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On dimensionally restricted maps

by

H. Murat Tuncali and Vesko Valov (North Bay)

Abstract. Let f : X → Y be a closed n-dimensional surjective map of metrizable
spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g : X → In
with dim(f 4 g) = 0 is uniformly dense in C(X, In); (2) for every 0 ≤ k ≤ n − 1 there
exists an Fσ-subset Ak of X such that dimAk ≤ k and the restriction f |(X \ Ak) is
(n − k − 1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk,
respectively, obtained for finite-dimensional spaces. A generalization of a result due to
Dranishnikov and Uspenskij about extensional dimension is also established.

1. Introduction. All spaces are assumed to be completely regular and
all maps continuous. This paper is concerned with the following two results.
The first one was proved by Pasynkov [25] (see [24] for noncompact versions)
and the second one by Toruńczyk [31]:

Theorem 1.1 (Pasynkov). Let f : X → Y be an n-dimensional map
with X and Y being finite-dimensional compact metric spaces. Then there
exists g : X → In such that f4g : X → Y ×In is 0-dimensional. Moreover ,
the set of all such g is dense and Gδ in C(X, In) with respect to the uniform
convergence topology.

Theorem 1.2 (Toruńczyk). Let f : X → Y be a σ-closed map of sep-
arable metric spaces with dim f = n and dimY < ∞. Then for each
0 ≤ k ≤ n− 1 there exists an Fσ-subset Ak of X such that dimAk ≤ k and
the restriction f |(X \ Ak) is (n− k − 1)-dimensional.

The above two theorems are equivalent in the realm of compact spaces
(see [19] and [29]). However, the problem whether they hold without any
dimensional restrictions on Y is still open. Sternfeld and Levin made a sig-
nificant progress in solving this problem. In 1995, Sternfeld [29] proved that
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if f : X → Y is an n-dimensional map between compact metric spaces, then
dim(f 4 g) ≤ 1 for almost all g ∈ C(X, In), where f 4 g denotes the di-
agonal product of the maps f and g; equivalently, there exists a σ-compact
(n− 1)-dimensional subset A of X such that dim(f |(X \A)) ≤ 1. Levin [19]
improved Sternfeld’s result showing that dim(f 4 g) ≤ 0 for almost all
maps g ∈ C(X, In+1), which is equivalent to the existence of a σ-compact
n-dimensional set A ⊂ X with dim(f |(X \A)) ≤ 0.

In the present paper we generalize Theorems 1.1 and 1.2 to arbitrary
metrizable spaces by replacing the finite dimensionality of Y with the less re-
strictive condition of being a C-space. Recall that a space X is a C-space [1]
if for any sequence {ωn : n ∈ N} of open covers of X there exists a se-
quence {γn : n ∈ N} of open disjoint families in X such that each γn refines
ωn and

⋃{γn : n ∈ N} covers X. The C-space property was introduced
by Haver [15] for compact metric spaces, and Addis and Gresham [1] ex-
tended Haver’s definition to more general spaces. All countable-dimensional
metrizable spaces (spaces which are countable unions of finite-dimensional
subsets), in particular all finite-dimensional ones, form a proper subclass of
the class of C-spaces because there exists a metric C-compactum which is
not countable-dimensional [27].

Here is a generalized version of Theorem 1.1.

Theorem 1.3. Let f : X → Y be a closed map of metric spaces with
dim f = n and Y a C-space. Then all maps g : X → In such that dim(f4g)
= 0 form a dense subset of C(X, In) with respect to the uniform conver-
gence topology. Moreover , if f is σ-perfect , then this set is dense and Gδ

in C(X, In) with respect to the source limitation topology.

Theorem 1.3 answers affirmatively Pasynkov’s question in [25] whether
Theorem 1.1 is true for countable-dimensional spaces.

For any map f : X → Y , dim f = sup{dim f−1(y) : y ∈ Y } is the
dimension of f . We say that a surjective map f : X → Y is σ-closed (resp.,
σ-perfect) if X is the union of countably many closed sets Xi such that each
restriction f |Xi : Xi → f(Xi) is a closed (resp., perfect) map and all f(Xi)
are closed in Y .

Using Theorem 1.3 we prove the following generalization of Theorem 1.2:

Theorem 1.4. Let f : X → Y be a σ-closed map of metric spaces with
dim f = n and Y a C-space. Then for each 0 ≤ k ≤ n − 1 there exists an
Fσ-subset Ak of X such that dimAk ≤ k and f |(X \ Ak) is (n − k − 1)-
dimensional.

A few words about this note. In Section 2 we give a characterization
of finite-dimensional proper maps (see Theorem 2.2), which is the main
tool in the proof of Theorem 1.3. The proof of Theorem 2.2 is based on
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a selection theorem established by V. Gutev and the second author
[14, Theorem 1.1]. Sections 3 and 4 are devoted to the proof of Theorems 1.3
and 1.4, respectively. In the last Section 5 we provide applications of the
main results. One of them is a generalization of a result by Dranishnikov
and Uspenskij [10] concerning maps which lower extensional dimension, an-
other one is a parametric version of the Bogaty̆ı representation theorem for
n-dimensional metrizable spaces [2]. Some results in the spirit of Pasynkov’s
recent paper [24] are also obtained.

We wish to thank the referee who recommended some improvements of
the paper.

2. Finite-dimensional maps. In this section we provide a charac-
terization of n-dimensional perfect maps onto paracompact C-spaces (see
Theorem 2.2 below).

For any spaces M and K, we denote by C(K,M) the set of all continu-
ous maps from K into M . If (M,d) is a metric space and K is any space,
then the source limitation topology on C(K,M) is defined in the following
way: a subset U ⊂ C(K,M) is open in C(K,M) with respect to the source
limitation topology provided for every g ∈ U there exists a continuous func-
tion α : K → (0,∞) such that B(g, α) ⊂ U . Here, B(g, α) denotes the set
{h ∈ C(K,M) : d(g(x), h(x)) ≤ α(x) for each x ∈ K}.

The source limitation topology is also known as the fine topology and
C(K,M) with this topology has the Baire property provided (M,d) is a com-
plete metric space [23]. We also need the following fact: if K is paracompact
and F ⊂ K closed, then the restriction map pF : C(K,M) → C(F,M),
pF (g) = g|F , is continuous when both C(K,M) and C(F,M) are equipped
with the source limitation topology; moreover pF is open and surjective
provided M is a closed convex subset of a Banach space and d is the met-
ric on M generated by the norm. Finally, when K and M are metrizable,
the source limitation topology on C(K,M) does not depend on the metric
on M .

Let ω be an open cover of the space M and m ∈ N ∪ {0}. A family γ of
subsets of M is said to be (m,ω)-discrete in M if ord(γ) ≤ m+1 (i.e., every
point of M belongs to at most m+1 elements of γ) and γ refines ω; a subset
of M which can be represented as the union of an open (m,ω)-discrete family
in M is called (m,ω)-discrete; a map g : M → Z is (m,ω)-discrete if every
z ∈ g(M) has a neighborhood Vz in Z such that g−1(Vz) is (m,ω)-discrete
in M .

We denote by cov(M) the family of all open covers of M . In case (M,d)
is a metric space, Bε(x) (resp., Bε(x)) stands for the open (resp., closed)
ball in (M,d) with center x and radius ε.
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Lemma 2.1. If ω ∈ cov(M) and K ⊂ M is compact , then every func-
tionally open (m,ω)-discrete subset of K can be extended to an (m,ω)-
discrete subset of M .

Proof. Let U ⊂ K be functionally open and (m,ω)-discrete in K and
γ = {Us : s ∈ A} an open (m,ω)-discrete family in K whose union is U .
Since U is paracompact (being functionally open in K), we can suppose
that γ is locally finite and there exists a partition of unity {fs : s ∈ A} in U
such that Us = f−1

s ((0, 1]) for each s ∈ A. Denote by N the nerve of γ with
the Whitehead topology and define f : U → N by f(x) =

∑
s∈A fs(x)s.

Observe that N is at most m-dimensional because ord(γ) ≤ m+ 1. Let W
be a functionally open subset of βM with W ∩K = U . Then, by [11], there
exists an open set V ⊂ W containing U and an extension g : V → N of f .
The map g generates maps gs : V → [0, 1] such that each gs extends fs. We
finally choose Gs ∈ ω with Us ⊂ Gs, s ∈ A, and define Vs = Gs∩g−1

s ((0, 1]).
Then the family {Vs : s ∈ A} is (m,ω)-discrete in M and

⋃
s∈A Vs is the

required (m,ω)-discrete extension of U .

Throughout the paper Ik denotes the k-dimensional cube equipped with
the Euclidean metric dk, and Dk denotes the uniform convergence metric
on C(X, Ik) generated by dk. If f : X → Y , we denote by C(X,Y × Ik, f)
the set of all maps h : X → Y × Ik such that πY ◦ h = f , where πY :
Y × Ik → Y is the projection. For any ω ∈ cov(X) and closed K ⊂ X,
C(m,ω)(X|K,Y ×Ik, f) stands for the set of all h ∈ C(X,Y ×Ik, f) with h|K
being (m,ω)-discrete (as a map from K into Y × Ik) and C(m,ω)(X|K, Ik)
consists of all g ∈ C(X, Ik) such that f4g ∈ C(m,ω)(X|K,Y ×Ik, f). In case
K = X we write simply C(m,ω)(X,Y × Ik, f) (resp., C(m,ω)(X, Ik)) instead
of C(m,ω)(X|X,Y × Ik, f) (resp., C(m,ω)(X|X, Ik)).

Now we can establish the following characterization of n-dimensional
perfect maps:

Theorem 2.2. Let f : X → Y be a perfect surjection between paracom-
pact spaces with Y being a C-space. Then dim f ≤ n if and only if for any
ω ∈ cov(X) and 0 ≤ k ≤ n the set C(n−k,ω)(X, Ik) is open and dense in
C(X, Ik) with respect to the source limitation topology.

Sufficiency is a consequence of the following observation: if C(0,ω)(X, In)
is not empty for all ω ∈ cov(X), then every open cover of f−1(y), y ∈ Y ,
admits an open refinement of order ≤ n + 1, i.e. dim f−1(y) ≤ n. In-
deed, let γ be a family of open subsets of X covering f−1(y). Then ω =
γ ∪ {X \ f−1(y)} ∈ cov(X), so there exists g ∈ C(0,ω)(X, In). Obviously,
g|f−1(y) is (0, ω)-discrete. Hence, every z ∈ H = g(f−1(y)) has a neighbor-
hood Gz in In with g−1(Gz) ∩ f−1(y) being the union of a disjoint family
µz of sets open in f−1(y) which refines ω. Take finitely many z(i) ∈ H,
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i = 1, . . . , p, such that λ = {Gz(i) : i = 1, . . . , p} covers H. Since dimH ≤ n,
we can suppose that ord(λ) ≤ n+ 1. Then µ =

⋃{µz(i) : i = 1, . . . , p} is an
open cover of f−1(y) refining γ and ord(µ) ≤ n+ 1.

To prove necessity we need a few lemmas; the proof will be completed
by Lemma 2.9. In all these lemmas we suppose that X and Y are given
paracompact spaces and f : X → Y a perfect surjective map with dim f ≤ n,
where n ∈ N. We also fix ω ∈ cov(X), an integer k such that 0 ≤ k ≤ n,
and an arbitrary m ∈ N ∪ {0}.

Lemma 2.3. Let g ∈ C(m,ω)(X|f−1(y), Ik) for some y ∈ Y . Then there
exists a neighborhood U of y in Y such that g|f−1(U) is (m,ω)-discrete.

Proof. Obviously, g ∈ C(m,ω)(X|f−1(y), Ik) implies that g|f−1(y) is an
(m,ω)-discrete map. Hence, for every x ∈ f−1(y) there exists an open neigh-
borhood Vg(x) of g(x) in Ik such that g−1(Vg(x))∩f−1(y) is an (m,ω)-discrete
set in f−1(y). Since Vg(x) is functionally open in Ik, so is g−1(Vg(x))∩f−1(y)
in f−1(y). Then, by Lemma 2.1, there is an (m,ω)-discrete subset Wx in
X extending g−1(Vg(x)) ∩ f−1(y). Therefore, for every x ∈ f−1(y) we have
(f 4 g)−1(f(x), g(x)) = f−1(y) ∩ g−1(g(x)) ⊂ Wx and, since f 4 g is a
closed map, there exists an open neighborhood Hx = Uxy × Gx of (y, g(x))
in Y × Ik with Sx = (f4g)−1(Hx) ⊂Wx. Next, choose finitely many points
x(i) ∈ f−1(y), i = 1, . . . , p, such that f−1(y) ⊂ ⋃p

i=1 Sx(i). As f is a closed

map we can find a neighborhood Uy of y in Y such that Uy ⊂
⋂p
i=1 U

x(i)
y

and f−1(Uy) ⊂
⋃p
i=1 Sx(i).

Let us show that g|f−1(Uy) is (m,ω)-discrete. Indeed, if z ∈ f−1(Uy),

then z ∈ Sx(j) for some j and g(z) ∈ Gx(j) because Sx(j) = f−1(Ux(j)
y ) ∩

g−1(Gx(j)). Consequently, f−1(Uy)∩ g−1(Gx(j)) ⊂ Sx(j) ⊂Wx(j). Therefore,
Gx(j) is a neighborhood of g(z) such that f−1(Uy) ∩ g−1(Gx(j)) is (m,ω)-
discrete in f−1(Uy) as a subset of the (m,ω)-discrete set Wx(j) in X.

Corollary 2.4. If g ∈ C(m,ω)(X|f−1(y), Ik) for every y ∈ Y , then
g ∈ C(m,ω)(X, Ik).

Proof. We need to show that f 4 g is (m,ω)-discrete, i.e. for any x ∈ X
there exist neighborhoods Uy of y = f(x) in Y and Gx of g(x) in Ik such
that f−1(Uy)∩g−1(Gx) is (m,ω)-discrete in X. Indeed, by Lemma 2.3, there
exists a neighborhood Uy of y in Y such that g|f−1(Uy) is (m,ω)-discrete.
Therefore, we can find a neighborhood Gx of g(x) in Ik with f−1(Uy) ∩
g−1(Gx) being (m,ω)-discrete in f−1(Uy). Consequently, f−1(Uy)∩g−1(Gx)
is (m,ω)-discrete in X.

Lemma 2.5. The set C(m,ω)(X|K, Ik) is open in C(X, Ik) with respect
to the source limitation topology for any closed K ⊂ X.
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Proof. Let g0 ∈ C(m,ω)(X|K, Ik). We are going to find α ∈ C(X, (0,∞))
with B(g0, α) ⊂ C(m,ω)(X|K, Ik). Since each restriction g0|(f−1(y) ∩ K),
y ∈ H = f(K), is (m,ω)-discrete, by Lemma 2.3, for every y ∈ H there
exists a neighborhood Uy of y in Y such that g0|(f−1(Uy) ∩ K) is (m,ω)-
discrete. Then ω1 = {Uy : y ∈ H} ∪ {Y \H} is an open cover of Y . As Y
is paracompact, we can find a metric space (M,d), a surjection p : Y →M
and µ ∈ cov(M) such that p−1(µ) refines ω1. Hence, every z ∈ p(H) has a
neighborhood Wz in M such that g0|(p◦f)−1(Wz)∩K is (m,ω)-discrete. The
last condition implies that h0|K is (m,ω)-discrete, where h0 = (p ◦ f)4 g0.
Now we need the following:

Claim. There exists an open family γ in M × Ik covering h0(K) such
that every g ∈ C(X, Ik) belongs to C(m,ω)(X|K, Ik) provided h|K is γ-close
to h0|K, where h = (p ◦ f)4 g.

Proof of the claim. Since h0|K is (m,ω)-discrete, every t ∈ h0(K) has an
open neighborhood Vt in M × Ik such that h−1

0 (Vt)∩K is (m,ω)-discrete in
K. Then ν = {Vt : t ∈ h0(K)} forms an open cover of h0(K). Take γ to be a
locally finite open cover of V =

⋃
ν such that {St(W,γ) : W ∈ γ} refines ν.

Let h|K be a map γ-close to h0|K, where h = (p◦f)4g with g ∈ C(X, Ik). If
W ∈ γ, then h0(h−1(W )∩K) ⊂ St(W,γ). But St(W,γ) is contained in Vt for
some t ∈ h0(K). Consequently, h−1(W )∩K ⊂ h−1

0 (Vt)∩K. The last inclusion
implies that h−1(W ) ∩ K is (m,ω)-discrete in K because h−1

0 (Vt) ∩ K is.
Therefore, h|K is (m,ω)-discrete. To finish the proof of the claim observe
that h|K being (m,ω)-discrete implies (f 4 g)|K is also (m,ω)-discrete, i.e.
g ∈ C(m,ω)(X|K, Ik).

We continue with the proof of Lemma 2.5. Let % be the metric on M×Ik
defined by %(t1, t2) = d(z1, z2) + dk(w1, w2), where ti = (zi, wi), i = 1, 2. Let
α1 : K → (0,∞) be the function α1(x) = 2−1 sup{%(h0(x), V \W ) : W ∈ γ}.
Since h0(K) ⊂ V and γ is a locally finite open cover of V , α1 is continuous.
Moreover, if h = (p◦f)4g with g ∈ C(X, Ik) and %(h0(x), h(x)) ≤ α1(x) for
every x ∈ K, then h|K is γ-close to h0|K. According to the claim, the last
relation yields g ∈ C(m,ω)(X|K, Ik). We finally take a continuous extension
α : X → (0,∞) of α1. Observe that dk(g0(x), g(x)) = %(h0(x), h(x)) for
every x ∈ X. Therefore, B(g0, α) ⊂ C(m,ω)(X|K, Ik).

Lemma 2.6. If C(X, Ik) is equipped with the uniform convergence topol-
ogy , then the set-valued map ψ(m,ω) : Y → 2C(X,Ik), defined by the formula
ψ(m,ω)(y) = C(X, Ik) \ C(m,ω)(X|f−1(y), Ik), has a closed graph.

Proof. Let G =
⋃{y × ψ(m,ω)(y) : y ∈ Y } ⊂ Y × C(X, Ik) be the

graph of ψ(m,ω) and (y0, g0) ∈ (Y × C(X, Ik)) \ G. We are going to show
that (y0, g0) has a neighborhood in Y × C(X, Ik) which does not meet G.
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Since (y0, g0) 6∈ G, g0 6∈ ψ(m,ω)(y0). Hence, g0 ∈ C(m,ω)(X|f−1(y0), Ik) and,
by Lemma 2.3, there exists a neighborhood U of y0 in Y with g0|f−1(U)
being (m,ω)-discrete, in particular, g0 ∈ C(m,ω)(X|f−1(U), Ik). We can as-
sume that U ⊂ Y is closed, hence so is f−1(U) in X. Then, according to
Lemma 2.5, C(m,ω)(X|f−1(U), Ik) is open in C(X, Ik) with respect to the
source limitation topology. Consequently, there exists a continuous positive
function α on X such that B(g0, α) is contained in C(m,ω)(X|f−1(U), Ik).
Since f−1(y0) is compact, 2δ = min{α(x) : x ∈ f−1(y0)} > 0 and H =
{x ∈ f−1(U) : α(x) > δ} is a neighborhood of f−1(y0). Therefore, there
exists a closed neighborhood V of y0 in Y with f−1(V ) ⊂ H (we use again
the fact that f is a closed map). Let Bδ(g0) be the open ball in C(X, Ik)
(with respect to the uniform metric Dk) with center g0 and radius δ. Since
W = V ×Bδ(g0) is a neighborhood of (y0, g0) in Y ×C(X, Ik), the following
claim completes the proof.

Claim. W ∩G = ∅.
Suppose (y, g) ∈W ∩G for some (y, g) ∈ Y ×C(X, Ik). Then y ∈ V and

(1) dk(g(x), g0(x)) ≤ δ < α(x) for every x ∈ f−1(V ).

Let us show that the existence of a function g1 ∈ C(X, Ik) such that

(2) g1 ∈ B(g0, α) and g1|f−1(V ) = g|f−1(V )

contradicts the assumption (y, g) ∈ W ∩ G. Indeed, g1 ∈ B(g0, α) yields
g1 ∈ C(m,ω)(X|f−1(U), Ik) and, since f−1(y) ⊂ f−1(U), we have g1 ∈
C(m,ω)(X|f−1(y), Ik). So, g ∈ C(m,ω)(X|f−1(y), Ik) because g1|f−1(y) =
g|f−1(y) (recall that f−1(y) ⊂ f−1(V )). On the other hand, (y, g) ∈ G
implies g ∈ ψ(m,ω)(y), i.e. g 6∈ C(m,ω)(X|f−1(y), Ik).

Therefore, the proof is reduced to finding g1 satisfying (2). And this
can be done by using the convex-valued selection theorem of Michael [21].
Define the set-valued map Φ : X → Fc(Ik) by Φ(x) = g(x) if x ∈ f−1(V )
and Φ(x) = Bα(x)(g0(x)) otherwise. Here, Fc(Ik) denotes the convex closed
subsets of Ik and Bα(x)(g0(x)) is the closed ball in Ik with center g0(x)
and radius α(x). By (1), g(x) ∈ Bα(x)(g0(x)) for all x ∈ f−1(V ). The last
condition, together with the definition of Φ outside f−1(V ), implies that Φ
is lower semicontinuous (i.e., {x ∈ X : Φ(x) ∩ O 6= ∅} is open in X for
any open set O ⊂ Ik). Then, by the above mentioned Michael theorem, Φ
admits a continuous selection g1. Since g1(x) ∈ Φ(x) for any x ∈ X, we have
g1|f−1(V ) = g|f−1(V ) and g1 ∈ B(g0, α).

Lemma 2.7. Let K and M be compact spaces such that dimK ≤ n and
M is metrizable. Then for every γ ∈ cov(K) and 0 ≤ k ≤ n the set of all
maps h ∈ C(M × K, Ik) with each h|({z} × K), z ∈ M , being (n − k, γ)-
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discrete (as a map from K into Ik) is dense in C(M ×K, Ik) with respect
to the uniform convergence topology.

Proof. Suppose first that K is metrizable and let pM : M ×K →M and
pK : M × K → K be the projections. Then, by Hurewicz’s theorem [18],
there exists a 0-dimensional map h∗ : K → In. Consequently, g∗ = h∗ ◦ pK
is a map from M × K into In such that pM 4 g∗ : M × K → M × In is
also 0-dimensional. According to Levin’s [19] and Sternfeld’s [29] results,
the existence of such a map g∗ implies that the set Mn of all maps g ∈
C(M×K, In) with dim(pM4g) ≤ 0 is dense in C(M×K, In) with respect to
the uniform convergence topology. If q : In → Ik is the projection generated
by the first k coordinates, then the map g 7→ q ◦ g is a continuous surjection
from C(M × K, In) onto C(M × K, Ik) (both equipped with the uniform
convergence topology), soMk = {q ◦ g : g ∈ Mn} is dense in C(M ×K, Ik).
Moreover, since dim q = n− k and each pM 4 g, g ∈ Mn, is 0-dimensional,
dim(pM 4 h) ≤ n− k for any h ∈Mk (the last conclusion follows from the
Hurewicz theorem on closed maps which lower dimension [16]). Therefore,
hz = h|({z} × K) is an (n − k)-dimensional map for every z ∈ M and
h ∈ Mk.

Let us show that any such hz is (n − k, γ)-discrete. Indeed, for fixed
y ∈ hz(K) we have dimh−1

z (y) ≤ n − k. So, there exists ν ∈ cov(h−1
z (y))

refining γ such that ord(ν) ≤ n − k + 1. Applying Lemma 2.1, we obtain
an (n − k, γ)-discrete set Wy in K which contains h−1

z (y). Finally, choose
a neighborhood Vy of y in Ik such that h−1

z (Vy) ⊂ Wy and observe that
h−1
z (Vy) is (n− k, γ)-discrete.

Suppose now K is not metrizable and fix δ > 0 and h0 ∈ C(M ×K, Ik).
We are going to find h ∈ C(M × K, Ik) satisfying the requirement of the
lemma and such that h is δ-close to h0. To this end, represent K as the limit
space of a σ-complete inverse system S = {Kβ, π

β+1
β : β ∈ B} such that

each Kβ is a metrizable compactum with dimKβ ≤ n. Applying standard
inverse spectra arguments (see [4]), we can find θ ∈ B, γ1 ∈ cov(Kθ) and
hθ ∈ C(M ×Kθ, Ik) such that hθ ◦ (idM ×πθ) = h0 and π−1

θ (γ1) refines γ,
where πθ : K → Kθ denotes the θth limit projection. Then, by the pre-
vious case, there exists a map h1 ∈ C(M × Kθ, Ik) which is δ-close to hθ
and h1|({z} × Kθ) is (n − k, γ1)-discrete. It follows from our construction
that h = h1 ◦ (idM ×πθ) is δ-close to h0 and h|({z} × K) is (n − k, γ)-
discrete.

Recall that a closed subset F of the metrizable space M is said to be
a Z-set in M if the set C(Q,M \ F ) is dense in C(Q,M) with respect to
the uniform convergence topology, where Q denotes the Hilbert cube. If, in
the above definition, Q is replaced by Im, m ∈ N ∪ {0}, we say that F is a
Zm-set in M .
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Lemma 2.8. Let α : X → (0,∞) be a positive continuous function and
g0 ∈ C(X, Ik). Then ψ(n−k,ω)(y) ∩B(g0, α) is a Z-set in B(g0, α) for every
y ∈ Y , where B(g0, α) is considered as a subspace of C(X, Ik) with the
uniform convergence topology.

Proof. In this proof all function spaces are equipped with the uniform
convergence topology. Since, by Lemma 2.6, ψ(n−k,ω) has a closed graph,
each ψ(n−k,ω)(y) is closed in C(X, Ik). Hence, ψ(n−k,ω)(y)∩B(g0, α) is closed
in B(g0, α). We need to show that, for fixed y ∈ Y , δ > 0 and a map
u : Q→ B(g0, α) there exists a map v : Q→ B(g0, α) \ψ(n−k,ω)(y) which is
δ-close to u with respect to the uniform metric Dk.

To this end, observe first that u generates h ∈ C(Q ×X, Ik), h(z, x) =
u(z)(x), such that dk(h(z, x), g0(x)) ≤ α(x) for any (z, x) ∈ Q × X. Since
f−1(y) is compact, we can find λ ∈ (0, 1) such that λ sup{α(x) :
x ∈ f−1(y)} < δ/2. Now, define h1 ∈ C(Q × f−1(y), Ik) by h1(z, x) =
(1− λ)h(z, x) + λg0(x). Then, for every (z, x) ∈ Q× f−1(y), we have

(3) dk(h1(z, x), g0(x)) ≤ (1− λ)α(x) < α(x)

and

(4) dk(h1(z, x), h(z, x)) ≤ λα(x) < δ/2.

Let q < min{r, δ/2}, where r is the positive number inf{α(x)− dk(h1(z, x),
g0(x)) : (z, x) ∈ Q× f−1(y)}. Since dim f−1(y) ≤ n, by Lemma 2.7 (applied
to the product Q×f−1(y)), there is a map h2 ∈ C(Q×f−1(y), Ik) such that
dk(h2(z, x), h1(z, x)) < q and h2|({z}×f−1(y)) is an (n−k, ω)-discrete map
for each (z, x) ∈ Q×f−1(y). Then, by (3) and (4), for all (z, x) ∈ Q×f−1(y)
we have

(5) dk(h2(z, x), h(z, x)) < δ and dk(h2(z, x), g0(x)) < α(x).

Because both Q and f−1(y) are compact, u2(z)(x) = h2(z, x) defines the
map u2 : Q→ C(f−1(y), Ik). The required map v will be obtained as a lifting
of u2. The restriction map π : B(g0, α)→ C(f−1(y), Ik), π(g) = g|f−1(y), is
obviously continuous (with respect to the uniform convergence topology).

Claim. π : B(g0, α)→ π(B(g0, α)) is an open map.

It is enough to show that

(6) π(B(g0, α) ∩Bε(g)) = π(B(g0, α)) ∩Bε(π(g))

for every g ∈ B(g0, α) and ε > 0, where Bε(g) and Bε(π(g)) are open balls,
respectively, in C(X, Ik) and C(f−1(y), Ik), both with the uniform metric
generated by dk. Let p ∈ π(B(g0, α))∩Bε(π(g)). Then dk(p(x), g0(x)) ≤ α(x)
and dk(p(x), g(x)) < η < ε for every x ∈ f−1(y) and some positive number
η. Define the closed-and-convex-valued map Φ : X → Fc(Ik) by Φ(x) = p(x)
if x ∈ f−1(y) and Φ(x) = Bα(x)(g0(x)) ∩Bη(g(x)) if x 6∈ f−1(y) (recall
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that Bα(x)(g0(x)) and Bη(x)(g(x)) are open balls in Ik). Since g ∈ B(g0, α),
Φ(x) 6= ∅ for every x ∈ X. Moreover, since α, g and g0 are continuous,
Φ is lower semicontinuous. Therefore, by Michael’s convex-valued selection
theorem, Φ admits a selection g1 ∈ C(X, Ik). Then π(g1) = p and g1 ∈
B(g0, α) ∩ Bε(g). So, π(B(g0, α)) ∩ Bε(π(g)) ⊂ π(B(g0, α) ∩ Bε(g)) and,
because the converse inclusion is trivial, we are done.

Before completing the final step of our proof, note that u2(z) ∈
π(B(g0, α)) for every z ∈ Q (indeed, consider the lower semicontinuous
set-valued map φ : X → Fc(Ik), φ(x) = u2(z)(x) for x ∈ f−1(y) and
φ(x) = Bα(x)(g0(x)) for x 6∈ f−1(y), and take any continuous selection g

of φ). Now, we are going to lift the map u2 to a map v : Q→ B(g0, α) such
that v is δ-close to u.

To this end, define θ : Q→Fc(C(X, Ik)) by θ(z) = π−1(u2(z))∩Bδ(u(z)).
The first inequality in (5) implies that u2(z) ∈ Bδ(π(u(z))) for every z ∈ Q.
Since each u2(z) belongs to π(B(g0, α)), by (6), θ(z) 6= ∅, z ∈ Q. On the
other hand, since π is open, by [21, Example 1.1∗ and Proposition 2.5],
θ is lower semicontinuous. Obviously, every image θ(z) is convex and closed
in C(X, Ik), which is, in its turn, closed and convex in the Banach space of
all bounded continuous functions from X into Rk. Therefore, using again
the Michael selection theorem [21, Theorem 3.2′′], we can find a continuous
selection v : Q → C(X, Ik) for θ. Then v maps Q into B(g0, α) and v
is δ-close to u. Moreover, for any z ∈ Q we have π(v(z)) = u2(z), and
u2(z), being the restriction h2|({z} × f−1(y)), is (n− k, ω)-discrete. Hence,
v(z) ∈ C(n−k,ω)(X|f−1(y), Ik), z ∈ Q, i.e. v(Q) ⊂ B(g0, α) \ ψ(n−k,ω)(y).

Lemma 2.9. If Y is a C-space, then C(n−k,ω)(X, Ik) is dense in C(X, Ik)
with respect to the source limitation topology.

Proof. It suffices to show that, for fixed g0 ∈ C(X, Ik) and a positive con-
tinuous function α : X → (0,∞), there exists g ∈ B(g0, α)∩C(n−k,ω)(X, Ik).
We equip C(X, Ik) with the uniform convergence topology and consider the
constant (and hence, lower semicontinuous) map φ : Y → Fc(C(X, Ik)),
φ(y) = B(g0, α). According to Lemma 2.8, B(g0, α) ∩ ψ(n−k,ω)(y) is a Z-
set in B(g0, α) for every y ∈ Y . So, we have a lower semicontinuous map
φ : Y → Fc(E) and a map ψ(n−k,ω) : Y → 2E such that ψ(n−k,ω) has a closed
graph (see Lemma 2.6) and φ(y) ∩ ψ(n−k,ω)(y) is a Z-set in φ(y) for each
y ∈ Y , where E is the Banach space of all bounded continuous maps from Y
into Rk. Therefore, we can apply [14, Theorem 1.1] to obtain a continuous
map h : Y → E with h(y) ∈ φ(y)\ψ(n−k,ω)(y) for every y ∈ Y (Theorem 1.1
of [14] was proved under the assumption that ψ(n−k,ω) has nonempty val-
ues, but the proof works without this restriction). Observe that h is a map
from Y into B(g0, α) such that h(y) 6∈ ψ(n−k,ω)(y) for every y ∈ Y , i.e.
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h(y) ∈ B(g0, α) ∩ C(n−k,ω)(X|f−1(y), Ik), y ∈ Y . Then g(x) = h(f(x))(x),
x ∈ X, defines a map g ∈ B(g0, α) such that g ∈ C(n−k,ω)(X|f−1(y), Ik) for
every y ∈ Y . Hence, by Corollary 2.4, g ∈ C(n−k,ω)(X, Ik).

3. Proof of Theorem 1.3. The following proposition proves Theo-
rem 1.3 in the special case when f is σ-perfect.

Proposition 3.1. Let f : X → Y be a σ-perfect map of metrizable
spaces with dim f ≤ n and Y being a C-space. Then the set of all maps
g : X → In such that dim(f 4 g) = 0 is dense and Gδ in C(X, In) with
respect to the source limitation topology.

Proof. All function spaces in this proof are considered with the source
limitation topology. Let X be the union of closed sets Xi, i = 1, 2, . . . , such
that each restriction fi = f |Xi is perfect and Yi = f(Xi) is closed in Y . Fix
a sequence {ωq} of open covers of X with mesh(ωq) < q−1. Every Yi is a
C-space (being a closed set in Y ), so we can apply Lemma 2.9 to the maps
fi : Xi → Yi and conclude that Hi =

⋂∞
q=1C(0,ωq)(Xi, In) is dense and Gδ in

C(Xi, In), i ∈ N. Here, C(0,ωq)(Xi, In) consists of all h ∈ C(Xi, In) such that
fi4h is (0, ωq)-discrete. Since all restriction maps pi : C(X, In)→ C(Xi, In),
pi(g) = g|Xi, are continuous, open and surjective, the sets Ci = p−1

i (Hi) are
dense andGδ in C(X, In), and hence so is the intersection

⋂∞
i=1Ci. It remains

to observe that g ∈ ⋂∞i=1Ci if and only if dim(fi4gi) = 0 for every i, where
gi = g|Xi. Hence, by the countable sum theorem, g ∈ ⋂∞i=1Ci if and only if
dim(f 4 g) = 0.

We now continue with the proof of the first part of Theorem 1.3. Sup-
pose f : X → Y is a closed n-dimensional surjection with both X and
Y metrizable and Y a C-space. By the Vainstein lemma [12], the bound-
ary Fr f−1(y) of every f−1(y) is compact. Defining F (y) to be Fr f−1(y) if
Fr f−1(y) 6= ∅, and an arbitrary point from f−1(y) otherwise, we obtain the
set X0 =

⋃{F (y) : y ∈ Y } such that X0 ⊂ X is closed and the restriction
f |X0 : X0 → Y is a perfect surjection. Moreover, each f−1(y) \X0 is open
in X, so dim(X \X0) ≤ n.

Represent X \ X0 as the union of countably many closed sets Xi ⊂ X
and for each i = 0, 1, 2, . . . let pi : C(X, In) → C(Xi, In) be the restriction
map. By Proposition 3.1, the set C0 consisting of all g ∈ C(X, In) with
(f 4 g)|X0 being 0-dimensional is dense and Gδ in C(X, In) with respect
to the source limitation topology. Consequently, C0 is uniformly dense in
C(X, In). On the other hand, since dimXi ≤ n for every i = 1, 2, . . . , the
set Hi ⊂ C(Xi, In) of all uniformly 0-dimensional maps is dense and Gδ in
C(Xi, In) with respect to the uniform convergence topology [17] (recall that
a map h : Xi → In is uniformly 0-dimensional if for every ε > 0 there exists
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η > 0 such that if T ⊂ In and diam(T ) ≤ η, then h−1(T ) is covered by a
disjoint open family in Xi consisting of sets with diameter ≤ ε). Because pi
are open and continuous surjections when C(X, In) and C(Xi, In) carry the
uniform convergence topology, all Ci = p−1

i (Hi), i = 1, 2, . . . , are uniformly
dense and Gδ in C(X, In). Therefore, C∞ =

⋂∞
i=0Ci is Gδ in C(X, In) with

respect to the source limitation topology. Moreover, f 4 g is 0-dimensional
for every g ∈ C∞.

It remains to show that C∞ is uniformly dense in C(X, In). For every
g ∈ C0 let H(g) = {h ∈ C(X, In) : h|X0 = g|X0}. Obviously, C0 =

⋃{H(g) :
g ∈ C0} and each H(g) is uniformly closed in C(X, In). So, C∞ is the union
of the sets A(g) =

⋂∞
i=1Ci∩H(g), g ∈ C0. For fixed g ∈ C0 and i = 1, 2, . . . ,

let pi(g) = pi|H(g). Using the fact that X0 and Xi are closed disjoint sub-
sets of X, one can show that every pi(g) : H(g)→ C(Xi, In) is a uniformly
continuous open surjection. Hence, H(g)∩Ci is dense and Gδ in H(g) with
respect to the uniform convergence topology, being the preimage of Hi un-
der pi(g). Therefore, A(g) is uniformly dense in H(g) (recall that H(g) is
uniformly closed in C(X, In), so it has the Baire property). We finally ob-
serve that the uniform density of C0 in C(X, In) and the uniform density of
A(g) in H(g) for each g ∈ C0 yield the uniform density of C∞ in C(X, In).

4. Proof of Theorem 1.4. It suffices to prove this theorem for closed
maps, so we suppose that f : X → Y is a closed surjection. If An−1 is
constructed, then for k < n− 1, we can find an Fσ-subset Ak ⊂ An−1 with
dimAk ≤ k and dim(An−1 \ Ak) ≤ n− k − 2 (this can be accomplished by
induction, the first step is to represent An−1 as the union of 0-dimensional
Gδ-subsets Bj , j = 1, . . . , n and to set An−2 =

⋃n−1
j=1 Bj). Therefore, we only

need to construct An−1. To this end, we first establish the following ana-
logue of Sternfeld’s [29, Lemma 1] which was proved for compact metrizable
spaces.

Lemma 4.1. Let M be metrizable and K a compact metric space with
dimK ≤ n. Then there exists a Fσ-subset B ⊂ M ×K such that dimB ≤
n − 1 and πM |(M ×K) \ B is 0-dimensional , where πM : M ×K → M is
the projection.

Proof. As in [29], the proof can be reduced to the case n = 1 and K =
[0, 1]. So, we are going to show the existence of a 0-dimensional Fσ-subset
B of M × I such that each set ({y} × I) \ B, y ∈ M , is 0-dimensional, and
that will complete the proof.

Let h : Z → M be a perfect surjection with Z being a 0-dimensional
metrizable space. Then, by [24, Proposition 9.1], there exists a map g : Z →
Q such that h 4 g : Z → M × Q is a closed embedding. Next, let D be
the Cantor set and take a surjection p : D → Q admitting an averaging
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operator between the function spaces C(D) and C(Q) [26] (such maps are
called Milyutin maps). According to [6], there exists a lower semicontinuous
compact-valued map φ : Q → 2D with φ(y) ⊂ p−1(y) for every y ∈ Q.
We can apply Michael’s 0-dimensional selection theorem [22] to obtain a
continuous selection q for the map φ ◦ g. Obviously h4 q : Z → M ×D is
a closed embedding, so Z0 = (h4 q)(Z) is a 0-dimensional closed subset of
M ×D. Finally, considering D as a subset of I, let Zr = {(h(z), q(z) + r) :
z ∈ Z} ⊂ M × I for every rational r ∈ I, where addition q(z) + r is taken
in R mod 1. Then each Zr is a closed subset of M × I homeomorphic to Z,
so B =

⋃{Zr : r is rational} is 0-dimensional and Fσ in M × I. Moreover,
({y} × I) \B is also 0-dimensional for every y ∈M .

Let us continue the proof of Theorem 1.4. As in the proof of Theorem 1.3,
there are closed subsets Xi ⊂ X, i = 0, 1, 2, . . . , such that f |X0 is a perfect
map onto Y , each Xi, i ≥ 1, is at most n-dimensional and X \X0 =

⋃∞
i=1Xi.

For every i ≥ 1 we choose an (n − 1)-dimensional Fσ-set Hi ⊂ Xi with
dim(Xi \Hi) ≤ 0.

A similar subset of X0 can also be found. Indeed, let f0 = f |X0 and
take g : X0 → In such that f0 4 g : X0 → Y × In is 0-dimensional (see
Theorem 1.3). By Lemma 4.1, there exists an Fσ-set B ⊂ Y × In with
dimB ≤ n−1 and each ({y}×In)\B, y ∈ Y , being 0-dimensional. ThenH0 =
(f04g)−1(B) is Fσ in X0. Since f04g is perfect, by the generalized Hurewicz
theorem on closed maps lowering dimension [28], we have dimH0 ≤ n − 1
and dim(f−1

0 (y) \H0) ≤ 0 for every y ∈ Y .
Finally, set An−1 =

⋃∞
i=0Hi. Obviously, dimAn−1 ≤ n−1. On the other

hand, each f−1(y) \ An−1, y ∈ Y , is the union of its closed sets Fi(y) =
f−1(y) ∩Xi \ An−1, i ≥ 0. But F0(y) = f−1

0 (y) \H0 and Fi(y) ⊂ f−1(y) ∩
(Xi\Hi) for i ≥ 1, so all Fi(y) are 0-dimensional. Consequently, dim(f−1(y)\
An−1) ≤ 0 for every y ∈ Y , i.e. f |(X \An−1) is 0-dimensional.

5. Some applications. Our first application deals with extensional
dimension introduced by Dranishnikov [7] (see also [3] and [8]). Let K be a
CW -complex and X a normal space. We say that the extensional dimension
of X does not exceed K, written e-dimX ≤ K, if every map h : A→ K,
where A ⊂ X is closed, can be extended to a map from X into K provided
there exist a neighborhood U of A in X and a map g : U → K extending h.
Obviously, if K is an absolute neighborhood extensor for X, then e-dimX ≤
K iff K is an absolute extensor for X. In this notation, dimX ≤ n is
equivalent to e-dimX ≤ Sn. We also write e-dimX ≤ e-dimY if e-dimY ≤K
implies e-dimX ≤ K for any CW -complex K.

Dranishnikov and Uspenskij [10] provided a generalization of the Hure-
wicz theorem on dimension lowering maps: if f : X → Y is an n-dimensio-
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nal surjection between compact finite-dimensional spaces, then e-dimX ≤
e-dim(Y × In); moreover, this statement holds for any compact spaces (not
necessarily finite-dimensional) when n = 0. We can improve this result
as follows (see also [5] and [9] for other extension-dimensional variants of
Hurewicz’s theorem):

Theorem 5.1. If f : X → Y is a perfect n-dimensional surjection such
that Y is a paracompact C-space, then e-dimX ≤ e-dim(Y × In).

Theorem 5.1 follows from Theorem 2.2 and the next proposition which
can be extracted from the Dranishnikov and Uspenskij proof of their [10,
Lemma 2.1 and Theorem 1.4].

Proposition 5.2. Let K be a CW -complex and X paracompact. If for
any ω ∈ cov(X) there exist a paracompact space Zω with e-dimZω ≤ K and
a perfect (0, ω)-discrete map g : X → Zω, then e-dimX ≤ K.

Corollary 5.3. Let f : X → Y be a σ-closed n-dimensional surjec-
tion between metrizable spaces with Y being a C-space. Then e-dimX ≤
e-dim(Y × In).

Proof. Let K be a CW -complex with e-dim(Y × In) ≤ K. It suffices to
show that e-dimX ≤ K. Since extension dimension satisfies the countable
sum theorem, the proof reduces to the case of f closed. We can also assume
that K is an open subset of a normed space because every CW -complex is
homotopy equivalent to such a set. Represent X as the union of closed sets
Xi ⊂ X, i ≥ 0, such that f |X0 is a perfect map onto Y and dimXi ≤ n for
each i ≥ 1 (see the proof of Theorem 1.3). Then, by Theorem 5.1, e-dimX0

≤ K. On the other hand, e-dim(Y × In) ≤ K implies that e-dim In ≤ K,
in particular, every map from Sn−1 into K is extendable to a map from In
into K. In other words, K is Cn−1 and, as an open subset of a normed space,
K is also LCn−1. It is well known that LCn−1 and Cn−1 metrizable spaces
are precisely the absolute extensors for n-dimensional metrizable spaces.
Hence, e-dimXi ≤ K for every i ≥ 1. Finally, by the countable sum theorem
for extensional dimension, we have e-dimX ≤ K.

Another application is a parametric version of the Bogaty̆ı decomposition
theorem for n-dimensional metrizable spaces [2]: For every metrizable n-
dimensional space M there exist countably many 0-dimensional Gδ-subsets
Mk⊂M such thatM =

⋃n+1
i=1 Mk(i) for all pairwise distinct k(1), . . . , k(n+ 1)

in N.

Proposition 5.4. Let f : X → Y be a closed n-dimensional surjection
between metrizable spaces with Y a C-space. Then there exists a sequence
{Ak} of Gδ-subsets of X such that every restriction f |Ak is 0-dimensional
and for any P ⊂ N of cardinality n+ 1 we have X =

⋃
k∈P Ak.
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Proof. Take closed sets Xi ⊂ X, i ≥ 0, and a map g : X → In such
that f |X0 is perfect, X \ X0 =

⋃
i≥1Xi, dim(f 4 g) = 0 and each g|Xi,

i ≥ 1, is uniformly 0-dimensional (see the proof of Theorem 1.3). Accord-
ing to the Bogaty̆ı theorem, there exists a sequence of 0-dimensional Gδ-
subsets Bk ⊂ In such that In is the union of any n + 1 elements of this
sequence. Let Ak = (f 4 g)−1(Y × Bk), k ∈ N. The only nontrivial con-
dition we need to check is that each restriction f |Ak is 0-dimensional, i.e.
dim f−1(y) ∩ Ak ≤ 0 for all y ∈ Y and k ≥ 1. For fixed y and k we have
f−1(y)∩Ak =

⋃
i≥0 g

−1
i (Bk), where gi denotes the restriction g|(f−1(y)∩Xi).

Since every g−1
i (Bk) is closed in f−1(y)∩Ak, it suffices to show that the sets

g−1
i (Bk), i ≥ 0, are 0-dimensional. For i = 0 this follows from the Hurewicz

lowering dimension theorem [16] because g0 is a perfect 0-dimensional map.
For i≥ 1 we use the fact that g|Xi is uniformly 0-dimensional and the preim-
age of any 0-dimensional set under a uniformly 0-dimensional map is again
0-dimensional.

A map f : X → Y is said to be of countable functional weight [24]
(notation W (f) ≤ ℵ0) if there exists a map h : X → Q, where Q is the
Hilbert cube, such that f 4 h : X → Y × Q is an embedding. In [24]
Pasynkov has shown that his results from [25] remain valid for maps f :
X → Y between finite-dimensional completely regular spaces X and Y
such that W (f) ≤ ℵ0 and both f and its Čech–Stone extension have the
same dimension (the last condition holds, for example, if X is normal, Y
paracompact and f closed). We are going to show that Theorem 2.2 implies
a similar result with Y being a C-space.

Theorem 5.5. Let f : X → Y be a σ-closed n-dimensional surjection
of countable functional weight such that X is normal and Y a paracompact
C-space. Then the set G of all maps g ∈ C(X, In) with dim(f 4 g) = 0 is
uniformly dense in C(X, In). If , in addition, X is paracompact and f is
σ-perfect , then G is dense and Gδ in C(X, In) with respect to the source
limitation topology.

Proof. Since W (f) ≤ ℵ0, there exists a map h : X → Q such that f4h is
an embedding. For every k ∈ N let γk be an open cover of Q of mesh ≤ k−1.
Suppose f is σ-closed and represent X and Y as the union of closed sets
Xi and Yi, respectively, such that each fi = f |Xi is a closed map onto Yi.
Let Zi = (βfi)−1(Yi) and f i = (βfi)|Zi, i ∈ N, where βfi denotes the Čech–
Stone extension of fi. Because X is normal, each Zi is a closed subset of
Z = (βf)−1(Y ) and f i : Zi → Yi is a perfect n-dimensional map. Moreover,
Z is paracompact as the preimage of Y . We consider the extension h : Z → Q
of h and the covers ωk = h−1(γk) ∈ cov(Z). By Theorem 2.2 (applied to
the maps f i), the sets Hi,k consisting of all g ∈ C(Z, In) such that fi 4 g
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is (0, ωk)-discrete, i, k ∈ N, are open and dense in C(Z, In) with respect to
the source limitation topology, and hence so is H =

⋂∞
i,k=1Hi,k. Moreover,

H is uniformly dense in C(Z, In). Therefore, the set G0 = {g|X : g ∈ H} is
uniformly dense in C(X, In). Since h is a homeomorphism on every fiber of
f , G0 ⊂ G. Hence, G is also uniformly dense in C(X, In).

Let f be σ-perfect and X paracompact. Then substituting f i = fi,
Zi = Xi and Z = X in the previous proof, we deduce that G coincides
with H.

Corollary 5.6. Let f : X → Y be a σ-closed n-dimensional surjection
having second countable fibers. If X is metrizable and Y a paracompact C-
space, then the set of all g ∈ C(X, In) with dim(f 4 g) = 0 is uniformly
dense in C(X, In).

Proof. Since f is of countable functional weight (see [24, Proposi-
tion 9.1]), this corollary follows from Theorem 5.5.

We finally formulate the following result; its proof is similar to that of
Theorem 2.2.

Theorem 5.7. Let f : X → Y be a perfect surjection of countable func-
tional weight with Y a paracompact C-space. Then all maps g ∈ C(X,Q)
such that f 4 g is an embedding form a dense Gδ subset of C(X,Q) with
respect to the source limitation topology.

Corollary 5.8. Let f : X → Y be a perfect surjection between metriz-
able spaces. If Y is a C-space, then the set of all g ∈ C(X,Q) with f 4 g
being an embedding is dense and Gδ in C(X,Q) with respect to the source
limitation topology.

Addendum. In the special case when both X and Y are compact met-
ric spaces, Theorem 1.3 (the existence of a map g : X → In such that
dim(f 4 g) = 0), Theorem 1.4 and Corollary 5.3 have recently been ob-
tained by Y. Turygin in his preprint Approximation of k-dimensional maps.
He also proved that if f : X → Y is a k-dimensional map between metric
compacta, then the following two conditions are equivalent: (i) there exists
a map g : X → Ik with dim(f 4 g) = 0; (ii) f admits an approximation by
k-dimensional simplicial maps (see [32] for this notion).
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[16] W. Hurewicz, Über stetige Bilder von Punktmengen (Zweite Mitteilung), Proc.
Akad. Amsterdam 30 (1927), 159–165.

[17] M. Katetov, On the dimension of nonseparable spaces I , Czechoslovak Math. J. 2
(77) (1952), 333–368 (in Russian).

[18] K. Kuratowski, Topology II , PWN, Warszawa, 1968.
[19] M. Levin, Bing maps and finite-dimensional maps, Fund. Math. 151 (1996),

47–52.
[20] —, On extensional dimension of metrizable spaces, preprint.
[21] E. Michael, Continuous selections I , Ann. of Math. 63 (1956), 361–382.
[22] —, Selected selection theorems, Amer. Math. Montly 63 (1956), 233–238.
[23] J. Munkres, Topology , Prentice-Hall, Englewood Cliffs, NJ, 1975.
[24] B. Pasynkov, On geometry of continuous maps of countable functional weight , Fun-

dam. Prikl. Mat. 4 (1998), 155–164 (in Russian).
[25] —, On geometry of continuous maps of finite-dimensional compact metric spaces,

Trudy Mat. Inst. Steklov. 212 (1996), 147–172 (in Russian).
[26] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear

topological classification of spaces of continuous functions, Dissertationes Math. 58
(1968).

[27] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensio-
nal , Proc. Amer. Math. Soc. 82 (1981), 634–636.

[28] E. Sklyarenko, A theorem on dimension-lowering mappings, Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 10 (1962), 429–432 (in Russian).

[29] Y. Sternfeld, On finite-dimensional maps and other maps with “small” fibers, Fund.
Math. 147 (1995), 127–133.



52 H. M. Tuncali and V. Valov

[30] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-mani-
folds, ibid. 106 (1980), 31–40.

[31] —, Finite-to-one restrictions of continuous functions, ibid. 125 (1985), 237–249.
[32] V. Uspenskij, A selection theorem for C-spaces, Topology Appl. 85 (1998), 351–374.

Department of Mathematics
Nipissing University
100 College Drive
P.O. Box 5002
North Bay, ON, P1B 8L7, Canada
E-mail: muratt@nipissingu.ca

veskov@nipissingu.ca

Received 18 June 2001;
in revised form 16 May 2002


