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Calculating limits and colimits in pro-categories

by

Daniel C. Isaksen (Notre Dame, IN)

Abstract. We present some constructions of limits and colimits in pro-categories.
These are critical tools in several applications. In particular, certain technical arguments
concerning strict pro-maps are essential for a theorem about étale homotopy types. We
also correct some mistakes in the literature on this topic.

1. Introduction. Pro-categories have found various uses over the past
few decades, from algebraic geometry [SGA4], [AM], [F] to shape theory
[CP], [EH], [MS] to geometric topology [CJS] to applied mathematics [CP,
Appendix]. Unfortunately, the definition of a pro-category is subtle and com-
plicated. The technical complexity of many papers using pro-categories bears
this out. As an example of the subtlety of pro-categories, it was only re-
cently discovered [I1] that the category pro-C is cocomplete whenever C is
cocomplete. (Despite some claims in the literature, [AM, App. 4.3] shows
that pro-C is cocomplete only when C is small, which is useful for cate-
gories like pro-finite groups but not useful for categories like pro-sets or
pro-spaces.)

In several recent projects involving pro-categories [CI], [I1]–[I3], we have
found it necessary to compute various limits and colimits. Since these dif-
ferent computations are similar, we have collected them together in this ar-
ticle. We hope that these calculational tools will be useful to others studying
pro-categories.

We begin in Section 2 with a review of the necessary background on
pro-categories. We emphasize two important and well known facts about
pro-objects because they are central to the techniques in this paper. First,
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every pro-object is isomorphic to a pro-object indexed by a cofinite directed
set. Second, every map in a pro-category has a level representation.

The category of arrows Ar(pro-C) in a pro-category is equivalent to the
pro-category pro-(Ar C) [Me]. More generally, for any finite loopless cate-
gory A, the functor category (pro-C)A is equivalent to pro-(CA). We in-
troduce in Section 3 a new reindexing result for infinite diagrams that are
cofinite (see Definition 2.2). The categories (pro-C)A and pro-(CA) are not
equivalent, but there is an essentially surjective functor

pro-(CA)→ (pro-C)A.

Fortunately this suffices for our purposes; it means that every diagram in
pro-C has a level representation.

When C is small and A has finite morphism sets, the functor of the
previous paragraph is again essentially surjective. Morel [Mo] assumed that
the functor in the previous paragraph gives an equivalence between the
categories of pro-simplicial finite sets and simplicial pro-finite sets. In fact,
this is not true, as shown in Example 3.7.

In Section 3.1, we specialize to a particular situation involving diagrams
of strict pro-maps. This is critical for a theorem about hypercover descent
for the étale topological type [I2].

With this reindexing result in hand, we give in Section 4 an explicit
description of cofiltered limits in pro-categories. Since every limit can be
rewritten in terms of finite limits of loopless diagrams and cofiltered limits,
one can in principle describe an arbitrary limit if one can describe these two
special kinds.

Calculation of finite limits of loopless diagrams in pro-categories is well
known [AM, App. 4.2]. One finds a level representation for the diagram
and then takes the levelwise limit. Calculation of cofiltered limits in pro-
categories is more complicated. The description of these limits in Theo-
rem 4.1 is the essential result of this paper.

This leads to the main applications. Given a class of maps C, a pro-map
is essentially of type C if it has a level representation by maps in C. This kind
of pro-map plays a significant role in many studies involving pro-categories.
For example, it is central to the abelian structure on the category pro-A for
any abelian category A [AM], [D], [P], [V]. Also, it is an important part of
various closed model structures on pro-categories [CI], [EH], [I1], [I3].

We prove in Section 5 that for any class C, filtered limits and retracts
preserve the maps that are essentially of type C. This fact has several imme-
diate corollaries, which we explore in Section 6. The most interesting is that
filtered limits commute with finite colimits in any pro-category. In other
words, filtered limits are exact. This is opposite to the behavior of most
familiar categories. Consequently, filtered limits are exact in the abelian
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category pro-A when A is any abelian category. This fact was observed in
[AHJM, §2] without proof. Thus, pro-A is very different from familiar abelian
categories such as abelian groups, R-modules, presheaves, or sheaves. The
category pro-A has many of the properties of the opposites of these familiar
abelian categories, even though it is not equivalent to any of them. Ex-
ample 6.4 shows that filtered colimits are not exact for pro-abelian groups.

Another application concerns cocompactness. Most familiar categories do
not have any cocompact objects, but we show in Section 7 that pro-categories
have lots of them. This is an important technical ingredient for [CI].

In the last section, we make some constructions of colimits in pro-catego-
ries. In general, such colimits are very messy. The constructions here are
about as simple and concrete as possible.

We make one brief comment about ind-categories. All the results of this
paper dualize because ind-C is equivalent to (pro-Cop)op. For example, we
could describe filtered colimits in ind-categories. We give no details because
ind-categories occur less often in our intended applications. See [CI] for one
exception.

2. Preliminaries on pro-categories

Definition 2.1. For a category C, the category pro-C has objects all
cofiltering diagrams in C, and

Hompro-C(X,Y ) = lim
s

colim
t

HomC(Xt, Ys).

Composition is defined in the natural way.

A category I is cofiltering if the following conditions hold: it is non-empty
and small; for every pair of objects s and t in I, there exists an object u
together with maps u→ s and u→ t; and for every pair of morphisms f and
g with the same source and target, there exists a morphism h such that fh
equals gh. Recall that a category is small if it has only a set of morphisms.
A diagram is said to be cofiltering if its indexing category is so.

Objects of pro-C are functors from cofiltering categories to C. We use
both set theoretic and categorical language to discuss indexing categories;
hence “t ≥ s” and “t→ s” mean the same thing when the indexing category
is actually a directed set.

The word “pro-object” refers to objects of pro-categories. A constant
pro-object is one indexed by the category with one object and one (identity)
map. Let c : C → pro-C be the functor taking an object X to the constant
pro-object with value X. Note that this functor makes C a full subcategory
of pro-C. The limit functor limC : pro-C → C is the right adjoint of c. We
shall always write this functor as limC to distinguish it from the functor
limpro, which is the limit internal to the category pro-C.



178 D. C. Isaksen

Let Y : I → C and X : J → C be arbitrary pro-objects. We say that X
is cofinal in Y if there is a cofinal functor F : J → I such that X is equal
to the composite Y F . This means that for every s in I, the overcategory
F↓s is cofiltered. In the case when F is an inclusion of directed sets, F is
cofinal if and only if for every s in I there exists a t in J such that t ≥ s.
The importance of this definition is that X is isomorphic to Y in pro-C.

A level representation of a map f : X → Y is: a cofiltered index category
I; pro-objects X̃ and Ỹ indexed by I and isomorphismsX → X̃ and Y → Ỹ ;
and a collection of maps fs : X̃s → Ỹs for all s in I such that for all t → s
in I, there is a commutative diagram

X̃t Ỹt

X̃s Ỹs

��

//

��
//

and such that the maps fs represent a pro-map f̃ : X̃ → Ỹ belonging to a
commutative square

X Y

X̃ Ỹ
��

f //

��

f̃

//

in pro-C. That is, a level representation is just a natural transformation such
that the maps fs represent the element f of

lim
s

colim
t

HomC(Xt, Ys) ∼= lim
s

colim
t

HomC(X̃t, Ỹs).

Every map has a level representation [AM, Appendix 3.2], [Me].
More generally, suppose given any diagram A→ pro-C : a 7→ Xa. A level

representation of X is: a cofiltered index category I; a functor X̃ : A× I →
C : (a, s) 7→ X̃a

s ; and isomorphisms Xa → X̃a such that for every map
φ : a → b in A, X̃φ is a level representation for Xφ. In other words, X̃ is a
uniform level representation for all the maps in the diagram X. Not every
diagram of pro-objects has a level representation.

Suppose that X : I → C and Y : J → C are two pro-objects. A strict
representation [F, p. 36] of a map f : X → Y is a functor F : J → I and a
natural transformation η : X ◦ F → Y such that the maps ηs : XF (s) → Ys
represent the element f of lims colimt HomC(Xt, Ys).

More generally, a strict representation of a diagram X in pro-C consists
of strict representations (F φ, ηφ) for every map φ in X such that for every
pair of composable maps φ and ψ in X, the functor Fψφ equals FφFψ and
the natural transformation ηψφ equals ηψ ◦ ηφFψ.



Calculating limits and colimits in pro-categories 179

If C is a class of objects, then a pro-object X is of type C if each Xs

belongs to C. A pro-object is essentially of type C if it is isomorphic to
a pro-object of type C. Similarly, a level representation X̃ → Ỹ of a map
X → Y is of type C (where C is a class of maps) if each X̃s → Ỹs belongs to
C. A map is essentially of type C if it has a level representation of type C.

Definition 2.2. A category A is loopless if it has no non-identity en-
domorphisms. A category A is cofinite if it is small, loopless, and for every
object a of A, only finitely many arrows have source a.

A pro-object or level representation is cofinite directed if it is indexed by
a cofinite directed set.

For every cofiltered category J , there exists a cofinite directed set I
and a cofinal functor I → J [AR, Th. 1.5]. Therefore, every pro-object
is isomorphic to a cofinite directed pro-object. Similarly, every map has
a cofinite directed level representation. Thus, it is possible to restrict the
definition of a pro-object to only consider cofinite directed sets as index
categories. However, we find this unnatural. Many general notions of pro-
categories are best expressed in terms of cofiltered categories, not in terms of
cofinite directed sets. For example, consider [P], in which the author assumes
that all pro-objects are indexed by directed sets. The construction of limits
on pages 12–13 is technically correct, but it produces a pro-object that is
not indexed by a directed set!

On the other hand, we find it much easier to work with cofinite directed
pro-objects in practice. Thus, most of our results start by assuming without
loss of generality that a pro-object is indexed by a cofinite directed set.
Cofiniteness is critical because many arguments and constructions proceed
inductively.

3. Level representations. We study in this section the question of
replacing diagrams of pro-objects with level representations. We use level
representations in Section 4 to construct cofiltered limits.

One of the fundamental tools for studying pro-categories is the fact that
every morphism in a pro-category has a level representation. In fact, every
finite loopless diagram in a pro-category has a level representation [AM,
App. 3.3]. The following result [Me] is an elegant explanation of these level
representation principles.

Theorem 3.1. Let A be any finite loopless category , and let C be any
category. There is a full , faithful , and essentially surjective functor pro-(CA)
→ (pro-C)A.

Recall that a functor is essentially surjective if every object in the target
is isomorphic to an object in the image of the functor.
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When A is the category with two objects and one non-identity morphism,
the theorem just says that every pro-map has a level representation. This
special case will be useful below in Corollaries 5.2 and 5.6.

Beware that the pro-objects of [Me] are indexed by cofiltered categories
that are not necessarily small. On the other hand, all of our indexing cate-
gories are small; this is an important distinction to keep in mind. Neverthe-
less, Theorem 3.1 (and its consequences) are still true.

One important application of Theorem 3.1 is the construction of finite
limits in pro-C as stated in the next proposition from [AM, App. 4.2].

Proposition 3.2. Let C be a category with finite limits. Let A be a
finite loopless category , and let X : A → pro-C be a diagram in pro-C. Let
X̃ : A× I → C be a level representation, where I is some cofiltered category ,
and let Z be the pro-object indexed by I given by Zs = limC

a X̃
a
s . Then Z is

isomorphic to limpro
a Xa.

From this point, one can generalize in different directions. For us the
most interesting situation occurs when A is a cofinite category as described
in Definition 2.2. Every finite loopless category is cofinite, but other infinite
categories may also satisfy these conditions. The most important examples
for our purposes are cofinite directed sets. We give more examples of cofinite
categories in Section 8 when we study colimits of pro-objects.

Objects of pro-(CA) are level representations of diagrams in pro-C. This
viewpoint gives us a functor F : pro-(CA)→ (pro-C)A.

Theorem 3.3. If A is a cofinite category , then the functor F is essen-
tially surjective.

Proof. Let X : A → pro-C : a 7→ Xa be a diagram of pro-objects.
We want to show that the diagram X has a level representation. We may
assume that each pro-objectXa is cofinite directed with index set Ia. Choose
I to be an arbitrary cofinite directed set with cardinality greater than or
equal to the cardinalities of every Ia; this will be the index set for the level
representation X̃. Also choose arbitrary set surjections ha : I → Ia.

For every a, we build a new pro-object X̃a by constructing a cofinal
function fa : I → Ia and letting X̃a

s equal Xa
fa(s).

Fix an element a of A. Assume that the function f b has already been
constructed on all indices b for which there exists a map a→ b in A. Then
we may proceed by induction because A is cofinite.

We may define fa inductively since I is cofinite. Let s be an index in I,
and suppose that fa has already been defined for t < s. We choose fa(s)
satisfying the following properties. This is possible because there are only
finitely many conditions.
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First, choose fa(s) sufficiently large so that fa(t) ≤ fa(s) for all t < s.
This guarantees that X̃a is a pro-object.

Second, choose fa(s) large enough so that fa(s) ≥ ha(s). This guarantees
that fa is cofinal so that the natural map Xa → X̃a is an isomorphism.

Third, choose fa(s) large enough so that for all maps a→ b in A, there
are maps Xa

fa(s) → Xb
fb(s) representing Xa → Xb such that the diagrams

Xa
fa(s) Xb

fb(s)

Xa
fa(t) Xb

fb(t)

��

//

��
//

commute for all t < s. This guarantees that X̃a → X̃b is a level representa-
tion.

Finally, choose fa(s) large enough so that for all pairs of arrows a → b
and b→ c in A, the diagram

Xa
fa(s) Xb

fb(s)

Xc
fc(s)

//
�

�
�

�
�

�
� ## ��

commutes. This guarantees that X̃ is a level representation.
Note that the isomorphisms Xa → X̃a are given by representatives

Xa
fa(s) → Xa

fa(s) = X̃a
s

that are identity maps. It follows that the diagram

Xa Xb

X̃a X̃b

//

�� ��
//

commutes for every map a → b in A because both compositions are given
by representatives

Xa
fa(s) → Xb

fb(s) = X̃b
s .

Remark 3.4. In general, the functor F is not full and faithful unless A is
finite. We briefly explain why. Let X and Y be any two objects of pro-(CA).
Then

Hom(X,Y ) = lim
s

colim
t

Enda Hom(Xa
t , Y

a
s ),
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where End refers to the usual end construction for calculating morphisms
in a diagram category [ML, §IX.5]. On the other hand,

Hom(FX,FY ) = Enda lim
s

colim
t

Hom(Xa
t , Y

a
s ).

The limit involved in calculating the end does not commute with the colimit
unless it is a finite limit. The end is a finite limit if and only if A is a finite
category.

Theorem 3.3 gives us level representations for arbitrary cofinite indexing
categories. Under other hypotheses, one can make stronger statements. We
explore some of these situations below.

Assume that C is a small category that has finite limits. We define an-
other functor

G : (pro-C)A → pro-(CA)

as follows. Let X be an object of (pro-C)A. Let I be the category of all
morphisms in (pro-C)A of the form X → cY , where Y varies over all objects
of CA. Note that CA has only a set of objects because C and A are both
small. We are abusing notation here; strictly speaking cY is an object of
pro-(CA), but we are identifying it with its image in (pro-C)A under the
functor F defined before Theorem 3.3.

Since C has finite limits, so does CA. This means that I is cofiltered.
There is a functor I → CA taking a morphism X → cY to Y . This is the
object GX of pro-(CA).

In constructing G, it is very important that C be small. Otherwise, the
cofiltered category I is not small.

Lemma 3.5. If C is small and has finite limits, then G is the left adjoint
of F .

Proof. The object GX was constructed to have the correct universal
property.

The next proposition tells us that F is essentially surjective, so every
diagram in (pro-C)A has a level representation.

Proposition 3.6. Let C be a small category with finite limits and let
A be a small indexing category whose morphism sets are finite. Then the
composition FG is naturally isomorphic to the identity on (pro-C)A.

Proof. By adjointness, there is a map X → FGX. It suffices to show
that for each a, the map Xa → (FGX)a is an isomorphism in pro-C. We
will explicitly construct an inverse.

The pro-object (FGX)a can be described as follows. Its index set I is
the collection of all morphisms X → cY in (pro-C)A, where Y varies over all
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objects of CA. The pro-object (FGX)a : I → C takes the element X → cY
of I to Y a.

In order to construct the inverse (FGX)a → Xa, we must give for each t
a diagram Yt in CA, a morphism X → cYt in (pro-C)A, and a map Y at → Xa

t .
Let Yt be the cofree diagram with value Xa

t at a. This means that Y bt
equals

∏
a→bX

a
t , where the product ranges over all morphisms from a to b

in A. These products exist because C has finite limits and because A has
finite morphism sets. Now there is a canonical map X → cYt induced by the
map Xa → cXa

t . Finally the map Y at → Xa
t is given by projection onto the

factor corresponding to the identity map a→ a.

Example 3.7. The standard simplicial indexing category ∆ has finite
morphism sets, so the above proposition applies. We conclude that the cate-
gory of simplicial pro-finite sets is a retract of the category of pro-(simplicial
finite sets), but these categories are not equivalent.

We give a specific example showing that F is not faithful. For each n ≥ 0,
let Sn be the simplicial finite set ∆[n]/∂∆[n]. For 0 ≤ k ≤ ∞, let Tk be the
wedge

∨k
n=0 S

n. Even when k = ∞, the simplicial set Tk is finite in each
dimension. Now let X be the pro-simplicial finite set cT∞, and let Y be the
pro-simplicial finite set

. . .→ Tk+1 → Tk → . . .→ T1 → T0,

where the structure maps consist of collapsing a sphere to the basepoint. It
is easy to check that X and Y are not isomorphic as pro-simplicial finite sets,
but FX and FY are both equal to T∞ considered as a simplicial pro-finite
set.

The distinction between simplicial pro-finite sets and pro-simplicial finite
sets is blurred in [Mo], so the reader must interpret statements there very
carefully to avoid confusion. Proposition 3.6 tells us F is essentially surjec-
tive, so every simplicial pro-finite set can be represented by a pro-simplicial
finite set.

The trouble described in the previous example arises because the index-
ing category ∆ has infinitely many objects. The following proposition makes
this clear.

Proposition 3.8. Let C be a small category that has finite limits, and
let A be an arbitrary finite indexing category. Then the functor

F : pro-(CA)→ (pro-C)A

is an equivalence of categories.

Proof. The proof is essentially the same as [Me, §4], but beware that our
pro-objects are always indexed by small categories.
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Example 3.9. Let G be a finite group. Then the above proposition tells
us that the category of G-pro-finite sets is equivalent to the category of
pro-G-finite sets. Similarly, the category of G-pro-simplicial finite sets is
equivalent to the category of pro-G-simplicial finite sets.

3.1. Level representations for strict diagrams. The reindexing of The-
orem 3.3 is very general but also not canonical; one must make choices
everywhere. We next study a specific situation in which the reindexing is
more natural. This situation arises in [I2].

Suppose given a strict representation of a diagram X indexed by A.
Also suppose that A is cofinite and that the index category Ia of each Xa

has finite limits. If Ia is a directed set, then this means that every pair of
elements in Ia has a least upper bound. For all arrows φ : a → b in A, we
have functors Iφ : Ia → Ib between index categories.

We now discuss a natural way of constructing the reindexing of Theo-
rem 3.3. Let I be the product of the categories Ia for which a is the source
of no non-identity maps. The idea is that I is the product of the indexing
categories of all objects “at the bottom” of the diagram. Note that I is
cofiltered since arbitrary products preserve cofiltered categories.

For every s = (sa) in I, define X̃a
s to be Xa

t , where

t = lim
φ:a→b

Iφ(sb).

The limit is calculated in the category Ia. The idea is that t is the smallest
common refinement of the elements Iφ(sb) in Ia. It is straightforward to
check that this definition satisfies all of the conditions of Theorem 3.3.

Example 3.10. The main motivation for this discussion of strict repre-
sentations is that it is critical for the proof of the hypercover descent theorem
for étale topological types [I2].

For every scheme X, let HRR(X) be the category of rigid hypercovers
of X [F, Prop. 4.3], [I2]. This is the cofiltered index category for the étale
topological type EtX of X, which is a pro-space. Rigid limits [I2] give us
finite limits in HRR(X).

For every scheme map f : X → Y , rigid pullback [I2] induces a functor
f∗ : HRR(Y ) → HRR(X). For every rigid hypercover U of Y , there is a
canonical rigid hypercover map f ∗U → U . This induces a strict representa-
tion of the map EtX → EtY of pro-spaces.

The rigid pullback functors are compatible under composition in the
sense that (gf)∗ = f∗g∗. Therefore, every diagram of schemes induces a
strict representation of a diagram of pro-spaces. Hence, we can apply the
ideas of this discussion to reindexing the étale topological types of cofinite
diagrams of schemes.
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4. Cofiltered limits. We can now give a model for constructing cofil-
tered limits in pro-categories. Start with a functor X : B → pro-C, where
B is a cofiltered index category. As mentioned in Section 2, there exists a
cofinite directed set A and a cofinal functor A→ B. We may replace X with
the composition A → B → pro-C because the limit does not change. Since
A is a cofinite category, we can construct a level representation X̃ of X as
given in Theorem 3.3. A product of cofiltered categories is again a cofiltered
category, so the functor X̃ : A× I → C can be viewed as a pro-object.

Theorem 4.1. The pro-object X̃ is isomorphic to limpro
a Xa.

Proof. Because each X̃a is isomorphic to Xa, it suffices to show that
X̃ is isomorphic to limpro

a X̃a. By direct calculation with the definition of
morphism sets for pro-C, X̃ satisfies the required universal property.

Remark 4.2. The reindexing provided by Theorem 3.3 is not absolutely
necessary to construct cofiltered limits of pro-objects. For example, [P] con-
tains another description of cofiltered limits. This construction is suitable
for proving some of the applications below but not all of them. One disad-
vantage of this alternative approach is that it produces pro-objects that are
very complicated in the sense that their index categories are far from being
cofinite directed sets. On the other hand, the cofiltered limits constructed
with the help of Theorem 3.3 are relatively small and computable.

For thoroughness, we outline here the construction of [P]. Let X : A →
pro-C : a 7→ Xa be a diagram of pro-objects indexed by a cofiltered catego-
ry A such that each Xa is indexed by a cofiltered category Ia. Roughly, the
idea is that we take a diagram whose objects are of the form Xa

s and whose
morphisms are all possible maps Xa

s → Xb
t representing one of the pro-maps

Xa → Xb in the diagram X. Note that even if A and each Ia are cofinite
directed sets, the category I is in general not a directed set.

5. Essentially levelwise maps. Our construction of limits in pro-
categories leads to a result about the behavior of cofiltered limits on pro-
objects that are essentially of type C.

Theorem 5.1. Let C be any class of objects of a category C, and let cC
be the image of this class under the constant functor c. The closure of cC
under isomorphisms and cofiltered limits is equal to the class of pro-objects
in pro-C that are essentially of type C.

Proof. First we show that the class of pro-objects that are essentially of
type C is closed under cofiltered limits. Let X be a cofiltered diagram of
pro-objects, each of which is essentially of type C. We may assume that each
Xa is actually of type C. We use the method of [AR, Th. 1.5] to replace
each Xa by a cofinite directed pro-object that is still of type C. Then we use
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this same method to replace the diagram X by a cofinite directed diagram
with the same limit such that each Xa is still a cofinite directed pro-object
of type C.

Now we use the construction of Theorem 4.1. Since each Xa
s belongs

to C, each X̃a
s belongs to C (see the proof of Theorem 3.3). Since each

X̃a
s belongs to C, the pro-object X̃ is of type C. Therefore, limpro

a Xa is
essentially of type C.

Now we must show that every pro-object of type C is a cofiltered limit
of objects in cC. Let X be a pro-object such that each Xs belongs to C. By
direct calculation of morphism sets, X is isomorphic to limpro

s cXs.

Corollary 5.2. Let C be any class of maps in C. Then maps in pro-C
essentially of type C are closed under cofiltered limits.

Proof. Apply Theorem 5.1 to the category whose objects are morphisms
in C and whose morphisms are commutative squares in C. One must also
use the fact that every pro-map has a level representation.

This corollary gives several immediate results about particular classes of
maps in pro-categories that are of interest.

Corollary 5.3. Let C be a “sufficiently nice” model category [EH, §2.3]
or a proper model category. The class of cofibrations in the strict model
structure [EH, §3.3], [I4] for pro-C is closed under cofiltered limits. The
class of fibrations in the strict model structure [EH, §3.8] for ind-C is closed
under filtered colimits.

Corollary 5.4. The classes of cofibrations in the π∗-model structure
for pro-spaces [I1], in the π∗-model structure for pro-spectra [I3], and in the
π∗-model structure for pro-spectra [CI] are all closed under cofiltered limits.
The class of fibrations in the π∗-model structure for ind-spectra [CI] is closed
under filtered colimits.

The closure of cofibrations in the π∗-model structure for pro-spectra
under cofiltered limits is a technical necessity for [CI].

Having studied cofiltered limits of essentially levelwise maps, we now
proceed to retracts of such maps.

Theorem 5.5. Let C be any class of objects of a category C. The class
of objects of pro-C that are essentially of type C is closed under retracts.

Proof. Let Y be essentially of type C, and let X be another pro-object
with maps f : X → Y and g : Y → X such that the composition gf is the
identity. Consider the countable tower

. . .→X
f→Y

g→X
f→Y

g→X.
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Since gf is the identity, the limit of this tower is isomorphic to X. On the
other hand, the limit is also isomorphic to the limit of the tower

. . .→Y
fg−→Y

fg−→Y.

By Theorem 5.1, this limit is essentially of type C.

The following corollary appears in [I1, Prop. 12.1]. The proof there is
philosophically the same as the one here.

Corollary 5.6. Let C be any class of maps of a category C. The class
of maps of pro-C that are essentially of type C is closed under retracts.

Proof. Apply Theorem 5.5 to the category whose objects are morphisms
in C and whose morphisms are commutative squares in C. One must also
use the fact that every pro-map has a level representation.

6. Exact limits. It is a well known and useful fact that filtered colimits
commute with finite limits in most familiar categories [ML, Th. IX.2.1].
Using our constructions of cofiltered limits given in Section 4, we prove that
the opposite is true for pro-categories.

Theorem 6.1. Cofiltered limits commute with finite colimits in pro-C.

Proof. Let A be a cofiltered index category, and let B be a finite index
category. Suppose given a functor

X : A×B → pro-C : (a, b) 7→ Xa,b.

In order to compute limits indexed by A, we may replace A with a cofinite
cofiltered index category as described at the beginning of Section 4. In order
to compute colimits indexed by B, we may replace B by a finite loopless
category; this is the usual method for rewriting any finite colimit in terms
of finite coproducts and coequalizers.

Therefore, we may assume that both A and B are cofinite. It follows
that A × B is cofinite, so we may assume that X is a level representation.
Thus, we have a functor

X : A×B × I → C : (a, b, s) 7→ Xa,b
s .

Recall that finite colimits of pro-objects are computed levelwise. By Theorem
4.1 and direct computation, limpro

a colimpro
b Xa,b and colimpro

b limpro
a Xa,b are

both isomorphic to the pro-object

A× I → C : s 7→ colim
s

Xa,b
s .

Remark 6.2. Pro-categories are often equivalent to the opposites of
more familiar categories. For example, the category of pro-finite abelian
groups is equivalent to the opposite of the category of torsion abelian groups
[F, Prop. 7.5], and the category of pro-finite k-vector spaces is equivalent
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to the opposite of the category of k-vector spaces. See [CI] for an analogous
stable homotopy theoretic statement. More generally, the category pro-C
is the opposite of the pro-representable functors on C [AM, App. 4.2], [S].
When C is small (as in the case of finite abelian groups or finite k-vector
spaces), the pro-representable functors are just the left exact functors.

If the category pro-C were equivalent to the opposite of a more familiar
category in which filtered colimits commuted with finite limits, then Theo-
rem 6.1 would follow. When C is not small, there is no clean description of
the pro-representable functors. Even the categories of pro-abelian groups or
pro-sets do not seem to be the opposites of any particularly familiar cate-
gories. The isomorphism types of cocompact pro-abelian groups or pro-sets
do not form a set, as shown in Theorem 7.2 below. However, most familiar
categories have only a set of isomorphism types of compact objects.

Let A be an abelian category. Then pro-A is again an abelian category
[AM, App. 4.5], [D]. The class of monomorphisms is equal to the class of
maps that have level representations by monomorphisms. The same is true
for the class of epimorphisms.

Now we have a consequence of Theorem 6.1.

Theorem 6.3. Let A be an abelian category. Then cofiltered limits are
exact in the category pro-A.

Proof. Limits are always left exact. Cofiltered limits are right exact by
Theorem 6.1.

The surprising part of the previous theorem is that filtered limits are
right exact. This is contrary to what occurs in most familiar abelian cat-
egories. The failure of epimorphisms to be closed under cofiltered limits is
the source of the higher limi functors.

Filtered colimits in the category pro-A need not be exact. This is another
notable difference between pro-categories and most familiar abelian cate-
gories. It may be possible to define higher derived colimit functors colimi in
this context. However, pro-A does not have enough projectives [Z], so the
usual approach to derived functors does not work.

Example 6.4. We give an example of the inexactness of filtered colim-
its in the category of pro-abelian groups. Let A be the free abelian group
generated by the countable basis {a0, a1, . . .}. For n ≥ m ≥ 0, let A[m,n] be
the subgroup of A generated by {am, am+1, . . . , an}. For m ≥ 0, let A[m,∞)
be the subgroup of A generated by {am, am+1, . . .}.

Let X be the pro-abelian group

. . .→ A[0, 2]→ A[0, 1]→ A[0, 0].

The structure maps of X are the obvious projections.
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Recall the constant functor c : C → pro-C. For n ≥ 0, there is a map
fn : cA[0, n]→ X of pro-abelian groups. This map is the element of

lim
m

Hom(A[0, n], A[0,m]) ∼= Hom(A[0, n], lim
m
A[0,m])

∼= Hom(A[0, n],
∏

m

Zam)

given by the obvious inclusion A[0, n]→ ∏
m Zam. Each map fn is a mono-

morphism in the category of pro-abelian groups because it has a level rep-
resentation

. . . A[0, n] A[0, n] A[0, n]

. . . A[0, n+ 2] A[0, n+ 1] A[0, n]

// //

��

//

�� ��
// // //

in which each vertical map is a monomorphism.
Note that the maps fn are compatible with the inclusions cA[0, n] →

cA[0, n+ 1] in the sense that the diagram

. . . cA[0, n− 1] cA[0, n] cA[0, n+ 1] . . .

. . . X X X . . .

//

fn−1

��

//

fn

��

//

fn+1

��

//

//
=

//
=

//
=

//

of pro-abelian groups commutes. The colimit of the first row is cA because
A is the union of the groups A[0, n] and because c commutes with colimits
since it is a left adjoint. The colimit of the second row is just X. Thus, the
colimit of the above diagram is a map f : cA→ X. Now f is a filtered colimit
of the monomorphisms fn, but we claim that f is not a monomorphism.

In order to show that f is not a monomorphism, we construct a non-
zero map g : Y → cA such that the composition fg is zero. Let Y be the
pro-abelian group

. . .→ A[2,∞)→ A[1,∞)→ A[0,∞).

The structure maps of Y are the obvious inclusions. Let g be the element of

colim
n

Hom(A[n,∞), A)

represented by any of the obvious inclusions A[n,∞)→ A. Then g is not the
zero map because each map A[n,∞) → A is non-zero. On the other hand,
the composition Y → X is the zero element of

lim
m

colim
n

Hom(A[n,∞), A[0,m])

because for every m and every n > m, the composition A[n,∞) → A →
A[0,m] is zero.
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7. Cocompact objects. As another application of our explicit compu-
tation of cofiltered limits, we describe completely in this section the cocom-
pact objects of pro-C.

Recall that an object X of a category is compact if for every filtered
system Y , the map

colim
a

Hom(X,Y a)→ Hom(X, colim
a

Y a)

is an isomorphism. We dualize this notion as follows.

Definition 7.1. An object X of a category is cocompact if for every
cofiltered system Y , the map

colim
a

Hom(Y a,X)→ Hom(lim
a
Y a,X)

is an isomorphism.

At first glance, this appears to be a strange definition. Note that X is
cocompact if and only if X is compact in the opposite category.

Theorem 7.2. A pro-object is cocompact if and only if it is isomorphic
to a constant pro-object.

Proof. First consider a constant pro-object cX. Let Y be an arbitrary
cofiltered system of pro-objects indexed by A. As described at the beginning
of Section 4, we may assume that A is cofinite. Thus, we may take Y to
be a level representation. It follows by Theorem 4.1 and direct calculation
that both Hompro(limpro

a Y a, cX) and colima Hompro(Y a, cX) are equal to
colima colims Hom(Y as ,X). This shows that cX is cocompact.

Now suppose that X is a cocompact pro-object. Note that X is isomor-
phic to limpro

s cXs, so the map

φ : colim
a

Hompro(cXs,X)→ Hompro(X,X)

is an isomorphism. Let f : cXs → X be any map such that φ(f) is equal to
the identity on X, and let g : X → cXs be the natural map.

By definition of φ, the composition fg is the identity on X. This shows
that X is a retract of the constant pro-object cXs. Applying the following
proposition, we conclude that X is in fact isomorphic to a constant pro-
object.

The next proposition is used in the proof of Theorem 7.2, but it is inter-
esting for its own sake.

Proposition 7.3. A retract of a constant pro-object is isomorphic to a
constant pro-object.

Proof. Let X be a pro-object that is a retract of a constant pro-object
cY . This means that we have maps f : X → cY and g : cY → X such that
the composition gf is the identity on X.
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The map g factors into the composition of a map g′ : cY → c limC
s Xs

followed by the canonical map ε : c limC
s Xs → X. In fact ε is an isomorphism

with inverse g′f . The composition ε(g′f) is the identity because gf is the
identity. For the composition (g′f)ε, one can show that the map limC(g′fε)
is the identity on limC

s Xs. This shows that (g′f)ε is also the identity.

8. Colimits in pro-categories. We assume in this section that C is co-
complete. The category pro-C is also cocomplete [I1, Prop. 11.1], but colimits
in pro-C are difficult to compute in general. See [B] for a special situation.
We study a different special situation in which explicit computations are
possible. In particular, we compute colimits in pro-C indexed by cofinite
categories. At first glance, this does not seem to be especially useful, so we
provide two examples.

Example 8.1. Consider the diagram for calculating the realization of a
simplicial space X. This diagram has one object Xn⊗∆[n] for each n≥ 0
and one object Xn ⊗ ∆[m] for each simplicial operator φ : [m] → [n].
The maps of the diagram are of two types. The first type is of the form
id⊗φ∗ : Xn ⊗ ∆[m] → Xn ⊗ ∆[n], and the second type is of the form
φ∗ ⊗ id : Xn ⊗∆[m]→ Xm ⊗∆[m].

The colimit of this diagram is the realization |X| of X. Note that the
diagram is cofinite because each object Xn ⊗ ∆[n] is the source of zero
non-identity maps and each object Xn ⊗ ∆[m] is the source of two non-
identity maps. Therefore, the techniques of this section apply to calculating
realizations of simplicial pro-objects.

Example 8.2. Consider a countable sequence

X0
f0−→X1

f1−→X2
f2−→ . . .

In order to calculate colimpro X, we may take the colimit of the diagram

X0 X1 X2 . . .

X0 X1 X2 . . .

=

�� f0

�
�

�
�

�
� !!
=

�� f1

�
�

�
�

�
� !!
=

�� f2

�
�

�
�

�
�

� !!

which is cofinite. Thus, the techniques of this section apply to calculating
colimits of countable sequences.

Let A be a cofinite category, and let I be a cofinite directed set. Recall
that an arbitrary product of cofiltered categories is again cofiltered. Simi-
larly, an arbitrary product of directed sets is again a directed set, but infinite
products do not preserve cofiniteness. Consider the subset K of

∏
A I con-

sisting of tuples (sa) such that sa ≥ sb when a ≥ b. Define a partial ordering



192 D. C. Isaksen

on K by (sa) ≥ (ta) if sa ≥ ta for all a. This is the ordering that K inherits
as a subset of

∏
A I.

Lemma 8.3. The set K is directed.

Proof. Let (sa) and (ta) be any two elements of K. We construct a com-
mon refinement (ua) by induction on a. This is possible since A is cofinite.
Suppose that ub has already been determined for b < a such that ub ≥ sb
and ub ≥ tb. Choose ua such that ua ≥ sa, ua ≥ ta, and ua ≥ ub for all b < a.
This is possible because there are only finitely many conditions on ua.

Note that K is not necessarily cofinite.

Lemma 8.4. The inclusion K →∏
A I is cofinal.

Proof. Given an element (sa) of
∏
A I, we must find an element (ta) of

K such that (ta) ≥ (sa). Suppose that tb has already been chosen for b < a
such that tb ≥ sb. Choose ta such that ta ≥ sa and ta ≥ tb for all b < a.
This is possible because there are only finitely many conditions on ta.

Lemma 8.5. The forgetful functor Ua : K → I : (sa) 7→ sa is cofinal.

Proof. The projection functor
∏
A I → I is cofinal. By Lemma 8.4, the

functor Ua is a composition of two cofinal functors, so it is also cofinal.

Let X : A→ pro-C be a functor. By Theorem 3.3, we know that X has
a level representation X̃ : A × I → C for some cofinite directed set I. We
now define a functor X : A×K → C. Let s = (sa) be an element of K. For
every object a in A, define Xa

s to be X̃a
sa . For every map a→ b in A, define

Xa
s → Xb

s to be either composition in the commuting square

X̃a
sa X̃b

sa

X̃a
sb X̃b

sb

//

�� ��
//

Note that the vertical maps are the structure maps of the pro-objects X̃a

and X̃b. Here we use the fact that sa ≥ sb since s belongs to K. Also note
that the horizontal maps come from the level representation X̃a → X̃b of
the map Xa → Xb.

One can verify that X is indeed a functor by a straightforward diagram
chase.

Theorem 8.6. The pro-object Z indexed by K given by Zs = colimC
a X

a
s

is the colimit in the category pro-C of the functor X.
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Proof. Let W be an arbitrary pro-object. Then direct computation with
the definition of morphism sets in pro-C shows that

Hompro(Z,W ) ∼= lim
a∈A

Hompro(Xa,W ).

This uses Lemma 8.5 and the surprising fact that the canonical map

colim
s∈K

lim
a∈A

HomC(X̃a
sa ,Wt)→ lim

a∈A
colim
s∈K

HomC(X̃a
sa ,Wt)

is an isomorphism, which is justified by Lemma 8.4.
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