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Abstract. For a cardinal κ and a model M of cardinality κ let No(M) denote the
number of nonisomorphic models of cardinality κ which are L∞,κ-equivalent to M . We
prove that for κ a weakly compact cardinal, the question of the possible values of No(M)
for models M of cardinality κ is equivalent to the question of the possible numbers of
equivalence classes of equivalence relations which are Σ1

1-definable over Vκ. By [SV] it is
possible to have a generic extension where the possible numbers of equivalence classes of
Σ1

1-equivalence relations are in a prearranged set. Together these results settle the problem
of the possible values of No(M) for models of weakly compact cardinality.

1. Introduction. Suppose κ is a cardinal andM is a model of cardinal-
ity κ. Let No(M) denote the number of nonisomorphic models of cardinality
κ which are elementary equivalent to M over the infinitary language L∞κ.
We study the possible values of No(M) for different models M.

WhenM is countable, No(M) = 1 by [Sco65]. This result extends to all
structures of singular cardinality λ provided that λ is of countable cofinality
[Cha68]. The case where M is of singular cardinality λ with uncountable
cofinality κ was first treated in [She85] and later on in [She86]. In these
papers Shelah showed that if κ > ℵ0, θκ < λ for every θ < λ, and 0 < µ < λ
or µ = λκ, then No(M) = µ for some model M of cardinality λ. In [SV00]
of the present authors the singular case is revisited, and in particular, it is
established, under the same assumptions as above, that the values µ with
λ ≤ µ < λκ are possible for No(M) with M of cardinality λ.
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If V = L, κ is an uncountable regular cardinal which is not weakly com-
pact, andM is a model of cardinality κ, then No(M) ∈ {1, 2κ} [She81]. For
κ = ℵ1 this result was first proved in [Pal77a]. The values No(M) ∈ {ℵ0,ℵ1}
for a model of cardinality ℵ1 are consistent with ZFC + GCH as noted in
[She81]. All the nonzero finite values of No(M) for models of cardinality ℵ1

are proved to be consistent with ZFC + GCH in [SV01].
When κ is a weakly compact cardinal and µ is a nonzero cardinal ≤

κ there is a model M of cardinality κ with No(M) = µ [She82]. In the
present paper we show that for κ weakly compact, the possible values of
No(M) for models of cardinality κ depend only on the possible numbers of
equivalence classes of equivalence relations ∼φ,P having the following form
(Σ1

1-definable over Vκ): for some first order sentence φ in the vocabulary
{∈, R0, R1, R2, R3} and a subset P of Vκ, it is the case that for all s, t ∈ κ2,

s ∼ t iff for some r ∈ κ2, 〈Vκ,∈, P, s, t, r〉 |= φ,

where P , r, s, and t are the interpretations of the symbols R0, R1, R2, and
R3 respectively.

Theorem 1. When κ is a weakly compact cardinal , the following two
conditions are equivalent for all cardinals µ:

(A) there is an equivalence relation on κ2 which is Σ1
1-definable over Vκ

and has µ equivalence classes;
(B) No(M) = µ for some model M of cardinality κ.

In [SV] we proved that for every nonzero cardinal µ ∈ κ ∪ {κ, κ+, 2κ}
there is a Σ1

1-equivalence relation (as defined above) with µ equivalence
classes. Moreover, it is possible to have a generic extension where the pos-
sible numbers of equivalence classes of any second order definable equiva-
lence relations are completely controlled [SV, Theorem 1]. It follows that
the question of possible value of No(M) is completely solved when M is of
weakly compact cardinality. More formally, the conclusion is the following.

Theorem 2. Suppose that the following conditions are satisfied :

• κ is a weakly compact cardinal and 2κ = κ+;
• κ remains a weakly compact cardinal in the standard Cohen forcing

adding a new subset of κ;
• λ > κ+ is a cardinal with λκ = λ;
• Ω is a set of cardinals below λ;
• Ω contains all nonzero cardinals ≤ κ+;
• for every χ ∈ Ω with χ > κ+ and θ < κ, the inequality χθ ≤ χ+ holds;
• Ω is closed under unions and products of ≤ κ cardinals.

Then there is a forcing extension where there are no new sets of cardinality
< κ, all cardinals and cofinalities are preserved , κ remains weakly compact ,
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2κ = λ, and for all cardinals µ, there exists a model M of cardinality κ with
No(M) = µ if and only if µ is in Ω.

When κ is a weakly compact cardinal, it is possible to have, using the
upward Easton forcing, a generic extension where κ is still a weakly compact
cardinal, and κ remains weakly compact in the Cohen forcing adding a
subset of κ (by an unpublished result of Silver). The forcing needed in the
conclusion is the standard way to add, for every µ ∈ Ω, a Kurepa tree
of height κ having µ branches of length κ through it. As noted in [SV,
Fact 5.1], this forcing is locally κ Cohen, and therefore, κ remains a weakly
compact cardinal in the composite forcing of the upward Easton forcing and
the addition of new Kurepa trees.

Note also that the closure properties mentioned in the conclusion are
necessary by the fact that the possible numbers of equivalence classes of
Σ1

1-equivalence relations are always closed under unions of length ≤ κ and
products of length < κ [SV, Lemma 3.4].

There are several parts in the paper. In Section 2 we start with a defini-
tion of an Ehrenfeucht–Fräıssé game EFκ;λ(M,N ) generalizing the elemen-
tary equivalence between two models over an infinitary language L∞κ. We
note that ifM is a model of cardinality κ, there is a Σ1

1-equivalence relation
having No(M) equivalence classes.

The remaining sections are dedicated to the other half of the proof of
the theorem, namely to the proof that the existence of a Σ1

1-equivalence
relation with µ equivalence classes implies the existence of a modelM with
card(M) = κ and No(M) = µ (Lemma 7.8 at the end of Section 7).

First in Section 3 we introduce a coding tree which is a skeleton for
the basic functions defined in Section 4. The basic functions form partial
isomorphisms between models. We want those partial isomorphisms to have
a strong extension property ((1.2) below). The constructions of the partial
isomorphisms and the models are similar to [She82]. The role of the coding
tree is to provide control over which basic functions are extended. The basic
functions are defined by induction along the branches of the coding tree. For
example, a κ-branch through the coding tree yields an isomorphism between
two models ((1.3) below).

In Section 5 we define a special family of functions, which is used to
build models in the last section. Roughly speaking the family is the clo-
sure of the basic functions under composition. However, in order to manage
the functions in the family, we cannot allow arbitrary compositions. For an
explanation why we are forced to consider compositions, see the beginning
of Section 5. This part might feel quite technical. The reader may skip all
the lemmas of this section on the first reading, and return to them when
they are referred to in the last section. The following intuition might help
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the reader: The basic functions are built from simple ordinal addition pre-
serving “shifts” of ordinals by putting “a shift on top of another”. A basic
function consisting of finitely many shifts maps an interval [0, α) into finitely
many intervals [β0, β1), . . . , [β2n, β2n+1) only. Moreover, if the basic function
consists of infinitely many shifts, then it is a permutation of an interval of
the form [0, α). Similar type of properties are preserved under compositions
of basic functions as proved in the last three lemmas of Section 5. This type
of properties are mainly applied in the proof of (1.4) below.

In Section 6 we briefly sketch a proof that the extension properties of
the basic functions are preserved under compositions.

The content of Section 7 is as follows. Assuming that κ is a strongly
inaccessible cardinal and φ defines a Σ1

1-equivalence relation ∼φ,P on κ2
with a parameter P ⊆ Vκ we construct models Mt for t ∈ κ2 satisfying:

(1.1) the models are of cardinality κ and they have a common vocabulary
% consisting of κ relation symbols each of arity < κ;

(1.2) all the models are pairwise L∞κ-equivalent, and even more, they are
pairwise M∞κ;λ-equivalent for any previously fixed regular cardinal
λ < κ (Definition 2.1);

(1.3) for all s, t ∈ κ2, the modelsMs andMt are isomorphic if, and only
if, s and t are equivalent with respect to ∼φ,P .

Furthermore, when κ is a weakly compact cardinal the models have the
additional property that

(1.4) if a model N has vocabulary %, N is of cardinality κ, and N is
L∞κ-equivalent to one (all) of the models Mt, t ∈ κ2, then N is
isomorphic to Ms for some s ∈ κ2.

This is the main difference between the strongly inaccessible non-weakly
compact case and the weakly compact case: the Π1

1-indescribability property
of a weakly compact cardinal κ ensures that the “isomorphism type” of any
model N with domain κ is determined by the isomorphism types of the
bounded parts N �α, α < κ, alone (Lemma 7.7).

2. Preliminaries

Definition 2.1. Suppose µ is a cardinal and λ is an infinite regular
cardinal. Let M and N be models of a common relational vocabulary. The
Ehrenfeucht–Fräıssé game EFµ;λ(M,N ) is defined as follows. The game has
two players, player I and player II. A play of the game continues for at most
λ rounds. In round i < λ player I first chooses Xi ∈ {M,N} and Ai ⊆ Xi of
cardinality < µ. Then player II replies with a partial isomorphism pi such
that
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• dom(pi) ⊆M, ran(pi) ⊆ N ,
⋃
j<i pj ⊆ pi, and

• Ai ⊆ dom(pi) if Xi =M, and Ai ⊆ ran(pi) otherwise.

Player II wins if the play lasts λ rounds. Otherwise player I wins. We write
M≡∞κ;λ N when player II has a winning strategy in EFκ;λ(M,N ).

LetM and N be models of a common relational vocabulary and κ be a
cardinal. The game EFκ;ω(M,N ) is the usual Ehrenfeucht–Fräıssé game of
length ω which characterizes the existence of a nonempty family of partial
isomorphisms with the “fewer than κ at a time back-and-forth property”. If
M andN satisfy the same sentences of the infinitary language L∞κ, we write
M≡∞κ N . By Karp’s theorem [Kar65], player II has a winning strategy in
EFκ;ω(M,N ) if, and only if,M≡∞κ N . So the game EFκ;λ(M,N ), for an
infinite regular cardinal λ < κ, is a generalized version of the “fewer than
κ at a time back-and-forth property”. There are so-called infinitely deep
languages M∞κ;λ with the property that M ≡∞κ;λ N if, and only if, M
and N satisfy the same sentences of M∞κ;λ [Hyt90, Kar84, Oik97].

For a model N we let card(N ) denote the cardinality of the universe
of N . For any modelM of cardinality κ and a regular cardinal ℵ0 ≤ λ < κ,
we define Noλ(M) to be the cardinality of the set

{N/∼= | card(N ) = κ and N ≡∞κ;λM},
where N/∼= is the equivalence class of N under the isomorphism relation.

Next we recall from [SV, Definition 3.1] the definition of an equivalence
relation on κ2 which is second order definable over the set H(κ) (all sets
hereditarily of cardinality < κ). In this paper we need only equivalence
relations which are definable using one second order existential quantifier.
Hence the definition is presented in a restricted form.

Definition 2.2. Suppose κ is a regular cardinal. We say that φ defines
a Σ1

1-equivalence relation ∼φ,P on κ2 with a parameter P ⊆ H(κ) provided
that

• φ is a first order sentence in a vocabulary consisting of ∈, one unary
relation symbol R0, and binary relation symbols R1, R2, and R3;
• the following definition yields an equivalence relation on κ2: for all

s, t ∈ κ2,

s ∼φ,P t iff for some r ∈ κ2, 〈Vκ,∈, P, s, t, r〉 |= φ,

where P , s, t, and r are the interpretations of the symbols R0, R1, R2, and
R3 respectively.

By [SV, Lemma 3.4] the possible numbers of equivalence classes of a Σ1
1-

relation over H(κ) include all nonzero cardinals in {µ | µ ≤ κ+ or µ = 2κ}.
In the next lemma we point out that the possible numbers of classes contain
the cardinal No(M) for every model M of cardinality κ.
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Lemma 2.3. Suppose κ is an uncountable regular cardinal ,M is a model
of cardinality κ, and µ is the cardinal No(M). Then there is an equivalence
relation ∼φ,P on κ2 which is Σ1

1-definable over H(κ) and has µ equivalence
classes.

Proof. Without loss of generalityM has domain κ and µ is infinite. We
may also assume that the vocabulary of M consists of one n-place relation
P with n < ω (Lemma 7.8).

Since there exists a definable bijection from κ into κ3, we may define, for
every r ∈ κ2, that r codes a triple 〈r1, r2, r3〉 so that for every i ∈ {1, 2, 3},
{ri | r ∈ κ2} = κ2. Similarly, let Rs denote the n-place relation on κ coded
by s ∈ κ2, and let hr′ denote the binary relation on κ coded by r′ ∈ κ2.

Since for all modelsN , the game EFκ;ω(M,N ) is determined,M 6≡∞κ N
iff player I has a winning strategy in EFκ;ω(M,N ). Moreover, there is a

definable bijection from κ into [κ]<ℵ0 (all finite sequences of ordinals below
κ), and thus, for every r′ ∈ κ2, we may define wr′ to be the function from

[κ]<ℵ0 into κ coded by r′.
Using the relation P as a parameter, we may form a first order sentence

saying for fixed s, t, and r in κ2 that

either wr1 is a winning strategy for player I in EFκ;ω(〈κ, P 〉, 〈κ,Rs〉)
and wr2 is a winning strategy for player I in EFκ;ω(〈κ, P 〉, 〈κ,Rt〉), or
otherwise, hr3 is an isomorphism between 〈κ,Rs〉 and 〈κ,Rt〉.

Such a sentence defines over H(κ) a Σ1
1-equivalence relation on κ2 as

required.

3. The coding tree. Throughout the paper κ is a strongly inacces-
sible cardinal, i.e., a regular limit cardinal satisfying 2µ < κ for all µ < κ.
Additionally, λ is a fixed regular cardinal below κ.

During the next three sections we define a family of functions which is
used to build the models Mt, t ∈ κ2 (Definition 7.1). There is a similar
idea in [She82]. However, this time we want the functions to have more
properties. Hence the definition of the family is more complicated.

To make our models strongly equivalent we shall guarantee that for every
pair Ms and Mt, s, t ∈ κ2, a certain subfamily of all the functions forms a
winning strategy for player II in the game EFκ;λ(Ms,Mt) (Definition 3.5).
So we shall also need a “stronger extension property” for the functions than
was needed in [She82].

We want the models Ms and Mt, s, t ∈ κ2, to be isomorphic if, and
only if, the indices s and t are equivalent with respect to some previously
fixed Σ1

1-equivalence relation (Lemma 7.4). Hence we “code” the equivalence
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relation into a special tree (Definitions 3.2 and 3.3). This tree is a steering
apparatus in the construction of the family of functions (Definitions 4.3 and
5.2).

Throughout the paper φ denotes a sentence which defines a Σ1
1-equiva-

lence relation ∼φ,P on κ2 with a parameter P ⊆ Vκ (Definition 2.2).

Without loss of generality we may assume that for every s, t, r ∈ κ2, the
same element r witnessing that s ∼φ,P t also witnesses that t ∼φ,P s, i.e.,

(3.1) 〈Vκ,∈, P, s, t, r〉 |= φ iff 〈Vκ,∈, P, t, s, r〉 |= φ.

Because ∼φ,P is a relation on κ2 and it has a Σ1
1-definition, the most nat-

ural object to consider is the tree of triples such that the first two elements
are initial segments of potentially equivalent functions in κ2 and the third
element is a potential witnessing function for the equivalence. For technical
reasons we also have a fourth member in the nodes. It is convenient to use
only a restricted part of κ2 to get more “room for coding different initial
segments”.

Remark. The reader may skip the next definition, and safely think
during the first reading of the paper that for every µ ≤ κ, the set Fun(µ, 2)
defined below equals the collection µ2 of all functions from µ into 2.

Definition 3.1. Suppose α ≤ κ (remember κ = iκ). We denote by
Fun(iα, 2) the family of functions η from iα into 2 such that

• η(ξ) = 0 if ξ < i0;

• for every β < α, for all ξ ∈ iβ+1 r iβ, η(ξ) = η(iβ).

Remark. This restriction is harmless: We want to show that it is pos-
sible to have a model M of cardinality κ such that Noλ(M) equals the
number of equivalence classes with respect to ∼φ,P . Because κ is assumed
to be a strongly inaccessible cardinal, we may assume that ∼φ,P has the
following property: for all s, t ∈ κ2,

(3.2) if s(iα) = t(iα) for every α < κ then s ∼φ,P t.
The restriction turns out to be useful in Definition 4.3, and most impor-

tantly, in Lemma 5.7(e) (we want that for a successor u ∈ T 1,2
λ with cu in-

creasing, the information end(pu) is determined by a single point ζ ∈ ran(cu)
alone; for the unexplained notation see Definitions 3.6, 4.3 and 5.2).

Definition 3.2. Let T [0] be {〈∅, ∅, ∅, ∅〉} and for every nonzero α < κ
define T [α] to consist of all tuples 〈η, ν, τ, C〉 such that

• η, ν, τ ∈ Fun(iα, 2);

• η 6= ν;

• C is a closed subset of α.
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Then define
T =

⋃

α<κ

T [α].

Let T [<α] denote the set
⋃
β<α T [β].

For every u ∈ T , we let ord(u), fun1(u), fun2(u), fun3(u), and cst(u) be
elements such that u ∈ T [ord(u)] and u = 〈fun1(u), fun2(u), fun3(u), cst(u)〉.
Furthermore, for every u ∈ T , define u�β to be 〈∅, ∅, ∅, ∅〉 if β = 0, and when
β > 0, set

u�β = 〈fun1(u)�iβ, fun2(u)�iβ, fun3(u)�iβ, cst(u) ∩ β〉.
The elements u, v ∈ T form a tree when they are ordered by

u / v iff u = v�ord(u) and ord(u) ∈ cst(v).

The notation u E v stands for u / v or u = v. For a /-increasing chain
〈ui | i < θ〉 of elements in T with θ < κ, we write

⋃
i<θ ui for the following

element in T : 〈⋃

i<θ

fun1(ui),
⋃

i<θ

fun2(ui),
⋃

i<θ

fun3(ui), C
〉
,

where C is the closure of
⋃
i<θ cst(ui).

Remember that φ defines an equivalence relation. So in the next defini-
tion we fix the part T 1 of T whose “nodes are initial segments of equivalent
functions”.

Definition 3.3. Suppose s, t, r are in Fun(κ, 2). If 〈Vκ,∈, P, s, t, r〉 |= φ
does not hold, define Cs,t,r to be {0}, and otherwise, define

Cs,t,r = {0} ∪ {δ < κ | 〈Vδ,∈, P ∩ Vδ, s�δ, t�δ, r�δ〉 ≺ 〈Vκ,∈, P, s, t, r〉 |= φ}.
Let T 1 be the set of all u ∈ T such that for some s, t, r ∈ Fun(κ, 2) the
following conditions are satisfied:

• 〈Vκ,∈, P, s, t, r〉 |= φ;
• fun1(u) ⊆ s, fun2(u) ⊆ t, and fun3(u) ⊆ r;
• ord(u) ∈ Cs,t,r and cst(u) = Cs,t,r ∩ ord(u).

Note that for all nonzero δ ∈ Cs,t,r, iδ = δ. Notice also that if r witnesses
that s ∼φ,P t, then the following elements form a κ-branch in the tree T 1:

{〈s�δ, t�δ, r�δ, Cs,t,r ∩ δ〉 | δ ∈ Cs,t,r}.
In the definition below, we fix a “direction” for the first two functions in

the nodes of T . This is needed to keep track of how the partial isomorphisms
are extended between models.

Definition 3.4. For each α < κ define a lexicographic order lα as
follows: for all elements η, ν ∈ Fun(iα, 2),

η lα ν iff η 6= ν and η(ξ) < ν(ξ) for ξ = min{ζ < iα | η(ζ) 6= ν(ζ)}.
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Define

T [l] = {u ∈ T | fun1(u) lord(u) fun2(u)}.
For every u ∈ T , denote the tuple 〈fun2(u), fun1(u), fun3(u), cst(u)〉 by

u−1 (the order of the first two elements is reversed).

Remark. For every u ∈ T 1, u−1 ∈ T 1 by the assumption (3.1).

In the next definition we choose another part of T . This time we use a
fixed “bookkeeping function” π (which ensures that the models are strongly
equivalent) and we do not restrict ourselves to the initial segments of equiva-
lent functions. Remember that λ is a fixed regular cardinal below κ, and λ is
the length of the Ehrenfeucht–Fräıssé game played between the forthcoming
models.

Definition 3.5. Define Suc+ to be the set

{β + 1 | β is a successor ordinal }.
Choose a surjective function π from {0}∪Suc+ onto {〈∅, ∅, ∅, ∅〉}∪T [l] such
that

• if π(α) = u then either α = 0 and u = 〈∅, ∅, ∅, ∅〉, or else ord(u) < α;

• for every u ∈ {〈∅, ∅, ∅, ∅〉} ∪ T [l], the set {α ∈ Suc+ | π(α) = u} is
unbounded in κ.

We define T 2
λ , for fixed regular λ < κ, to be the smallest subset of T

satisfying the following conditions:

(1) 〈∅, ∅, ∅, ∅〉 is in T 2
λ .

(2) If u ∈ T 2
λ then u−1 ∈ T 2

λ .
(3) T 2

λ contains every u ∈ T [l] having the properties:

(i) If sup cst(u) < ord(u) then ord(u) ∈ Suc+ and for the maximal
element γ = sup cst(u) (which is in cst(u)), we have π(ord(u)) =
u�γ (this element is in T 1 ∪ T 2

λ );
(ii) if sup cst(u)=ord(u), then cst(u)∩Suc+ is nonempty, cf(ord(u))

< λ, and for every β ∈ cst(u), u�β ∈ T 1 ∪ T 2
λ .

Remark. By Definition 3.5(3), the only common node of the parts T 1

and T 2
λ is 〈∅, ∅, ∅, ∅〉. Moreover, in contrast to the property of T 1, there are

no κ-branches through the tree T 2
λ by Definition 3.5(3)(ii), only branches of

length λ (Fact 3.7).

Definition 3.6. We denote the set T 1 ∪ T 2
λ by T 1,2

λ . For all α < κ,

T 1,2
λ [α] denotes T [α] ∩ T 1,2

λ and T 1,2
λ [<α] stands for T [<α] ∩ T 1,2

λ .

We say that u ∈ T 1,2
λ is a successor of v when v ∈ T 1,2

λ and there is no

w ∈ T 1,2
λ with v / w / u. An element u ∈ T 1,2

λ is called a successor node if
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u = 〈∅, ∅, ∅, ∅〉 or there is v ∈ T 1,2
λ such that u is a successor of v. If u is not

a successor node, it is called a limit node.

When u ∈ T 1,2
λ , we write “ for all v / u” when we mean “ for all v ∈ T 1,2

λ
with v / u”.

Note also that an element u ∈ T 1 is a successor of v ∈ T 1,2
λ only if v ∈ T 1.

However, for every v ∈ T 1 there is u ∈ T 2
λ which is a successor of v. If u ∈ T 1

is a limit point then it is a limit of elements in T 1. Moreover, u ∈ T 2
λ is a

limit point only if it is a limit of elements in T 2
λ . See the proof of the fact

below.

Fact 3.7. (a) For all /-increasing chains 〈ui | i < θ〉 of elements in T 2
λ ,

cf(θ) < λ and the tuples
⋃
i<θ ui are in T 2

λ .

(b) For every /-increasing chain ū = 〈ui | i < θ〉 of elements in T 1, if

ū has some upper bound in T 1,2
λ (with respect to the order /) then the tuple⋃

i<θ ui is in T 1.

Proof. (a) This is an obvious consequence of Definition 3.5(3)(ii).

(b) Suppose that w ∈ T 1,2
λ is an upper bound for ū. Let v be the smallest

element in T 1,2
λ with v E w and ui / v for all i < θ. Then v is a limit of the

elements ui ∈ T 1, i < θ, and ord(v) must be a limit ordinal, say γ.

Suppose v is in T 2
λ . By Definition 3.5(3)(i), cst(v) must be unbounded in

γ, and of course cst(v) =
⋃
i<θ cst(ui), since ū is /-increasing. Because Suc+

contains only successor ordinals and each ui is in T 1, cst(ui) ∩ Suc+ = ∅
for every i < θ. Hence cst(v) is disjoint from Suc+ contrary to Definition
3.5(3)(ii).

It follows that v must be in T 1 and there are s, t, r ∈ Fun(κ, 2) such that

fun1(v) ⊆ s, fun2(v) ⊆ t, fun3(v) ⊆ r,
ord(v) ∈ Cs,t,r, cst(v) = Cs,t,r ∩ ord(v).

For every i < θ and αi = ord(ui), ui / v implies that αi ∈ cst(v) ⊆ Cs,t,r.
Hence, for each i < θ,

〈Vαi ,∈, P ∩ Vαi , s�αi, t�αi, r�αi〉 ≺ 〈Vκ,∈, P, s, t, r〉 |= φ,

and for δ =
⋃
i<θ αi,

〈Vδ,∈, P ∩ Vδ, s�δ, t�δ, r�δ〉 ≺ 〈Vκ,∈, P, s, t, r〉 |= φ.

Consequently, the tuple 〈s�δ, t�δ, r�δ, Cs,t,r ∩δ〉 =
⋃
i<θ ui is in T 1 (note that

iαi = αi, iδ = δ, and by the choice of v, v =
⋃
i<θ ui).

4. The basic functions. In this section we define those basic functions
whose compositions form the family of functions used in the definition of
the final models.
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Definition 4.1. For every β < κ and γ < iβ+1 we define a function cβγ
with domain iβ as follows: for all ξ < iβ,

cβγ(ξ) = (iβ · (γ + 1)) + ξ,

where · and + are the ordinal multiplication and addition respectively. Write
E for the family of functions {f�A | f ∈ E and A ⊆ dom(f)}, where E is

the set
⋃{{cβγ , (cβγ)−1} | β < κ and γ < iβ+1}. The reflection point of

d ∈ E r {∅}, denoted by ref(d), is the unique ordinal β for which there is

γ < iβ+1 such that either d ⊆ cβγ or d ⊆ (cβγ)−1.

Fact 4.2. (a) For all increasing d, e ∈ E and Y = ran(d) ∩ ran(e),
d−1�Y = e−1�Y .

(b) For every e ∈ E , either e is increasing and all the elements in ran(e)
have the same cardinality , or otherwise, e is decreasing and all the elements
in dom(e) have the same cardinality.

(c) For all e ∈ E and ξ < ζ ∈ dom(e), ζ − ξ = e(ζ)− e(ξ).

Definition 4.3. First we need some auxiliary means used in this defi-
nition only. For all functions p and e, p ] e is the function p ∪ (e�(dom(e)r
dom(p))). Let Ref1 be the set of all limit ordinals below κ and Ref2 be the
set of all successor ordinals below κ. For every α < κ let �α be a fixed
well-ordering of T 1,2

λ [α] and define a well-ordering of T 1,2
λ by

u� v iff ord(u) < ord(v) or (ord(u) = ord(v) = α and u�α v).

For each w ∈ T 1,2
λ , denote the set {w′ | w′ � w} by T 1,2

λ [�w] (used in

(1) only). Furthermore, let id(u), for u ∈ T 1,2
λ , denote the following identity

function:

{〈ξ, ξ〉 | ξ < ord(u) and fun1(u)�ξ + 1 = fun2(u)�ξ + 1}.
Now define for each u ∈ T 1,2

λ a function pu as follows.

(a) First of all pu = ∅ for u = 〈∅, ∅, ∅, ∅〉.
(b) Suppose u ∈ T [l], u is a successor of v, and for v the function pv is

already defined. Fix an ordinal β < ord(u) as follows:

(1) Suppose u ∈ T 1. For all w ∈ T 1,2
λ , define inductively

β′w = min(Ref1 r (dom(id(u)) ∪ (ord(w) + 1)

∪ {β′w′ | w′ ∈ T
1,2
λ [�w]})).

Fix β to be β′v.
(2) Suppose u ∈ T 2

λ . By Definition 3.5, ord(u) ∈ Suc+ and there is a
unique β′ ∈ Ref2 with ord(u) = β′ + 1. Fix β to be that β′. Note
that necessarily v = π(ord(u)).
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Assume 〈wβγ′ | γ′ < θ〉 with θ ≤ iβ+1 is a fixed enumeration of T [β] without

repetition. Let γ be the ordinal for which u�β = wβγ . We define

pu =

{
id(u) ] (pv ] cβγ) if ran(pv) is ordinal,

id(u) ] (pv ] (cβγ)−1) otherwise.

(e) Suppose u ∈ T [l], u is a limit, and for all v / u, the functions pv
are defined. Then define pu to be

⋃
v/u pv. Note that by the definition of ],

pw ⊆ pv for all w / v / u.

(f) For all u ∈ T 1,2
λ r T [l] define pu to be (pu−1)−1.

For every successor u ∈ T 1,2
λ r {〈∅, ∅, ∅, ∅〉}, say a successor of v ∈ T 1,2

λ ,
there is a unique e ∈ E such that either e = ∅, or otherwise dom(e) =
dom(pu) r dom(pv) and pu = pv ∪ e. We denote this e by cu.

Remark. The part id(u) in the definition above is needed first time in
Lemma 6.3(d) to ensure that all the functions have arbitrary large exten-
sions. Note also that pu might be id(u) = {〈ξ, ξ〉 | ξ < iβ} when ord(u) =
β + 1, u ∈ T 2

λ is a successor of 〈∅, ∅, ∅, ∅〉, and fun1(u)�iβ = fun2(u)�iβ.

Fact 4.4. (a) If u ∈ T 1,2
λ , ξ ∈ dom(pu), and pu(ξ) = ξ, then pu(ζ) = ζ

for all ζ ≤ ξ.

(b) For every u ∈ T 1,2
λ , pu is a partial function from iord(u) into iord(u).

(c) For all u, v ∈ T 1,2
λ , u / v implies pu  pv.

(d) For every successor u ∈ T 1,2
λ r {〈∅, ∅, ∅, ∅〉}, dom(pu) is the cardinal

iref(cu) iff cu is ∅ or cu is increasing , and ran(pu) is the cardinal iref(cu) iff
cu is ∅ or cu is decreasing.

(e) For all limit points u ∈ T 1,2
λ , dom(pu) =

⋃
v/u dom(pv) = ran(pu) =⋃

v/u ran(pv) = iord(u).

(f) For all limit points u ∈ T 2
λ , dom(pu) is a cardinal of cofinality less

than λ.

(g) Suppose that both u and v are successor elements in T 1,2
λ . If cu∩cv 6= ∅

then u and v are successors of the same element , cu = cv, and for β =
ref(cu) = ref(cv), u�β = v�β.

Proof. The proofs of (b)–(e) are straightforward inductions on the tree

order /. Note that for every limit u ∈ T 1,2
λ , u =

⋃
v/u v by Fact 3.7. Note

also that in Definition 4.3(1), when u ∈ T 1 is a successor of v, the following
holds:

βv < (card(T 1,2
λ [�v]))+ ≤ iord(v)+1

+ < ord(u),

since card(T 1,2
λ [�v]) ≤ iord(v)+1, ord(u) = iord(u), and Ref1 is the set of all

limit ordinals.
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(f) By (e), dom(pu) is the cardinal iord(u). By Definition 3.5(3)(ii),
cf(ord(u)) < λ.

(g) Let w1 and w2 be such that u is a successor of w1 and v is a successor
of w2. By Definition 4.3(b), pu = pw1 ∪ cu and pv = pw2 ∪ cv. If w1 = w2 and
cu ∩ cv 6= ∅ then there are β < min{ord(u), ord(v)} and γ < iβ+1 such that

cu = cv ⊆ cβγ and u�β = wβγ = v�β, where wβγ is given in Definition 4.3(b).

Suppose u ∈ T 1. If v ∈ T 1 and w1 6= w2 then ref(cu) 6= ref(cv) because
the mapping w 7→ β′w, given in Definition 3.5, is injective. Hence cu∩cv = ∅.
Assume v ∈ T 2

λ . Then ref(cv) ∈ Ref2rRef1, and because ref(cu) ∈ Ref1, we
have cu ∩ cv = ∅. Similarly, cu ∩ cv = ∅ if u ∈ T 2

λ and v ∈ T 1.

Suppose both u ∈ T 2
λ and v ∈ T 2

λ . Then π(ord(u)) = w1 and π(ord(v))
= w2, and there are β1, β2 ∈ Ref2 with ord(u) = β1 +1 and ord(v) = β2 +1.
If ord(u) 6= ord(v) then ref(cu) = β1 6= β2 = ref(cv) and hence cu ∩ cv = ∅.
On the other hand, when ord(u) equals ord(v), we have w1 = π(ord(u)) =
π(ord(v)) = w2.

5. The family of functions. If the reader now quickly looks over Sec-
tion 7, she or he realizes that the final models are such that the basic func-
tions defined in the previous section become partial isomorphisms between
the models. The basic functions have the extension property by the choice
of the bookkeeping function π, the tree T 2

λ , and the definition of ] in Defini-
tion 4.3 (Lemma 6.3). Furthermore, if s and t are equivalent functions with
respect to ∼φ,P , then they determine a branch in T 1, which in turn yields a
sequence of basic functions whose union forms an isomorphism betweenMs

and Mt (Lemma 7.4).

However, the basic functions alone do not suffice to ensure that the defi-
nition of the models (Definition 7.1) makes sense. To achieve that the basic
functions really are partial isomorphisms, we have to “close” the interpreta-
tions of the relations under composition of basic functions. This leads to a
technical problem: we must have a control over compositions of basic func-
tions. In order to do that, we define a restricted collection of compositions.
Unfortunately even the restricted set is a little bit confused. During the
first reading of this section it might be helpful to the reader to think that
λ = ℵ0. Then T 2

λ does not contain limit nodes. However, remember that
even if λ = ℵ0, then T 1 does contain many limit nodes.

Remark. We want to point out again that the Π1
1-indescribability plays

no role in this section. The assumption that κ is a weakly compact cardinal is
used in Lemma 7.7 only. Even there, the main point is to use Lemma 7.6(b),
which, roughly speaking, says that the isomorphism types of small parts of
the models defined are in a prearranged set of models (provided that the
small part is strongly equivalent to a fixed model). The proof of Lemma 7.6
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itself is straightforwardly based on the analysis of the composition of basic
functions presented in the last three lemmas of this section (to be more
precise, Lemmas 5.6(c), 5.7(e)–(g) and 5.8(d)).

Definition 5.1. For every set X of ordinals, the ordinal sup{α + 1 |
α ∈ X} is abbreviated by sup+(X). For all sequences ᾱ = 〈αi | i < θ〉
of ordinals, sup+({αi | i < θ}) is denoted by sup+(ᾱ), and the sequence
〈f(αi) | i < θ〉 is abbreviated by f(ᾱ).

Definition 5.2. We define Seq to be the set of all pairs 〈ū,W 〉 satisfying
the following conditions:

(A) W is nonempty.

(B) For some n < ω, ū is a sequence 〈ui | i < n〉 of elements in T 1,2
λ r

{〈∅, ∅, ∅, ∅〉}.
(C) Let W0 be W . Inductively for every i < n − 1, Wi ⊆ dom(pui) and

Wi+1 = pui [Wi].
(D) For every i < n−1, fun2(ui)�sup+(Wi+1) = fun1(ui+1)�sup+(Wi+1).

For every 〈ū,W 〉 in Seq there is a natural sequence ḡū,W of functions defined
as follows:

ḡū,W = 〈gū,Wi | i < lh(ū)〉,
where each gū,Wi is a shorthand for pui�Wi. The composition gū,Wlh(ū)−1 ◦ . . . ◦
gū,W0 is denoted by gū,W . For all sequences f̄ = 〈fi | i < n〉, 1 ≤ n < ω,
which are of the form ḡū,W for some fixed 〈ū,W 〉 ∈ Seq with lh(ū) = n, we
shall use the following notation:

• for each i < lh(ū),

ind(fi) = ui,

beg(fi) = fun1(ui)�sup+(dom(fi)),

end(fi) = fun2(ui)�sup+(ran(fi));

• beg(f) = beg(f0) and end(f) = end(flh(ū)−1);
• f is the composition flh(ū)−1 ◦ . . . ◦ f0;
• for i < lh(ū), f≤i is a shorthand for fi ◦ . . .◦f0, and for all ξ ∈ dom(f),

f<i(ξ) =

{
ξ if i = 0,

fi−1 ◦ . . . ◦ f0(ξ) otherwise.

Definition 5.3. A sequence f̄ = ḡū,W , 〈ū,W 〉 ∈ Seq, is called minimal
if the following two conditions are satisfied:

(A) for all i < lh(f̄) and v / ind(fi), dom(fi) 6⊆ dom(pv);
(B) there are no indices i ≤ j < lh(f̄) such that the composition fj ◦

. . . ◦ fi is identity and beg(fi) = end(fj).
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Let F̄ be the set {ḡū,W | 〈ū,W 〉 ∈ Seq and ḡū,W is minimal}. The
collection {f | f̄ ∈ F̄ and lh(f̄) = 1} is abbreviated by F1.

The following fact and lemma are basic properties needed in the proof
of the last three lemmas.

Fact 5.4. (a) For all 〈ū,W 〉 ∈ Seq, either gū,W is the identity function
and beg(gū,W ) = end(gū,W ), or otherwise, there is a sequence f̄ ∈ F̄ such
that lh(f̄) ≤ lh(ū), f = gū,W , beg(f) = beg(gū,W ), and end(f) = end(gū,W ).

(b) For every q ∈ F1 there is θ ∈ dom(q) such that for all ξ ∈ dom(q)rθ,
q(ξ) 6= ξ.

(c) For every q ∈ F1 with ind(q) = u a successor , cu is nonempty.

Note that for all functions x and sets X, x�X means the restricted func-
tion x�(dom(x) ∩X).

Lemma 5.5. For all nonempty q ∈ F1,

ind(q) is a successor iff sup+(dom(q)) 6= sup+(ran(q)).

Moreover , if ind(q) = u is a limit , then

sup+(dom(q)) = sup+(ran(q)) = dom(pu) = ran(pu) = iord(u).

Proof. First of all recall that q is not identity (Fact 5.4(b)). Suppose first

that ind(q) = u is a successor of v ∈ T 1,2
λ . Then q ⊆ pv∪e for e = cu�dom(q).

Abbreviate ref(e) by γ. We have γ ≥ ord(v) and dom(pv) ∪ ran(pv) ⊆
iord(v) ≤ iγ . Because e is nonempty, the claim follows from the facts that
dom(e)∩iγ 6= ∅ implies dom(e) ⊆ iγ and ran(e)∩iγ = ∅, and on the other
hand, dom(e) ∩ iγ = ∅ implies ran(e) ⊆ iγ.

Assume ind(q) is a limit. Denote ind(q) by u and iord(u) by µ. Because
dom(pu) = ran(pu) = µ it suffices to prove that sup+(dom(q)) ≥ µ and
sup+(ran(q)) ≥ µ.

Let θ <κ be such that 〈vi | i < θ〉 is a /-increasing enumeration of the
elements w / u. We know that for all ordinals i in {j+ (2n+ 1) | j < θ
is a limit ordinal or 0, and n < ω}, dom(pvi) is a cardinal. If sup+(dom(q))
< µ then there would be i < θ with dom(q) ⊆ dom(pvi) contrary to Defini-
tion 5.3(A). So dom(q) must be unbounded in µ.

Moreover, we know that for all ordinals i in the set I = {j+2n | j < θ
is a limit ordinal and n < ω}, ran(pvi) is a cardinal. So if sup+(ran(q)) < µ
and i ∈ I is such that ran(q) ⊆ ran(pvi), then dom(q) ⊆ dom(pvi) since q is
injective and ran(pvi) is an ordinal. Thus ran(q) is also unbounded in µ.

It remains to prove the last three main lemmas of the paper. The intu-
ition behind the lemmas is simple. Just directly look at how a single ordinal
is mapped under the relevant compositions. For example, because of the
coding mechanism (Definition 4.3), every ordinal is mapped to a greater
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ordinal “in a unique way” as presented in Lemma 5.6(a). Recall also the
explanations of the introduction.

The first lemma is mainly used in the proof of Lemma 7.4, where it is
shown that the models Ms and Mt with s, t ∈ κ2, are isomorphic if and
only if s and t are equivalent with respect to ∼φ,P (especially Lemma 5.6(e)).
The third lemma, Lemma 5.8, is also applied in the proof of Lemma 7.4.

Lemma 5.6. (a) Suppose p, q ∈ F1 and e ∈ E is a nonempty increasing
function with e ⊆ p∩q and ref(e) = β. Then for X = dom(p)∩dom(q)∩iβ,
p�X = q�X and ind(p)�β = ind(q)�β. In particular , beg(p)�sup+(X) =
beg(q)�sup+(X).

(b) For all q ∈ F1, if sup+(dom(q)) is a cardinal , then sup+(dom(q)) ≤
sup+(ran(q)).

(c) If f̄ ∈ F̄ and sup+(dom(f0)) < sup+(ran(f0)) then sup+(dom(fi)) <
sup+(ran(fi)) for every i < lh(f̄).

(d) For all f̄ ∈ F̄ and i < lh(f̄), sup+(dom(fi) ∪ ran(fi)) ≤
sup+(dom(f) ∪ ran(f)).

(e) For all f̄ ∈ F̄ , if sup+(ran(f)) is a cardinal µ and dom(f) ⊆ µ then
sup+(dom(f)) = µ. Furthermore, if dom(f) = µ then dom(fi) = ran(fi) =
µ for each i < lh(f̄).

Proof. (a) By Definition 4.3, there are successors u, v ∈ T 1,2
λ with u E

ind(p), v E ind(q), cu�dom(e) = pu�dom(e) = e = pv�dom(e) = cv�dom(e),
and dom(pu) = dom(pv) = iβ. By Fact 4.4(g), u and v are successors of the

same element, say w ∈ T 1,2
λ , cu = cv, and u�β = v�β. Therefore we have

p�iβ ⊆ pu = pw ∪ cu = pw ∪ cv = pv ⊇ q�iβ,
and

beg(p)�iβ ⊆ fun1(u)�iβ = fun1(v)�iβ ⊇ beg(q)�iβ.

(b) Suppose that sup+(dom(q)) > sup+(ran(q)). Then by Lemma 5.5,
ind(q) must be a successor. Denote cind(q)�dom(q) by d. Necessarily d is
decreasing and dom(d) is an end segment of dom(q). By Fact 4.2(b), we
have card(sup+(dom(d))) = card(min dom(d)). Thus the following ordinal
is not a cardinal:

sup+(dom(q)) = sup+(dom(d)) > min dom(d).

(c) Suppose, contrary to the claim, that there is j ∈ {1, . . . , lh(f̄) − 1}
with sup+(dom(fj)) ≥ sup+(ran(fj)). We may assume that j is the smallest
possible index with this property.

Suppose first that sup+(dom(fj))=sup+(ran(fj)). Then for u=ind(fj),
sup+(dom(fj)) is the cardinal iord(u) by Lemma 5.5. It follows from the

equalities dom(fj) = ran(fj−1) = dom(f−1
j−1), and by applying (b) to f−1

j−1,
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that sup+(dom(f−1
j−1)) ≤ sup+(ran(f−1

j−1)). However, then

sup+(dom(fj−1)) ≥ sup+(ran(fj−1)),

contrary to the choice of j.
So suppose sup+(dom(fj)) > sup+(ran(fj)). Note that sup+(dom(fj−1))

< sup+(ran(fj−1)). Abbreviate ind(fj−1) by u and ind(fj) by v. By Lem-

ma 5.5, there are w1, w2 ∈ T 1,2
λ such that u is a successor of w1 and v is a

successor of w2. Denote ref(cu) by γ1, ref(cv) by γ2, cu�dom(fj−1) by d1,
and cv�dom(fj) by d2. Then d1, d2 are nonempty, d1 is increasing, d2 is
decreasing, and

fj−1 ⊆ pu = pw1 ∪ d1, ran(pw1) ⊆ iγ1 , ran(d1) ⊆ iγ1+1 r iγ1 ,

fj ⊆ pv = pw2 ∪ d2, dom(pw2) ⊆ iγ2 , dom(d2) ⊆ iγ2+1 r iγ2 .

Because ran(fj−1) = dom(fj), it follows that γ1 = γ2 and ran(d1) =

dom(d2). By Fact 4.2(a), d1 = (d2)−1, and hence cu ∩ c(v−1) 6= ∅ (the nota-
tion v−1 is explained in Definition 3.4). By Fact 4.4(g), w1 = (w2)−1 and
u�γ1 = v−1�γ1. Consequently, fj−1 = f−1

j and for θ = sup+(dom(fj−1)) =

sup+(ran(fj)) ≤ iγ1 , beg(fj−1) = fun1(u)�θ = fun1(v−1)�θ = fun2(v)�θ =
end(fj) contrary to the minimality of f̄ .

(d) Denote sup+(dom(f) ∪ ran(f)) by θ. To reach a contradiction let
j < lh(f̄) be the smallest index with sup+(dom(fj) ∪ ran(fj)) > θ. Then
sup+(dom(fj)) ≤ θ < sup+(ran(fj)) since dom(f0) = dom(f) and ran(fi) =
dom(fi+1) for every i < j. However, from (c) it follows that sup+(ran(fj))
≤ sup+(dom(fk)) < sup+(ran(fk)) for all k ∈ {j + 1, . . . , lh(f̄)− 1}, and so
sup+(ran(f)) = sup+(ran(flh(f̄)−1)) > θ, a contradiction.

(e) By applying (b) to f−1
n , for n = lh(f̄)−1, we see that sup+(dom(fn))

≥ sup+(ran(fn)) = µ. By (d), sup+(dom(fn)) ≤ µ. Hence sup+(dom(fn)) =
µ. In the same way it can be shown that sup+(dom(fi)) = µ for all i ≤ n.

Suppose dom(f) = µ. By Lemma 5.5, ind(fi) is a limit point, say ui ∈
T 1,2
λ , and sup+(ran(fi)) = µ = dom(pui) = ran(pui) for every i ≤ n. How-

ever, when n > 1, f0 ⊆ pu0 together with dom(f0) = dom(f) = µ = dom(pu)
implies that f0 = pu0 and ran(f0) = µ = dom(f1). A similar reasoning shows
dom(fi) = ran(fi) = µ for every i ≤ n.

The next lemma is the main tool in the proof of the most important
lemma of the paper, namely Lemma 7.6(b) (in particular, the last three
items).

Lemma 5.7. (a) Suppose f̄ , ḡ ∈ F̄ are such that dom(f) = dom(g) =
{ξ}, f(ξ) = g(ξ), and fi is increasing for every i < lh(f̄). Then lh(f̄) ≤ lh(ḡ)
and for k = lh(ḡ) − lh(f̄), both fi = gk+i and beg(fi) = beg(gk+i) for
every i < lh(f̄). Moreover , if beg(g) = beg(f) or for every j < lh(ḡ), gj is
increasing , then lh(f̄) = lh(ḡ).
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(b) Suppose q ∈ F1, ξ < ζ ∈ dom(q), and that both q�{ξ} and q�{ζ}
are increasing. If there is no d ∈ E with {ξ, ζ} ⊆ dom(d) then card(ξ) <
iref(q�{ξ}) ≤ card(ζ).

(c) Suppose 〈q1, q2〉 ∈ F̄ and sup+(dom(q1)) < sup+(ran(q1)). Then
ind(q1), ind(q2) are successors, the functions d1 = cind(q1)�dom(q1) and d2 =
cind(q2)�dom(q2) are increasing , and dom(q2) rmin ran(d1) ⊆ dom(d2).

(d) Suppose f̄ ∈ F̄ and sup+(dom(f0)) < sup+(ran(f0)). Then for every
i < lh(f̄), ind(fi) is a successor , cind(fi) is increasing , and in particular ,
for d = cind(f0)�dom(f0) and for every i ∈ {1, . . . , lh(f̄) − 1}, dom(fi) r
f<i(min ran(d)) ⊆ cind(fi).

(e) Let f̄ be as in (d). For ū = 〈ind(fi) | i < lh(f̄)〉 and for every θ
with sup+(dom(f)) < θ ≤ iref(d), the pair 〈ū, θ〉 is in Seq and the sequence

ḡū,θ is in F̄ (see Definition 5.2). Furthermore, if end(f) is a function with
a constant value, then end(gū,θ) ⊇ end(f) is also a constant function.

(f) For every f̄ in F̄ there is ξ ∈ dom(f) satisfying ran(f) ⊆ f(ξ) +
sup+(dom(f)).

(g) Suppose ḡ ∈ F̄ , dom(g) is a cardinal µ, ind(g0) = u0 is a successor ,
and cu0 is increasing. Assume h̄ ∈ F̄ is such that dom(h) = {ξ, ξ′} ⊆ µ,
ξ ∈ dom(cu0), h(ξ) = g(ξ), and beg(h) ⊆ beg(g). Then either h(ξ′) ∈ ran(g),
or otherwise, h(ξ′) ≥ h(ξ) + µ.

Proof. (a) Denote lh(f̄)−1 by n and lh(ḡ)−1 bym. If gm were decreasing,
then, by applying Lemma 5.6(c) to the sequence 〈g−1

m , . . . , g−1
0 〉 in F̄ , gi

should be decreasing for every i ≤ m and sup+(dom(g)) > sup+(ran(gm)) =
sup+(ran(fn)) > sup+(dom(f)) = ξ+ 1 contrary to the assumption dom(f)
= dom(g) = {ξ}. Thus gm is increasing. Since ran(fn) = ran(gm), fn =
gm by Fact 4.2(a). By Lemma 5.6(a), beg(fn) = beg(gm). When n > 0,
ran(fn−1) = dom(fn) = dom(gm) = ran(gm−1). Hence we can repeat the
same argument to deduce that fn−i = gm−i and beg(fn−i) = beg(gm−i) for
every i ≤ min{m,n}. However m ≥ n since otherwise dom(g) = {f<n−m(ξ)}
6= {ξ}.

If m > n and beg(g) = beg(f) then g≤m−n−1(ξ) = ξ and end(gm−n−1) =
beg(gm−n) = beg(f0) = beg(f) = beg(g) = beg(g0) contrary to the mini-
mality of ḡ.

If m > n and gj is increasing for every j < lh(ḡ), then ran(gm−n−1) =
dom(gm−n) = dom(f0) = {ξ} and dom(g) = {g−1

0 ◦ . . . ◦ g−1
m−n−1(ξ)} 6= {ξ},

a contradiction.

(b) Let u E ind(q) be the smallest element with ξ ∈ dom(pu), and
v E ind(q) be the smallest element with ζ ∈ dom(pv). Then u and v are
successors, u E v, ξ ∈ dom(cu), ζ ∈ dom(cv), and q�{ξ, ζ} ⊆ cu∪cv ⊆ pu∪cv.
Assume cu 6= cv. Then u / v. Since cu is increasing, dom(pu) = iβ where
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β = ref(cu). Because ζ ∈ dom(cv)r dom(cu), we have dom(cv)∩ iβ = ∅. So
card(ξ) < iβ ≤ card(ζ).

(c) From Lemma 5.6(c) it follows that sup+(dom(q2)) < sup+(ran(q2)).
The elements ind(q1) and ind(q2) are successors by Lemma 5.5. If q2(ξ) = ξ
then q2 should be identity contrary to Fact 5.4(b). So both d1 and d2 are
increasing. If for some ξ ∈ ran(d1), q2�{ξ} is decreasing, then (d1)−1�{ξ} =
q2�{ξ}, and as in the proof of Lemma 5.6(c), q−1

1 = q2 and beg(q1) = end(q2)
contrary to the minimality of the sequence 〈q1, q2〉. Thus q2�{ξ} is increasing
for all ξ ∈ ran(d1). Now card(ξ) = card(min ran(d1)) for each ξ ∈ ran(d1).
By (b), there is e ∈ E with e ⊆ q2 and dom(e) = ran(d1). Because ran(d1) =
dom(e) is an end segment of ran(q1) = dom(q2), dom(q2) r min ran(d1) =
dom(e). Since e is increasing, it follows from the definition of d2 that e ⊆ d2.

(d) The claim follows from (c) by induction on i < lh(f̄).

(e) It suffices to show that 〈ū, θ〉 ∈ Seq since then the minimality of
ḡū,θ follows from the fact that f̄ is in F̄ . Let βi denote ref(cui) for every
i < lh(ū) = lh(f̄). Abbreviate min dom(d) by ξ. By (d), ran(pui) ⊆ i(βi)+1 ≤
iβ(i+1)

= dom(pui+1) and f≤i(ξ) ∈ iβi+1 r iβi for every i < lh(ū) − 1. So

〈ū, θ〉 satisfies Definition 5.2(C). From 〈ū,dom(f)〉 ∈ Seq it follows that
fun2(ui)�(f≤i(ξ) + 1) = fun1(ui+1)�(f≤i(ξ) + 1) for all i < lh(ū) − 1. These
equations together with Definition 3.1 ensure that both of the functions
fun2(ui) and fun1(ui+1), for i < lh(ū)− 1, have the same constant value on
the interval iβi+1riβi . Hence the pair 〈ū, θ〉 also satisfies Definition 5.2(D).
Similarly, the latter claim, concerning end(f), is a consequence of the facts

that for n = lh(ū) − 1, f(ξ) ∈ ran(gū,θ) = ran(gū,θn ) ⊆ iβn+1 r iβn and
fun2(un) is a constant function on the interval iβn+1 r iβn .

(f) Abbreviate sup+(dom(f)) by θ, lh(f̄) − 1 by n, and for every i ≤
n, ind(fi) by ui. If sup+(ran(f)) ≤ θ there is nothing to prove. So as-
sume sup+(ran(f)) > θ. There must be a smallest index j ≤ n satisfying
sup+(dom(fj)) ≤ θ < sup+(ran(fj)), uj is a successor, and cuj �dom(fj), ab-
breviated by d, is increasing. Let ξ be min dom(d). Then for all ζ ∈ dom(fj)r
dom(d), fj(ζ) < fj(ξ), by the definition of cuj . Moreover, dom(fj) ⊆ θ to-
gether with Fact 4.2(c) ensures that for all ζ ∈ dom(d), fj(ζ) − fj(ξ) =
d(ζ)− d(ξ) = ζ − ξ < θ. So the claim holds in case j = n.

Suppose n > j. From (d) it follows that for every i ∈ {j + 1, . . . , n}, ui
is a successor, cui is increasing, and dom(fi) r f<i(ξ) ⊆ dom(cui). For all
ζ ∈ dom(fj) r dom(d), f(ζ) < f(ξ) since fj(ζ) < fj(ξ) and the property
“fi�{ξ} is increasing for every i ∈ {j + 1, . . . , n}” implies f≤i(ζ) < f≤i(ξ)
for every i ∈ {j + 1, . . . , n}. Suppose ζ ∈ dom(d), i ∈ {j + 1, . . . , n}, and
f<i(ξ) < f<i(ζ) < f<i(ξ) + θ. Then {f<i(ξ), f<i(ζ)} ⊆ dom(cui) and by
Fact 4.2(c),

f≤i(ζ)− f≤i(ξ) = cui(f<i(ζ))− cui(f<i(ξ)) = f<i(ζ)− f<i(ξ) < θ.
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The claim follows from the fact that ran(f) r f(ξ) = ran(fn) r f≤n(ξ) ⊆
ran(cun) (remember dom(fn) r f<n(ξ) ⊆ dom(cun) and cun is increasing).

(g) Denote lh(ḡ)− 1 by n, lh(h̄)− 1 by m and for each i ≤ m abbreviate
h<i(ξ) by ξi and h<i(ξ

′) by ξ′i. Write ξm+1 for h(ξ) and ξ′m+1 for h(ξ′). Note
that by (d), for every i ≤ n and for ui = ind(gi), ui is a successor, cui is
increasing, and gi�{g<i(ξ)} = cui�{g<i(ξ)}.

There exists a smallest index j ≤ m with hj�{ξj} = g0�{ξ}, because
otherwise for the minimal reduct d̄ of the sequence 〈hi�{ξi} | i ≤ m〉 (see
Fact 5.4), d̄ differs from the minimal sequence ē = 〈gi�{g<i(ξ)} | i ≤ n〉
and en ◦ . . . ◦ e0 = dlh(d̄)−1 ◦ . . . ◦ d0 contrary to (a). We have two cases to
consider:

(1) ξ′j ≥ µ;
(2) ξ′j < µ.

(1) Suppose first that ξ′j ≥ µ. Note that µ > ξ = ξj . Note that hj(ξ
′
j) 6= ξ′j

since otherwise also hj(ξj) = ξj . The function hj�{ξ′j} must be increasing;
otherwise, we reach a contradiction in the following manner. Assume hj�{ξ′j}
is decreasing. There are two subcases:

(i) Assume that sup+(dom(hj)) > sup+(ran(hj)) or sup+(dom(hj−1))
> sup+(ran(hj−1)).

(ii) By Lemma 5.5,

sup+(dom(hj)) 6= sup+(ran(hj)), sup+(dom(hj−1)) 6= sup+(ran(hj−1)).

So suppose that both sup+(dom(hj)) < sup+(ran(hj)) and sup+(dom(hj−1))
< sup+(ran(hj−1)).

(i) It would follow from the assumption ξ′j ≥ µ and by applying (d)

to the sequence 〈h−1
j , . . . , h−1

0 〉 or 〈h−1
j−1, . . . , h

−1
0 〉 that sup+(dom(h)) =

sup+(dom(h0)) > µ, a contradiction.
(ii) The function hj−1�{ξ′j−1} is increasing, since otherwise,

sup+(dom(hj−1)) ≥ ξ′j−1 + 1 ≥ hj−1(ξ′j−1) + 1 = ξ′j + 1 = sup+(ran(hj−1)).

Let β be ref(hj−1�{ξ′j−1}). If ξj−1 ≥ iβ, then ξj−1 > ξ′j−1 and h(ξj−1) 6=
ξj−1. Moreover, ref(hj−1�{ξj−1}) > β and sup+(dom(hj−1)) = ξj−1 + 1 >
iβ+1 > ξ′j + 1 = sup+(ran(hj−1)), a contradiction. On the other hand, if
ξj−1 < iβ, then it follows from the assumption ξ′j > hj(ξ

′
j) that hj−1�{ξ′j−1}

= (hj�{ξ′j})−1. By Lemma 5.6(a), hj = h−1
j−1 and beg(hj−1) = end(hj)

contrary to the minimality of h̄.
Hence hj�{ξ′j} is increasing, and by (d), ind(hi), abbreviated by vi, is a

successor, cvi is increasing, and ξ′i ∈ dom(cvi) for every i ∈ {j, . . . ,m}. We
show by induction on i ∈ {j, . . . ,m} that ξi + µ ≤ ξ′i where + is the ordinal
addition.
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Since ξj = ξ < µ, ξ′j ≥ µ, and µ is cardinal, we have ξj +µ ≤ ξ′j . Suppose
i < m and ξi + µ ≤ ξ′i. If hi(ξi) = ξi = ξi+1 then ξi+1 + µ = ξi + µ ≤ ξ′i <
hi(ξ

′
i) = ξ′i+1.

If ξi ∈ dom(cvi), then ξ′i+1 = cvi(ξ′i), ξi+1 = cvi(ξi), and ξ′i+1 − ξi+1 =
cvi(ξ′i)− cvi(ξi) = ξ′i − ξi ≥ µ.

If ξi 6∈ dom(cvi), then the reflection point of hi�{ξi}, say β, is smaller
than ref(cvi) by the definition of cvi . Since ξi+1 ≤ iβ+1 ≤ iref(cvi ) and
µ < iref(cvi ), it follows that ξi+1 + µ < iref(cvi ) < ξ′i+1.

(2) Suppose then that ξ′j < µ. Abbreviate ref(cui), for i ≤ n, by γi. Since
hj�{ξj} = cu0�{ξ} = g0�{ξ} is increasing and {ξj , ξ′j} ⊆ µ = dom(g0) ≤ iγ0 ,
we see by Lemma 5.6(a) that beg(hj) ⊆ beg(g0) and hj�{ξ′j} = g0�{ξ′j}.
By (d), hi�{ξi} is increasing for all i ∈ {j, . . . ,m}. It follows from ξ = ξj
and h(ξj) = h(ξ) = g(ξ) together with (a) that 〈hi�{ξi} | j ≤ i ≤ m〉 =
〈gk�{g<k(ξ)} | k ≤ n〉.

To show that h(ξ′) = hm ◦ . . . ◦ hj(ξ′j) ∈ ran(g) we prove by induction
on k ≤ n that hj+k�{ξ′j+k} = gk�{ξ′j+k}. Note that m = j + n and it is

possible that ξ′j 6= ξ′. We already proved the case k = 0. Suppose k > 0
and for every i < k the subclaim holds. Then {ξj+k, ξ′j+k} = dom(hj+k) ⊆
ran(gk−1) = dom(gk). Since hj+k�{ξj+k} = gk�{g<k(ξ)} is increasing and
ξ′j+k ∈ dom(gk) ⊆ iγk , we conclude by Lemma 5.6(a) that hj+k�{ξ′j+k} =

gk�{ξ′j+k}.
The last properties below, Lemma 5.8(c), (d), are needed in the proof of

Lemmas 7.4(b) and 7.6(a).

Lemma 5.8. (a) Suppose p, q ∈ F1 are such that ind(p) is a limit , dom(p)
= dom(q) = X, and the set Y = {ζ ∈ X | p(ζ) = q(ζ)} is unbounded in
X. Then ind(q) = ind(p), and in particular , p = q, beg(p) = beg(q), and
end(p) = end(q).

(b) Suppose f̄ in F̄ and the set I0 = {ξ ∈ dom(f0) | ξ < f0(ξ)} is
unbounded in dom(f0). Then there is an end segment J of I0 such that for
every ξ ∈ J and i < lh(f̄), fi�{f<i(ξ)} is increasing.

(c) Suppose f̄ , ḡ ∈ F̄ and n < ω are such that lh(f̄) = lh(ḡ) = n,
dom(f) = ran(f) is a cardinal , and f ⊆ g. Then ind(fi) E ind(gi) and
fi ⊆ gi for every i < n.

(d) Suppose ᾱ is an increasing sequence 〈αl | l < ω〉 of ordinals below κ
such that sup+(ᾱ) is a cardinal. Then for every f̄ ∈ F̄ such that dom(f) =
{αl | l < ω}, there are infinitely many indices l < ω with f(αl) 6= αl.

Proof. (a) Let u be ind(p) and v be ind(q). We may assume that p(ζ) =
q(ζ) 6= ζ for all ζ ∈ Y . Let Z be the set {min{ζ, p(ζ)} | ζ ∈ Y }. By
Lemma 5.6(a), u�ξ = v�ξ for every ξ ∈ Z. Since Y is unbounded in X and
ind(p) is a limit, also Z is unbounded in X. By Lemma 5.5, sup+(X) =
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sup+(dom(p)) = dom(pu) = iord(u). Hence, as in the proof of Fact 3.7,
u E v. By Definition 5.3(A), u = v. Because p and q have the common
domain X, it follows that p = q, beg(p) = beg(q) and end(p) = end(q).

(b) If ind(f0) is a successor then sup+(dom(f0)) < sup+(ran(f0)), and
the claim follows from Lemma 5.7(d). Suppose ind(f0) is a limit. By Lem-
ma 5.5, sup+(dom(f0)) is a cardinal. Suppose, contrary to the claim, that
j < n is the smallest index for which there is an unbounded J ⊆ I0 such
that for every ζ in the set Y = {f<j(ξ) | ξ ∈ J}, fj�{ζ} is increasing
and fj+1�{fj(ζ)} is not increasing. Then ind(fi) is a limit for every i ≤ j,
since otherwise the existence of the chosen j contradicts Lemma 5.7(d).
Therefore sup+(dom(fj)) is the cardinal sup+(dom(f0)), and necessarily Y
is unbounded in dom(fj). So we may assume that fj+1�{fj(ζ)} is decreasing
for every ζ ∈ Y . Since fj�{ζ} must equal (fj+1�{fj(ζ)})−1 for every ζ ∈ Y
it follows from (a) that fj = f−1

j+1 and beg(fj) = end(fj+1) contrary to the

minimality of f̄ .

(c) In the case n = 1 the claim is proved in (a). Assume n > 1. Let θ
be the cardinal dom(f) = ran(f). For each i < n, dom(fi) = ran(fi) = θ
by Lemma 5.6(e). By Lemma 5.5, ind(fi) is a limit point and fi = pind(fi)

for every i < n. Denote the set {ξ < θ | f0(ξ) > ξ} by I0. Then I0 must
be unbounded in θ by Definition 4.3. For each i < n − 1 define Ii+1 to be
{ξ ∈ fi[Ii] | fi+1(ξ) > ξ}.

By (b), there is an end segment K of I0 such that for every i < n − 1,
f≤i[K] is an end segment of Ii+1. Now lh(f̄) = lh(ḡ) = n and f(ξ) = g(ξ)
together with Lemma 5.7(a) imply that f≤i(ξ) = g≤i(ξ) for all ξ ∈ K and
i < n. Since K is unbounded in θ and for each i < n, fi�f<i[K] is increasing,
also f≤i[K] is unbounded in θ for every i < n. By (a), ind(fi) E ind(gi) and
fi = fi�θ = gi�θ for every i < n.

(d) Let θ be the cardinal sup+(ᾱ) and let n denote the length of f̄ . For
every l < ω and i < n write dli for the function fi�{f<i(αl)}. For every i < n
define Ii to be the set {l < ω | dli is increasing}.

Suppose, contrary to the claim, that there is m < ω such that f(αl) =
αl for all l ∈ ω r m. By (b), I0 is finite. There must be a smallest j ∈
{1, . . . , n − 1} such that Ij is infinite. By Lemma 5.6(b), sup+(dom(f0)) =
sup+(ran(f0)) and so ind(f0) is a limit. Since dom(fi+1) = ran(fi) for all
i < j, we infer, by applying Lemma 5.6(b) repeatedly, that ind(fi) is a limit
point for all i < j. By the choice of j, there is an end segment J of ω such
that minJ ≥ m and dli is decreasing for all l ∈ J and i < j (dli cannot be
identity for unboundedly many l < ω). The set Y = {f<j(αl) | l ∈ J} is
unbounded in dom(fj).

If ind(fj) is a successor, then Y ∩ dom(cind(fj)) is infinite, and by Lem-
ma 5.7(d), f(αl) > θ > αl for infinitely many l ∈ J , a contradiction. Hence
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ind(fj) is a limit. By (b), there is an end segment K of J such that for
every l ∈ J and k ∈ {j, . . . , n − 1}, dlk is increasing. For every l ∈ K, we
have f(αl) = αl, and thus the compositions (dl0)−1 ◦ . . . ◦ (dlj−1)−1 and

dln−1 ◦ . . . ◦ dlj are equal. Since end(fj−1) = beg(fj) and the sequences

〈(dlj−1)−1, . . . , (dl0)−1〉 and 〈dlj, . . . , dln−1〉 are in F̄ (in both, all the func-
tions are increasing), it follows from Lemma 5.7(a), that these sequences
are equal. In particular, dlj = (dlj−1)−1 for every l ∈ K. From (a) it would
follow that fj−1 = fj and beg(fj−1) = end(fj), contrary to the minimality
of f̄ .

6. The back-and-forth properties of the family. To make sure that
certain submodels are already strongly equivalent, we need the following
closed unbounded set.

Definition 6.1. We define D to be the following closed unbounded sub-
set of κ:

{µ ∈ κ r (λ+ 1) | 〈Vµ,∈, π ∩ Vµ,X ∩ Vµ, Y ∩ Vµ〉 ≺ 〈Vκ,∈, π,X, Y 〉},
where π is the function from Definition 3.5 and

X = {〈pu,beg(pu), end(pu)〉 | u ∈ T 1,2
λ },

Y = {〈v, pv,beg(pv), end(pv)〉 | v ∈ T 1,2
λ }.

Note that iµ = µ for all µ ∈ D.

The following notation is used for “all compositions of basic functions
beginning from η and ending with ν”. This is needed to define the “closure”
of relations in each model Mη as described at the beginning of Section 5
(and formally presented in Definition 7.1).

Definition 6.2. For all µ ∈ D ∪ {κ} and η, ν ∈ Fun(µ, 2) define

F̄ [η, ν] = {f̄ ∈ F̄ | ind(fi) ∈ T 1,2
λ [<µ] for all i < lh(f̄),

beg(f) ⊆ η, and end(f) ⊆ ν};
F1[η, ν] = {f | f̄ ∈ F̄ [η, ν] and lh(f̄) = 1}.
In the lemma below we present the promised back-and-forth properties

of the basic functions. Naturally the properties extend to compositions of
basic functions too. The lemma is applied in the proof of Lemma 7.5.

Lemma 6.3. Suppose µ ∈ D ∪ {κ}.
(a) For every u ∈ T 1,2

λ , if u is a limit point or a successor in T 2
λ , then

pu ∈ Vµ implies u ∈ T 1,2
λ [<µ]. For all successors u ∈ T 1, if pu is in Vµ

then there is v ∈ T 1,2
λ [<µ] such that pv = pu, beg(pv) = beg(pu), and

end(pv) = end(pu).
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(b) For every v ∈ T 1,2
λ [<µ] and γ < µ, there is α ∈ (Suc+ ∩ µ)r (γ + 1)

such that for every η′, ν ′ ∈ Fun(iα, 2) with fun1(v) ⊆ η′ and fun2(v) ⊆ ν ′,
we can find uη

′,ν′ ∈ T 2
λ such that fun1(uη

′,ν′) = η′, fun2(uη
′,ν′) = ν ′, and

uη
′,ν′ is a successor of v.

(c) If η, ν ∈ Fun(µ, 2) and q ∈ F1[η, ν] is such that for v = ind(q) both

fun1(v) ⊆ η and fun2(v) ⊆ ν, then there is u ∈ T 1,2
λ [<µ] such that ind(q) E u

(implying q ⊆ pu), pu ∈ F1[η, ν], and θ ⊆ dom(pu) ∩ ran(pu).

(d) Suppose η, ν ∈ Fun(µ, 2), q ∈ F1[η, ν], and θ < µ. There is f̄ ∈
F̄ [η, ν] such that q ⊆ f and θ ⊆ dom(f) ∩ ran(f).

(e) Suppose η, ν ∈ Fun(µ, 2), f̄ ∈ F̄ [η, ν], and θ < µ. There is ḡ ∈ F̄ [η, ν]
with g ⊇ f and θ ⊆ dom(g) ∩ ran(g).

Proof. Properties (a)–(c) are straightforward consequences of the defi-
nition of the functions pu. We sketch the proofs of the remaining properties.

(d) Here we need the small detail that we used id(u) in Definition 4.3.
Denote ind(q) by v. If both fun1(v) ⊆ η and fun2(v) ⊆ ν, then the claim
follows from (c).

Let η′, ν ′ ∈ Fun(µ, 2) be such that fun1(v) ⊆ η′ and fun2(v) ⊆ ν ′. Fix
elements u0, u1, u2 from T 2

λ so that

• u0 is /-smallest with fun1(u0) ⊆ η, fun2(u0) ⊆ η′, and θ ⊆ dom(pu0);

• u1 is /-smallest with fun1(u1) ⊆ η′, fun2(u1) ⊆ ν ′, v/u1 and ran(pu0�θ)
⊆ dom(pu1);

• u2 is /-smallest with fun1(u2) ⊆ ν ′, fun2(u2) ⊆ ν, ran(pu1�ran(pu0�θ))
⊆ dom(pu2).

Define f̄ to be ḡw̄,W , where w̄ = 〈ui | 0 ≤ i ≤ 2〉. Then f̄ is in F̄ [η, ν].

Define ξ1 to be min{ζ + 1 | ζ ∈ dom(q) and η(ζ) 6= fun1(v)(ζ)}, and ξ2

to be min{ζ + 1 | ζ ∈ dom(q) and ν(ζ) 6= fun2(v)(ζ)}. Since beg(q) ⊆ η and
end(q) ⊂ ν, we have ξ1 ≥ sup+(dom(q)) and ξ2 ≥ sup+(ran(q)). So η�ξ1 =
η′�ξ1 and ν ′�ξ2 = ν�ξ2 ensure that f−1

0 �dom(q) is identity and f2�ran(q) is
identity. Therefore q ⊆ f .

(e) Since dom(f)∪ ran(f) is bounded in µ it follows from Lemma 5.6(d)
that dom(fi) ∪ ran(fi) is bounded in µ for all i < lh(f̄). Hence for every
i < lh(f̄), fi ∈ Vµ, and by (a) we may assume ind(fi) ∈ Vµ. The claim
follows from (d) by induction on i < lh(f̄).

7. The strongly equivalent nonisomorphic models. Recall that
κ is a fixed strongly inaccessible cardinal and λ is a fixed regular cardinal
below κ.

For ordinals θ < µ and subsets A of µ, [A]θ is the set of all θ-sequences
of ordinals in A. For every θ < µ < κ define (sup+(a) is defined in Defini-
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tion 5.1)

[µ]θ
B

= {a ∈ [µ]θ | sup+(a) < µ and for all i < j < θ,ai 6= aj}.
Denote the union

⋃
θ<µ [µ]θ

B
by [µ]<µ

B
. We write 0 for the constant function

having domain κ and range {0}.
Definition 7.1. For every µ ∈ D∪{κ} (D is defined in Definition 6.1),

θ < µ, and a ∈ [µ]θ
B

we define a family 〈Rηa | η ∈ Fun(µ, 2)〉 of relations
(having arity θ) on µ as follows: The relations Rηa, η ∈ Fun(µ, 2), are the

smallest subsets of [µ]θ closed under the following operations:

• if η = 0�µ then a ∈ Rηa;
• if there is f̄ ∈ F̄ [0�µ, η] with dom(f) = a, then f(a) ∈ Rηa.

Suppose µ ∈ D ∪ {κ}. Define %µ to be the vocabulary {Ra | a ∈ [µ]<µ
B
}

where each Ra is a relation symbol of arity lh(a). For every η ∈ Fun(µ, 2), let

Mη be the %µ-structure with domain µ and interpretations (Ra)Mη = Rηa
for all a ∈ [µ]<µ

B
. For every χ ∈ D ∩ µ and A ⊆ µ, we write M%χ

η �A
for the model having vocabulary %χ, domain A, and the interpretations

(Ra)M
%χ
η �A = Rηa ∩ [A]lh(a) for each a ∈ [χ]<χ

B
.

Fact 7.2. Assume µ ∈ D ∪ {κ} and η ∈ Fun(µ, 2).

(a) For every a ∈ [µ]<µ
B

, Rηa is a subset of [µ]<µ
B

.
(b) For all χ ∈ D ∩ µ, Mη�χ =M%χ

η �χ.

Proof. (a) Assume that for some b ∈ Rηa, sup+(b) = µ. Then there
should be f̄ ∈ F̄ [0�µ, η] with dom(f) = a and f(a) = b contrary to
Lemma 5.6(e) and the fact sup+(a) < µ.

(b) Abbreviate η�χ by ν and let a be a sequence from [χ]<χ
B

. The inter-

pretation (Ra)Mν = Rνa is a subset of the interpretation (Ra)M
%χ
η �χ since

F̄ [0�χ, ν] ⊆ F̄ [0�µ, η]. Suppose b ∈ (Ra)M
%χ
η �χ and let f̄ ∈ F̄ [0�µ, η] be

such that dom(f) = a and f(a) = b. By Lemma 6.3(a), we may assume

ind(fi) ∈ T 1,2
λ [<χ] for every i < lh(f̄). Consequently, f̄ ∈ F̄ [0�µ′, ν] and

b ∈ Rνa.

Fact 7.3. Suppose µ ∈ D ∪ {κ} and η, ν ∈ Fun(µ, 2).

(a) For all v ∈ T 1,2
λ with fun1(v) ⊆ η and fun2(v) ⊆ ν, the function pv is

a partial isomorphism from Mη into Mν .

(b) For every θ < µ and b 6= c ∈ [µ]θ
B

, if there exists a ∈ [µ]θ
B

satisfying

Mη |= Ra(b) and Mν |= Ra(c),

then there is f̄ ∈ F̄ [η, ν] with f(b) = c.

Proof. Both of these properties are direct consequences of Definition 7.1
and Fact 5.4.
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Lemma 7.4. For all s, t ∈ Fun(κ, 2),

(a) s ∼φ,P t implies Ms
∼=Mt (∼φ,P is given in Definition 2.2), and

(b) if Ms
∼=Mt then s ∼φ,P t.

Proof. (a) Suppose s ∼φ,P t, and let r : κ → 2 be such that 〈Vκ,∈,
P, s, t, r〉 |= φ. For every δ ∈ C ′ = Cs,t,r ∩ D define uδ to be the tuple
〈s�δ, t�δ, r�δ, Cs,t,r ∩ δ〉 (Cs,t,r is given in Definition 3.3). Directly by Defini-
tion 3.3, for all δ < ε ∈ C ′, uδ, uε are in T 1 and uδ / uε. Hence puδ ⊆ puε for
δ < ε ∈ C ′, and moreover, for the function h =

⋃
δ∈C′ puδ both dom(h) = κ

and ran(h) = κ. Consequently, h is an isomorphism from Ms onto Mt.
(b) Suppose s 6= t and for fixed ξ < κ, s(ξ) 6= t(ξ). Let h be an iso-

morphism fromMs ontoMt, and let S′ be the set {δ ∈ κr(ξ+1) | h[δ] = δ
is a cardinal of cofinality ≥ λ}. Since h is an isomorphism and s�δ 6= t�δ for
all δ ∈ S′, it follows from Fact 7.3(b) that for every δ ∈ S ′ there is a sequence
f̄ δ ∈ F̄ [s, t] such that f δ = h�δ. For all δ < ε ∈ S ′, f δ = h�δ ⊆ h�ε = f ε.
Since S′ is stationary in κ, there are n < ω and a stationary subset S of S ′

such that lh(f̄ δ) = n for every δ ∈ S.
Consider some δ ∈ S and i < n. Abbreviate ind(f δi ) by uδi . By Lem-

ma 5.6(e), dom(f δi ) = ran(f δi ) = δ. Moreover, by Lemma 5.8(c), uδi E uεi
and f δi ⊆ f εi for all ε ∈ S r δ. By Fact 4.4(f), uδi is in T 1. So f δi = puδi

and

dom(f δi ) = δ = ord(uδi ) = iδ. Define, for each i < n,

si =
⋃

δ∈S
fun1(uδi ) ri =

⋃

δ∈S
fun3(uδi ),

and let sn be
⋃
δ∈S fun2(uδn−1). Then s = s0 and t = sn.

We claim that s ∼φ,P t. By the transitivity of ∼φ,P it is enough to show
that for every i < n, ri witnesses si ∼φ,P si+1. Contrary to this subclaim
assume that for some i < n,

〈Vκ,∈, P, si, si+1, ri〉 6|= φ.

Then there is δ ∈ S for which

〈Vδ,∈, P ∩ Vδ, si�δ, si+1�δ, ri�δ〉 ≺ 〈Vκ,∈, P, si, si+1, ri〉.
However si�δ = fun1(uδi ), si+1�δ = fun2(uδi ), and ri�δ = fun3(uδi ), and so

〈Vδ,∈, P ∩ Vδ, fun1(uδi ), fun2(uδi ), fun3(uδi )〉 6|= φ,

contrary to the fact that uδi is in T 1.

In the following two lemmas we assume existence of a regular cardinal
µ in D. Such a µ does not necessarily exist if κ is an arbitrary strongly
inaccessible cardinal. However, these lemmas are only preliminaries for the
main lemma, Lemma 7.7, where we assume κ to be a weakly compact car-
dinal. Note that when µ = κ, in Lemma 7.5(a) below, it suffices that κ is a
strongly inaccessible cardinal.
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Lemma 7.5. Suppose µ ∈ D is a regular cardinal or µ = κ, and that η, ν
are functions from µ into 2.

(a) Mη ≡∞µ;λMν .
(b) For every θ < µ, the model Mη satisfies the L∞µ-sentence

∀〈xi | i < θ〉
( ∨

a∈[µ]θB

Ra(〈xi | i < θ〉)
)
.

(c) For all a ∈ [µ]<µ
B

and ξ < µ, the following L∞µ-sentence holds in
Mη:

∀x̄ (Ra(x̄)→ ∃y(R〈ξ〉aa(〈y〉 a x̄))).

(d) For all a ∈ [µ]<µ
B

, Mη satisfies the L∞µ-sentence

∀x̄ ∀y
(
Ra(x̄)→

∨

ξ<µ

R〈ξ〉aa(〈y〉 a x̄)
)
.

Proof. (a) We show that there exists a winning strategy for player II in
the game EFµ;λ(Mη,Mν) (Definition 2.1). Suppose i < λ and for each j ≤ i,
player I has chosen Xj ∈ {Mη,Mν} and Aj ⊆ µ (where µ is the domain of
bothMη andMν). Suppose that for every j < i, player II has replied with
a partial isomorphism puj such that uj ∈ T 2

λ , fun1(uj) ⊆ η, fun2(uj) ⊆ ν,⋃
k≤j Ak ⊆ dom(puj ) ∩ ran(puj ), and uk / uj for all k < j. Since i < λ and

uj ∈ T 2
λ for each j < i, the tuple v =

⋃
j<i u

j is in T 2
λ by Fact 3.7(a).

Let θ be the smallest ordinal which is strictly greater than any ordinal in⋃
j≤iAj (θ < µ since µ is regular, i < µ, and card(Aj) < µ for every j ≤ i).

By Lemma 6.3(d), there is ui in T 1,2
λ [<µ] such that v / ui, fun1(ui) ⊆ η,

fun2(ui) ⊆ ν, and θ ⊆ dom(pui) ∩ ran(pui). Since
⋃
j<i puj = pv ⊆ pui , the

partial isomorphism pui is a valid reply for player II in round i.
(b) By Definition 7.1, for every b ∈ [µ]θ

B
, Rb(b) is satisfied inM0�µ. The

claim follows from (a).
(c) By (a) we may assume η = 0�µ. For x̄ = a the claim holds directly

by Definition 7.1. For any x̄ = b ∈ R0
a r {a} there is some f̄ ∈ F̄ [0�µ,0�µ]

such that dom(f) = a and f(a) = b. Since µ ∈ D there is, by Lemma 6.3(e),
ḡ ∈ F̄ [0�µ,0�µ] with g ⊇ f and dom(g) = 〈ξ〉 a a.

(d) Analogously to the proof of (c), if x̄ = b and y = ζ then there is
some f̄ ∈ F̄ [0�µ,0�µ] such that f(a) = b. Moreover by Lemma 6.3(e), there
is ḡ ∈ F̄ [0�µ,0�µ] with g ⊇ f and ran(g) = 〈ζ〉 a b.

Lemma 7.6. Suppose µ is a regular cardinal in D and A is a subset of
κ having cardinality µ.

(a) Suppose η ∈ Fun(µ, 2), A ⊆ µ, and M%µ
η �A ≡∞µMη. Then A = µ.

(b) If M%µ
0 �A ≡∞µM0�µ, then there is η ∈ Fun(µ, 2) for which M%µ

0 �A∼=Mη.
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Proof. (a) Suppose, contrary to the claim, that ξ < µ is not in A. Let b
in [µ]ω

B
be such that b ⊆ A, b0 > ξ and for every i < ω, bi < card(bi+1). This

is possible since µ = cf(µ), µ ∈ D implies µ is an uncountable limit cardinal,
and card(A) = µ implies that A is unbounded in µ. By Lemma 7.5(b), there
is a ∈ [µ]ω

B
such thatMη |= Ra(b). Since b ⊆ A alsoM%µ

η �A satisfies Ra(b).
By Lemma 7.5(d), there is ξ′ < µ such that Mη |= R〈ξ′〉aa(〈ξ〉 a b). By

Lemma 7.5(c), there should be ζ ∈ A with M%µ
η �A |= R〈ξ′〉aa(〈ζ〉 a b).

However, then by Fact 7.3(b), there should be f̄ ∈ F̄ satisfying dom(f) =
{ξ} ∪ b, f(ξ) = ζ 6= ξ, and f(b) = b contrary to Lemma 5.8(d).

(b) Our proof has the following structure:

• When A ⊆ µ the claim follows from (a) and Fact 7.2(b).

• The case that A is not a subset of ζ + µ for any ζ ∈ A is shown to be
impossible.

• Lastly we prove that if A ⊆ ζ + µ for some ζ ∈ A, then there are
η ∈ Fun(µ, 2) and ḡ ∈ F̄ such that dom(g) = µ, ran(g) = A, beg(g) = η,
and end(g) ⊆ 0. So g is an isomorphism between Mη and M%µ

0 �A.

Suppose there is an ω-sequence b such that b0 > µ and for all l < ω,
bl ∈ A and bl+1 ≥ bl + µ. By the equivalence M%µ

0 �A ≡∞µ M0�µ and
Lemma 7.5(b), there is a ∈ [µ]ω

B
such that M%µ

0 �A |= Ra(b). Hence there
should be f̄ ∈ F̄ with dom(f) = a and f(a) = b contrary to Lemma 5.7(f).

Suppose ζ ∈ A and A ⊆ ζ + µ. As above, there are f̄ ∈ F̄ and γ < µ
with dom(f) = {γ}, f(γ) = ζ, beg(f) = 0�(γ + 1), and end(f) = 0�(ζ + 1).
Since γ < µ ≤ ζ = f(γ), there is the smallest index k < lh(f̄) such that
f<k(γ) < µ and f≤k(γ) ≥ µ. By Lemma 5.6(c), fj is increasing for all j ∈
{k, . . . , lh(f̄)− 1}. Let ū be the sequence 〈ind(fj) | j ∈ {k, . . . , lh(f̄)− 1}〉.
By Lemma 5.7(e), the sequence ḡū,µ is a well-defined member of F̄ , and
moreover, end(gū,µ) ⊆ 0. Abbreviate this sequence by g and the ordinal
f<k(γ) by ξ. We define the required η to be beg(g).

Finally we show that for this g we have A = ran(g). Suppose ζ ′ is in A
but not in ran(g). By the equivalence and Lemma 7.5(b), there are ε, ε′ < µ
such that R〈ε〉(ζ) and R〈ε′,ε〉(ζ ′, ζ) hold in M%µ

0 �A. By Lemma 7.5(c), there
is ξ′ < µ for which R〈ε′,ε〉(ξ′, ξ) holds inMη. However, by Fact 7.3(b), there

should be h̄ ∈ F̄ with h(ξ) = ζ and h(ξ′) = ζ ′, contrary to Lemma 5.7(g).
On the other hand, if A  ran(g), then η and the set B = g−1[A]  µ
contradict (a), since by Lemma 7.5(a),Mη ≡∞µM0�µ, by our assumption,
M0�µ ≡∞µM%µ

0 �A, and g−1�A :M%µ
0 �A ∼=M

%µ
η �B.

Lemma 7.7. Suppose κ is a weakly compact cardinal and M is a model
of cardinality κ with M ≡∞κ M0. Then there is s ∈ Fun(κ, 2) for which
M∼=Ms.
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Proof. Without loss of generality we may assume that the domain of
M is κ. By the ≡∞κ-equivalence of the models M and M0, let, for every
regular cardinal µ < κ, Aµ be a subset of κ such that M%µ�µ ∼= M%µ

0 �Aµ.
Let Y be the set given in Definition 6.1. Note that for all µ ∈ D ∪ {κ}
and η ∈ Fun(µ, 2), the model Mη is definable from η and Y ∩ Vµ. Let τ
be a winning strategy for player II in the game EFκ;ω(M,M0). Assume
now, contrary to the claim, that M 6∼= Ms for all s ∈ Fun(κ, 2). Because
κ is Π1

1-indescribable, there is a regular cardinal µ < κ such that 〈Vµ,∈,
M%µ�µ, τ ∩ Vµ, Y ∩ Vµ〉 satisfies the following:

for all η ∈ Fun(µ, 2), M%µ�µ 6∼=Mη.

Then M0�µ = M%µ
0 �µ ≡∞µ M%µ�µ, and by the isomorphism M%µ�µ ∼=

M%µ
0 �Aµ, we haveM0�µ ≡∞µM%µ

0 �Aµ and for all η ∈ Fun(µ, 2),M%µ
0 �Aµ 6∼=

Mη. This contradicts Lemma 7.6(b).

Lemma 7.8. Suppose κ is a weakly compact cardinal , λ < κ is a regular
cardinal , and there is a Σ1

1-equivalence relation on κ2 having µ different
equivalence classes. Then there exists a model M such that the vocabulary
of M consists of one relation symbol of finite arity , card(M) = κ, and
Noλ(M) = µ.

Proof. By the preceding lemmas the model M0 defined as in Defini-
tion 7.1 satisfies the claim, except that the vocabulary ofM is overly large.
However, by [She85, Claim 1.3(1)], the inaccessibility of κ ensures that
there is a model N of cardinality κ with λ relations of finite arity satis-
fying No(N) = No(M0) (the proof is a simple coding). Furthermore, by
[She85, Claim 1.4(2)], λ relations can be coded by one relation so that the
other properties are preserved. Actually, the claims cited concern the case
λ = ℵ0, but there is also no problem to preserve Noλ(M0) in the cases
ℵ0 < λ < κ.
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