A conjecture on the unstable Adams spectral sequences for $S O$ and U

by
Kathryn Lesh (Schenectady, NY)

Abstract

We give a systematic account of a conjecture suggested by Mark Mahowald on the unstable Adams spectral sequences for the groups $S O$ and U. The conjecture is related to a conjecture of Bousfield on a splitting of the E_{2}-term and to an algebraic spectral sequence constructed by Bousfield and Davis. We construct and realize topologically a chain complex which is conjectured to contain in its differential the structure of the unstable Adams spectral sequence for $S O$. A filtration of this chain complex gives rise to a spectral sequence that is conjectured to be the unstable Adams spectral sequence for $S O$. If the conjecture is correct, then it means that the entire unstable Adams spectral sequence for $S O$ is available from a primary level calculation. We predict the unstable Adams filtration of the homotopy elements of $S O$ based on the conjecture, and we give an example of how the chain complex predicts the differentials of the unstable Adams spectral sequence. Our results are also applicable to the analogous situation for the group U.

1. Introduction. In this paper, we consider the unstable Adams spectral sequence (UASS) of the group $S O$ at the prime 2. In particular, we give a systematic account of a conjecture suggested by Mark Mahowald concerning the calculation of the differentials in this spectral sequence. We give a geometric realization of the conjecture in the form of a tower with the 2 -completion of $S O$ as inverse limit. Our tower comes equipped with a map from the destabilization of the stable Adams tower for the infinite delooping of $S O$. We use this map and theorems of Bousfield on h_{0}-towers in unstable Ext to predict the Adams filtrations of the unstable homotopy of $S O$. Our results are equally valid for the group U, and thus differentials and unstable filtrations can be predicted for this group as well. Of course, the homotopy of $S O$ and U is well known by Bott periodicity, and what is of interest is the workings of the UASS, not the end result.

Before we describe our results and conjectures, we establish some notation. We work entirely at the prime 2 , all cohomology will be taken with $\bmod 2$ coefficients, and all spaces will be taken to be completed at 2 as

2000 Mathematics Subject Classification: 55T15, 55Q52, 55U99.
appropriate. Let A be the mod 2 Steenrod algebra, let $\underline{\mathbf{U}}$ be the category of unstable A-modules, and let $\underline{\mathbf{K}}$ be the category of unstable A-algebras. There is a functor $U: \underline{\mathbf{U}} \rightarrow \underline{\mathbf{K}}$, described by Massey and Peterson [M-P], which takes the free unstable A-algebra on an unstable A-module. This functor is left adjoint to the forgetful functor from unstable A-algebras to unstable A-modules.

In general, the unstable Adams spectral sequence for a space X has the form

$$
E_{2}^{s, t}=\operatorname{Ext}_{\underline{\mathbf{k}}}^{s}\left(H^{*} X, H^{*} S^{t}\right) \Rightarrow \pi_{t-s} X
$$

where Ext is a derived functor in the nonabelian category \underline{K}. However, for a space X with the property that $H^{*} X \cong U(N)$ for some $N \in \underline{\mathbf{U}}$, the unstable Adams spectral sequence has the form

$$
E_{2}^{s, t}=\operatorname{Ext}_{\underline{\mathrm{U}}}^{s}\left(N, \Sigma^{t} \mathbb{F}_{2}\right) \Rightarrow \pi_{t-s} X
$$

We will follow the stable notation and write $\operatorname{Ext}_{\underline{\mathrm{U}}}^{s, t}\left(N, \mathbb{F}_{2}\right)$ for $\operatorname{Ext}_{\underline{\mathrm{U}}}^{s}\left(N, \Sigma^{t} \mathbb{F}_{2}\right)$.
We will be discussing the unstable Adams spectral sequence for the special orthogonal group $S O$ and indicating modifications to be made to the discussion for the unitary group U. Let $M_{\infty}=\bar{H}^{*} R P^{\infty}$, with nonzero elements x_{i} in dimension i and A-action $\mathrm{Sq}^{j} x_{i}=\binom{i}{j} x_{i+j}$; then $H^{*} S O \cong U\left(M_{\infty}\right)$. Hence the unstable Adams spectral sequence for $S O$ takes the form

$$
\operatorname{Ext}_{\underline{\mathrm{U}}}^{s, t}\left(M_{\infty}, \mathbb{F}_{2}\right) \Rightarrow \pi_{t-s} S O .
$$

Let $\alpha(i)$ be the number of ones in the dyadic expansion of i, and filter M_{∞} by $M_{n}=\left\{x_{i} \mid \alpha(i) \leq n\right\}$. This filtration leads to a spectral sequence converging to the E_{2}-term of the UASS:

$$
\operatorname{Ext}_{\underline{U}}^{*, *}\left(M_{n} / M_{n-1}, \mathbb{F}_{2}\right) \Rightarrow \operatorname{Ext}_{\underline{U}}^{*, *}\left(M_{\infty}, \mathbb{F}_{2}\right)
$$

It is a conjecture of Bousfield from the 1970s that this spectral sequence collapses, giving

$$
\operatorname{Ext}_{\underline{\cup}}^{*, *}\left(M_{\infty}, \mathbb{F}_{2}\right) \cong \bigoplus_{n} \operatorname{Ext}_{\underline{U}}^{*, *}\left(M_{n} / M_{n-1}, \mathbb{F}_{2}\right)
$$

A similar conjecture for the E_{2}-term of the UASS for the group U arises from the fact that if we take $M_{\infty}=\bar{H}^{*} \Sigma C P_{+}^{\infty}$, then $H^{*} U \cong U\left(M_{\infty}\right)$, and in this case also, M_{∞} can be filtered by dyadic expansion of the dimension of the elements.

In this paper, we use the destabilization of the stable Adams resolution of the connective so spectrum to construct a chain complex whose constituent parts are minimal resolutions of the filtration quotients M_{n} / M_{n-1}. When realized topologically using the Massey-Peterson theorem [M-P], this chain complex gives a tower of spaces whose inverse limit is $S O$ (2-completed), and whose homotopy spectral sequence collapses at E_{2}. The E_{1}-term of the homotopy spectral sequence is $\bigoplus \operatorname{Ext}_{\underline{\mathrm{U}}}^{* * *}\left(M_{n} / M_{n-1}, \mathbb{F}_{2}\right)$, a very large vector
space, while $E_{2}=E_{\infty}$ is the associated graded to $\pi_{*} S O$, a rather small vector space $\left(\pi_{i} S O \cong \mathbb{Z}\right.$ for $i \equiv 3 \bmod 4$, and $\mathbb{Z} / 2$ for $i \equiv 0$ or $\left.1 \bmod 8\right)$. Hence the spectral sequence has a very complicated d_{1}, but the complete calculation of d_{1} is part of the computation of the chain complex, a primary level calculation. The conjecture suggested by Mahowald (Conjecture 5.1) is that in a certain precise sense, this d_{1} differential contains all the differentials in the UASS. Because the tower comes equipped with a map from a modified Postnikov tower for $S O$, it is possible to use theorems of Bousfield on unstable Ext to predict where the homotopy of $S O$ is represented, and this, in turn, allows a prediction of the unstable Adams filtration of those elements. It is the hope of the author that in the future it will be possible to manipulate this tower by an elaboration of methods of [Lesh] to prove Conjecture 5.1. Extensive knowledge of differentials in the UASS for $S O$ would allow the computation of differentials in other unstable Adams spectral sequences by naturality. For example, it should be possible to recover a form of Hopf invariant one from the model's calculation of the UASS for $S O$.

The splitting conjecture of Bousfield was discussed and an algebraic model for the UASS for U and $S O$ constructed in [B-D]. However, the model was considered strictly on an algebraic level and was not realized topologically. Although the author believes that the spectral sequence of $[\mathrm{B}-\mathrm{D}]$ is the same as that of the current work, the advantages of the model described here seem to be the following. First, the construction of the model is essentially formal, and very similar to the standard construction of the spectral sequence converging to the derived functors of a composite functor. All of the differentials can be calculated by a primary level calculation that is a strictly mechanical process. Second, the model comes equipped with a topological realization. It seems that in order to prove that the model actually does give the UASS, it will be necessary to have such a realization.

The rest of this paper is organized as follows. In Section 2, we give some background on the stable and destabilized Postnikov towers of so, as well as some algebraic preliminaries. In Section 3, we construct a tower of spaces and an associated chain complex that models the UASS for $S O$. In Section 4, we study the homotopical properties of the tower. Finally, in Section 5 we use theorems of Bousfield to predict the unstable Adams filtration of elements of $\pi_{*} S O$, we give a counterexample to a conjecture of [B-D], we draw some conclusions about what may be necessary to prove Conjecture 5.1, and we give an example of a differential in the UASS that is predicted by our methods.
2. Preliminaries. In this section, we review algebraic properties of the category of unstable A-modules, we recall the Massey-Peterson theorem,
and we consider the cohomology of the stages of the destabilized Adams tower of so.

We begin by reviewing properties of the algebraic looping functor Ω : $\underline{\mathbf{U}} \rightarrow \underline{\mathbf{U}}$ and its iterates. (See also $[\mathrm{M}-\mathrm{P}]$.) The functor $\Omega: \underline{\mathbf{U}} \rightarrow \underline{\mathbf{U}}$ is the left adjoint to the suspension functor $\Sigma: \underline{\mathbf{U}} \rightarrow \underline{\mathbf{U}}$. Given an unstable A-module M, the module ΩM can be calculated as the largest unstable quotient of the desuspension of M :

$$
\Omega M \equiv\left(\Sigma^{-1} M\right) /\left(\Sigma^{-1} \mathrm{Sq}_{0} M\right)
$$

where $\mathrm{Sq}_{0} x=\mathrm{Sq}^{|x|} x$. The functor Ω is not exact, but it can have at most one nonzero derived functor, which we denote by Ω_{1}^{1}. The module $\Omega_{1}^{1} M$ can be expressed as a regrading of the kernel of Sq_{0} on M. In particular, if Sq_{0} acts freely on M, then $\Omega_{1}^{1} M=0$. We write Ω^{n} for the n-fold iterate of Ω, and we write Ω_{j}^{n} for the j th derived functor of Ω^{n}. There is a composite functor spectral sequence (the Singer spectral sequence) $\Omega_{i}^{s} \Omega_{j}^{t} M \Rightarrow \Omega_{i+j}^{s+t} M$ which allows us to calculate derived functors of Ω^{n} inductively. For any unstable module $M, \Omega_{j}^{n} M=0$ for $j>n$.

We will also need the following routine lemma.
Lemma 2.1. Let $g: N_{1} \rightarrow N_{2}$ be a map of unstable A-modules. If $\operatorname{im}(g)$ is Sq_{0}-free, then the natural map $\Omega \operatorname{ker}(g) \rightarrow \operatorname{ker}(\Omega g)$ is a monomorphism. If in addition N_{2} is Sq_{0}-free, then there is a short exact sequence

$$
0 \rightarrow \Omega \operatorname{ker}(g) \rightarrow \operatorname{ker}(\Omega g) \rightarrow \Omega_{1}^{1} \operatorname{cok}(g) \rightarrow 0
$$

Proof. The map Ωg factors as $\Omega N_{1} \rightarrow \Omega \operatorname{im}(g) \rightarrow \Omega N_{2}$, and since Ω is right exact, $\Omega N_{1} \rightarrow \Omega \mathrm{im}(g)$ is an epimorphism. Thus there is a short exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{ker}\left[\Omega N_{1} \rightarrow \Omega \operatorname{im}(g)\right] \rightarrow \operatorname{ker}(\Omega g) \rightarrow \operatorname{ker}\left[\Omega \operatorname{im}(g) \rightarrow \Omega N_{2}\right] \rightarrow 0 \tag{2.1}
\end{equation*}
$$

To calculate the left-hand term, observe that the short exact sequence

$$
0 \rightarrow \operatorname{ker}(g) \rightarrow N_{1} \rightarrow \operatorname{im}(g) \rightarrow 0
$$

gives rise to an exact sequence

$$
\Omega_{1}^{1} \operatorname{im}(g) \rightarrow \Omega \operatorname{ker}(g) \rightarrow \Omega N_{1} \rightarrow \Omega \operatorname{im}(g) \rightarrow 0
$$

Thus if $\Omega_{1}^{1} \operatorname{im}(g)=0$, then $\operatorname{ker}\left[\Omega N_{1} \rightarrow \Omega \operatorname{im}(g)\right] \cong \Omega \operatorname{ker}(g)$, proving that $\Omega \operatorname{ker}(g)$ injects into $\operatorname{ker}(\Omega g)$.

Consider the right-hand term of (2.1). The short exact sequence

$$
0 \rightarrow \operatorname{im}(g) \rightarrow N_{2} \rightarrow \operatorname{cok}(g) \rightarrow 0
$$

gives rise to a long exact sequence

$$
0 \rightarrow \Omega_{1}^{1} \operatorname{im}(g) \rightarrow \Omega_{1}^{1} N_{2} \rightarrow \Omega_{1}^{1} \operatorname{cok}(g) \rightarrow \Omega \operatorname{im}(g) \rightarrow \Omega N_{2} \rightarrow \Omega \operatorname{cok}(g) \rightarrow 0
$$

If $\Omega_{1}^{1} N_{2}=0$, then $\operatorname{ker}\left[\Omega \operatorname{im}(g) \rightarrow \Omega N_{2}\right] \cong \Omega_{1}^{1} \operatorname{cok}(g)$.

Remark 2.2. Suppose that M is an unstable A-module, that N_{1} and N_{2} are unstable projective A-modules, and that we are given a map $M \rightarrow$ $\Omega \operatorname{ker}\left(N_{1} \rightarrow N_{2}\right)$. Then we can consider the composition

$$
M \rightarrow \Omega \operatorname{ker}\left(N_{1} \rightarrow N_{2}\right) \hookrightarrow \operatorname{ker}\left(\Omega N_{1} \rightarrow \Omega N_{2}\right) \hookrightarrow \Omega N_{1},
$$

and so $\operatorname{ker}\left[M \rightarrow \Omega \operatorname{ker}\left(N_{1} \rightarrow N_{2}\right)\right]=\operatorname{ker}\left(M \rightarrow \Omega N_{1}\right)$. We will use this remark frequently in Section 3.

Going in the opposite direction from looping, we define a "delooping" on free modules. If we write $F(n)$ for the free unstable A-module on a single generator in dimension n, then we define $B F(n)=F(n+1)$. Given a free unstable A-module P, we write $B P$ for the free unstable A-module whose generators are one dimension higher than those of P, and we see that $\Omega B P \cong P$. Note that "delooping" is not a functor on $\underline{\mathbf{U}}$, because given a $\operatorname{map} g: P_{1} \rightarrow P_{0}$, there is no canonical choice of map $B g: B P_{1} \rightarrow B P_{0}$ with $\Omega B g=g$. In most cases where we will use this notation, P will itself be an iterated looping, and $B P$ will simply mean one fewer loops: $P=\Omega^{i} N$ and $B P=\Omega^{i-1} N$.

We remind the reader of the content of the Massey-Peterson theorem, which we will need to use repeatedly. Essentially, this theorem says that under favorable conditions, the Serre spectral sequence for a fibration behaves much like the long exact sequence in cohomology for a stable cofibration.

Because $H^{*} K(\mathbb{Z} / 2, n) \cong U(F(n))$, if P is a projective unstable A-module we write $K P$ for the Eilenberg-MacLane space with $H^{*} K P \cong U(P)$.

Definition 2.3. We call a map $X \rightarrow K P$ Massey-Peterson if the following hold:
(a) There is an unstable A-module M with $H^{*} X \cong U(M)$.
(b) There is a map $f: P \rightarrow M$ that induces the map on cohomology. That is, $H^{*} K P \rightarrow H^{*} X$ is $U(f)$.
(c) $\operatorname{im}\left(H^{*} K P \rightarrow H^{*} X\right)$ is contained in a polynomial subalgebra of $H^{*} X$.
(d) X is simple and of finite type.

We think of the topological map $X \rightarrow K P$ as realizing f, and by abuse of notation we call the topological map f as well. If Y is the homotopy fiber of a Massey-Peterson map $f: X \rightarrow K P$, then the Massey-Peterson theorem says that $H^{*} Y \cong U(N)$, where there is a short exact sequence (the fundamental sequence of f)

$$
0 \rightarrow \operatorname{cok}(f) \rightarrow N \rightarrow \Omega \operatorname{ker}(f) \rightarrow 0
$$

The short exact sequence does not, in general, split as A-modules, although $U(N)$ does split as an algebra into the tensor product of $U(\operatorname{cok}(f))$ and $U(\Omega \operatorname{ker}(f))$.

We begin our discussion of $S O$ by describing the stable Postnikov tower of $s o$, which is very close to its stable Adams resolution $\left({ }^{1}\right)$. We know H^{*} so \cong $\Sigma A / A \mathrm{Sq}^{3}$, and if we write $\bar{A}=A / A \mathrm{Sq}^{1}$, the stable Postnikov tower of so realizes the acyclic complex of stable A-modules

$$
\begin{equation*}
\ldots \rightarrow \Sigma^{13} A \rightarrow \Sigma^{11} A \rightarrow \Sigma^{9} \bar{A} \rightarrow \Sigma^{4} \bar{A} \rightarrow \Sigma A \tag{2.2}
\end{equation*}
$$

Each term is monogenic and the differentials run cyclically through the list $\mathrm{Sq}^{2}, \mathrm{Sq}^{2}, \overline{\mathrm{Sq}^{5},} \overline{\mathrm{Sq}^{3}}$. Only the fact that \bar{A} is not projective keeps this chain complex from being the Adams resolution. Next we destabilize the stable Postnikov tower for the spectrum so by taking the zero space of the infinite loop spectrum at each level of the tower. We obtain the unstable Postnikov tower for $S O$, a tower of spaces $\left\{X_{n}\right\}$ (Figure 1) with very nice cohomological properties summarized in the following lemma. (Recall that M_{n} is the nth filtration of $M_{\infty} \equiv \bar{H}^{*} R P^{\infty}$ by dyadic expansion.)

Lemma 2.4 ([Long]). (1) holim ${ }_{n} X_{n} \simeq S O$.
(2) The k-invariants in the tower $\left\{X_{n}\right\}$ are Massey-Peterson maps.
(3) $\operatorname{ker}\left(H^{*} X_{n} \rightarrow H^{*} X_{n+1}\right)=\operatorname{ker}\left(H^{*} X_{n} \rightarrow H^{*} S O\right)$.
(4) $\operatorname{im}\left(H^{*} X_{n} \rightarrow H^{*} X_{n+1}\right) \cong \operatorname{im}\left(H^{*} X_{n} \rightarrow H^{*} S O\right) \cong U\left(M_{n}\right)$.

Fig. 1. The Postnikov tower for $S O$

[^0]However, we will be interested in the destabilization, not of the Postnikov tower for so, but of the Adams tower. The only difference this introduces is that instead of having only one homotopy group in each dimension, we have to introduce the copies of the integers one $\mathbb{Z} / 2$ at a time (building up the completion \mathbb{Z}_{2}^{\wedge}). To do this, take a projective resolution of each term in (2.2), take the total complex, and destabilize. The realization of this projective chain complex will have the form of Figure 2. An exercise in homological algebra shows that the tower has the same cohomological properties as those of the Postnikov tower which were summarized in Lemma 2.4:

Fig. 2. The destabilized Adams tower for $S O$
LEMMA 2.5. (1) $\operatorname{holim}_{n} Y_{n} \simeq S O_{2}^{\wedge}$.
(2) There is an unstable A-module Z_{n} with $H^{*} Y_{n} \cong U\left(Z_{n}\right)$, and k_{n} is a Massey-Peterson map.
(3) $\operatorname{ker}\left(H^{*} Y_{n} \rightarrow H^{*} Y_{n+1}\right)=\operatorname{ker}\left(H^{*} Y_{n} \rightarrow H^{*} S O\right)$.
(4) $\operatorname{im}\left(H^{*} Y_{n} \rightarrow H^{*} Y_{n+1}\right) \cong \operatorname{im}\left(H^{*} Y_{n} \rightarrow H^{*} S O\right) \cong U\left(M_{n}\right)$.

Remark 2.6. (1) For the reader interested in carrying out this calculation in detail, we note that the issues are the same as those laid out in the proofs of Proposition 4.1 and Proposition 4.3.
(2) Let P_{n} be the unstable projective such that $K P_{n}$ is the homotopy fiber of $Y_{n} \rightarrow Y_{n-1}$. Thus $P_{1}=F(1), P_{2}=F(3), P_{3}=F(7) \oplus F(3)$, etc. It
is a consequence of Lemma 2.5(4) that

$$
\frac{\Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)}{\operatorname{im}\left(B P_{n+1} \rightarrow P_{n}\right)} \cong M_{n} / M_{n-1}
$$

(3) The filtration quotients M_{n} / M_{n-1} have been calculated in terms of generators and relations [Massey]:

$$
M_{n} / M_{n-1} \cong F\left(2^{n}-1\right) / \mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \ldots, \mathrm{Sq}^{2^{n-2}}
$$

3. A chain complex model for the UASS. In this section, we use $\left\{Y_{n}\right\}$, the destabilized Adams tower of so, to construct a tower $\left\{E_{n}\right\}$ that also has $S O_{2}^{\wedge}$ as its inverse limit, but that involves in its k-invariants the unstable resolutions of the filtration quotients M_{n} / M_{n-1}. The tower $\left\{E_{n}\right\}$ will come equipped with a map $\left\{Y_{n}\right\} \rightarrow\left\{E_{n}\right\}$, which will allow us to calculate where the homotopy of $S O$ is represented in the homotopy spectral sequence of $\left\{E_{n}\right\}$. This in turn will allow us in Section 5 to make predictions about unstable Adams filtrations in the homotopy of $S O$.

We need a considerable amount of notation. Choose a minimal projective U-resolution D_{*}^{n} of M_{n} / M_{n-1}. The tower we are going to build will have the form

Note that D_{*}^{n} will make its first appearance at the nth stage of the tower. Because the module D_{i}^{n} appears in the tower as $\Omega^{i} D_{i}^{n}$, we avoid excessive loops in our notation by letting $C_{i}^{n}=\Omega^{i} D_{i}^{n}$ and $B C_{i}^{n}=\Omega^{i-1} D_{i}^{n}$. We write $L_{n}=\bigoplus_{i=1}^{n} C_{n-i}^{i}$, and our tower will have the form

We define the following filtration, along with similar filtrations of $B L_{n}$ and ΩL_{n} :

$$
F_{-j} L_{n}=\bigoplus_{i=j}^{n} C_{n-i}^{i}
$$

Thus $C_{0}^{n}=F_{-n} L_{n} \subseteq F_{-(n-1)} L_{n} \subseteq \ldots \subseteq F_{-1} L_{n}=L_{n}$.
The tower of spaces $\left\{E_{n}\right\}$ that we construct in this section has the following properties. Recall from Lemma 2.5 that Z_{n} is the unstable A-module such that $H^{*} Y_{n} \cong U\left(Z_{n}\right)$, and from Remark 2.6 that P_{n} is the unstable projective such that Y_{n} is the homotopy fiber of a map $Y_{n-1} \rightarrow K B P_{n}$.
(1) There exists an unstable A-module F_{n-1} with $H^{*} E_{n-1} \cong U\left(F_{n-1}\right)$, and E_{n} is the homotopy fiber of a Massey-Peterson map $E_{n-1} \rightarrow K B L_{n}$.
(2) There are commuting diagrams of Massey-Peterson maps

induced by commuting diagrams of unstable A-modules

(3) $\operatorname{ker}\left(B L_{n} \rightarrow F_{n-1}\right)=\operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$.
(4) $\operatorname{cok}\left(B L_{n} \rightarrow F_{n-1}\right) \rightarrow \operatorname{cok}\left(B P_{n} \rightarrow Z_{n-1}\right)$ is an isomorphism.
(5) Algebraic properties of the map f_{n} are described in detail below.

Property (3) is analogous to Lemma $2.5(3)$; both say that the k-invariants do not kill any cohomology that comes from lower down in the tower. Property (4) is related to Lemma 2.5(4), and arranges for the towers $\left\{E_{n}\right\}$ and $\left\{Y_{n}\right\}$ to give the same filtration of $H^{*} S O$.

To describe the last set of properties we recall that by the MasseyPeterson theorem, if E_{n-1} is the fiber of a Massey-Peterson map $E_{n-2} \rightarrow$ $K B L_{n-1}$, then the fundamental sequence for E_{n-1} is

$$
0 \rightarrow \operatorname{cok}\left(B L_{n-1} \rightarrow F_{n-2}\right) \rightarrow F_{n-1} \rightarrow \Omega \operatorname{ker}\left(B L_{n-1} \rightarrow F_{n-2}\right) \rightarrow 0
$$

where the right-hand term is the contribution of the fiber, $K L_{n-1}$, to $H^{*} E_{n-1}$. The next space, E_{n}, will be the fiber of a Massey-Peterson map $E_{n-1} \rightarrow K B L_{n}$, and our last requirement is on the composition of the k-invariants, $K L_{n-1} \rightarrow E_{n-1} \rightarrow K B L_{n}$. Let f_{n} denote the composite $B L_{n} \rightarrow F_{n-1} \rightarrow \Omega \operatorname{ker}\left(B L_{n-1} \rightarrow F_{n-2}\right)=\Omega \operatorname{ker}\left(B L_{n-1} \rightarrow L_{n-2}\right)$. The final requirement on the tower $\left\{E_{n}\right\}$ is detailed below:
(5) f_{n} has the following algebraic properties:
(a) f_{n} is filtration preserving.
(b) For $1 \leq j \leq n$, on $F_{-j} / F_{-(j+1)}$ the map $E_{0}\left(f_{n}\right)$ is the map

$$
B C_{n-j}^{j} \rightarrow \Omega \operatorname{ker}\left(B C_{n-j-1}^{j} \rightarrow C_{n-j-2}^{j}\right)
$$

that comes from looping down the differential in the resolution $D_{*}^{j} \rightarrow M_{j} / M_{j-1}$.
(c) $E_{0}\left(\operatorname{ker}\left(f_{n}\right)\right) \cong \operatorname{ker}\left(E_{0}\left(f_{n}\right)\right)$.

We will use Remark 2.2 freely throughout this section. In particular, Remark 2.2 together with requirement (5) tells us that the associated graded of $\operatorname{ker}\left(f_{n}\right)$ is $F_{-j} / F_{-(j+1)}\left(\operatorname{ker}\left(f_{n}\right)\right) \cong \operatorname{ker}\left(B C_{n-j}^{j} \rightarrow C_{n-j-1}^{j}\right)$.

The construction of $\left\{E_{n}\right\}$ is inductive. For the first stage we observe that $P_{1}=L_{1}=C_{0}^{1}$, and we define $L_{1} \rightarrow P_{1}$ to be the identity map. Thus $Y_{1}=K P_{1}=K L_{1}=E_{1}$, and the requirements are certainly satisfied in this case. Observe that $P_{1}=Z_{1}=F_{1}=L_{1}$.

At the next stage, $L_{2}=C_{0}^{2} \oplus C_{1}^{1}$; we want a commuting diagram

We define $B C_{0}^{2} \rightarrow C_{0}^{1}$ to be zero, and $B C_{1}^{1} \rightarrow C_{0}^{1}$ by the differential for C_{*}^{1}. The composite $B C_{1}^{1} \rightarrow C_{0}^{1}=P_{1} \rightarrow \operatorname{cok}\left(B P_{2} \rightarrow P_{1}\right) \cong M_{1}$ is zero because $B C_{1}^{1} \rightarrow C_{0}^{1} \rightarrow M_{1}$ begins a resolution, and so the composite $B C_{1}^{1} \rightarrow C_{0}^{1} \rightarrow P_{1}$ factors through $B P_{2}$. We use this factoring to define $h_{2}: B L_{2} \rightarrow B P_{2}$ on the factor $B C_{1}^{1}$. To define h_{2} on the factor $B C_{0}^{2}$, choose a class $x_{2} \in \operatorname{ker}\left(B P_{2} \rightarrow P_{1}\right)$ that, when looped, gives the generator of the quotient $\Omega \operatorname{ker}\left(B P_{2} \rightarrow P_{1}\right) / \operatorname{im}\left(B P_{3} \rightarrow P_{2}\right) \cong M_{2} / M_{1}$. This gives us the desired commuting diagram above. If we look at the topological realization

the properties required for $E_{1} \rightarrow K B L_{2}$ are easily verified by inspection, and we take homotopy fibers in the diagram to obtain the space E_{2} together with a map $Y_{2} \rightarrow E_{2}$ and maps of fundamental sequences

For an inductive hypothesis, we assume that for $i \leq n$ we have defined spaces E_{i} and maps f_{i} satisfying the required conditions, and we seek to define E_{n+1}. Thus we have maps $B P_{n+1} \rightarrow Z_{n}$ and $F_{n} \rightarrow Z_{n}$ induced by $Y_{n} \rightarrow K B P_{n+1}$ and $Y_{n} \rightarrow E_{n}$, respectively. We need to define a commuting diagram

and verify that when we realize it by a diagram of spaces

taking horizontal fibers gives rise to a space E_{n+1} and a map $Y_{n+1} \rightarrow E_{n+1}$ that satisfy the inductive hypotheses.

Consider the ladder of fundamental sequences for Y_{n} and E_{n} :

Lemma 2.5(4) yields $\Omega \operatorname{ker}\left(B P_{n} \rightarrow Z_{n-1}\right)=\Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)$, and by the inductive hypothesis $\Omega \operatorname{ker}\left(B L_{n} \rightarrow F_{n-1}\right)=\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$. Our strategy is to construct a commuting diagram

$$
\begin{gather*}
B L_{n+1} \longrightarrow \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right) \\
h_{n+1} \downarrow \tag{3.2}\\
B P_{n+1} \longrightarrow \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right) .
\end{gather*}
$$

This will give a map of $B L_{n+1}$ into the right-hand term of the top fundamental sequence in (3.1), and then we will lift to F_{n} using projectivity of $B L_{n+1}$. We will make the construction in such a way that Ωh_{n} induces an isomorphism between the cokernel of $B L_{n+1} \rightarrow \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$ and the cokernel of $B P_{n+1} \rightarrow \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)$, which we know to be M_{n} / M_{n-1}. This will lead to condition (4) for the tower $\left\{E_{n}\right\}$.

To construct diagram (3.2), we compute $\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$. From inductive hypothesis (5), we know the associated graded of $\operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$, and since Ω commutes with cokernels, we know that $\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$ has associated graded

$$
\begin{aligned}
F_{-j} / F_{-(j+1)} & \cong \Omega \operatorname{ker}\left[B C_{n-j}^{j} \rightarrow \Omega \operatorname{ker}\left(B C_{n-j-1}^{j} \rightarrow C_{n-j-2}^{j}\right)\right] \\
& =\Omega \operatorname{ker}\left(B C_{n-j}^{j} \rightarrow C_{n-j-1}^{j}\right)
\end{aligned}
$$

We first define a filtration preserving map $g_{n+1}: B L_{n+1} \rightarrow \Omega \operatorname{ker}\left(B L_{n} \rightarrow\right.$ $\left.L_{n-1}\right)$ as follows. On the lowest filtration, $F_{-(n+1)}=B C_{0}^{n+1}$, let g_{n+1} be zero. In filtration $-j$, let $g_{n+1}: B C_{n-j+1}^{j} \rightarrow \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$ lift the natural map
$B C_{n-j+1}^{j} \rightarrow \Omega \operatorname{ker}\left(B C_{n-j}^{j} \rightarrow C_{n-j-1}^{j}\right)=F_{-j} / F_{-(j+1)}\left(\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)\right)$
to $F_{-j}\left(\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)\right)$. Note that $F_{-n}\left(\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)\right)=C_{0}^{n}$ splits off from $\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$. We can take $g_{n+1}: \bigoplus_{j=1}^{n-1} B C_{n+1-j}^{j}$ $\rightarrow C_{0}^{n}$ to be zero, and the only factor on which $g_{n+1}: B L_{n+1} \rightarrow C_{0}^{n}$ is nonzero is $B C_{1}^{n}$.

Lemma 3.1. g_{n+1} is filtration preserving and $\operatorname{cok}\left(g_{n+1}\right) \cong M_{n} / M_{n-1}$.
Proof. g_{n+1} is filtration preserving by its construction. To calculate the cokernel, we first consider the cokernel on the level of the associated graded. For $j \geq 1$, in filtration $F_{-j} / F_{-(j+1)}$ we have

$$
B C_{n-j+1}^{j} \rightarrow \Omega \operatorname{ker}\left(B C_{n-j}^{j} \rightarrow C_{n-j-1}^{j}\right),
$$

that is,

$$
\Omega^{n-j} D_{n-j+1}^{j} \rightarrow \Omega \operatorname{ker}\left(\Omega^{n-j-1} D_{n-j}^{j} \rightarrow \Omega^{n-j-1} D_{n-j-1}^{j}\right)
$$

By definition, $D_{*}^{j} \rightarrow M_{j} / M_{j-1}$ is a resolution, and so for $j<n$ the homology at the middle of the three-term sequence $\Omega^{n-j-1} D_{n-j+1}^{j} \rightarrow \Omega^{n-j-1} D_{n-j}^{j} \rightarrow$ $\Omega^{n-j-1} D_{n-j-1}^{j}$ is $\Omega_{n-j}^{n-j-1} M_{j} / M_{j-1}$, which we know is zero since $n-j>$ $n-j-1$. Hence the map

$$
\Omega^{n-j-1} D_{n-j+1}^{j} \rightarrow \operatorname{ker}\left(\Omega^{n-j-1} D_{n-j}^{j} \rightarrow \Omega^{n-j-1} D_{n-j-1}^{j}\right)
$$

is a surjection. Looping preserves surjections, and hence

$$
B C_{n-j+1}^{j} \rightarrow \Omega \operatorname{ker}\left(B C_{n-j}^{j} \rightarrow C_{n-j-1}^{j}\right)
$$

is a surjection.
Thus the cokernel of $E_{0}\left(g_{n+1}\right)$ is zero on $F_{-j} / F_{-(j+1)}$ for $j<n$. Consider $j=n$: on F_{-n} we have defined g_{n+1} to be the differential $B C_{1}^{n} \rightarrow C_{0}^{n}$, whose cokernel is M_{n} / M_{n-1}. Since we have taken g_{n+1} to be zero from higher filtrations into F_{-n}, we find that $\operatorname{cok}\left(g_{n+1}\right) \cong M_{n} / M_{n-1}$ as desired.

Recall that the cokernel of $B P_{n+1} \rightarrow \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)$ is M_{n} / M_{n-1} (Remark 2.6). To get diagram (3.2), we must have a map $f_{n+1}: B L_{n+1} \rightarrow$ $\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$ whose cokernel is M_{n} / M_{n-1} and whose composition with Ωh_{n} factors through $B P_{n+1}$. So far, we have a map $g_{n+1}: B L_{n+1} \rightarrow$ $\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$ whose cokernel is M_{n} / M_{n-1}, but the composition of g_{n+1} with Ωh_{n} does not necessarily factor through $B P_{n+1}$. To adjust g_{n+1}, consider the composite

$$
\begin{aligned}
\bigoplus_{j=1}^{n-1} B C_{n-j+1}^{j} \hookrightarrow B L_{n+1} \xrightarrow{g_{n+1}} \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right) \\
\xrightarrow{\Omega h_{n}} \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right) \rightarrow M_{n} / M_{n-1} .
\end{aligned}
$$

Choose a lift of the composite across the epimorphism $C_{0}^{n} \rightarrow M_{n} / M_{n-1}$. We define $f_{n+1}: B L_{n+1} \rightarrow \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$ as the sum of g_{n+1} with the lift $\bigoplus_{j=1}^{n-1} B C_{n-j+1}^{j} \rightarrow C_{0}^{n}$. Observe that f_{n+1} is the same as g_{n+1} on
the factors $B C_{0}^{n+1}$ and $B C_{1}^{n}$ of $B L_{n+1}$, and further, the adjustment added to g_{n+1} to obtain f_{n+1} strictly lowers filtration; thus f_{n+1} and g_{n+1} induce the same map on the associated graded. By construction, $\Omega h_{n} \circ f_{n+1}$: $\bigoplus_{j=1}^{n} B C_{n-j+1}^{j} \rightarrow \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)$ composes to zero in M_{n} / M_{n-1}, and so $\Omega h_{n} \circ f_{n+1}$ factors through $B P_{n+1}$. We define $h_{n+1}: B L_{n+1} \rightarrow B P_{n+1}$ to be the sum of this factoring with a map $B C_{0}^{n+1} \rightarrow B P_{n+1}$ that hits a class x_{n+1} whose looping generates $\Omega \operatorname{ker}\left(B P_{n+1} \rightarrow P_{n}\right) / \operatorname{im}\left(B P_{n+2} \rightarrow P_{n+1}\right) \cong$ M_{n+1} / M_{n}.

Lemma 3.2. The commuting diagram

$$
\begin{aligned}
& B L_{n+1} \xrightarrow{f_{n+1}} \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right) \\
& h_{n+1} \downarrow \\
& B P_{n+1} \xrightarrow{d_{n+1}} \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)
\end{aligned}
$$

induces an isomorphism

$$
\operatorname{cok}\left(f_{n+1}\right) \cong \operatorname{cok}\left(d_{n+1}\right)
$$

Proof. By the construction of $h_{n}: B L_{n} \rightarrow B P_{n}$ at the previous stage,

$$
\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right) \rightarrow \operatorname{cok}\left(d_{n+1}\right) \cong M_{n} / M_{n-1}
$$

is an epimorphism. On the other hand, the cokernel of $E_{0}\left(f_{n+1}\right)$ is M_{n} / M_{n-1} in filtration $-n$ and zero in higher filtrations, and so Ωh_{n} induces an iso$\operatorname{morphism} \operatorname{cok}\left(f_{n+1}\right) \cong \operatorname{cok}\left(d_{n+1}\right)$.

Corollary 3.3. $E_{0}\left(\operatorname{ker} f_{n+1}\right) \cong \operatorname{ker}\left(E_{0}\left(f_{n+1}\right)\right)$.
Proof. The result follows from the proof of the preceding lemma, since we established that $E_{0}\left(\operatorname{cok} f_{n+1}\right) \cong \operatorname{cok}\left(E_{0}\left(f_{n+1}\right)\right)$.

We are ready to define the k-invariant that takes us from E_{n} to E_{n+1}. Let k_{n+1} be a lift of f_{n+1} across the epimorphism $F_{n} \rightarrow \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)$ that comes from the fundamental sequence for E_{n}.

Lemma 3.4. k_{n+1} can be chosen to give a commuting diagram

Proof. The choice of the lift k_{n+1} can be adjusted if necessary by a routine diagram chase. Use the ladder of fundamental sequences

$$
\begin{gathered}
0 \longrightarrow \operatorname{cok}\left(B L_{n} \rightarrow F_{n-1}\right) \longrightarrow F_{n} \longrightarrow \Omega \operatorname{ker}\left(B L_{n} \rightarrow F_{n-1}\right) \longrightarrow 0 \\
\downarrow \\
0 \longrightarrow \operatorname{cok}\left(B P_{n} \rightarrow Z_{n-1}\right) \longrightarrow Z_{n} \longrightarrow \Omega \operatorname{ker}\left(B P_{n} \rightarrow Z_{n-1}\right) \longrightarrow 0
\end{gathered}
$$

in which the left vertical arrow is an isomorphism by induction, and the commuting diagram

$$
\begin{gathered}
B L_{n+1} \xrightarrow{f_{n+1}} \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)=\Omega \operatorname{ker}\left(B L_{n} \rightarrow F_{n-1}\right) \\
h_{n+1} \downarrow \\
B{P_{n+1}} \xrightarrow{d_{n+1}} \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)=\Omega \operatorname{ker}\left(B P_{n} \rightarrow Z_{n-1}\right) .
\end{gathered}
$$

The remaining task for this section is the verification of the inductive hypotheses. Let

be a homotopy commutative diagram of spaces that realizes the commutative diagram of Lemma 3.4, let E_{n+1} be the homotopy fiber of $E_{n} \rightarrow$ $K B L_{n+1}$, and let $Y_{n+1} \rightarrow E_{n+1}$ be the map between the homotopy fibers. By construction, $E_{n} \rightarrow K B L_{n+1}$ is a Massey-Peterson map, because the image of $B L_{n+1} \rightarrow F_{n}$ injects to $\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right) \subseteq L_{n}$, and thus is Sq_{0}-free. The commuting square (3.3) is a map between Massey-Peterson maps by construction, and thus we get the first two inductive hypotheses immediately.

Lemma 3.5. $\operatorname{ker}\left(k_{n+1}\right)=\operatorname{ker}\left(f_{n+1}\right)$.
Proof. f_{n+1} is the top composite in the commuting diagram

Certainly $\operatorname{ker}\left(k_{n+1}\right) \subseteq \operatorname{ker}\left(f_{n+1}\right)$. Suppose $x \in \operatorname{ker}\left(f_{n+1}\right)$; then

$$
h_{n+1}(x) \in \operatorname{ker}\left[B P_{n+1} \rightarrow \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)\right]=\operatorname{ker}\left[B P_{n+1} \rightarrow Z_{n}\right]
$$

by Lemma 2.5(4). Thus $k_{n+1}(x) \in \operatorname{ker}\left(F_{n} \rightarrow Z_{n}\right)$. However, by inductive hypothesis (4) and the ladder (3.1) of fundamental sequences for Y_{n} and $E_{n}, \operatorname{ker}\left[F_{n} \rightarrow \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)\right] \cong \operatorname{ker}\left[Z_{n} \rightarrow \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)\right]$. Thus $k_{n+1}(x)=0$.

Lemma 3.6. $\operatorname{cok}\left(B L_{n+1} \rightarrow F_{n}\right) \cong \operatorname{cok}\left(B P_{n+1} \rightarrow Z_{n}\right)$.

Proof. Apply the Snake Lemma to the ladder of short exact sequences

By Lemma 2.5, $\operatorname{ker}\left(B P_{n+1} \rightarrow Z_{n}\right) \cong \operatorname{ker}\left[B P_{n+1} \rightarrow \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)\right]$, and so the cokernels of the vertical maps form a short exact sequence. The same reasoning applied to $B L_{n+1}$ and the fundamental sequence for E_{n} gives a commuting ladder of short exact sequences

$$
\begin{gathered}
0 \longrightarrow \operatorname{cok}\left(B L_{n} \rightarrow F_{n-1}\right) \longrightarrow \operatorname{cok}\left(B L_{n+1} \rightarrow F_{n}\right) \longrightarrow \operatorname{cok}\left(f_{n+1}\right) \longrightarrow 0 \\
\downarrow \\
0 \longrightarrow \operatorname{cok}\left(B P_{n} \rightarrow Z_{n-1}\right) \longrightarrow \operatorname{cok}\left(B P_{n+1} \longrightarrow Z_{n}\right) \rightarrow \operatorname{cok}\left(d_{n+1}\right) \longrightarrow 0
\end{gathered}
$$

The leftmost column is an isomorphism by the inductive hypothesis and the right-hand column is an isomorphism by Lemma 3.2.

Corollary 3.7. The natural map $\lim _{n} F_{n} \rightarrow{\underset{\longrightarrow}{l}}_{n} Z_{n}$ is an isomorphism.

Proof. Consider

By the preceding lemma, $\operatorname{im}\left(F_{n} \rightarrow F_{n+1}\right) \cong \operatorname{im}\left(Z_{n} \rightarrow Z_{n+1}\right)$, and by Lemma 2.5, $\operatorname{im}\left(Z_{n} \rightarrow Z_{n+1}\right) \cong \operatorname{im}\left(Z_{n} \rightarrow Z_{n+j}\right)$ for $j>1$. The corollary follows.
4. Homotopical properties of $\left\{E_{n}\right\}$. In this section we give the homotopical and homological properties of the tower $\left\{E_{n}\right\}$. We prove that it has inverse limit $S O_{2}^{\wedge}$ and that its homotopy spectral sequence collapses at the E_{2}-term. Notation is continued from Section 3.

Proposition 4.1. The map of towers $\left\{Y_{n}\right\} \rightarrow\left\{E_{n}\right\}$ induces a homotopy equivalence on the homotopy inverse limits.

Proof. We already know from Corollary 3.7 that the map of towers induces an isomorphism $\lim _{n} H^{*} E_{n} \rightarrow \underset{\longrightarrow}{\lim _{n}} H^{*} Y_{n}$. Although cohomology is not in general well related to inverse limits, an application of [Lannes,

Lemme 3.2.3] tells us that in our situation,

The essential ingredients that allow the use of Lannes's lemma are:
(1) For all n, the spaces Y_{n} and E_{n} are connected and have mod 2 cohomology that is finite in each dimension.
(2) The towers of groups $\left\{\pi_{1} Y_{n}\right\}$ and $\left\{\pi_{1} E_{n}\right\}$ are constant.
(3) The towers of groups $\left\{H_{1} Y_{n}\right\}$ and $\left\{H_{1} E_{n}\right\}$ are constant.

The proposition then follows by observing that $\operatorname{holim}_{n} Y_{n} \rightarrow \operatorname{holim}_{n} E_{n}$ is a $\bmod 2$ cohomology isomorphism, and the source and target are each 2 -complete, being built from mod 2 Eilenberg-MacLane spaces by fibrations.

Corollary 4.2. $\operatorname{holim}_{n} E_{n} \simeq S O_{2}^{\wedge}$.
Our next goal is Corollary 4.5, in which we prove that the homotopy spectral sequence of $\left\{E_{n}\right\}$ collapses at the E_{2}-term. This follows by using a homological argument to show that the map $\left\{Y_{n}\right\} \rightarrow\left\{E_{n}\right\}$ induces an isomorphism at E_{2} of the homotopy spectral sequences, and then observing that the homotopy spectral sequence of $\left\{Y_{n}\right\}$ does in fact collapse at E_{2}. The following proposition performs the main technical calculation.

Proposition 4.3. The following ladder gives a homology isomorphism at the middle term:

$$
\begin{array}{rr}
B L_{n+1} & \xrightarrow{f_{n+1}} L_{n} \xrightarrow{\Omega f_{n}} \Omega L_{n-1} \\
h_{n+1} \downarrow & \Omega h_{n} \downarrow \\
B P_{n+1} & \xrightarrow{d_{n+1}} P_{n} \xrightarrow{\Omega^{2} h_{n-1} \downarrow} \\
\Omega d_{n} \\
\hline
\end{array}
$$

That is, Ωh_{n} induces an isomorphism

$$
\frac{\operatorname{ker}\left(\Omega f_{n}\right)}{\operatorname{im}\left(f_{n+1}\right)} \cong \frac{\operatorname{ker}\left(\Omega d_{n}\right)}{\operatorname{im}\left(d_{n+1}\right)}
$$

Proof. The proof is inductive. For $n=1$, we take $P_{0}=L_{0}=0$ and the result is easily established by direct calculation. Suppose that the proposition is true for

and consider the next stage. By Lemma 3.2, we already know that

$$
\frac{\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)}{\operatorname{im}\left(B L_{n+1} \rightarrow L_{n}\right)} \cong \frac{\Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)}{\operatorname{im}\left(B P_{n+1} \rightarrow P_{n}\right)}
$$

Let $i_{L}: \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right) \rightarrow \operatorname{ker}\left(L_{n} \rightarrow \Omega L_{n-1}\right)$ be the natural map $\Omega \operatorname{ker}\left(f_{n}\right) \rightarrow \operatorname{ker}\left(\Omega f_{n}\right)$, let \bar{i}_{L} be the induced map on cokernels, and consider the diagram of exact sequences

$$
\begin{align*}
& B L_{n+1} \xrightarrow{f_{n+1}} \Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right) \longrightarrow \frac{\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)}{\operatorname{im}\left(B L_{n+1} \rightarrow L_{n}\right)} \longrightarrow 0 \\
& =\downarrow \\
& B L_{n+1} \longrightarrow \operatorname{in} \downarrow \\
& i_{L} \downarrow \\
& \operatorname{ker}\left(L_{n} \rightarrow \Omega L_{n-1}\right) \longrightarrow \frac{\operatorname{in}\left(L_{n} \rightarrow \Omega L_{n-1}\right)}{\operatorname{im}\left(B L_{n+1} \rightarrow L_{n}\right)} \longrightarrow 0
\end{align*}
$$

By Lemma 2.1 and the Snake Lemma, i_{L} and \bar{i}_{L} are monomorphisms and $\operatorname{cok}\left(\bar{i}_{L}\right) \cong \operatorname{cok}\left(i_{L}\right) \cong \Omega_{1}^{1} \operatorname{cok}\left(B L_{n} \rightarrow L_{n-1}\right)$. The same argument with $i_{P}: \Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right) \rightarrow \operatorname{ker}\left(P_{n} \rightarrow \Omega P_{n-1}\right)$ and the corresponding map of cokernels, \bar{i}_{P}, shows that \bar{i}_{P} is a monomorphism and $\operatorname{cok}\left(\bar{i}_{P}\right) \cong$ $\Omega_{1}^{1} \operatorname{cok}\left(B P_{n} \rightarrow P_{n-1}\right)$. Consider the diagram

$$
\begin{array}{cc}
\frac{\Omega \operatorname{ker}\left(B L_{n} \rightarrow L_{n-1}\right)}{\operatorname{im}\left(B L_{n+1} \rightarrow L_{n}\right)} & \cong \frac{\Omega \operatorname{ker}\left(B P_{n} \rightarrow P_{n-1}\right)}{\operatorname{im}\left(B P_{n+1} \rightarrow P_{n}\right)} \\
\frac{\bar{i}_{L} \downarrow}{\operatorname{im}\left(B L_{n+1} \rightarrow L_{n}\right)} & \longrightarrow \frac{\bar{i}_{P} \downarrow}{\operatorname{ker}\left(L_{n} \rightarrow \Omega L_{n-1}\right)} \\
\operatorname{im}\left(B P_{n+1} \rightarrow P_{n}\right)
\end{array}
$$

We already know that the top row is an isomorphism. Since \bar{i}_{L} and \bar{i}_{P} are monomorphisms, the corollary will be established by the Five Lemma if we prove that the diagram induces an isomorphism $\operatorname{cok}\left(\bar{i}_{L}\right) \rightarrow \operatorname{cok}\left(\bar{i}_{P}\right)$. Thus we must show that $\Omega_{1}^{1} \operatorname{cok}\left(B L_{n} \rightarrow L_{n-1}\right) \cong \Omega_{1}^{1} \operatorname{cok}\left(B P_{n} \rightarrow P_{n-1}\right)$.

The three-term sequence $B L_{n} \rightarrow L_{n-1} \rightarrow \Omega L_{n-2}$ gives us a short exact sequence

$$
\frac{\operatorname{ker}\left(L_{n-1} \rightarrow \Omega L_{n-2}\right)}{\operatorname{im}\left(B L_{n} \rightarrow L_{n-1}\right)} \hookrightarrow \frac{L_{n-1}}{\operatorname{im}\left(B L_{n} \rightarrow L_{n-1}\right)} \rightarrow \frac{L_{n-1}}{\operatorname{ker}\left(L_{n-1} \rightarrow \Omega L_{n-2}\right)}
$$

The middle term is $\operatorname{cok}\left(B L_{n} \rightarrow L_{n-1}\right)$, and the right-hand term is Sq_{0}-free, because it injects into ΩL_{n-2}, which is itself Sq_{0}-free. This argument and a similar one applied to $B P_{n} \rightarrow P_{n-1} \rightarrow \Omega P_{n-2}$ give us

$$
\begin{aligned}
& \Omega_{1}^{1} \operatorname{cok}\left(B L_{n} \rightarrow L_{n-1}\right) \cong \Omega_{1}^{1}\left[\frac{\operatorname{ker}\left(L_{n-1} \rightarrow \Omega L_{n-2}\right)}{\operatorname{im}\left(B L_{n} \rightarrow L_{n-1}\right)}\right] \\
& \Omega_{1}^{1} \operatorname{cok}\left(B P_{n} \rightarrow P_{n-1}\right) \cong \Omega_{1}^{1}\left[\frac{\operatorname{ker}\left(P_{n-1} \rightarrow \Omega P_{n-2}\right)}{\operatorname{im}\left(B P_{n} \rightarrow P_{n-1}\right)}\right],
\end{aligned}
$$

and these are isomorphic by the inductive hypothesis.

Corollary 4.4. The commuting ladder

induces an isomorphism on $H^{*} \operatorname{Hom}_{\underline{\mathbf{U}}}\left(-, \Sigma^{t} \mathbb{F}_{2}\right)$ for all t at the middle term.
Proof. We first prove that for all n, the commuting ladder

induces an isomorphism on the homology of the rows up to and including $L_{n} \rightarrow P_{n}$. The proof is by induction, beginning with

In the case of $S O, B L_{2} \rightarrow B P_{2}$ is an equality. In the case of U, we observe $B L_{2}=B C_{1}^{1} \oplus B C_{0}^{2}=B P_{2} \oplus B C_{0}^{2}$ where the $B P_{2}$ summand maps to $B P_{2}$ by the identity and $B C_{0}^{2}$ maps to L_{1} by the zero map. Thus we have a base for the induction in the case of U also.

Suppose that

induces an isomorphism on homology up to and including $L_{n-1} \rightarrow P_{n-1}$. Applying Ω to both complexes, we find that

is an isomorphism on homology up to and including $\Omega L_{n-1} \rightarrow \Omega P_{n-1}$, and joining this with the result of Proposition 4.3, we find that

is an isomorphism on homology up to and including $L_{n} \rightarrow P_{n}$, and the induction is complete.

Assume that $t \geq 1$, since all the spaces and modules we use in this work are connected. To prove the corollary, we use the ladder

Denote the top row of the ladder by \mathcal{L}_{*} and the bottom row by \mathcal{P}_{*}, and let \mathcal{C}_{*} be the mapping cone. Then $H_{*} \mathcal{C}_{*}=0$ for $* \leq n+1$, and thus $H^{*} \operatorname{Hom}_{\underline{\mathrm{U}}}\left(\mathcal{C}_{*}, \Sigma^{t-1} \mathbb{F}_{2}\right)=0$ for $* \leq n$. Therefore the ladder

gives an isomorphism on $H^{*}\left[\operatorname{Hom}_{\underline{\underline{U}}}\left(-, \Sigma^{t-1} \mathbb{F}_{2}\right)\right]$ at the middle term. However, the functors Ω and Σ are adjoints, and so $\operatorname{Hom}_{\underline{U}}\left(\Omega-, \Sigma^{t-1} \mathbb{F}_{2}\right) \cong$ $\operatorname{Hom}_{\underline{U}}\left(-, \Sigma^{t} \mathbb{F}_{2}\right)$, and the corollary follows.

Corollary 4.5. The homotopy spectral sequence of $\left\{E_{n}\right\}$ collapses at E_{2}.

Proof. By Corollary 4.4, the map $\left\{Y_{n}\right\} \rightarrow\left\{E_{n}\right\}$ induces a map of homotopy spectral sequences which is an isomorphism on the E_{2}-term. Since the homotopy spectral sequence of $\left\{Y_{n}\right\}$ has no further differentials (in fact, it collapses at E_{1}), the homotopy spectral sequence of $\left\{E_{n}\right\}$ collapses at E_{2}.
5. A model for the UASS, and some predictions and reflections. In the preceding sections, we used the resolutions of the filtration quotients M_{n} / M_{n-1} to construct a complicated tower $\left\{E_{n}\right\}$ that involves those resolutions, converges to SO_{2}^{\wedge}, and has a homotopy spectral sequence that collapses at E_{2}. The tower $\left\{E_{n}\right\}$ realizes the chain complex L_{*}, where the notation L_{*} is to be interpreted as $B L_{n+1} \rightarrow L_{n} \rightarrow \Omega L_{n-1}$ at the nth level. The differential of the chain complex L_{*} gives rise to the only nonzero differential in the homotopy spectral sequence of $\left\{E_{n}\right\}$, since the E_{1}-term is $\operatorname{Hom}_{\underline{U}}\left(L_{n}, \Sigma^{*} \mathbb{F}_{2}\right)$ at level n, and $E_{2}^{n, t} \cong E_{\infty}^{n, t}$ (Corollary 4.5).

In this section, we describe how the complex L_{*} gives a model for the unstable Adams spectral sequences of $S O$ and U, we make some predictions based on the model, and we discuss some related work of Bousfield and Davis [B-D].
5.1. A model for the $U A S S$. The conjecture suggested by Mahowald is, loosely, that the differential of the chain complex L_{*} contains all the information on the unstable Adams spectral sequence, including all of its many nonzero differentials. We already know that $H^{*}\left[\operatorname{Hom}_{\underline{\mathrm{U}}}\left(L_{*}, \Sigma^{*} \mathbb{F}_{2}\right)\right]$ is the associated graded for the filtration of $\pi_{*}{S O_{2}}_{\wedge}^{\wedge}$ by the destabilized Adams tower (Corollaries 4.4 and 4.5). The assertion is that it is possible to produce the UASS from the complex $\operatorname{Hom}_{\underline{U}}\left(L_{*}, \Sigma^{*} \mathbb{F}_{2}\right)$ by a combination of filtering and regrading.

To describe the proposed model, let \mathcal{L}^{*} be the cochain complex of graded vector spaces defined by

$$
\left(\mathcal{L}^{n}\right)_{j}=\operatorname{Hom}_{\underline{\mathbf{U}}}\left(L_{n}, \Sigma^{j} \mathbb{F}_{2}\right)
$$

and use the differential $B L_{n+1} \rightarrow L_{n}$ and adjointness to define $d:\left(\mathcal{L}^{n}\right)_{j} \rightarrow$ $\left(\mathcal{L}^{n+1}\right)_{j-1}$ by

$$
\begin{aligned}
\operatorname{Hom}_{\underline{\mathbf{U}}}\left(L_{n}, \Sigma^{j} \mathbb{F}_{2}\right) & \rightarrow \operatorname{Hom}_{\underline{\mathbf{U}}}\left(B L_{n+1}, \Sigma^{j} \mathbb{F}_{2}\right) \\
& \cong \operatorname{Hom}_{\underline{\underline{U}}}\left(\Omega B L_{n+1}, \Sigma^{j-1} \mathbb{F}_{2}\right) \cong \operatorname{Hom}_{\underline{U}}\left(L_{n+1}, \Sigma^{j-1} \mathbb{F}_{2}\right) .
\end{aligned}
$$

We filter \mathcal{L}^{n} by

$$
\left(F^{s} \mathcal{L}^{n}\right)_{j}=\operatorname{Hom}_{\underline{U}}\left(\bigoplus_{i=s}^{n} C_{i}^{n-i}, \Sigma^{j} \mathbb{F}_{2}\right)
$$

We have $F^{0} \supseteq F^{1} \supseteq F^{2} \ldots$, and comparing to the construction of $B L_{n+1}$ $\rightarrow L_{n}$ in Section 3 , it is easy to check that the differential on \mathcal{L}^{*} is filtrationpreserving. Thus the filtration gives rise to a spectral sequence that converges to $H^{*} \mathcal{L}^{*}$, and we grade it as

$$
E_{1}^{s, t}=\bigoplus_{n} \operatorname{Hom}_{\underline{\mathbf{U}}}\left(C_{s}^{n}, \Sigma^{t-s} \mathbb{F}_{2}\right)
$$

Recall that the abutment, $H^{*} \mathcal{L}^{*}$, is the associated graded to $\pi_{*} S O_{2}^{\wedge}$. Also, $C_{s}^{n}=\Omega^{s} D_{s}^{n}$, and hence by the adjointness of Ω and Σ, we have

$$
E_{1}^{s, t}=\bigoplus_{n} \operatorname{Hom}_{\underline{U}}\left(D_{s}^{n}, \Sigma^{t} \mathbb{F}_{2}\right)
$$

The d_{1}-differential is induced by the differential in the resolution $D_{*}^{n} \rightarrow$ M_{n} / M_{n-1}, and thus the spectral sequence becomes

$$
E_{2}^{s, t}=\bigoplus_{n} \operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(M_{n} / M_{n-1}, \Sigma^{t} \mathbb{F}_{2}\right) \Rightarrow \pi_{*} S O_{2}^{\wedge}
$$

Conjecture 5.1. The spectral sequence $E_{r}^{s, t}$ defined above is the UASS for $S O$.

If Conjecture 5.1 is correct, then it has the consequence that all of the differentials in the unstable Adams spectral sequence can be computed from
the primary level calculation of the complex L_{*}. In principle, this could be done indefinitely far out by computer.

Corollary to Conjecture 5.1.

$$
\operatorname{Ext}_{\underline{\underline{U}}}^{s, t}\left(M_{\infty}, \mathbb{F}_{2}\right) \cong \bigoplus_{n} \operatorname{Ext}_{\underline{U}}^{s, t}\left(M_{n} / M_{n-1}, \mathbb{F}_{2}\right)
$$

Proof. The left side is the E_{2}-term of the UASS, while the right side is the E_{2}-term of the model. If Conjecture 5.1 is correct, these two must be isomorphic.

In fact, there is a general spectral sequence that is very close to the spectral sequence of Conjecture 5.1, namely the Grothendieck spectral sequence for the calculation of the derived functors $\operatorname{Ext}_{A}^{s}\left(\Sigma A / \mathrm{Sq}^{3}, \Sigma^{t} \mathbb{F}_{2}\right)$. Let D be the destabilization functor from the category of (stable) A-modules to $\underline{\mathbf{U}}$, the category of unstable A-modules. (This functor is often denoted by Ω^{∞}.) Because $\Sigma^{t} \mathbb{F}_{2}$ is an unstable A-module, any map to $\Sigma^{t} \mathbb{F}_{2}$ from a stable A-module factors through the destabilization. Hence the functor $\operatorname{Hom}_{A}\left(-, \Sigma^{t} \mathbb{F}_{2}\right)$ can be written as the composition $\operatorname{Hom}_{\underline{U}}\left(-, \Sigma^{t} \mathbb{F}_{2}\right) \circ D(-)$, giving rise to a composite functor spectral sequence

$$
\operatorname{Ext}_{\underline{\mathbf{U}}}^{s-r}\left(D_{r}-, \Sigma^{t} \mathbb{F}_{2}\right) \Rightarrow \operatorname{Ext}_{A}^{s}\left(-, \Sigma^{t} \mathbb{F}_{2}\right)
$$

In the case of $\Sigma A / \mathrm{Sq}^{3}, \operatorname{Ext}_{A}^{S}\left(\Sigma A / \mathrm{Sq}^{3}, \Sigma^{t} \mathbb{F}_{2}\right)$ actually gives the associated graded to the stable homotopy, because there are no differentials in the stable Adams spectral sequence for infinite delooping of $S O$. Thus the Grothendieck spectral sequence gives a spectral sequence starting from an unstable Ext and converging to $\pi_{*} S O$.

The Grothendieck spectral sequence is very closely related to the spectral sequence we have constructed, but it is not quite the same. In particular, let $X=\Sigma A / \mathrm{Sq}^{3}$, so that we are considering the case of $S O$. Then it can be shown that $M_{n+1} / M_{n} \cong D_{n} \Sigma^{-n} X$, the ingredients being found in Lemma 2.5, Lemma 2.1, and the proof of Proposition 4.3. Our construction gives a spectral sequence

$$
\operatorname{Ext}_{\underline{\mathrm{u}}}^{s-r}\left(D_{r} \Sigma^{-r} X, \Sigma^{t} \mathbb{F}_{2}\right) \Rightarrow \operatorname{Ext}_{A}^{s}\left(X, \Sigma^{t} \mathbb{F}_{2}\right)
$$

However, the situation for the group U is a little different, the difference being caused by the fact that while $H^{*} S O$ is the free unstable A-algebra on $\bar{H}^{*} R P^{\infty}$, which is Sq^{0}-free, $H^{*} U$ is the free unstable A-algebra on $\Sigma \bar{H}^{*} C P_{+}^{\infty}$, which is not. In fact, contrary to the assertion of [B-D, Proposition 4.1], if $X \cong \Sigma \bar{A} / \Lambda_{1}$, where Λ_{1} is the subalgebra of A generated by the Milnor primitives Q_{0} and Q_{1}, then $D_{n} \Sigma^{-n} X$ is not $M_{n+1} / M_{n} \oplus \Sigma \mathbb{Z} / 2$ but a much larger module. The problem lies not in the spectral sequence constructed in the proof of the proposition, but in the assumption that the homology being converged to is M_{n+1} / M_{n}.

However, a small variation can repair the problem. Let X be an A module, and let C_{*} be a stable resolution of X. For $n \geq 1$, define

$$
D_{r}^{\prime} X=\frac{\Omega \operatorname{ker}\left(D \Sigma C_{r} \rightarrow D \Sigma C_{r-1}\right)}{\operatorname{im}\left(D C_{r+1} \rightarrow D C_{r}\right)}
$$

Using methods similar to those of Proposition 4.3, one can show that the definition of $D_{r}^{\prime} X$ is independent of the resolution used, and that the modules $D_{r}^{\prime} X$ and $D_{r} X$ are different exactly when $D_{r-1} \Sigma X$ is not Sq^{0}-free. If we let $X=\Sigma A / \mathrm{Sq}^{3}$ (in the case of $S O$) or $X=\Sigma \bar{A} / \mathrm{Sq}^{3}$ (in the case of U), then for both $S O$ and U,

$$
D_{n}^{\prime} \Sigma^{-n} X \cong M_{n+1} / M_{n}
$$

where the modules M_{n} / M_{n-1} are the filtration quotients of $\bar{H}^{*} R P^{\infty}$ (in the case of $S O$) or $\Sigma \bar{H}^{*} C P_{+}^{\infty}$ (in the case of U). The construction of the previous section gives, for a general A-module X, two spectral sequences, depending on whether we use D_{r}^{\prime} or D_{r} :

$$
\begin{align*}
& \operatorname{Ext}_{\underline{\mathbf{v}}}^{s-r}\left(D_{r}^{\prime} \Sigma^{-r} X, \Sigma^{t} \mathbb{F}_{2}\right) \Rightarrow \operatorname{Ext}_{A}^{s}\left(X, \Sigma^{t} \mathbb{F}_{2}\right), \tag{5.1}\\
& \operatorname{Ext}_{\underline{\mathbf{v}}}^{s-r}\left(D_{r} \Sigma^{-r} X, \Sigma^{t} \mathbb{F}_{2}\right) \Rightarrow \operatorname{Ext}_{A}^{s}\left(X, \Sigma^{t} \mathbb{F}_{2}\right) . \tag{5.2}
\end{align*}
$$

(The spectral sequence of Conjecture 5.1 is (5.1).) These spectral sequences can be given a construction almost exactly like that of the Grothendieck spectral sequence. Conjecture 5.1 observes that because the stable Adams spectral sequences for $S O$ and U collapse, the target of the spectral sequence in (5.1) is actually the associated graded to the homotopy of the space. Since the E_{2}-term is closely related to the homology of the space, because $D_{r}^{\prime} \Sigma^{-r} X$ is the associated graded for the cohomology of $S O$ (or U), this variation of the Grothedieck spectral sequence could actually be the unstable Adams spectral sequence.
5.2. Predictions. Next we discuss some predictions that arise from Conjecture 5.1 and some empirical data that support the conjecture. The main tool in making these predictions is a vanishing theorem of Bousfield [B, Theorem 2.6] that describes the location of h_{0}-towers in unstable Ext by giving values of $t-s$ where towers occur, though not the value of s in which they begin. Application of Bousfield's theorem gives us the following proposition. Recall that $\alpha(n)$ denotes the number of ones in the dyadic expansion of n.

Proposition 5.2.
(1) For $M=\bar{H}^{*} R P^{\infty}$:
(a) The h_{0}-towers of $\operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(M, \Sigma^{t} \mathbb{F}_{2}\right)$ are found in stem degrees satisfying $t-s \equiv 3 \bmod 4$, and there is exactly one h_{0}-tower in each such dimension.
(b) The h_{0}-towers of $\operatorname{Ext}_{\mathbf{U}}^{s}\left(M_{n} / M_{n-1}, \Sigma^{t} \mathbb{F}_{2}\right)$ are found in stem degrees satisfying $t-s \equiv 3 \bmod 4$ and $\alpha(t-s)=n$, and there is exactly one h_{0}-tower in each such dimension.
(2) For $M=\bar{H}^{*} \Sigma C P_{+}^{\infty}$:
(a) The h_{0}-towers of $\operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(M, \Sigma^{t} \mathbb{F}_{2}\right)$ are found in stem degrees satisfying $t-s \equiv 1 \bmod 2$, and there is exactly one h_{0}-tower in each such dimension.
(b) The h_{0}-towers of $\operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(M_{n} / M_{n-1}, \Sigma^{t} \mathbb{F}_{2}\right)$ are found in stem degrees satisfying $t-s \equiv 1 \bmod 2$ and $\alpha(t-s)=n$, and there is exactly one h_{0}-tower in each such dimension.
Proof. An easy calculation with [B, Theorem 2.6].
REmark 5.3. Proposition 5.2 says that $\bigoplus_{n} \operatorname{Ext}_{\underline{U}}^{s}\left(M_{n} / M_{n-1}, \Sigma^{t} \mathbb{F}_{2}\right)$ has the same h_{0}-towers as $\operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(M, \Sigma^{t} \mathbb{F}_{2}\right)$, and so Corollary to Conjecture 5.1 is correct with regard to h_{0}-towers.

Bousfield's theorem also gives a vanishing line above which Ext is zero except for h_{0}-towers. To describe his theorem as it applies to our situation, we define a function $\phi(m)$ for positive integers m as follows. Suppose that $m=8 k+i$ where $i<8$. Then:
(1) $\phi(m)=4 k+i$ for $i=0,1,2,3$;
(2) $\phi(m)=4 k+3$ for $i=4,5,6$;
(3) $\phi(m)=4 k+4$ for $i=7$.

We specialize Bousfield's theorem to our situation as follows.
Theorem 5.4 ([B, Theorem 2.6]). Let N be an unstable A-module such that $N_{i}=0$ for $i<c$, where $c \geq 5$. Then $\operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(N, \Sigma^{t} \mathbb{F}_{2}\right)$ is free over $\mathbb{F}_{2}\left[h_{0}\right]$ for $s>\phi(t-s-c)$.

This gives a vanishing line of slope $1 / 2$ in the UASS.
We are going to use Theorem 5.4 to predict the unstable Adams filtrations of the elements of $\pi_{*} S O$ and $\pi_{*} U$. From the map of towers $\left\{Y_{n}\right\} \rightarrow\left\{E_{n}\right\}$, the maps $K P_{n+1} \rightarrow K L_{n+1}$ induce on homotopy a map

$$
\begin{equation*}
\operatorname{Ext}_{A}^{n}\left(\Sigma A / \mathrm{Sq}^{3}, \Sigma^{t} \mathbb{F}_{2}\right) \rightarrow \bigoplus_{r=1}^{n} \operatorname{Ext}_{\underline{\mathrm{U}}}^{n-r+1}\left(M_{r} / M_{r-1}, \Sigma^{t-r+1} \mathbb{F}_{2}\right) \tag{5.3}
\end{equation*}
$$

and this map commutes with the action of h_{0}. All of the elements on the left represent homotopy, and since the right-hand side is the E_{2}-term for the spectral sequence of Conjecture 5.1 , the map tells us where the homotopy is represented in this spectral sequence, which predicts the unstable Adams filtration of $\pi_{*} S O$.

Consider first the case of $S O$. Suppose $k \equiv 3 \bmod 4$; if $k \equiv 3 \bmod$ 8 , define $n=(k-1) / 2$, and if $k \equiv 7 \bmod 8$, define $n=(k-3) / 2$. Then
$\pi_{k} S O \cong \mathbb{Z}$, represented by an h_{0}-tower in $\operatorname{Ext}_{A}^{*}\left(\Sigma A / \mathrm{Sq}^{3}, \Sigma^{*+k} \mathbb{F}_{2}\right)$ beginning in filtration $s=n$. On the right side of (5.3), the only term with an h_{0}-tower in dimension k is $r=\alpha(k)$ (Proposition 5.2), and so the part of (5.3) that carries the bottom element of the h_{0}-tower is

$$
\operatorname{Ext}_{A}^{n}\left(\Sigma A / \mathrm{Sq}^{3}, \Sigma^{t} \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{\underline{\mathbf{u}}}^{n-\alpha(k)+1}\left(M_{\alpha(k)} / M_{\alpha(k)-1}, \Sigma^{t-\alpha(k)+1} \mathbb{F}_{2}\right)
$$

Thus we obtain the following prediction.
Conjecture 5.5. The unstable Adams filtrations of the nonzero, torsion free groups $\pi_{k} S O$ are $\alpha(k)-1$ less than the stable Adams filtrations of the corresponding stems.

When we consider the form of $k \bmod 8$ and the known stable filtrations, this conjecture predicts that $\pi_{8 i+3} S O$ and $\pi_{8 i+7} S O$ occur in unstable Adams filtration $4 i-\alpha(i)$.

By exactly the same reasoning as above, we obtain a prediction for the case of U, where all the homotopy is torsion free.

Conjecture 5.6. The unstable Adams filtrations of the nonzero groups $\pi_{k} U$ are $\alpha(k)-1$ less than the stable Adams filtrations of the corresponding stems.

In this case, comparing with the stable filtration gives us the prediction that $\pi_{2 i+1} U$ has unstable Adams filtration $i-\alpha(i)$.

Next, we predict the unstable Adams filtration of the torsion elements of $\pi_{*} S O$, namely $\pi_{k} S O \cong \mathbb{Z} / 2$ for $k \equiv 0$ or $1 \bmod 8$. Consider first the case $k \equiv 0 \bmod 8$, and let $n=(1 / 2) k-1$. Then $\pi_{k} S O$ is represented in $\operatorname{Ext}_{A}^{n}\left(\Sigma A / \mathrm{Sq}^{3}, \Sigma^{n+k} \mathbb{F}_{2}\right)$. As before, we predict the unstable Adams filtration by considering the image of this element under the map of (5.3):

$$
\operatorname{Ext}_{A}^{n}\left(\Sigma A / \mathrm{Sq}^{3}, \Sigma^{n+k} \mathbb{F}_{2}\right) \rightarrow \bigoplus_{r=1}^{n} \operatorname{Ext}_{\underline{\mathrm{U}}}^{n-r+1}\left(M_{r} / M_{r-1}, \Sigma^{n+k-r+1} \mathbb{F}_{2}\right)
$$

Using Theorem 5.4, we will prove that only the $r=3$ summand has $h_{0^{-}}$ torsion elements in high enough filtration to be in the image of this map. We already know that M_{1} has exactly one torsion element in Ext for $s=0$ and nothing else, and M_{2} / M_{1} has exactly one h_{0}-tower in Ext for $k=3$, and nothing else. Suppose that $r \geq 4$, and note that M_{r} / M_{r-1} begins in dimension $2^{r}-1$. To use Theorem 5.4 to rule out h_{0}-torsion elements in $\operatorname{Ext}_{\underline{\mathrm{U}}}^{n-r+1}\left(M_{r} / M_{r-1}, \Sigma^{n+k-r+1} \mathbb{F}_{2}\right)$, we must show that

$$
n-r-1>\phi\left[(n+k-r-1)-(n-r-1)-\left(2^{r}-1\right)\right],
$$

a task that is easily accomplished using $k \equiv 0 \bmod 8$ and $n=(1 / 2) k-1$. An almost identical calculation leads to the same conclusion if $k \equiv 1 \bmod 8$. This leaves the $r=3$ summand as the only one where the torsion elements
can go, and since $r=3$ causes a filtration drop of 2 from the stable Ext, we arrive at the following prediction.

Conjecture 5.7. If $k>1$ and $\pi_{k} S O \cong \mathbb{Z} / 2$ is represented in filtration n in the stable Adams spectral sequence, then it has filtration $n-2$ in the unstable Adams spectral sequence.

Thus the prediction is that for $i>0, \pi_{8 i} S O$ has unstable Adams filtration $4 i-3$ and $\pi_{8 i+1} S O$ has unstable Adams filtration $4 i-2$.

REMARK 5.8. The author has verified the preceding conjectures as to filtration for $\pi_{*} S O$ up to approximately π_{50}, using charts of unstable Ext provided by R. Bruner's computer calculations. Likewise the author has verified the Corollary to Conjecture 5.1 for $S O$ in the same range.

We close this discussion by giving an example of the calculation of a differential in the spectral sequence modeling the UASS for $S O$. In Figure 3, we exhibit part of the UASS for $S O$. We will show how to use the spectral sequence of Conjecture 5.1 to predict the first differential in the UASS for $S O$, which goes from $(s, t-s)=(0,15)$ to $(s, t-s)=(2,14)$. (This differential propagates to give differentials connecting the two lightning flashes, but we will deal only with the first differential.)

Fig. 3. The E_{2}-term of the UASS for SO. Elements represented by open circles arise from M_{1} and M_{2} / M_{1}. Elements represented by black dots arise from M_{3} / M_{2}. Elements represented by circled dots arise from M_{4} / M_{3}.

In order to do this, we will have to calculate the first few stages of the complex L_{*}. In particular, we will be looking at the commuting diagram of
three-term sequences

$$
\begin{align*}
B L_{5} & \longrightarrow L_{4} \longrightarrow \Omega L_{3} \\
h_{5} \downarrow & \Omega h_{4} \downarrow \tag{5.4}\\
& \Omega^{2} h_{3} \downarrow \\
B P_{5} & \longrightarrow P_{4} \longrightarrow \Omega P_{3}
\end{align*}
$$

which is detailed in Table 1 . We will need the result that $M_{n} / M_{n-1} \cong$ $F\left(2^{n}-1\right) / \mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \ldots, \mathrm{Sq}^{2^{n-2}}$ [Massey], and we remind the reader that in diagram (5.4), the top row involves resolutions of M_{n} / M_{n-1} for $n=1, \ldots, 5$, where the resolution of M_{n} / M_{n-1} is looped down $4-n$ times. When $n=1$, $M_{1} \cong F(1)$ is a projective, and has a resolution of length 1 . Hence $C_{i}^{1}=0$ for $i>0$. Further, $M_{2} / M_{1} \cong \bar{F}(3)$, which is almost projective. Its projective resolution is $\ldots \rightarrow F(5) \rightarrow F(4) \rightarrow F(3)$ (each map given by Sq^{1}), and so all the elements contributed lie in $t-s=3$. It turns out that this resolution does not interact with any of the other parts of L_{*}, corresponding to the fact that no differentials in the UASS for $S O$ involve $t-s=3$.

Table 1. The chain complexes of Section 3

$B L_{5}$	\longrightarrow	L_{4}	\longrightarrow	ΩL_{3}
$C_{*}^{2}: \quad F(4)$	$\mathrm{Sq}^{1} \iota_{3}$	$F(3)$	$\mathrm{Sq}^{1} \iota_{2}$	$F(2)$
$C_{*}^{3}:\left\{\begin{array}{l}F(8) \\ F(10) \\ F(15)\end{array}\right.$	$\mathrm{Sq}^{1} \iota_{7}$ $\mathrm{Sq}^{2} \iota_{8}+\mathrm{Sq}^{3} \iota_{7}$ $\mathrm{Sq}^{7} \iota_{8}+\mathrm{Sq}^{4,2,1} \iota_{8}+\mathrm{Sq}^{6,2} \iota_{7}+\square \iota_{15}$	$\begin{aligned} & F(7) \\ & F(8) \end{aligned}$	$\begin{aligned} & \mathrm{Sq}^{1} \iota_{6} \\ & \mathrm{Sq}^{2} \iota_{6} \end{aligned}$	$F(6)$
$C_{*}^{4}:\left\{\begin{array}{l}F(16) \\ F(17) \\ F(19)\end{array}\right.$	$\mathrm{Sq}^{1} \iota_{15}$ $\mathrm{Sq}^{2} \iota_{15}$ $\mathrm{Sq}^{4} \iota_{15}$	$F(15)$		
$C_{*}^{5}: \quad F(32)$				
$B P_{5}$	\longrightarrow	P_{4}	\longrightarrow	ΩP_{3}
$F(4)$	$\mathrm{Sq}^{1} \iota_{3}$	$F(3)$	$\mathrm{Sq}^{1} \iota_{2}$	$F(2)$
$F(8)$	$\mathrm{Sq}^{1} \iota_{7}$	$F(7)$	$\mathrm{Sq}^{1} \iota_{6}$	$F(6)$
$F(10)$	$\mathrm{Sq}^{2} \iota_{8}+\mathrm{Sq}^{3} \iota_{7}$	$F(8)$	$\mathrm{Sq}^{2} \iota_{6}$	

In Table 1, we provide all the summands of each of the terms in (5.4) and show the horizontal maps between them. In the commuting square

$\Omega^{2} h_{3}$ is the identity, and Ωh_{4} is the identity map on the summands $F(3)$, $F(7)$, and $F(8)$. To describe Ωh_{4} on the summand $F(15)$ of L_{4}, we recall that $\iota_{15} \in L_{4}$ must hit an element of P_{4} that represents an A-module generator of the homology of the three-term sequence $B P_{5} \rightarrow P_{4} \rightarrow \Omega P_{3}$, and the element in question is $\mathrm{Sq}^{7} \iota_{8}+\mathrm{Sq}^{4,2,1} \iota_{8}+\mathrm{Sq}^{6,2} \iota_{7} \in P_{4}$.

Now for the differential. It is predicted by the construction of the map $B L_{5} \rightarrow L_{4}$, and it comes about because $B L_{5} \rightarrow L_{4}$ must be defined in such a way that the composite $B L_{5} \rightarrow L_{4} \rightarrow P_{4}$ lifts across $B P_{5} \rightarrow P_{4}$. Since there are no interactions between the filtrations in the map $L_{4} \rightarrow \Omega L_{3}$, the map $B L_{5} \rightarrow L_{4}$ can be constructed simply by using the differentials within the resolutions C_{*}^{n}, and then making adjustments as needed to ensure the required lifting. In terms of the construction of Section 3, this is saying that the map g_{5} is just the sum of the differentials in the individual resolutions.

No corrections need to be made until we reach $F(15) \subseteq B L_{5}$. At this point, if no adjustments were made, the composite $B L_{5} \rightarrow L_{4} \rightarrow P_{4}$ would take the generator $\iota_{15} \in B L_{5}$ to $\mathrm{Sq}^{7} \iota_{8}+\mathrm{Sq}^{4,2,1} \iota_{8}+\mathrm{Sq}^{6,2} \iota_{7} \in P_{4}$. Since this element generates the homology at P_{4}, it certainly does not lift to $B P_{5}$. Thus we add $\iota_{15} \in L_{4}$ to the image of $\iota_{15} \in B L_{5}$ (boxed for emphasis in the table). This gives a differential between adjoining filtrations in \mathcal{L}^{*}, which translates to the prediction of the nonzero d_{2} differential taking $(s, t-s)=(0,15)$ to $(s, t-s)=(2,14)$ in the UASS of $S O$.
5.3. Relation to $[\mathrm{B}-\mathrm{D}]$. Bousfield and Davis make in $[\mathrm{B}-\mathrm{D}]$ a much more general conjecture than our Conjecture 5.1. Suppose given a diagram of unstable A-modules

satisfying the following conditions:
(1) $F_{n} \rightarrow X_{n-1} \rightarrow X_{n} \rightarrow \Omega F_{n} \rightarrow \Omega X_{n-1}$ is exact.
(2) F_{n} is a direct sum of $F(m)$'s and/or $F^{\prime}(m)$'s (where $F(m)$ is a free unstable A-module on a generator of dimension m and $\left.F^{\prime}(m)=F(m) / \mathrm{Sq}^{1}\right)$.
(3) $\left(i_{n} f_{n}\right)^{*}: \operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(\Omega F_{n}, \Sigma^{t} \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(F_{n+1}, \Sigma^{t} \mathbb{F}_{2}\right)$ is the zero map.
(4) $\operatorname{ker}\left(X_{n} \rightarrow X\right)=\operatorname{ker}\left(X_{n} \rightarrow X_{n+1}\right)$.
(5) $X \cong \xrightarrow[\longrightarrow]{\lim _{n}}\left(X_{n}\right)$.

Let $M_{n}=\operatorname{im}\left(X_{n} \rightarrow X\right)$.

Conjecture 5.9 ([B-D, Conjecture 5.1]).

$$
\operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(X, \Sigma^{t} \mathbb{F}_{2}\right) \cong \bigoplus_{n} \operatorname{Ext}_{\underline{\mathbf{U}}}^{s}\left(M_{n} / M_{n-1}, \Sigma^{t} \mathbb{F}_{2}\right)
$$

However, this conjecture is false, as shown by the counterexample that follows. Consider the following tower, whose k-invariants are described below:

Let $H^{*} Y_{i}=U\left(Z_{i}\right)$. The first k-invariant is $k_{1}=\mathrm{Sq}^{2} \iota_{7}$ and the second is $k_{2}=0$. For the third, let x_{10} be a class in Z_{2} with $\left(i_{2}\right)^{*}\left(x_{10}\right)=\Omega \mathrm{Sq}^{2} \iota_{9}$ $\in \Omega \operatorname{ker}\left(\mathrm{Sq}^{2}: F(9) \rightarrow \bar{F}(7)\right)$, and let x_{10}^{\prime} denote its image in Z_{3}. Let x_{8} be a class in Z_{3} with $\left(i_{3}\right)^{*}\left(x_{8}\right)=\iota_{8}$, the fundamental class. Then the third k-invariant is defined by $k_{3}=x_{10}^{\prime}+\mathrm{Sq}^{2} x_{8}$.

We consider Bousfield and Davis's conjecture for this situation, where the diagram is given by

In particular, we consider Ext^{0}, so that we are really looking at A-module generators. We find that Ext^{0} has nonzero groups only in the following dimensions:
(1) $\operatorname{Ext}_{\underline{\mathbf{U}}}^{0}\left(M_{1}, \Sigma^{t} \mathbb{F}_{2}\right)=\mathbb{Z} / 2$ if $t=7$.
(2) $\operatorname{Ext}_{\underline{\mathbf{U}}}^{0}\left(M_{2} / M_{1}, \Sigma^{t} \mathbb{F}_{2}\right)=\mathbb{Z} / 2$ if $t=10$ or 15 .
(3) $\operatorname{Ext}_{\mathbf{U}}^{0}\left(M_{3} / M_{2}, \Sigma^{t} \mathbb{F}_{2}\right)=\mathbb{Z} / 2$ if $t=8$.
(4) $\operatorname{Ext}_{\underline{U}}^{0}\left(M_{4} / M_{3}, \Sigma^{t} \mathbb{F}_{2}\right)=\mathbb{Z} / 2$ if $t=12$ or 31 .
(5) $\operatorname{Ext}_{\underline{\mathrm{U}}}^{0}\left(X, \Sigma^{t} \mathbb{F}_{2}\right)=\mathbb{Z} / 2$ if $t=7,8,12,15$ and 31.

In particular, $\operatorname{Ext}_{\mathbf{U}}^{0}\left(X, \Sigma^{t} \mathbb{F}_{2}\right)$ has no nonzero class for $t=10$. In fact, $M_{3} / M_{2} \cong F(8) / \mathrm{Sq}^{2}$, and in the spectral sequence for $\operatorname{Ext}_{\underline{\mathbf{U}}}^{*}\left(X, \Sigma^{t} \mathbb{F}_{2}\right)$ arising from the filtration of X, there is a nonzero differential

$$
\operatorname{Ext}_{\underline{\mathbf{U}}}^{0}\left(M_{2} / M_{1}, \Sigma^{10} \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{\underline{\mathbf{U}}}^{1}\left(M_{3} / M_{2}, \Sigma^{10} \mathbb{F}_{2}\right)
$$

In effect, what we have done in this example is to introduce a generator in M_{2} (namely x_{10}, corresponding to $\mathrm{Sq}^{2} \iota_{8}$) and then to equate it with a Steenrod operation on another class at a later stage, thus eliminating it from the list of generators.

However, it is possible to revise Conjecture 5.9 to deal with this problem. The salient feature that distinguishes the situation for $S O$ and U from the example above is that there is a stable resolution in the background. In other words, in the case of the tower $\left\{Y_{n}\right\}$ defined in Section 2, the tower realizes a destabilized resolution of $\Sigma A / \mathrm{Sq}^{3}$ or $\Sigma \bar{A} / \mathrm{Sq}^{3}$, whereas in the counterexample above, the tower realizes the unstable complex

$$
\bar{F}(7) \stackrel{\mathrm{Sq}^{2}}{\leftrightarrows} F(9) \stackrel{0}{\longleftarrow} F(10) \stackrel{\mathrm{Sq}^{2}}{\leftrightarrows} F(12),
$$

which is certainly not the destabilization of a resolution. To reflect this, we refine Bousfield and Davis's conjecture as follows.

Conjecture 5.10. Conjecture 5.9 is true if we add the hypothesis that there exist A-modules \bar{F}_{n} and maps $\bar{d}_{n}: \bar{F}_{n+1} \rightarrow \bar{F}_{n}$ satisfying the following conditions:
(1) \bar{F}_{n} is the sum of copies of A and A / Sq^{1}, and $\Omega^{n} D \bar{F}_{n} \cong F_{n}$.
(2) $\Omega^{n} D\left(\bar{d}_{n}\right)=i_{n} \circ f_{n}$.
(3) $\left(\bar{F}_{*}, \bar{d}_{*}\right)$ is a chain complex whose only nonzero homology group occurs in the lowest homological dimension.

References

[B] A. K. Bousfield, A vanishing theorem for the unstable Adams spectral sequence, Topology 9 (1970) 337-344.
[B-D] A. K. Bousfield and D. M. Davis, On the unstable Adams spectral sequence for SO and U, and splittings of unstable Ext groups, Bol. Soc. Mat. Mexicana 37 (1992), 41-53.
[Lannes] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. Inst. Hautes Études Sci. 75 (1992), 135-244.
[Lesh] K. Lesh, The unstable Adams spectral sequence for two-stage towers, Topology Appl. 101 (2000), 161-180.
[Long] J. Long, Two contributions to the homotopy theory of H-spaces, Princeton Univ. thesis, 1979.
[Massey] W. S. Massey, unpublished manuscript, 1978.
[M-P] W. S. Massey and F. P. Peterson, The mod 2 cohomology structure of certain fiber spaces, Mem. Amer. Math. Soc. 74 (1967).

Department of Mathematics
Union College
Schenectady, NY 12308, U.S.A.
E-mail: leshk@union.edu

Received 1 August 2001; in revised form 7 December 2001

[^0]: $\left({ }^{1}\right)$ An appropriate reference for the remainder of the section is [Long].

