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On typical parametrizations of finite-dimensional compacta
on the Cantor set

by

Paweł Milewski (Warszawa)

Abstract. We prove that if X is a perfect finite-dimensional compactum, then for
almost every continuous surjection of the Cantor set onto X, the set of points of maximal
order is uncountable. Moreover, if X is a perfect compactum of positive finite dimension
then for a typical parametrization of X on the Cantor set, the set of points of maximal
order is homeomorphic to the product of the rationals and the Cantor set.

1. Introduction. All topological spaces considered in this paper are
separable metrizable. By a compactum we mean a compact metrizable space.
Each compactum X has a parametrization on the Cantor set 2∞, i.e., a
continuous surjection f : 2∞ → X. The order of x ∈ X is the cardinality
|f−1(x)| of the fiber, and the order of f is the supremum of the orders of
points in X.

The Cantor step function from the ternary Cantor set onto the unit
interval I is of order 2 and the points of order 2 form a countable set in I.
It follows from the results of this paper that, from the point of view of the
Baire category in the function space, this is not a typical situation.

This is a particular instance of the following phenomenon. A compactum
X is rational (respectively, of rational dimension ≤ n) if there is a countable
set E ⊂ X such that X \E is zero-dimensional (resp. dim(X \E) ≤ n− 1)
(cf. [Ku, 51, I], [Nö]). The interval I is rational and the n-cube In is of
rational dimension ≤ n. A theorem of Lelek and Mohler [LM] asserts that
in the space of parametrizations of a perfect rational compactum X on 2∞,
the parametrizations of order 2 with countable set of points having the max-
imal order form a dense set. Similarly, for any compactum X with rational
dimension ≤ n, the parametrizations of order ≤ n + 1 with at most count-
ably many points of order n+ 1 are dense in the space of parametrizations
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of X on 2∞ (cf. [PPR, Comment 9.6]). Nevertheless, such parametrizations
always form a meager set in the space of all parametrizations.

Before stating our main result, let us recall Kuratowski’s theorem
[Ku, 45, II] that for any k-dimensional compactum X without isolated
points, almost every parametrization of X on 2∞ has order k + 1. The
terminology is explained in the next section.

1.1. Theorem. Let X be a k-dimensional compactum without isolated
points, k ≥ 1. Then for almost every continuous surjection f : 2∞ → X the
set of points in X of maximal order is uncountable.

This result can be refined to the following effect.

1.2. Corollary. Let X be a k-dimensional compactum, k ≥ 1. Then
for a typical parametrization of X on the Cantor set , the set of points of
order k+ 1 is homeomorphic to the product of the rationals and the Cantor
set.

There is a connection between our results and an interesting problem
about the descriptive class of the family of rational compacta in the hyper-
space of the Hilbert cube. We comment on this in Section 5.

One should also mention here a very interesting work by Bruckner and
Garg [BG] characterizing typical continuous maps from the unit interval to
the real line. The structure of such typical maps is quite different from that
we encountered in our case.

The main idea of the proof of Theorem 1.1 is related to the reason-
ing in [Po], where parametrizations of infinite-dimensional compacta on the
Cantor set were considered.

2. Terminology and auxiliary results. We follow [Ke] and [Ku].
We denote by 2n the set of zero-one sequences of length n, i.e., 2n =
{(i0, . . . , in−1) : ik ∈ {0, 1}, k = 0, . . . , n − 1}. The set 20 reduces to the
empty sequence ∅. The concatenation of s = (i0, . . . , in−1) and j ∈ {0, 1}
is the sequence ŝ j = (i0, . . . , in−1, j) ∈ 2n+1. The Cantor set 2∞ is the set
of all infinite zero-one sequences equipped with the pointwise convergence
topology.

Given families E ,F of subsets of a space X we say that F shrinks E if
each element of E contains exactly one element of F .

A continuous surjection f : 2∞ → X is called a parametrization of X.
The space S(2∞,X) of all parametrizations of X is equipped with the uni-
form convergence topology, hence S(2∞,X) is completely metrizable and
separable. We denote by B(f, ε) the ε-ball centered at f ∈ S(2∞,X) in the
supremum metric. For every f ∈ S(2∞,X) we denote by X(f, i) the set of
points y ∈ X with |f−1(y)| = i and byD(f, i) the inverse image f−1[X(f, i)].
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Given f ∈ S(2∞,X) the elements of X(f, i), i ≤ ∞, are called points of or-
der i, and the order of f is the supremum sup{i ≤ ∞ : X(f, i) 6= ∅}.

Saying that a typical parametrization has a certain property, or that the
property holds for almost every parametrization, means that in the space of
all parametrizations the set of all maps with the given property is residual.

The Kuratowski theorem [Ku, 45, II] asserts that if X is a k-dimensional
compactum without isolated points, then the set of parametrizations of order
k+ 1 is residual in S(2∞,X). In fact, Kuratowski’s proof shows a bit more:
if K is a k-dimensional perfect closed subset of a compactum X, then for a
typical parametrization f of X, we have K ⊂ ⋃k+1

i=1 X(f, i).
We shall need the following theorem of Alexandroff and Urysohn [AU]

(cf. [vE]).

2.1. Theorem (Alexandroff–Urysohn). Every zero-dimensional σ-com-
pact nowhere compact and nowhere countable space is homeomorphic to the
product of the rationals and the Cantor set.

We shall also use a topological characterization of the product of the
rationals and the irrationals given by van Mill [vM].

2.2. Theorem (van Mill). The product of the rationals and the irra-
tionals is the unique, up to homeomorphism, zero-dimensional nowhere com-
pletely metrizable and nowhere σ-compact space which is the countable union
of completely metrizable closed subsets.

An important role in the proof of Theorem 1.1 is played by the following
fact (cf. [En, Theorem 1.6.9]).

2.3. Lemma (Hemmingsen). For every compact subset S of a space X,
with dimS ≥ k, there are open sets G1, . . . , Gk+1 in X such that S ⊂
G1 ∪ . . . ∪ Gk+1 and S ∩ L1 ∩ . . . ∩ Lk+1 6= ∅ whenever L1, . . . , Lk+1 are
closed , Li ⊂ Gi and S ⊂ L1 ∪ . . . ∪ Lk+1.

A subset A of a space X has the Baire property if there is a set M ⊂ X of
first category such that A = (U\M)∪(M\U) for some open U ⊂ X. A subset
A of a completely metrizable space X is analytic if it is a continuous image
of the irrationals; the complements of analytic sets are coanalytic. Every
analytic set has the Baire property (cf. [Ke, Theorem 21.6]). Thus in order
to prove that an analytic set is residual one has to show that it intersects
each nonmeager Gδ set.

3. Proof of Theorem 1.1. Let X be as in Theorem 1.1. The assertion
follows instantly from the following

3.1. Lemma. Let H ⊂ X be an open k-dimensional set , k ≥ 1. Then
the set
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A(H) = {f ∈ S(2∞,X) : H ∩X(f, k + 1) is uncountable}
is residual in S(2∞,X).

The proof of Lemma 3.1 will be divided into two steps.

Step I. Let K be the set of y ∈ X without any neighborhood of dimen-
sion less than k. Let f : 2∞ → X be a parametrization and fix ε > 0.

Assume that we are given (k + 1)-element families Es, s ∈ 2n, such that⋃{Es : s ∈ 2n} is a collection of pairwise disjoint clopen subsets of 2∞, and
there are also points ys with

ys ∈ K ∩H ∩
⋂
{f [E] : E ∈ Es} and f−1(ys) ⊂

⋃
Es, s ∈ 2n.

We shall construct (k+1)-element families Et, t ∈ 2n+1, and a nonempty
open set U ⊂ B(f, ε) such that:

(A) Eŝ j shrinks Es for s ∈ 2n, j = 0, 1,
(B) if u ∈ U then u[2∞ \⋃ Es] ∩ u[

⋃ Eŝ j ] = ∅ and diam(u[Eŝ j]) < ε for
s ∈ 2n, j = 0, 1,

(C) for every u ∈ U and t ∈ 2n+1 there is zt ∈ K ∩H ∩
⋂{u[F ] : F ∈ Et}

with u−1(zt) ⊂
⋃ Et,

(D)
⋃{Et : t ∈ 2n+1} is a family of pairwise disjoint clopen subsets of

2∞ with diameter less than ε.

To carry out the construction, we enumerate the elements of Es as
{C1

s , . . . , C
k+1
s }, s ∈ 2n. For each Cis choose a clopen set Ais such that

f−1(ys) ∩ Cis ⊂ Ais ⊂ Cis, diam(f [Ais]) < ε/2 and f [Ais] ∩ f [2∞ \⋃ Es] = ∅,
and consider As = {A1

s, . . . , A
k+1
s }. Then

f [2∞ \⋃Es] ∩ f [
⋃As] = ∅, diam(f [

⋃As]) < ε.

Since X \ f [2∞ \⋃As] is a neighborhood of ys ∈ K, and by definition of K,
there are pairwise disjoint k-dimensional open sets Wt ⊂ H, t ∈ 2n+1, such
that

f [2∞ \⋃As] ∩ (Wŝ 0 ∪Wŝ1) = ∅.
Shrinking, if necessary, the sets Wŝ 0,Wŝ1 we can also demand that

(1) f [
⋃As] \ (Wŝ 0 ∪Wŝ1) 6= ∅.

Divide every Ais into clopen pairwise disjoint nonempty sets C iŝ 0, Ciŝ1, Di
s

with diam(Ciŝ j) ≤ ε, j = 0, 1, and let

Et = {C1
t , . . . , C

k+1
t }, t ∈ 2n+1, Ds = {D1

s , . . . ,D
k+1
s }, s ∈ 2n.

For each t ∈ 2n+1, fix a compactum St ⊂ Wt of dimension k and let
G1
t , . . . , G

k+1
t ⊂ Wt be open sets described for St in Hemmingsen’s Lem-

ma 2.3. Let Ki
t ⊂ Git be nonempty compacta such that, for some open sets

Vt ⊂ X, we have
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St ⊂ Vt ⊂ K1
t ∪ . . . ∪Kk+1

t ⊂Wt.

Note that, by (1), f [
⋃As] \ (Vŝ 0 ∪ Vŝ1) 6= ∅ for s ∈ 2n. Finally, consider a

parametrization g : 2∞ → X which agrees with f on 2∞ \⋃{⋃As : s ∈ 2n},
and satisfies g[

⋃Ds] = f [
⋃As] \ (Vŝ 0 ∪ Vŝ1), g[Cit ] = Ki

t for t ∈ 2n+1,
s ∈ 2n.

Then g belongs to the open ε-ball centered at f . Since f and g coincide
on 2∞ \⋃{⋃As : s ∈ 2n} and f [

⋃As] = g[
⋃As] for all s ∈ 2n, we obtain,

for s ∈ 2n, t ∈ 2n+1,

(2) g[2∞ \⋃Es] ∩ g[
⋃Eŝ j ] = ∅, j = 0, 1,

(3) g[2∞ \⋃Et] ∩ St = ∅,
(4) g[Cit ] ⊂ Git, i = 1, . . . , k + 1,

(5) diam(g[
⋃Et]) < ε.

Let U be a neighborhood of g contained in B(f, ε), and small enough to
ensure that conditions (2)–(5) are satisfied for all u ∈ U . One readily checks
that (A), (B) and (D) are then fulfilled. Let us verify (C). Setting Lit = u[Cit ],
we have Lit ⊂ Git and since u[2∞] = X and u[2∞ \ ⋃ Et] ∩ St = ∅, we
conclude that St ⊂ L1

t ∪ . . . ∪ Lk+1
t . Therefore for every t ∈ 2n+1 there is

zt ∈ St ∩ L1
t ∩ . . . ∩ Lk+1

t ⊂ K ∩ H ∩ ⋂{u[F ] : F ∈ Et}, and (3) yields
u−1(zt) ⊂

⋃ Et. This completes the construction in Step I.

Step II. The set

A(H) = {f ∈ S(2∞,X) : for uncountably many y ∈ H, |f−1(y)| = k + 1}
is analytic. Thus, as was explained in Section 2, to prove that it is residual
it is sufficient to show that A(H) intersects every Gδ set dense in some
open ball in S(2∞,X). Let G =

⋂∞
n=0Gn be a Gδ set dense in B(g0, ε0) ⊂

S(2∞,X), where G0 ⊃ G1 ⊃ . . . are open. The restriction g0|g−1
0 [K ∩ H]

is closed and dim(K ∩H) = k, hence there is a point y∅ ∈ K ∩H of order
at least k + 1 (cf. [En, Theorem 1.12.2]). Therefore we can choose a family
E∅ = {C1

∅ , . . . , C
k+1
∅ } of pairwise disjoint clopen subsets of 2∞ such that⋃ E∅ = 2∞ and y∅ ∈ g0[C1

∅ ] ∩ . . . ∩ g0[Ck+1
∅ ]. Starting from 〈g0, E∅, y∅, ε0〉

and applying inductively the result of Step I with εn+1 decreasing to 0 and
smaller than dist

(
gn+1[2∞ \⋃{⋃ Es : s ∈ 2n}], gn+1[

⋃{⋃ Et : t ∈ 2n+1}]
)
,

we eventually obtain parametrizations g1, g2, . . . and collections Es = {Cis :
i = 1, . . . , k + 1} of clopen subsets of 2∞.

Set g = limn gn and consider the k + 1 pairwise disjoint Cantor sets
Ci =

⋂∞
n=0

⋃
s∈2n C

i
s, i = 1, . . . , k + 1. One readily checks that g[C1] =

. . . = g[Ck+1] ⊂ H, g−1[g[C1]] = C1 ∪ . . . ∪ Ck+1 and g|Ci is an injection
for i = 1, . . . , k + 1. This completes the proof of Lemma 3.1, and hence the
proof of Theorem 1.1.
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4. Typical parametrizations of finite-dimensional compacta. In
this section we give a more exact description of the set of points of order k+1
of a typical parametrization of a k-dimensional compactum X. Assuming
additionally that every nonempty open set in X is k-dimensional, we shall
investigate also the sets of points with fixed order strictly between 1 and
k + 1.

The Kuratowski theorem implies easily that for a typical parametrization
of any compactum without isolated points on 2∞, the preimage of the set
of points of order 1 is residual in 2∞. We shall show that an analogous fact
is also true if “residual” is replaced by “of full measure” with respect to any
fixed Borel measure on 2∞. We begin with the refinement of Theorem 1.1.

Proof of Corollary 1.2. Let K be the set described at the beginning of
Step I, and let P be the perfect kernel of X, i.e., the set of y ∈ X without
any countable neighborhood. Take open subsets H1,H2, . . . of X such that
K ∩H1,K ∩H2, . . . form a basis of K. Let G be the set of parametrizations
f ∈ S(2∞,X) satisfying X(f, k+1)∩P ⊂ K, P ⊂ X(f, 1)∪ . . .∪X(f, k+1),
and |f−1(y)| = 1 for all y ∈ X \ P not isolated in X. Using Kuratowski’s
method [Ku, 45, II] one can show that G is residual. Notice that for every
f ∈ S(2∞,X) and any isolated point y ∈ X we have |f−1(y)| = 2ℵ0 , so that
X(f, k + 1) ⊂ K for all f ∈ G.

By Lemma 3.1, the setG∩⋂∞i=1A(Hi) is residual. Let f ∈G∩⋂∞i=1 A(Hi).
Since f ∈ G, the set X(f, k + 1) = P ∩ {y ∈ X : |f−1(y)| ≥ k + 1} is σ-
compact. (P is closed and we have |f−1(y)| ≥ k + 1 iff there are pairwise
disjoint Vn1 , . . . , Vnk+1 with y ∈ f [Vn1 ]∩ . . .∩ f [Vnk+1 ], where V1, V2, . . . is a
basis of 2∞.) Since the restriction f |D(f, k+1) : D(f, k+1)→ X(f, k+1) is
closed and all points of X(f, k+ 1) are of the same finite order with respect
to f |D(f, k+1), Nagami’s theorem [Na, Theorem 1] ensures that X(f, k+1)
is zero-dimensional (cf. also [Hu] and for more general case [Su]). Therefore,
for f ∈ G the set X(f, k+ 1) is nowhere compact because it is included and
dense in K. Finally, since f ∈ ⋂∞i=1 A(Hi), the set X(f, k + 1) is nowhere
countable. Thus, by the Alexandroff–Urysohn theorem, it is homeomorphic
to Q× 2∞.

4.1. Proposition. If all nonempty open subsets of a compactum X are
k-dimensional , k ≥ 1, then for almost every parametrization f ∈ S(2∞,X)
the sets X(f, 2), . . . ,X(f, k) are homeomorphic to Q×N and dense in X.

Proof. As was already noticed in the proof of Corollary 1.2, each of the
sets X(f, 2), . . . ,X(f, k) is the intersection of a Gδ and an Fσ set, hence it is
the countable union of completely metrizable spaces. By Nagami’s theorem
[Na, Theorem 1], the sets are zero-dimensional. Let G ⊂ S(2∞,X) be the set
of parametrizations of order k+ 1 and let f ∈ G. The set X(f, 1) is a dense
Gδ in X, hence each X(f, i), 1 < i ≤ k, is nowhere completely metrizable.



Parametrizations of compacta 259

SinceX is the union of zero-dimensional setsX(f, 1), . . . ,X(f, k+1), and, by
assumption, every nonempty open subset of X is k-dimensional, all the sets
X(f, i), 1 ≤ i ≤ k, are nowhere σ-compact (since X(f, k+ 1) is σ-compact).
By van Mill’s Theorem 2.2 we get the desired conclusion.

As was recalled at the beginning of this section, for a typical parametriza-
tion f of a compactum X without isolated points, the sets D(f, 1) and
X(f, 1) are dense Gδ in 2∞ and X, respectively. For measure instead of
Baire category, the situation is similar.

4.2. Proposition. Let X be a compactum without isolated points and
let µ, ν be probability Borel measures on 2∞ and X, respectively. Then for
a typical parametrization f ∈ S(2∞,X),

(i) µ(D(f, 1)) = 1,
(ii) ν(X(f, 1)) = 1.

Proof. First, we prove that

(?) if T ⊂ 2∞ is nowhere dense then T ⊂ D(f, 1) for a typical f ∈
S(2∞,X).

We can assume that T is closed. Then the sets Un = {f ∈ S(2∞,X) :
∀x ∈ T , diam(f−1[f(x)]) < 1/n} are open for n ≥ 1.

These sets are also dense in the function space. Indeed, fix ε > 0, n ≥ 1
and let f ∈ S(2∞,X). We have to find g ∈ B(f, ε) ∩ Un. To this end take a
partition of 2∞ into clopen sets C1, . . . , Cm with diameter less than 1/n and
such that diam(f [Ci]) < ε/3, i = 1, . . . ,m. Divide each Ci into nonempty
clopen sets Di, Ei in such a way that T ⊂ D1∪ . . .∪Dm. Consider nonempty
pairwise disjoint open sets W1, . . . ,Wm such that each Wi is contained in
the ε/3-neighborhood of f [Ci]. It is sufficient to define g by letting g[Di]
= {di}, where di ∈ Wi are arbitrary, and g[Ei] = (f [Ci] ∪W i) \

⋃i−1
j=1 Wi.

Finally, A = {f ∈ S(2∞,X) : T ⊂ D(f, 1)} =
⋂∞
n=1 Un is a dense Gδ set in

S(2∞,X).
We are ready to prove (i). Suppose that there is δ > 0 such that the set

B = {f ∈ S(2∞,X) : µ(D(f, 1)) ≤ 1 − δ} is not of first category. Take a
nowhere dense T ⊂ 2∞ with µ(T ) > 1 − δ. By (?), the set A is residual,
hence there exists f ∈ A ∩B, which is, however, impossible.

To show (ii), it is sufficient to apply the Kuratowski theorem and the
fact that for every ε > 0 there exists a Cantor set C ⊂ X with ν(C) > 1−ε.

5. Comments. It is an open question whether the family R of rational
compacta in the Hilbert cube I∞ is coanalytic. Let us show a link between
this problem and the subject of our paper.

As was already mentioned in Section 1, the set of perfect rational com-
pacta consists exactly of those compacta that admit a parametrization of



260 P. Milewski

order ≤ 2 with countably many points of maximal order. Let x0 ∈ 2∞ be an
arbitrary point. Using the method of Lelek and Mohler one can show that a
compactum X is rational iff there is a nonempty (equivalently, dense) set of
parametrizations f of X × 2∞ such that |f−1(z)| ≤ 2 for all z ∈ X × {x0}
and |f−1(z)| = 2 for only countably many z ∈ X × {x0}. Suppose that
there exists a completely metrizable and separable topology on the set of all
continuous maps from the Cantor set into the product of the Hilbert cube
and the Cantor set, C(2∞, I∞× 2∞), such that we can replace “nonempty”
by “residual” in the previous statement, and, moreover, suppose that, with
respect to this topology, the mapping φ : C(2∞, I∞ × 2∞)→ K(I∞ × 2∞),
given by φ(f) = f [2∞], is open.

Then we could prove the coanalyticity of R in the following way. Let R
be the set of maps f ∈ C(2∞, I∞× 2∞) such that f [2∞]∩ (I∞×{x0}) 6= ∅,
|f−1(z)| ≤ 2 for every z ∈ I∞×{x0} and |f−1(z)| = 1 for all but countably
many z ∈ I∞ × {x0}. Checking the coanalyticity of R is standard. By a
corollary to the theorem of Lelek and Mohler, R = {K ∈ K(I∞) : K × 2∞

∈ φ[R]}. Applying a theorem of Cenzer and Mauldin [CM] we infer that φ[R]
is coanalytic and hence so is R (as a continuous preimage of a coanalytic
set).
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[AU] P. Alexandroff und P. Urysohn, Über nulldimensionale Punktmengen, Math. Ann.
98 (1928) 89–106.

[BG] A. M. Bruckner and K. Garg, The level set structure of a residual set of continuous
functions, Trans. Amer. Math. Soc. 232 (1977), 307–321.

[CM] D. Cenzer and R. D. Mauldin, Inductive definability: measure and category , Adv.
Math. 38 (1980), 55–90.

[vE] A. J. M. van Engelen, Homogeneous Zero-Dimensional Absolute Borel Sets, CWI
Tract 27, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Infor-
matica, Amsterdam, 1986.

[En] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann, Lemgo,
1995.
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