic by the inductive hypothesis. »



COROLLARY 4.4. The commuting ladder
BL,y1 —— L, —— 2L, 4

| | |

BP»,H_l — P, —— 2P,
induces an isomorphism on H* Homy(—, X'Fy) for all t at the middle term.

Proof. We first prove that for all n, the commuting ladder

BLn+1 Ly, 2L, e QnilLl
BP, 1 P, 2P, . Qn—lpl

induces an isomorphism on the homology of the rows up to and including
L, — P,,. The proof is by induction, beginning with

BLs Ly 0
L=l
BP, Py 0

In the case of SO, BLy, — BP; is an equality. In the case of U, we observe
BLy = BCl1 @ BCg =BP, & BCg where the BP, summand maps to BPs
by the identity and BC’g maps to Ly by the zero map. Thus we have a base
for the induction in the case of U also.

Suppose that

BL, —— L, —— 2L, _» 021,
BP, —— P,_4 ——— P,_» on2p

induces an isomorphism on homology up to and including L,—1 — P,_1.
Applying (2 to both complexes, we find that

L, —— L, —— 22L,_» o=l
P, —— 0P,y —— 2P, o on-lp

is an isomorphism on homology up to and including 2L, 1 — 2P, _1, and
joining this with the result of Proposition 4.3, we find that

BL, L, 2L, . 2" 1L,

| ! | |

BP, 1 P, 2P, . Q"1p




is an isomorphism on homology up to and including L,, — P,, and the
induction is complete.

Assume that ¢ > 1, since all the spaces and modules we use in this work
are connected. To prove the corollary, we use the ladder

BL,,o — Lyy1 —— 2L, —— (2*L, "Ly
BP,.y —— P,,, —— P, —— (2’P,_, 2" Py

Denote the top row of the ladder by £, and the bottom row by P,, and
let C, be the mapping cone. Then H.C, = 0 for * < n + 1, and thus
H* Homy (Cy, X7 1F2) = 0 for * < n. Therefore the ladder

QBLyy1 2Ly, —— QL, —— 2L,

! | |

QBPyi1 2Py —— QP, —— 2P,

gives an isomorphism on H*[Homy(—, X% !Fy)] at the middle term. How-

ever, the functors 2 and X are adjoints, and so Homy(2—, X1 1Fy) =
Homy (—, X'F3), and the corollary follows. m

COROLLARY 4.5. The homotopy spectral sequence of {E,} collapses
at EQ.

Proof. By Corollary 4.4, the map {Y,,} — {E,} induces a map of homo-
topy spectral sequences which is an isomorphism on the Fo-term. Since the
homotopy spectral sequence of {Y},} has no further differentials (in fact, it
collapses at E7), the homotopy spectral sequence of {E,,} collapses at Fs. m

5. A model for the UASS, and some predictions and reflec-
tions. In the preceding sections, we used the resolutions of the filtration
quotients M,,/M,_1 to construct a complicated tower {E,} that involves
those resolutions, converges to SO, and has a homotopy spectral sequence
that collapses at Fy. The tower {E,} realizes the chain complex L., where
the notation L, is to be interpreted as BL,+1 — L, — 2L,_1 at the nth
level. The differential of the chain complex L, gives rise to the only nonzero
differential in the homotopy spectral sequence of { E,, }, since the Ej-term is
Homy (L, X*Fy) at level n, and Ey' = EX' (Corollary 4.5).

In this section, we describe how the complex L, gives a model for the
unstable Adams spectral sequences of SO and U, we make some predictions
based on the model, and we discuss some related work of Bousfield and
Davis [B-D].



5.1. A model for the UASS. The conjecture suggested by Mahowald
is, loosely, that the differential of the chain complex L, contains all the
information on the unstable Adams spectral sequence, including all of its
many nonzero differentials. We already know that H*[Homy (L., X*F2)] is
the associated graded for the filtration of 7, S Oé\ by the destabilized Adams
tower (Corollaries 4.4 and 4.5). The assertion is that it is possible to produce
the UASS from the complex Homy (L, 2*F2) by a combination of filtering
and regrading.

To describe the proposed model, let L* be the cochain complex of graded
vector spaces defined by

(£"); = Homy(Ly, X7F>),
and use the differential BL,+; — L, and adjointness to define d : (L"); —
(L)1 by
Homy (Ly,, 2/Fy) — Homy(BLyy1, XFs)
>~ Homy (2BLy 11, 577 'Fy) = Homy (L1, 277 1Fy).
We filter L™ by

n
(F*L"); = Homy ( Por, EJFQ) .
1=3S8
We have FY O F' D F? ..., and comparing to the construction of BL, 1
— L, in Section 3, it is easy to check that the differential on £* is filtration-
preserving. Thus the filtration gives rise to a spectral sequence that con-
verges to H*L*, and we grade it as

By = @5 Homy (CF, X' °Fy).
n

Recall that the abutment, H*£*, is the associated graded to 7,S0%. Also,
C? = 2°D?, and hence by the adjointness of 2 and X', we have

Ey' = @D Homy (DY, £'Fy).

n

The d;-differential is induced by the differential in the resolution D} —
M,,/M,,_1, and thus the spectral sequence becomes

Byt = @Extsg( M, /M, _1, X'Fy) = 71,505

CONJECTURE 5.1. The spectral sequence ES* defined above is the UASS
for SO.

If Conjecture 5.1 is correct, then it has the consequence that all of the
differentials in the unstable Adams spectral sequence can be computed from



the primary level calculation of the complex L,. In principle, this could be
done indefinitely far out by computer.

COROLLARY TO CONJECTURE 5.1.
Exty’ (Moo, Fo) @Ext (M, /M,,_1,Fy).

Proof. The left side is the Ea-term of the UASS, while the right side is
the Fo-term of the model. If Conjecture 5.1 is correct, these two must be
isomorphic. =

In fact, there is a general spectral sequence that is very close to the
spectral sequence of Conjecture 5.1, namely the Grothendieck spectral se-
quence for the calculation of the derived functors Ext® (2 A/Sq?, 2'Fy). Let
D be the destabilization functor from the category of (stable) A-modules
to U, the category of unstable A-modules. (This functor is often denoted
by 2°°.) Because Y'Fy is an unstable A-module, any map to Y!Fy from
a stable A-module factors through the destabilization. Hence the functor
Hom , (—, X'F3) can be written as the composition Homy(—, X'F3) o D(—),
giving rise to a composite functor spectral sequence

Exty, " (D,—, X'F3) = Ext’(—, X'Fa).

In the case of £ A/Sq?, Exts (X A/Sq?, X'Fy) actually gives the associated
graded to the stable homotopy, because there are no differentials in the
stable Adams spectral sequence for infinite delooping of SO. Thus the
Grothendieck spectral sequence gives a spectral sequence starting from an
unstable Ext and converging to m,S0.

The Grothendieck spectral sequence is very closely related to the spec-
tral sequence we have constructed, but it is not quite the same. In partic-
ular, let X = YA/ Sq?, so that we are considering the case of SO. Then it
can be shown that M, i/M, = D, X "X the ingredients being found in
Lemma 2.5, Lemma 2.1, and the proof of Proposition 4.3. Our construction
gives a spectral sequence

Exty (DX X, 2'Fa) = Ext’ (X, 2'Fa).

However, the situation for the group U is a little different, the difference
being caused by the fact that while H*SO is the free unstable A-algebra on
H*RP>, which is Sq"-free, H*U is the free unstable A-algebra on Eﬁ*C’Pf,
which is not. In fact, contrary to the assertion of [B-D, Proposition 4.1], if
X = YA/Ay, where Ay is the subalgebra of A generated by the Milnor
primitives Qo and @1, then D, X" X is not My 1/M, & X7Z/2 but a much
larger module. The problem lies not in the spectral sequence constructed in
the proof of the proposition, but in the assumption that the homology being
converged to is My,11/M,.



However, a small variation can repair the problem. Let X be an A-
module, and let C, be a stable resolution of X. For n > 1, define
Rker(DXC, — DXCy_1)

im(DCy41 — DC,)

Using methods similar to those of Proposition 4.3, one can show that the
definition of D/ X is independent of the resolution used, and that the mod-
ules D! X and D, X are different exactly when D,_1 XX is not Sqo—free. If

we let X = YA/Sq? (in the case of SO) or X = ¥ A/Sq? (in the case of U),
then for both SO and U,

DS X = M,y /My,

where the modules M, /M, are the filtration quotients of H*RP> (in
the case of SO) or YH*CP° (in the case of U). The construction of the
previous section gives, for a general A-module X, two spectral sequences,
depending on whether we use D, or D,:

(5.1) Exty (D, X" X, X'Fy) = Ext’ (X, 2'F),

(5.2) Exty, (D, X" X, X'Fy) = Ext’ (X, Z'F,).

D.X =

(The spectral sequence of Conjecture 5.1 is (5.1).) These spectral sequences
can be given a construction almost exactly like that of the Grothendieck
spectral sequence. Conjecture 5.1 observes that because the stable Adams
spectral sequences for SO and U collapse, the target of the spectral sequence
in (5.1) is actually the associated graded to the homotopy of the space. Since
the Ea-term is closely related to the homology of the space, because D.. X" X
is the associated graded for the cohomology of SO (or U), this variation of
the Grothedieck spectral sequence could actually be the unstable Adams
spectral sequence.

5.2. Predictions. Next we discuss some predictions that arise from Con-
jecture 5.1 and some empirical data that support the conjecture. The main
tool in making these predictions is a vanishing theorem of Bousfield [B, The-
orem 2.6] that describes the location of hg-towers in unstable Ext by giving
values of t — s where towers occur, though not the value of s in which they
begin. Application of Bousfield’s theorem gives us the following proposition.
Recall that «(n) denotes the number of ones in the dyadic expansion of n.

PROPOSITION 5.2.
(1) For M = H*RP>:
(a) The ho-towers of Extg;(M, X'Fa) are found in stem degrees sat-

isfying t — s = 3 mod 4, and there is exactly one hg-tower in
each such dimension.



(b) The ho-towers of Extg, (M /My 1, YFs) are found in stem de-
grees satisfying t — s = 3 mod 4 and a(t — s) = n, and there is
exactly one hg-tower in each such dimension.

(2) For M = H*XCP%:

(a) The hg-towers of Extf (M, X'Fs) are found in stem degrees sat-
isfying t — s = 1 mod 2, and there is ezactly one ho-tower in
each such dimension.

(b) The ho-towers of Extg (My,/My_1, X'F2) are found in stem de-
grees satisfying t —s = 1 mod 2 and ot — s) = n, and there is
exactly one hg-tower in each such dimension.

Proof. An easy calculation with [B, Theorem 2.6]. =

REMARK 5.3. Proposition 5.2 says that @, Extg, (M, /M,_1, X'F2) has
the same ho-towers as Extg (M, Y!Fy), and so Corollary to Conjecture 5.1
is correct with regard to hg-towers.

Bousfield’s theorem also gives a vanishing line above which Ext is zero
except for hg-towers. To describe his theorem as it applies to our situation,
we define a function ¢(m) for positive integers m as follows. Suppose that
m = 8k + ¢ where ¢ < 8. Then:

(1) ¢(m) =4k +i for i =0,1,2,3;
(2) ¢(m) = 4k + 3 for i = 4,5, 6;
(3) ¢p(m) =4k +4 for i =7.

We specialize Bousfield’s theorem to our situation as follows.

THEOREM 5.4 ([B, Theorem 2.6]). Let N be an unstable A-module such
that N; =0 for i < ¢, where ¢ > 5. Then Ext{ (N, X'Fs) is free over Fa[hg)
for s> ¢t —s—c). B

This gives a vanishing line of slope 1/2 in the UASS.

We are going to use Theorem 5.4 to predict the unstable Adams
filtrations of the elements of 7,50 and w,U. From the map of towers
{Y,} — {E,}, the maps KP,;1 — KLy4+1 induce on homotopy a map

n
(5.3)  Ext}(XA/Sq’, X'Fa) — P Exty T (M, /My, X7TTRy),
r=1
and this map commutes with the action of hg. All of the elements on the
left represent homotopy, and since the right-hand side is the Eo-term for the
spectral sequence of Conjecture 5.1, the map tells us where the homotopy
is represented in this spectral sequence, which predicts the unstable Adams
filtration of m,.SO.
Consider first the case of SO. Suppose £ = 3 mod 4; if £ = 3 mod
8, define n = (k —1)/2, and if K = 7 mod 8, define n = (k — 3)/2. Then



7SO = 7, represented by an ho-tower in Ext* (X A/Sq?, Z**Fy) beginning
in filtration s = n. On the right side of (5.3), the only term with an hg-tower
in dimension k is r = a(k) (Proposition 5.2), and so the part of (5.3) that
carries the bottom element of the hg-tower is

Ext} (2 A/Sq%, £'F2) — Eth_a(k)Jrl(Ma(k)/Ma(k)—la stmalk) gy,
Thus we obtain the following prediction.

CONJECTURE 5.5. The unstable Adams filtrations of the nonzero, tor-
sion free groups mpSO are a(k) — 1 less than the stable Adams filtrations of
the corresponding stems.

When we consider the form of £ mod 8 and the known stable filtrations,
this conjecture predicts that mg; 1350 and 7g;4750 occur in unstable Adams
filtration 4i — a(3).

By exactly the same reasoning as above, we obtain a prediction for the
case of U, where all the homotopy is torsion free.

CONJECTURE 5.6. The unstable Adams filtrations of the nonzero groups
U are a(k) —1 less than the stable Adams filtrations of the corresponding
stems.

In this case, comparing with the stable filtration gives us the prediction
that mo;41U has unstable Adams filtration i — ().

Next, we predict the unstable Adams filtration of the torsion elements
of SO, namely 7SO = Z/2 for k = 0 or 1 mod 8. Consider first the
case k = 0 mod 8, and let n = (1/2)k — 1. Then 7SO is represented in
Ext” (X A/Sq?, X7 EFy). As before, we predict the unstable Adams filtration
by considering the image of this element under the map of (5.3):

n
Ext’}(2A/Sq?, Z"FFy) — @D Exty " (M, /My, TRy,

r=1
Using Theorem 5.4, we will prove that only the » = 3 summand has hg-
torsion elements in high enough filtration to be in the image of this map.
We already know that M has exactly one torsion element in Ext for s =0
and nothing else, and My /M; has exactly one hp-tower in Ext for k = 3,
and nothing else. Suppose that » > 4, and note that M, /M,_; begins in
dimension 2" — 1. To use Theorem 5.4 to rule out hg-torsion elements in
Ext? " (M, /M,_1, X" tF~m+1Fy), we must show that

n—r—1>¢[n+k—r—1)—(n—-r—1)—(2"-1)],

a task that is easily accomplished using £ = 0 mod 8 and n = (1/2)k — 1.
An almost identical calculation leads to the same conclusion if k¥ = 1 mod 8.
This leaves the » = 3 summand as the only one where the torsion elements



can go, and since r = 3 causes a filtration drop of 2 from the stable Ext, we
arrive at the following prediction.

CONJECTURE 5.7. If k > 1 and mp,SO = 7 /2 is represented in filtration
n in the stable Adams spectral sequence, then it has filtration n — 2 in the
unstable Adams spectral sequence.

Thus the prediction is that for ¢ > 0, wg; SO has unstable Adams filtration
44 — 3 and 7g;+1.50 has unstable Adams filtration 4¢ — 2.

REMARK 5.8. The author has verified the preceding conjectures as to
filtration for m.SO up to approximately 5o, using charts of unstable Ext
provided by R. Bruner’s computer calculations. Likewise the author has
verified the Corollary to Conjecture 5.1 for SO in the same range.

We close this discussion by giving an example of the calculation of a
differential in the spectral sequence modeling the UASS for SO. In Figure 3,
we exhibit part of the UASS for SO. We will show how to use the spectral
sequence of Conjecture 5.1 to predict the first differential in the UASS for
SO, which goes from (s,t—s) = (0, 15) to (s, t—s) = (2, 14). (This differential
propagates to give differentials connecting the two lightning flashes, but we
will deal only with the first differential.)

10 !

& | 1 |
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Fig. 3. The Es-term of the UASS for SO. Elements represented by open circles arise
from M, and M,/M,. Elements represented by black dots arise from Ms/M,. Elements
represented by circled dots arise from My/Ms.

In order to do this, we will have to calculate the first few stages of the
complex L,. In particular, we will be looking at the commuting diagram of



three-term sequences
BLy —— Ly, —— (213

(5.4) h5l le Q%gl
BPy —— Py —— (P;

which is detailed in Table 1. We will need the result that M, /M, 1 =
F(2" —1)/Sq', 84, .. ., Sq2" [Massey], and we remind the reader that in
diagram (5.4), the top row involves resolutions of M,,/M,,_1 forn =1,...,5,
where the resolution of M,, /M,,_; is looped down 4 —n times. When n = 1,
M; = F(1) is a projective, and has a resolution of length 1. Hence C} = 0
for i > 0. Further, My/M; = F(3), which is almost projective. Its projective
resolution is ... — F(5) — F(4) — F(3) (each map given by Sq!), and so
all the elements contributed lie in ¢ — s = 3. It turns out that this resolution

does not interact with any of the other parts of L, corresponding to the
fact that no differentials in the UASS for SO involve t — s = 3.

Table 1. The chain complexes of Section 3

BLs — Ly — L3

C?: F(4) Sqt s F(3) Sq'tw F(2)
F(8) Sq'ur

F(7) Sq'

3. { F(10) Sq® ts + Sq® v7 FES; SqQ " F(6)
F(15) Sq" s +Sq"*" 15 + 5% 7 + 4t
F(16) Sq' uis

Ci:Q F(17) Sq® u1s F(15)
F(19) Sq* 15

C3: F(32)
BP; — Py — 2P3
F(4) Sq' s F(3) Sq'tz F(2)
F(8) Sqt v F(7) Sq'tws F(6)
F(10) Sq? 18 4+ Sq% ¢r F(8) Sq*uw

In Table 1, we provide all the summands of each of the terms in
(5.4) and show the horizontal maps between them. In the commuting

square
L, —— 0Ls

Qh4l Q2h3l

P, —— QP



2h3 is the identity, and £2hy4 is the identity map on the summands F(3),
F(7),and F(8). To describe £2h4 on the summand F'(15) of L4, we recall that
t15 € Lg must hit an element of P4 that represents an A-module generator
of the homology of the three-term sequence BP; — Py — (2P5, and the
element in question is Sq” tg + Sq*?! 1g + Sq®? 17 € Py.

Now for the differential. It is predicted by the construction of the map
BL5 — L4, and it comes about because BL; — L4 must be defined in such
a way that the composite BLs — L4 — Py lifts across BPs; — P4. Since
there are no interactions between the filtrations in the map L4 — §2L3, the
map BLs — L4 can be constructed simply by using the differentials within
the resolutions C}, and then making adjustments as needed to ensure the
required lifting. In terms of the construction of Section 3, this is saying that
the map g5 is just the sum of the differentials in the individual resolutions.

No corrections need to be made until we reach F(15) C BLs. At this
point, if no adjustments were made, the composite BLs — Ly — P, would
take the generator 115 € BLs to Sq” ts + Sqb?! 1g + Sq%2 17 € Py. Since this
element generates the homology at Py, it certainly does not lift to B Ps. Thus
we add 115 € Ly to the image of 115 € BL5 (boxed for emphasis in the table).
This gives a differential between adjoining filtrations in £*, which translates
to the prediction of the nonzero ds differential taking (s, —s) = (0,15) to
(s,t —s) = (2,14) in the UASS of SO.

5.3. Relation to [B-D]. Bousfield and Davis make in [B-D] a much more
general conjecture than our Conjecture 5.1. Suppose given a diagram of
unstable A-modules

F F Fj
o s e

Xo 2 x; 2 ox, 2. X
QF QF,

satisfying the following conditions:

(1) B, —» Xpo1 — Xy, — QF, — 2X,,_ is exact.

(2) F, is a direct sum of F(m)’s and/or F'(m)’s (where F(m) is a free
unstable A-module on a generator of dimension m and F'(m) = F(m)/Sq').
(3) (infn)* : Ext{(02F,, X'Fa) — Extg (Fyq1, 2'F2) is the zero map.

(4) ker(X,, — X) = ker(X,, — Xp41).
(5) X = limy, (Xn).

Let M,, = im(X, — X).



CONJECTURE 5.9 ([B-D, Conjecture 5.1]).
Ext}, (X, Z'Fy) & D Ext}y (M /M, 1, Z'Fy).
n

However, this conjecture is false, as shown by the counterexample that
follows. Consider the following tower, whose k-invariants are described be-
low:

K(Z/2,10) —“— v,

K(Z/2,8) —%— vy — K(2/2,10)
K(Z/2,8) —2— Yy —2 K(2/2,9)
K(Z,7) —2 v, s K(2/2,9)

« — K(Z,8)

Let H*Y; = U(Z;). The first k-invariant is k1 = Sq?¢7 and the second is
ky = 0. For the third, let z19 be a class in Zy with (i2)*(x10) = 2Sq? 19
€ Nker(Sq? : F(9) — F(7)), and let x}, denote its image in Z3. Let g
be a class in Z3 with (i3)*(zg) = tg, the fundamental class. Then the third
k-invariant is defined by k3 = ', + Sq* zs.

We consider Bousfield and Davis’s conjecture for this situation, where
the diagram is given by

F(8) F(9) F(9) F(10)

l lSqZ L7 lO lz’lOJquQ 8

0 — F(7) 2> 2o 2 23 B, z,=X

[ [ | |
F(7) F(8) F(8) F(9)
In particular, we consider Ext?, so that we are really looking at A-module
generators. We find that Ext® has nonzero groups only in the following
dimensions:
(1) Ext) (M, X'Fy) = Z/2 if t = 7.
(2) Ext{,(My/My, X'Fy) = Z/2 if t = 10 or 15.



(3) Ext),(Ms/M,, X'Fs) = Z,/2 if t = 8.
(4) Ext)(My/Ms, X'F9) = Z,/2 if t = 12 or 31.
(5) Ext) (X, X'Fo) = Z/2 if t = 7,8,12,15 and 31.

In particular, ExtOH(X , X'F9) has no nonzero class for ¢t = 10. In fact,
Ms /M, = F(8)/Sq?, and in the spectral sequence for Ext; (X, X'F) arising
from the filtration of X, there is a nonzero differential

Exty, (Ma/My, X'F5) — Exty (Ms/M,, 2'F,).

In effect, what we have done in this example is to introduce a generator
in My (namely x10, corresponding to Sq? tg) and then to equate it with a
Steenrod operation on another class at a later stage, thus eliminating it from
the list of generators.

However, it is possible to revise Conjecture 5.9 to deal with this problem.
The salient feature that distinguishes the situation for SO and U from the
example above is that there is a stable resolution in the background. In
other words, in the case of the tower {Y,,} defined in Section 2, the tower
realizes a destabilized resolution of X' A/Sq® or Y A/Sq®, whereas in the
counterexample above, the tower realizes the unstable complex

A & Fo) & o) & pa),

which is certainly not the destabilization of a resolution. To reflect this, we
refine Bousfield and Davis’s conjecture as follows.

CONJECTURE 5.10. Conjecture 5.9 is true if we add the hypothesis that
there exist A-modules 'y, and maps d,, : F,y1 — F,, satisfying the following
conditions:

(1) F,, is the sum of copies of A and A/Sq', and 2"DF, = F,.

(2) 2"D(dy,) = in © fn.

(3) (Fx,dy) is a chain complex whose only nonzero homology group oc-
curs in the lowest homological dimension.
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