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A compact Hausdorff topology that is a
T1-complement of itself

by

Dmitri Shakhmatov (Matsuyama)
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Abstract. Topologies τ1 and τ2 on a set X are called T1-complementary if τ1 ∩ τ2 =
{X \ F : F ⊆ X is finite} ∪ {∅} and τ1 ∪ τ2 is a subbase for the discrete topology on X.
Topological spaces (X, τX) and (Y, τY ) are called T1-complementary provided that there
exists a bijection f : X → Y such that τX and {f−1(U) : U ∈ τY } are T1-complementary
topologies on X. We provide an example of a compact Hausdorff space of size 2c which
is T1-complementary to itself (c denotes the cardinality of the continuum). We prove
that the existence of a compact Hausdorff space of size c that is T1-complementary to
itself is both consistent with and independent of ZFC. On the other hand, we construct
in ZFC a countably compact Tikhonov space of size c which is T1-complementary to
itself and a compact Hausdorff space of size c which is T1-complementary to a count-
ably compact Tikhonov space. The last two examples have the smallest possible size:
It is consistent with ZFC that c is the smallest cardinality of an infinite set admitting
two Hausdorff T1-complementary topologies [8]. Our results provide complete solutions to
Problems 160 and 161 (both posed by S. Watson [14]) from Open Problems in Topology
(North-Holland, 1990).

1. Introduction. Recall that a topology τ on a set X is called a
T1 topology , and the pair (X, τ) is called a T1-space, provided that all
singletons {x} of X are τ -closed. The cofinite topology {X \ F : F ⊆ X
is finite}∪ {∅} on X is the smallest (with respect to set inclusion) T1 topol-
ogy on X.

Two topologies τ1 and τ2 on an infinite set X are called:

(i) T1-independent if their set-theoretic intersection τ1 ∩ τ2 coincides
with the cofinite topology on X;
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(ii) transversal if their set-theoretic union τ1 ∪ τ2 is a subbase for the
discrete topology {U : U ⊆ X} on X;

(iii) T1-complementary if τ1 and τ2 are both T1-independent and trans-
versal.

It is clear that T1-independent (in particular, T1-complementary) topolo-
gies must be T1, so from now on we will only consider T1 topologies. T1-spaces
(X, τX) and (Y, τY ) will be called T1-complementary provided that there
exists a bijection f : X → Y such that τX and {f−1(U) : U ∈ τY } are
T1-complementary topologies on X. Of special interest are those T1-spaces
that are T1-complementary to themselves.

The set L(X) of all T1 topologies on a given set X with the order τ ≤ σ
defined by set inclusion τ ⊆ σ forms a lattice rich enough to represent
all lattices: Every lattice can be embedded into the lattice (L(X),≤) of
T1-topologies on a suitable set X (see [7]). The topological notion of T1-
complementarity of topologies on X corresponds to the algebraic notion of
complementarity in the lattice (L(X),≤). We refer the reader to [10], [9],
[1], [5] and [14, Sec. 12] for details and relevant discussions.

The notion of T1-independent topologies was first introduced in [12] (in
the context of topological groups) and studied in [8], while the notion of
transversal topologies was introduced in [11] and studied thoroughly in [8].
The classical notion of T1-complementarity has been studied for a long time
(see [10], [9], [1], [5] and [11]).

Since the properties of T1-independence and transversality look oppo-
site to each other and appear (at least intuitively) contradictory, it comes
as no surprise that T1-complementary Tikhonov spaces are notoriously dif-
ficult to construct. In fact, the only known “real” (= using no additional
axioms beyond ZFC) example of such spaces is due to S. Watson [15] who
applied ingeniously sophisticated graph-theoretic techniques to produce a
zero-dimensional Tikhonov space of size 2c that is T1-complementary to
itself. (We use c to denote the cardinality of the continuum.) This construc-
tion seems completely unsuitable for producing T1-complementary Tikhonov
spaces of size smaller than 2c which naturally led S. Watson to ask the fol-
lowing

Question 1.1 ([14, Problem 92]). Is it consistent with ZFC that any
Hausdorff topology which is its own T1-complement must lie on a set of
cardinality at least c+?

Transversality is in apparent contradiction with compactness, so in the
same 1990 paper S. Watson asks another fundamental

Question 1.2 ([14, Problem 93]). Is there a compact Hausdorff space
that is T1-complementary to itself?
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We note that even a consistent example of a space from Question 1.2 was
unknown (1). We answer Question 1.2 affirmatively by providing a compact
Hausdorff topology on a set of size 2c that is a T1-complement of itself. Our
example is a well-understood space, the Aleksandrov duplicate of βω \ ω,
the remainder of the Stone–Čech compactification of the integers ω, and
our proof that this space works uses only standard set-theoretic arguments
(outlined in the proof of Lemmas 2.2 and 2.3). This offers a pleasant con-
trast with a sophisticated construction of an example and highly involved
graph-theoretic arguments that it works found in the original manuscript by
Watson [15]. (In addition, compactness comes as a bonus.) We also present
an example, in ZFC, of a countably compact Tikhonov space of cardinality c
which is a T1-complement of itself. This answers Question 1.1 in a strongly
negative way. We prove that the existence of a compact Hausdorff space of
size c that is T1-complementary to itself is both consistent with and inde-
pendent of ZFC. Demonstrating the limits of the last consistency result we
show, in ZFC, that a compact Hausdorff space of size c can have a count-
ably compact Tikhonov T1-complement. The size c of the examples above is
the least possible: It is consistent with ZFC that no infinite set of size less
than c admits a pair of T1-independent (in particular, T1-complementary)
Hausdorff topologies [8, Theorem 3.3].

2. Technical lemmas. A space X is called subsequential [2] if every
non-closed countable infinite set A in X contains a sequence converging to a
point of X \A. It is easy to see that sequential spaces as well as sequentially
compact spaces are subsequential. We will need a slight generalization of
[12, Proposition 2.4]:

Lemma 2.1. Let τ1 and τ2 be T1-independent Hausdorff topologies on
a set X. If the space (X, τ1) is subsequential , then the space (X, τ2) is
countably compact and does not contain non-trivial convergent sequences.

Our next lemma offers a delicate refinement of the ideas from the proof
of Lemma 3.7 of [8].

Lemma 2.2. Assume that κ is an infinite cardinal , Y and Z are T1-
spaces, Y ′ is a subset of Y and Z ′ is a subset of Z satisfying the following
conditions:

(1) |Y ′| = |Z ′|;
(2) |Y | = |Z| = |Y \ Y ′| = |Z \ Z ′| = κ = κω;
(3) every point y ∈ Y ′ has a local base at y in Y of size ≤ κ;

(1) It should be mentioned that the existence of two infinite T1-complementary com-
pact Hausdorff spaces was announced to S. Watson by Bohdan Aniszczyk in 1989, but the
example has never been published.
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(4) if U is an open subset of Y with U ∩ Y ′ 6= ∅, then |U \ Y ′| = κ;
(5) if F is an infinite closed subset of Z, then |F \ Z ′| = κ.

Then there exists a bijection f : Y → Z with the following properties:

(a) f(Y ′) = Z ′;
(b) if Φ is an infinite closed subset of Y and Y ′ \ Φ 6= ∅, then f(Φ) is

not closed in Z.

Proof. Use (1) to fix a bijection ϕ : Y ′ → Z ′. According to (2) we can
select faithful enumerations Y \Y ′ = {yα : α < κ} and Z\Z ′ = {zα : α < κ}.
For every y ∈ Y ′ use (3) to fix a local base By of Y at y with |By| ≤ κ, and
set B =

⋃{By : y ∈ Y ′}. Since Y ′ ⊆ Y , condition (2) implies |Y ′| ≤ κ and
thus |B| ≤ κ. Since |Y | = κ = κω by (2), we have |[Y ]ω×B| ≤ κ, where [Y ]ω

denotes the set of all countable infinite subsets of Y . Let {(Cα, Uα) : α < κ}
be an enumeration of the set [Y ]ω × B such that for every pair (C,U) ∈
[Y ]ω ×B, the set {α < κ : (C,U) = (Cα, Uα)} is cofinal in κ.

By recursion on α < κ we will construct Yα ⊆ Y , Zα ⊆ Z and a map
fα : Yα → Zα such that the following conditions hold:

(iα) Y ′ ⊆ Yα, Z ′ ⊆ Zα;
(iiα) |Yα \ Y ′| ≤ α · ω and |Zα \ Z ′| ≤ α · ω;
(iiiα) if γ < α, then Yγ ⊆ Yα and Zγ ⊆ Zα;
(ivα) yα ∈ Yα and zα ∈ Zα;
(vα) fα is a bijection between Yα and Zα extending ϕ;
(viα) if γ < α, then fα|Yγ = fγ ;

(viiα) fα(Uα ∩ Yα) ∩ fα(Cα ∩ Yα) 6= ∅ provided that α 6= 0 and Cα ∩ Yα
is infinite.

In (viiα) above and later in the proof of this lemma, the symbol Adenotes
the closure of the set A ⊆ Z in Z.

Basis of induction. Let Y0 = Y ′ ∪ {y0}, Z0 = Y ′ ∪ {z0} and f0 = ϕ ∪
{(y0, z0)}. A trivial check shows that conditions (i0)–(vii0) are satisfied.

Inductive step. Let 0 < α < κ, and suppose that sets Yβ ⊆ Y , Zβ ⊆ Z
and a map fβ : Yβ → Zβ satisfying conditions (iβ)–(viiβ) have already been
defined for all β < α. We construct Yα ⊆ Y , Zα ⊆ Z and a map fα : Yα → Zα
satisfying conditions (iα)–(viiα).

First, define Y ′α =
⋃{Yβ : β < α}, Z ′α =

⋃{Zβ : β < α} and f ′α =⋃{fβ : β < α}. Clearly, Y ′ ⊆ Y ′α ⊆ Y , Z ′ ⊆ Z ′α ⊆ Z, |Y ′α \ Y ′| ≤ α · ω,
|Z ′α \ Z ′| ≤ α · ω and f ′α : Y ′α → Z ′α is a bijection.

Since Uα ∈ B =
⋃{By : y ∈ Y ′}, one has Uα ∈ By for some y ∈ Y ′,

and so y ∈ Uα ∩ Y ′ 6= ∅. From (4) it now follows that |Uα \ Y ′| = κ. Since
|Y ′α \ Y ′| ≤ α · ω < κ, we can pick a point

y∗α ∈ (Uα \ Y ′) \ (Y ′α \ Y ′) = Uα \ (Y ′ ∪ Y ′α) ⊆ Uα \ Y ′α.
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If Cα∩Y ′α is infinite, then Fα = f ′α(Cα ∩ Y ′α) is an infinite closed subset of Z
and so |Fα \Z ′| = κ by (5), which combined with |Z ′α \Z ′| ≤ α ·ω < κ allows
us to pick a point

z∗α ∈ (Fα \ Z ′) \ (Z ′α \ Z ′) = Fα \ (Z ′ ∪ Z ′α) ⊆ Fα \ Z ′α.
In case Cα ∩ Y ′α is finite, since |Z \Z ′| = κ by (2) and |Z ′α \Z ′| ≤ α · ω < κ,
we can pick a point

z∗α ∈ (Z \ Z ′) \ (Z ′α \ Z ′) = Z \ (Z ′ ∪ Z ′α) ⊆ Z \ Z ′α.
It is easy to define sets Yα ⊆ Y , Zα ⊆ Z and a bijection fα : Yα → Zα such
that Y ′α ∪ {yα, y∗α} ⊆ Yα, Z ′α ∪ {zα, z∗α} ⊆ Yα, |Yα \ Y ′α| ≤ 2, |Zα \ Z ′α| ≤ 2,
fα extends f ′α and fα(x∗α) = y∗α.

Clearly, conditions (iα)–(viα) hold. Let us verify condition (viiα). Sup-
pose that Cα∩Yα is infinite. Since |Yα\Y ′α| ≤ 2, the intersection Cα∩Y ′α must
also be infinite. By our construction, y∗α ∈ Uα ∩ Yα and fα(y∗α) = z∗α ∈ Fα =
f ′α(Cα ∩ Y ′α) ⊆ fα(Cα ∩ Yα), which yields z∗α ∈ fα(Uα ∩ Yα) ∩ fα(Cα ∩ Yα)
6= ∅. The inductive step is complete.

We can now define the bijection f : Y → Z. From (ivα) for all α < κ
and our choice of yα’s and zα’s it follows that Y =

⋃{Yα : α < κ} and
Z =

⋃{Zα : α < κ}. Define f =
⋃{fα : α < κ}. Since (iiiα), (vα) and (viα)

hold for all α < κ, f is a bijection between Y and Z.
From (viα) for all α < κ it follows that f�Y0

= f0, and from (i0) and (v0)
we conclude that f0|Y ′ = ϕ, which yields f |Y ′ = ϕ. Since ϕ : Y ′ → Z ′ is a
bijection, we get f(Y ′) = f�Y ′(Y ′) = ϕ(Y ′) = Z ′. Thus (a) holds.

It only remains to prove (b). Let Φ be an infinite closed subset of Y such
that Y ′ \ Φ 6= ∅. Pick a point y ∈ Y ′ \ Φ ⊆ Y \ Φ. Clearly, Y \ Φ is an open
subset of Y , so y ∈ U ⊆ Y \Φ for some U ∈ By. Since y ∈ Y ′, one has U ∈ B.
Note that the cofinality of the cardinal κ is uncountable since κ = κω. From
Y =

⋃{Yα : α < κ} and (iiiα) for α < κ we conclude that Φ ∩ Yβ must be
infinite for some β < κ. Choose an infinite countable set C ⊆ Φ ∩ Yβ and
note that (C,U) ∈ [Y ]ω × B. Since the set {α < κ : (C,U) = (Cα, Uα)} is
cofinal in κ, (C,U) = (Cα, Uα) for some α with β < α < κ. From Yα ⊇ Yβ
and Cα = C ⊆ Yβ we get Cα ∩ Yα ⊇ Cα ∩ Yβ = C ∩ Yβ = C, and since
the last set is infinite, so is Cα ∩ Yα. From α > β ≥ 0 and (viiα) one gets
fα(Uα ∩ Yα) ∩ fα(Cα ∩ Yα) 6= ∅. Since f extends fα and Φ ⊇ C = Cα, it
follows that

f(Uα) ∩ f(Φ) ⊇ f(Uα) ∩ f(Cα) ⊇ fα(Uα ∩ Yα) ∩ fα(Cα ∩ Yα) 6= ∅.
Therefore, there exists y∗ ∈ Uα such that f(y∗) ∈ f(Φ). From Uα = U ⊆
Y \ Φ one gets y∗ 6∈ Φ. Since f is a bijection between Y and Z, this yields
f(y∗) 6∈ f(Φ). Thus f(y∗) ∈ f(Φ)\f(Φ), i.e., the set f(Φ) is not closed in Z.
This finishes the proof of (b).
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Lemma 2.3. Suppose that κ, Y , Z, Y ′ and Z ′ satisfy the assumptions of
Lemma 2.2. Furthermore, assume that the following additional conditions
hold :

(6) all points of Y \ Y ′ are isolated in Y ;
(7) all points of Z ′ are isolated in Z;
(8) Z ′ is dense in Z.

Then the spaces Y and Z are T1-complementary.

Proof. Let τY be the topology of Y and τZ be the topology of Z. Consider
a bijection f : Y → Z from the conclusion of Lemma 2.2. We are going to
prove that the topologies τY and σ = {f−1(V ) : V ∈ τZ} on the set Y are
T1-complementary.

T1-independence. We need to check that the intersection τY ∩σ is exactly
the smallest T1 topology η on Y . Since both τY and τZ (and thus σ) are
T1 topologies, τY ∩ σ is also a T1 topology on Y , and thus η ⊆ τY ∩ σ by
minimality of η. To prove the reverse inclusion we need to show that no
infinite proper subset of Y is closed in the topology τY ∩ σ or, equivalently,
that no infinite proper τY -closed set is σ-closed. Using the definition of σ
we conclude that the last property is equivalent to the following one: If Φ is
an infinite proper closed subset of Y , then f(Φ) is not closed in Z. To check
the latter property, let Φ be an arbitrary infinite proper closed subset of Y .
If Y ′ \Φ 6= ∅, then f(Φ) is not closed in Z by item (b) of Lemma 2.2. It only
remains to consider the case Y ′ ⊆ Φ. In this case, Z ′ = f(Y ′) ⊆ f(Φ) by
item (a) of Lemma 2.2 and, therefore, f(Φ) is dense in Z by (8). If f(Φ) were
closed in Z, we would have f(Φ) = Z and thus Φ = Y since f : Y → Z is
a bijection. This contradicts the fact that Φ is a proper subset of Y . Hence,
f(Φ) cannot be closed in Z.

Transversality . Let us check that the union τY ∪ σ is a subbase for the
discrete topology on Y . It suffices to verify that for every y ∈ Y , there exist
Uy ∈ τY and Wy ∈ σ such that {y} = Uy ∩Wy. Let y ∈ Y be arbitrary. If
y ∈ Y \Y ′, then from (6) it follows that {y} ∈ τY , so Uy = {y} and Wy = Y
do the job. Assume now that y ∈ Y ′. Since f : Y → Z is a bijection and
f(Y ′) = Z ′ by item (a) of Lemma 2.2, f(y) ∈ Z ′ and so {f(y)} ∈ τZ by our
assumption (7). Since f is a bijection, {y} = {f−1(f(y))} ∈ σ according to
the definition of σ. Now Uy = Y and Wy = {y} do the job.

3. Main results. Let (X, τ) be a T1-space and x 7→ x∗ be a bijection
of X onto its copy X∗ disjoint from X. For Z ⊆ X, let Z∗ = {x∗ : x ∈ Z}.
We set A(X) = X ∪ X∗ and consider the following topology τ ′ on A(X).
Each point x∗ ∈ X∗ is isolated in τ ′ and, for every x ∈ X, the family

{(U ∪ U∗) \K : U ∈ τ, x ∈ U, K ⊆ X∗ is finite}
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is a local base of τ ′ at x. The set A(X) together with the topology τ ′ is called
the Aleksandrov duplicate of (X, τ). We will omit τ when no confusion is
possible.

We use χ(X) to denote the character of a space X.

Theorem 3.1. Let X be a T1-space and κ be an infinite cardinal satis-
fying the following conditions:

(i) χ(X) ≤ |X| = κ = κω;
(ii) every non-empty open subset of X is of cardinality κ;

(iii) each infinite closed subset of X is of cardinality κ.

Then the Aleksandrov duplicate A(X) of X is a T1-complement of itself.

Proof. In view of Lemma 2.3 it suffices to check that κ, Y = Z = A(X),
Y ′ = X and Z ′ = X∗ satisfy conditions (1)–(8) from Lemmas 2.2 and 2.3.

Conditions (1), (2) and (3) follow from (i).
To prove (4) assume that U is an open subset of A(X) such that U ∩X

6= ∅. Pick a point x ∈ U ∩ X. According to the definition of a base at x
there exist an open subset V of X containing x and a finite set K ⊆ X∗

with (V ∪ V ∗) \K ⊆ U . Then |V ∗| = |V | = κ by (ii) and thus |V ∗ \K| = κ.
From V ∗ \ K ⊆ U ∩ X∗ = U \ X ⊆ A(X) and |A(X)| = |X| = κ it now
follows that |U \X| = κ.

To check (5) assume that F is an infinite closed subset of A(X). It suffices
to prove that the intersection F ∩X is infinite, since then F ∩X is an infinite
closed subset of X and, hence, |F ∩X| = κ by (iv). The conclusion of (5)
now follows from F \X∗ = F ∩X. Therefore, it only remains to prove that
the set F ∩ X is infinite. If F ∩ X∗ is finite, then F ∩ X = F \ (F ∩ X∗)
must be infinite, as required. So we can assume that F ∩X∗ is infinite and
choose a countable infinite set C ⊆ X with C∗ ⊆ F . Let Φ be the closure
of C in X. Then Φ is an infinite closed subset of X, so |Φ| = κ by (iii). Since
κω = κ by (i), it follows that κ > ω and thus |Φ \ C| = κ. In particular,
the set Φ \ C is infinite. Let x ∈ Φ \ C be arbitrary. Since X is a T1-space
and Φ is the closure of C in X, for every open set U of X with x ∈ U , the
intersection U ∩ C must be infinite. From the definition of the topology of
A(X) it now follows that x belongs to the closure of the set C∗ in A(X).
Since C∗ ⊆ F and F is a closed subset of A(X), we get x ∈ F . We have
proved that Φ \C ⊆ F and, therefore, F ∩X contains the infinite set Φ \C.

Conditions (6), (7) and (8) immediately follow from our definition of Y ,
Z, Y ′ and Z ′.

Note that condition (i) from Theorem 3.1 implies κ > ω, which, when
combined with item (iii) of the same theorem, yields countable compactness
of X. In other words, a space satisfying the assumptions of Theorem 3.1
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must be countably compact, thereby justifying the appearance of countable
compactness in our next result.

Corollary 3.2. Let X be a countably compact regular T1-space sat-
isfying χ(X) ≤ |X| = c which has neither isolated points nor non-trivial
convergent sequences. Then the Aleksandrov duplicate A(X) of X is regu-
lar , countably compact and T1-complementary to itself.

Proof. The regularity and countable compactness of A(X) are imme-
diate. From [2, Th. 6.8] it follows that every countably compact regular
T1-space of cardinality less than c is sequentially compact and, hence, con-
tains non-trivial convergent sequences (if infinite). The assumptions about
X now imply that all infinite closed subsets of X have cardinality c. Apply-
ing countable compactness, regularity and the absence of isolated points in
X one can easily deduce (via the standard binary tree argument) that all
non-empty open subsets of X have size c. It remains to apply Theorem 3.1
with κ = c.

It is worth mentioning that the space from our next corollary cannot
exist in ZFC since its cardinality must be at least 2ω1 .

Corollary 3.3. Suppose that X is a dense-in-itself compact Hausdorff
space of cardinality c without non-trivial convergent sequences. Then the
Aleksandrov duplicate A(X) of X is its own T1-complement.

Proof. The compactness of the space X implies that χ(X) ≤ w(X) ≤
|X| = c. Since compact Hausdorff spaces are regular T1-spaces, we can apply
Corollary 3.2.

Our next result answers Question 1.1 in a strongly negative way.

Corollary 3.4. There exists a countably compact , zero-dimensional
Tikhonov space of cardinality c without convergent sequences which is a
T1-complement of itself.

Proof. Let S be a dense subset of βω \ ω with |S| = c. By [2, Fact 6.5],
there exists a countably compact subspace X of βω\ω such that S ⊆ X and
|X| = c. Clearly, X is zero-dimensional, dense in itself and does not contain
non-trivial convergent sequences. In addition, χ(X) ≤ w(X) ≤ w(βω) = c.
Therefore, the Aleksandrov duplicate A(X) is regular, countably compact
and T1-complementary to itself by Corollary 3.2. One easily verifies that
A(X) is a zero-dimensional space of cardinality c which has no convergent
sequences other than trivial. In particular, A(X) is Tikhonov as every reg-
ular zero-dimensional space.

Under some additional set-theoretic assumptions, the space in Corol-
lary 3.4 can even be chosen to be compact. The symbol s below denotes the
splitting number (see [2]).
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Corollary 3.5. Under s = ω1 & 2ω1 = c, there exists a compact Haus-
dorff space of cardinality c which is its own T1-complement.

Proof. Fedorchuk [4] showed that, under s = ω1 and 2ω1 = c, there
exists a space X satisfying the conditions of Corollary 3.3 (see also
[2, pp. 132–133]), and the result follows.

It is known that every compact Hausdorff space of cardinality less than
2ω1 is sequentially compact [6], and thus subsequential. Combining this fact
and Lemma 2.1, we conclude that an infinite compact Hausdorff space which
admits a T1-independent (in particular, T1-complementary) compact Haus-
dorff topology must have size at least 2ω1 [8, Corollary 3.5]. In particu-
lar, under c < 2ω1 , no compact Hausdorff space of cardinality c admits a
T1-complementary compact Hausdorff topology (compare this with Corol-
lary 3.9 below). Together with Corollary 3.5, this gives:

Corollary 3.6. The existence of a compact Hausdorff space of cardi-
nality c which is its own T1-complement is both consistent with and inde-
pendent of ZFC.

Let us show that, dropping restrictions on the cardinality of spaces, one
obtains many examples (in ZFC) of compact Hausdorff spaces which are
T1-complements of themselves.

A subset Y of a space X is called C∗-embedded in X if every bounded
real-valued continuous function f : Y → R admits a continuous extension
over X. An F -space is a Tikhonov space such that all its countable subsets
are C∗-embedded in it.

Corollary 3.7. Let X be a compact F -space without isolated points
satisfying χ(X) ≤ c. Then the Aleksandrov duplicate A(X) of X is a
T1-complement of itself.

Proof. By Arkhangel’skĭı’s theorem, |X| ≤ 2χ(X) ≤ 2c. Further, in a
compact F -space, every infinite closed subset contains a topological copy of
βω (see [13]). Hence, every infinite closed subset of X satisfies 2c ≤ |F | ≤
|X| ≤ 2c. In particular, |X| = 2c. Similarly, every non-empty open subset of
X is of cardinality 2c. Therefore, we can apply Lemma 3.1 with κ = 2c and
Z = X to conclude that A(X) is its own T1-complement.

Since βω \ ω is a compact F -space of weight c without isolated points,
we have the following result.

Corollary 3.8. Let X = βω\ω. Then the Aleksandrov duplicate A(X)
of X is a compact Hausdorff space of size 2c which is a T1-complement of
itself.

The above corollary answers Question 1.2 in the affirmative.
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Finally, we show in ZFC that a set of cardinality c admits a pair of
T1-complementary Hausdorff topologies one of which is compact and the
other is countably compact and zero-dimensional (hence, Tikhonov). The
reader may want to compare this result with Corollaries 3.4 and 3.6.

Corollary 3.9. There exists a compact Hausdorff space of size c with
only countably many non-isolated points which admits a countably compact ,
Tikhonov , zero-dimensional T1-complementary topology.

Proof. Let Y be the one-point compactification of the disjoint sum of
countably many copies of the one-point compactification of the discrete
space of size c. Denote by Y ′ the set of all non-isolated points of Y . Let
Z be a countably compact subspace of the Stone–Čech compactification
βω of the integers ω such that ω ⊆ Z and all infinite closed subsets of
Z have size c (such a subspace Z can be constructed via standard transfi-
nite induction arguments similar to the construction of the space X from
[3, Example 3.10.19]). Finally, let Z ′ be ω, the set of isolated points of Z.
A straightforward check shows that κ = c, Y , Z, Y ′ and Z ′ satisfy conditions
(1)–(8) from Lemmas 2.2 and 2.3. Now Lemma 2.3 implies that Y and Z
are T1-complementary.

The above corollary should be compared with the fact that no infi-
nite Hausdorff space with only finitely many non-isolated points admits
a T1-independent (in particular, T1-complementary) Hausdorff topology
[8, Proposition 3.6].

Corollaries 3.6 and 3.8 make it natural to ask the following

Question 3.10. In ZFC only, does there exist a compact Hausdorff
space of size 2ω1 (or of size c+) which is T1-complementary to itself?

The space X from Corollary 3.8 has size 2ω1 = c+ under the Continuum
Hypothesis c = ω1 combined with 2c = c+.

Our constructions of T1-complementary topologies depend essentially on
Lemma 2.3 or on the use of the Aleksandrov duplicate of a space (see The-
orem 3.1). Therefore, all pairs of T1-complementary spaces presented in the
article have many isolated points. Watson’s self-complementary Tikhonov
space [14] also has lots of isolated points. This gives rise to our second open
problem:

Question 3.11. Does there exist a dense-in-itself (compact) Hausdorff
space which is T1-complementary to itself?
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