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Separating sets by Darboux-like functions
by

Aleksander Maliszewski (Bydgoszcz)

Abstract. We consider the following problem: Characterize the pairs (A, B) of sub-
sets of R which can be separated by a function from a given class, i.e., for which there
exists a function f from that class such that f = 0 on A and f = 1 on B (the classical
separation property) or f <0 on A and f > 0 on B (a new separation property).

1. Introduction. The classical Urysohn Lemma states that if (X, T) is
a Ty-space and the sets Ag, A1 C X are disjoint and closed, then there is a
continuous function f : X — R such that f =0 on Ag and f =1 on Ay,
and if moreover Ag and A; are Gg-sets, then 0 < f < 1 on X \ (Ao U Ay).
In the first part of the paper we examine when, given two sets Ag, A1 C R,
we can find a Darboux (or functionally connected, or connected, or almost
continuous) function f such that f = 0 on Ag and f = 1 on A;. It turns
out that the necessary-and-sufficient condition is the same in all the cases
we consider (Corollaries 3.2 and 3.3).

In the second part we study a similar problem. Namely we ask when,
given two sets A=, AT C R, we can find a Darboux (or functionally con-
nected, or connected, or almost continuous) function f such that f <0
on A~ and f > 0 on AT. It is surprising that we get three essentially
different necessary-and-sufficient conditions. (See examples in Section 5.)

2. Preliminaries. The letters R and N denote the real line and the set
of positive integers, respectively. The word interval means a nondegenerate
interval; [a, b] denotes the closed interval with end points a and b also in case
a > b. The word function denotes a mapping from R into R unless otherwise
explicitly stated. For each A C R we denote by Int A, cl A, and card A the

2000 Mathematics Subject Classification: Primary 26A21, 54C30; Secondary 26A15,
54C08.

Key words and phrases: Darboux property, connectivity, almost continuity.

Supported by Bydgoszcz Academy.

[271]



272 A. Maliszewski

interior, closure, and cardinality of A, respectively. We write ¢ = card R. If
K C R?, then we let dom K be the z-projection of K.

Let A C R. By A* we denote the set of all x € A which are bilateral
¢-limit points of A, i.e.,

A*={zx € A:card(AN[x,t]) = c for each t # x}.

We say that a set A C R is bilaterally c-dense in itself if A = A*. Recall
that for each A C R, we have card(A \ A*) < c. (See, e.g., [1, Lemma 4,
p. 285].) So, (A*)* = A*.

Let f: R — R. For every y € Rlet [f <y] ={z € R: f(z) < y}.
Similarly we define the symbols [f < y], [f > y], etc. For each x € R and
0 > 0 we set

Ry(z,0) = (x — 6,2+ 6) x (f(x) — 6, f(z) +0).

Usually we will write R(x,d) instead of Ry (x,0), if it does not lead to mis-
understanding.

Let f : R — R. We say that f is a Darboux function if it has the
intermediate value property. We say that f is connected if it is a connected
subset of R?. (We make no distinction between a function and its graph.)
We say that f is functionally connected if gN f # () whenever g : [«, 3] — R
is a continuous function such that (f(a) — g(@))(f(8) — g(3)) < 0. We say
that f is almost continuous in the sense of Stallings [6] if for every open set
V C R? containing f, there is a continuous function h: R — R with h C V.
One can easily see that

almost continuity = connectivity

= functional connectivity = Darboux property.

(See also [6].) Though the above implications cannot be reversed, the alge-
braic properties of the corresponding classes of functions are very similar.
See, e.g., [5] or [2] for details.

3. Classical separation property

PROPOSITION 3.1. Assume that the sets Ay, A1 C R satisfy the following
conditions:

(3.1) R\ (AoUA) =R\ (A UA%

(3.2)  foralla € Ay and € A1, we have card([a, 5]\ (Ag U A41)) =c.
Then there is an almost continuous function f such that

(3.3) Ag=[f=0], A=][f=1]

Proof. Clearly we may assume that Ay # R # A;. Let X = R x (0,1)
and let {K¢ : £ < ¢} be an enumeration of all closed sets K C R? such
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that card(dom(K N X) \ (Ap U A1)) = ¢. For each £ < ¢ choose a point
(e, ye) € Ke N X such that ¢ € AgU Ay U {z¢ : ¢ <&} Define

0 if z € Ay,
)y it x=ux¢, £ <,
F@) =971 ifrea,

1/2 otherwise.

Evidently f satisfies (3.3). We will show that f is almost continuous.

Take an arbitrary open set V O f. Clearly it suffices to show that for
all a < b there is a continuous function h : [a,b] — R contained in V' such
that h = f on {a, b}.

Fix a < b. Let S be the set of all s € [a, b] for which there is a continuous
function h : [s,b] — R contained in V such that h = f on {s,b}. Thenb € S,
so we can define g = inf S. First we will prove that xg € S.

Indeed, suppose that this is not the case. Then zg < b. Let § > 0
be such that R(zg,d) C V. (Recall that V is open and f C V.) Fix an
x € SN (xg,zo+ ). Set

x1 = inf{z € (xo,x] : f is constant on [z, z]}.

Notice that by construction and (3.1), f(x1) = f(x). So, z1 € S and x1 > xo.
Using the fact that R?\ V is closed and f C V, we obtain

card{z € AgUA; : {z} x (0,1) ¢ V} = card(dom(X \ V) \ (Ag U A1)) < c.

Let 7 > 0 be such that zy < 1 —7 and R(z1,7) C V. Observe that by (3.2),
x1 € cl((—o0,x) \ (Apg U A1)). So by (3.1), there is an x4 € (21 — 7, 21) such
that {z2} x (0,1) C V.

Pick yo € (f(20) — 0, f(20) +0) N (0,1) and y1 € (f(z1) — 7, f(2z1) +7)N
(0,1). Using the compactness of the set {x2} X [y0,71] C V, we can find an
n > 0 such that zo +n < x1 and (x2 — 1,22 + 1) X [yo,y1] C V. Let hgy cor-
respond to x; € S. Extend hg to h : [xg,b] — R by connecting the following
pairs of points by straight line segments: (¢, f(zo)) with (x2,y0), (z2,y0)
with (z2 + n,y1), and (x2 + n,y1) with (z1, f(z1)). Clearly the function h
proves xg € S, contrary to assumption.

Now suppose that o > a. Let § > 0 be such that a < g — ¢ and
R(z0,0) C V. By (3.1), there is an x € (xg — 0, x¢) with |f(x) — f(z0)| < 0.
Let ho correspond to xzop € S. Extend hg to h : [x,b] — R by connecting
(x, f(z)) with (zo, f(x0)) by a straight line segment. Clearly this function
proves x € S. But x < xg = inf S, an impossibility.

We have proved that a € S. So, there is a continuous function h : [a, b]
— R contained in V such that h = f on {a,b}. =

COROLLARY 3.2. Let Ag, Ay C R. The following are equivalent:
(1) the sets Ao and Ay satisfy conditions (3.1) and (3.2),
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(ii) there is an almost continuous function f such that (3.3) holds,
(iii) there is a connected function f such that (3.3) holds,
(iv) there is a functionally connected function f such that (3.3) holds,
(v) there is a Darbouzx function f such that (3.3) holds.
Proof. The implication (i)=-(ii) follows by Proposition 3.1.
The implications (ii)=-(iii)=-(iv)=-(v) are immediate.
(v)=(i). Let f be a Darboux function such that (3.3) holds. Then R\
(AgU A1) = [f & {0,1}] is the inverse image of an open set under f, so it is
bilaterally c¢-dense in itself. Condition (3.2) is evident. =

COROLLARY 3.3. Let Ay, A1 C R. The following are equivalent:

(i) the sets Ay and A; satisfy condition (3.2),
(ii) there is an almost continuous function f such that
)

A C[f=0], Ac[f=1],
iii) there is a connected function f such that (3.4) holds,

iv) there is a functionally connected function f such that (3.4) holds,
(v) there is a Darboux function f such that (3.4) holds.

Proof. (1)=(ii). For ¢ < 2 define
B; = A; U{zx € R: card([z,t] \ A;) < ¢ for some t # z}.
Notice that R\ (BO U Bl) = (R\ (AO U Al))*.

Indeed, if x ¢ (R\ (Ao U A;1))*, then card([z,t] \ (Ao U 41)) < ¢ for
some t # x, and by (3.2), either x € By or € B;. On the other hand, if
z € (R\ (Ap U A1))*, then card([z, ] \ (Ao U A1)) = ¢ for each t # z, and
consequently, ¢ By U Bj. It follows that R\ (ByU B1) = (R\ (Bo U By))*.

Now assume card([e, 8] \ (Bo U By)) < ¢ for some  # «. Since
card((Bo U B1) \ (AgU A4;1)) = card((R\ (Ag U A7)) \ (R\ (Aq U Al))*) <,
we obtain card([a, ] \ (Ap U A1)) < ¢. So by (3.2), either a, 3 € Ay C By,
or a, € A1 C Bj.

By Proposition 3.1, we can construct an almost continuous function f
such that [f = 0] = By D Ap and [f = 1] = B; D 4.

The implications (ii)=-(iii)=(iv)=(v) are immediate.

(v)=(i). Let f be a Darboux function such that (3.4) holds. Fix a € 4y
and 3 € A;. Then f(a) =0 and f(5) = 1, so by Corollary 3.2,

card([a, 8] \ (Ao U A1)) > card([e, S]\ ([f =0]U[f =1])) =¢c. =

(3.4

(
(

4. New separation property. We start with two auxiliary proposi-
tions.

PROPOSITION 4.1. Let A=, AT C R be such that
(41) A = (A7), At = (AT,
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(4.2)  for each a € A~ and $ € AT we have [, f] \ (A~ U AT) £ 0.
Assume that a function [ satisfies the following conditions:
(43) A =[f<0], At=[f>0],
(4.4)  fNK #0 whenever K C R? is closed and

carddom (K N ([A™ x (—00,0)] U [AT x (0,00)])) = «.
Then f is a Darboux function. If moreover

(4.5)  for each closed set F C A~ UAT, ae€ A-NF, and 8 € AT NF,
there are o/ € A~ N|a, B] and B/ € AT such that F N[/, 3] =0,

then f is connected. If moreover

(4.6)  for each closed set F C A~ UAT, a € A—-NF,and 8 € ATNF,
there are o/ € A~ N|a,B] and ' € A" such that F N [o/,3] =0
and (8" = o/)(B — @) >0,

then f is almost continuous.

Proof. First observe that

(4.7) if a € AT and b # a, then f[[a,b]] D (0,0).

Indeed, by (4.1) and (4.4), for each y > 0 we have f N [[a,b] x {y}] # 0.

Similarly we can show that if a € A~ and b # a, then f[[a,b]] D (—o0,0).

To prove that f is a Darboux function fix a,b € R and y € (f(a), f(b

If y > 0, then by (4.3), we obtain b € AT. So by (4.7), f(z) = y for

some z € [a, b]. Similarly we proceed if y < 0. Finally if y = 0, then by (4.3)

and (4.2), f(z) = 0 for some z € [a,b].

The rest of the proof of the proposition consists of several auxiliary
claims. The end of the proof of each claim will be marked with <.

CLAIM 1. Let G denote the set of all x € R such that f is almost con-
tinuous in some neighborhood of x. If a < b and [a,b] C G, then f[[a,b] is
almost continuous.

For each z € [a,b] there is a 6, > 0 such that f[(z — 0z, 2 + 05) is
almost continuous. Now, the relation [a,b] C U,elq4(2 — 62,2 + d5) and
the compactness of [a,b] imply that [a,b] C UV o(2; — 0,2 + 0z,) for
some o, ...,Zp € [a,b]. Hence we can find a =ty < ... < t; = b such that
f1tj—1,t;] is almost continuous for each j. Thus f[[a, b] is almost continuous
as well. <

CrLAaM 2. If a < b and (a,b) C G, then fl[a,b] is almost continuous.

~—

Using Claim 1 we can easily show that f[(a,b) is almost continuous.
(See also [4] or [5, Corollary 2.2].) We have already proved that f is a Dar-
boux function. Hence (a, f(a)), (b, f(b)) € cl(fI(a,b)). So, f[]a,b] is almost
continuous. (Cf. [5, Theorem 2.4] or [3].) <
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CLAIM 3. Let V. C R? be an arbitrary open set containing f, and let
R(z,0) C V. For each t € (x — 9,z +9), if f(z)f(t) >0 and f(t) # 0, then
there is a continuous function h : [x,t] — R contained in V' such that h = f
on {xz,t}.

Assume that z < ¢ and f(t) > 0. (The other cases are similar.) Since the
set R?\ V is closed and f C V, condition (4.4) implies

card{z € AT : {2} x (0,00) ¢ V} = carddom([AT x (0,00)]\ V) < ¢.
Let 7 > 0 be such that x < t — 7 and R(¢,7) C V. Then by (4.1), there is
a z € (t —7,t) such that {z} x (0,00) C V. Using the compactness of the
set {z} x [f(z) + 0, f(t)] C V, we can find an n > 0 such that z+n < ¢t and
(z—mn,z+mn) x[f(x)+0, f(t)] C V. Define h : [x,t] — R by connecting the
following pairs of points by straight line segments: (z, f(x)) with (z, f(x)+9),
(z, f(x) +d) with (z+n, f(t)), and (z+n, f(t)) with (¢, f(t)). <

CLAIM 4. Let V. C R? be an arbitrary open set containing f, and let
R(x,8) C V, where x & A~. For each t € (x,x+9), if t € cl(A* N (—o0,t))
and (t,0) € V, then there is a continuous function h : [x,t] — R contained
in V such that h(x) = f(x) and h(t) =0 (}).

Let 7 > 0 be such that x < t — 7 and (t — 7,t +7) X (—7,7) C V.
By (4.7), there is a z € (t — 7,t) such that f(z) = 7. So by Claim 3, there
is a continuous function hg : [z,z] — R contained in V such that h = f
on {x, z}. Extend hg to h : [z,t] — R by connecting (z, f(z)) with (¢,0) by
a straight line segment. <

CLAM 5. Let P =R\ G. Then PN (A~ UA") is dense in P.

By way of contradiction suppose that there is a closed interval J such
that PNIntJ # 0 = PN (A~ UAT)NJ. Then by Claim 2, f[clI is almost
continuous for each connected component I of J\ P. On the other hand
by (4.3), PN J C [f = 0]. Using [5, Lemma 6.3] we find that f[J is almost
continuous. It follows that ) # PN IntJ C IntJ C G, an impossibility. <

CLAIM 6. Both PN A~ and PN A%t are dense in P.

By way of contradiction suppose that PN (a,b) # 0 = PN[a,b]jN A~ for
some a < b. (The other case is similar.) We will show that f[[a,b] is almost
continuous, which contradicts P N (a,b) # 0.

Take an arbitrary open set V' O f[[a,b]. Let S be the set of all s € [a, b]
for which there is a continuous function h : [s,b] — R contained in V' such
that h = f on {s,b}. Define zp = inf S. First we will prove that z¢ € S.

Indeed, suppose that this is not the case. Then xy < b. Let § > 0 be such
that R(zg,d) C V. Fix an x € SN (xp, 20 + 9). Let ho correspond to x € S.

(*) Notice that we can allow ¢ € (z — §,z) provided that ¢ € cl(A" N (¢,00)). We can
also prove analogous claims in which we swap the symbols A~ and A™.



Separating sets by Darbouz-like functions 277

Set 1 = sup(P N (—oo,x)). By Claim 2, f[[x1,z] is almost continuous, so
there is a continuous function hj : [z1,2] — R contained in V such that
f = h1 on {z1,z}. (See [5, Lemma 6.2].) Then the function h = ho U hy
proves x1 € S, whence x1 > x¢. By Claim 3 or 4, there is a continuous
function hg : [xg,z1] — R contained in V' such that he = f on {xo,z1}.
Clearly the function h = hgUh1Uhg proves xg € S, contrary to assumption.

Now suppose that o > a. Let § > 0 be such that a < g — ¢ and
R(zg,d) C V. Since f is a Darboux function, we can choose an = € (xg —
0,x0) such that |f(z) — f(xo)| < 6. Let hgy correspond to zp € S. Extend
ho to h : [z,b] — R by connecting (z, f(z)) with (xo, f(zo)) by a straight
line segment. Clearly this function proves x € S. But x < g = inf S, an
impossibility.

We proved that a € S. So, there is a continuous function & : [a,b] — R
contained in V. Since V was an arbitrary open set containing f[[a,b], it
follows that f[[a,b] is almost continuous and (a,b) C G. But PN (a,b) # 0,
a contradiction. <

CLAIM 7. PN [f = 0] is nowhere dense in P.

By way of contradiction suppose that the set P N [f = 0] N (a,b) is
dense in PN (a,b) # () for some a < b. We will show that f[[a,b] is almost
continuous, which contradicts P N (a,b) # 0.

Take an arbitrary open set V' O f[[a,b]. Let S be the set of all s € [a, b]
for which there is a continuous function h : [s,b] — R contained in V
such that h = f on {s,b}. Define g = inf S. First we will prove that
T € S.

Indeed, suppose that this is not the case. Then zg < b. Let § > 0 be
such that R(zg,d) C V. Fix an x € S N (zg,z9 + J). Let hy correspond
tox € S. Set 1 = sup(P N (—o0,x)). By Claim 2, there is a continuous
function h; : [x1,2] — R contained in V such that f = h; on {z1,x}.
Thus 1 € S and 1 > zg. Let 7 > 0 be such that zg < 1 — 7 and
R(z1,7) C V. Pick an 29 € PN (z1 — 7,21) N [f = 0]. Let n > 0 be such
that R(z2,m7) € V. Choose an z3 € PN (2 — n,z2 + 1) N (z1 — 7,21)
which is a bilateral limit point of P. By Claim 4, there are continuous
functions ho : [zg,x3] — R and hg : [z3,21] — R contained in V such that
ha(zo) = f(xo), ha(zs) = ha(xz) = 0, and hz(x1) = f(x1). One can easily
see that the function h = hgU...U h3 proves xzg € S, which contradicts our
supposition.

Proceeding as in the proof of Claim 6, we can show that x¢ = a. So,
there is a continuous function h : [a,b] — R contained in V. Since V was
an arbitrary open set containing f[[a,b], it follows that f[[a,b] is almost
continuous and (a,b) C G. But PN (a,b) # 0, an impossibility. <

CLAIM 8. If condition (4.5) holds, then f is connected.
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Take an open set V' O f. We will show that for all a < b there is a
connected set h C R? contained in V' such that {(a, f(a)), (b, f(b)) € h. Let
a < b be arbitrary and let S be the set of all s € [a,b] for which there is
a connected set h C R? contained in V such that (s, f(s)), (b, f(b)) € h.
Define zg = inf S. First we will prove that xy € S.

Indeed, suppose that this is not the case. Then 2y < b. Let § > 0 be such
that R(zo,6) C V. Fix an z € SN (zg, 20 + ). Let hg correspond to x € S.
Set 1 = sup(P N (—oo,x)). By Claim 2, there is a continuous function
hi : [x1,2] — R contained in V' such that f = hy on {z1,2}. Then the set
h = hoUhy proves 1 € S, whence x1 > xg. If f(z¢)f(x1) > 0, then by Claim
3 or 4, there is a continuous function hg : [zg,z1] — R contained in V' such
that f = hg on {zo,z1}. (See also Claim 6.) Then the set h = ho U hy U hg
proves xg € S, contrary to assumption.

Otherwise let 7 > 0 be such that g < x; — 7 and R(x1,7) C V. Use
Claims 6 and 7 to find x9,23 € (1 — 7,21) such that f(xo)f(x2) > 0,
f(xz3)f(xz1) >0, x2 < x3, and P N [z2,z3) N [f = 0] = 0. By (4.5), there are
x4,%5 € [x2, 3] such that f(x4)f(z5) < 0 and PN [zy4,25] = 0. Clearly we
may assume that f(zg)f(z4) > 0 and f(x5)f(x1) > 0. By Claim 3, there
are continuous functions hs : [xo,z4] — R and hg : [z5,21] — R contained
in V such that he = f on {zg,z4} and hy = f on {x5,2;}. By Claim 1,
there is a continuous function hy : [z4,25] — R contained in V' such that
f = hg on {zy4,z5}. One can easily see that the set h = hg U...U hy proves
xo € S, which contradicts our supposition. Notice that A need not be a
function.

Proceeding as in the proof of Claim 6 we can show that zg = a. Con-
sequently, (a, f(a)) and (b, f(b)) belong to the same connected component
of V. Since the open set V O f was arbitrary, we conclude that the func-
tion f is connected. <

CrLAM 9. If condition (4.6) holds, then f is almost continuous.

Take an open set V' O f. Let a < b be arbitrary and let S be the set of
all s € [a, b] for which there is a continuous function A : [s,b] — R contained
in V such that h = f on {s,b}. Define o = inf S.

The rest of the proof is a repetition of the argument used in Claim 8.
The only difference is that in the last-but-one paragraph we moreover require
that x4 < x5. Then the set h = hg U ... U hy constructed in that paragraph
is a function, which proves zg € S.

REMARK. It can be readily observed (by the above proof) that condi-
tions (4.5) and (4.6) in Proposition 4.1 can be weakened. Namely, it suf-
fices to require that their assertions hold for nowhere dense, perfect sets
F Cc A= U AT such that both FN A~ and F N AT are dense in F.
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PROPOSITION 4.2. Let A=, AT C R be disjoint. Then there is a func-
tion f which satisfies conditions (4.3) and (4.4).

Proof. Let {K¢ : £ < ¢} be an enumeration of all closed sets K C R?
such that card dom(K N([A~ x (—00,0)]U[AT x (0,00)])) = ¢. For each £ < ¢
choose a point (z¢,ye) € Ke N ([A™ X (—00,0)] U[AT x (0,00)]) such that
xe & {x¢ 1 ¢ <&} Define
ye ifx=ux¢ <,

-1 ifee A" \{ze: { <},
1 ifze AT\ {zg: <},
0  otherwise.

Clearly the function f satisfies (4.3) and (4.4). =

THEOREM 4.3. Let A=, AT C R. The following are equivalent:

(i) the sets A~ and A" satisfy conditions (4.1) and (4.2),
(ii) there is a Darboux function f such that (4.3) holds.

Proof. (i)=-(ii). Use Proposition 4.2 to construct a function f which
satisfies (4.3) and (4.4). Then by Proposition 4.1, f is a Darboux func-
tion.

The implication (ii)=-(i) is evident. =

THEOREM 4.4. Let A=, AT C R. The following are equivalent:

(i) the sets A~ and AT satisfy conditions (4.1), (4.2), and (4.5),
(ii) there is a connected function f such that (4.3) holds,
(iii) there is a functionally connected function f such that (4.3) holds.

Proof. (i)=-(ii). Use Proposition 4.2 to construct a function f which
satisfies (4.3) and (4.4). Then by Proposition 4.1, f is connected.

The implication (ii)=-(iii) is evident.

(iii)=(i). Let f be a functionally connected function such that (4.3)
holds. Then (4.1) and (4.2) follow by Theorem 4.3. To prove (4.5) fix a
closed set F ¢ ATUAT, a € A NF, and 8 € AT N F. Arrange all
connected components of [«, 5] \ F in a sequence, {I, : n € N}. (We have
N =NnN(0,r) for some r € (0,00].) Define

(48) N ={neN:I,C[f<0]}, NT={neN\N :I,C[f>0]},

and suppose that contrary to (4.5), N = N~ U N*. For each n let g, :
R — [0,n7!] be a continuous function such that I,, = [g,, > 0]. Define the
function g : [, B] — R by
gn(x) Hfxel,,ne N,
g(z) = { —gn(z) fz€l,,neNT,
0 otherwise.
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Then g is continuous, f(a) < 0= g(a), and f(3) >0=g(B). Butgnf =10
(recall that FF C A~ U A™"), so f is not functionally connected, contrary to
assumption. =

THEOREM 4.5. Let A=, AT C R. The following are equivalent:

(i) the sets A~ and A" satisfy conditions (4.1), (4.2), and (4.6),
(ii) there is an almost continuous function f such that (4.3) holds.

Proof. (i)=-(ii). Use Proposition 4.2 to construct a function f which
satisfies (4.3) and (4.4). Then by Proposition 4.1, f is almost continuous.

(ii)=(i). Let f be an almost continuous function such that (4.3) holds.
Then (4.1) and (4.2) follow by Theorem 4.3. To prove (4.6) fix a closed set
FCA UAT, ae A~ NF,and B € AT N F. Assume that a < 8 (the
other case is analogous), and arrange all connected components of [a, 3] \ F
in a sequence, {I, : n € N}. For each n € N let I,, = (an, Bn). Define N™
and Nt by (4.8), and denote by N’ the set of alln € N\ (N~ UNT) for
which there is a v, € I, such that (an,v,] C [f > 0] and [yn, Bn) C [f < 0].
Suppose that contrary to (4.6), N = N-"UNTUN’.If n € N, then let K,
be the union of the line segments connecting (e, 0) with {(cay, + Bn)/2,n1)
and ((a, + Bn)/2,n~1) with (8,,0). If n € NT, then let K,, be the union of
the segments connecting (cv,, 0) with ((ay, +3,)/2, —n~1) and ((a, + 6n)/2,
—n~Y) with (3,,0). Finally if n € N’, then let K, be the union of the
segments connecting (., 0) with {y,, —n~1) and (y,,n~1) with {3,,0). Set

K = [{a} x [0,00)]U [ KnU[F x {0}]U[{B} x (=00, 0]
neN

and U = R?\ K. Then U is open and U D f. Suppose that there is a
continuous function g C U. Observe that g(a) < 0 < g(3), and set

x =max(F N[a, Bl N[g <0]).

Since g(z) < 0 and x € F, we obtain g(z) < 0. If x = «, for some n € N,
then using the fact that g N K,, = 0, we get g(8,) < 0, which contradicts
the definition of z. Otherwise x € cl(F'N[g > 0]) (notice that = < 3), which
is also impossible. =

Proposition 4.6 will be helpful in proving theorems analogous to the
above ones in which we do not require f =0on R\ (A~ UA™T).

PROPOSITION 4.6. Assume that the sets A=, At C R satisfy condition
(4.2) and

(4.9) AT C(R\ AT, AT C(R\ A"
Then there is a Darbouz function f such that

(4.10) A" C[f<0], AtcC[f>0].
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If A= and A" satisfy moreover (4.5), then f is connected. If A~ and AT
satisfy moreover (4.6), then f is almost continuous.

Proof. Clearly we may assume that condition (4.1) fails. Let {F¢ : £ < ¢}
be an enumeration of all closed sets F' C R such that card(F\(A~UA™)) =c.
For each ¢ < ¢ choose different points

Teo, T, Teo € (Fe \ (AT UAN)) \ {we,;: ¢ <& i< 3}
Define

B =A U{zep:&<c}, Bt=ATU{ze1:&<ch

Let a € B~ and 3 # «. If card([o, 8] \ (A~ U AT)) < ¢, then o € A~
and by (4.9),
card([o, 3] N B™) > card([a, BN A7) =c.
In the opposite case [a, 3] = F¢ for some & < ¢, so
card([a,, 3] N B™) > card{x¢o: ( < ¢, Fr C Fe} =«

Consequently, B~ = (B~)*. Similarly we can show that B = (B™)*.

Now let « € B~ and 8 € Bt. If z¢; € [a, 3] for some £ < ¢ and @ < 2,
then [, 8] = F for some ¢ < ¢, and z¢ 2 € [a, 8]\ (B~UBT). In the opposite
case by (4.2), [o, 8]\ (B-UB") = [a, 8] \ (A~ UAT) #0.

By Proposition 4.2, there exists a function f such that B~ = [f < 0],
Bt =[f >0],and f N K # () whenever K C R? is closed and

carddom(K N ([B~ x (—=00,0)]U [BT x (0,0)])) = ¢.
Then by Proposition 4.1, f is a Darboux function.

Now assume that A~ and A7 satisfy also (4.5). Fix a closed set F' C
B UB",ae B NF,and 3 € BTNF.If F C A~ UAT, then by (4.5),
there exist o/ € B~ N[a, ] and ' € BT such that F N[/, 3] = 0.

Otherwise card([a, 8] \ (A~ U AT)) = c. Notice that

{1‘572:£<C}ﬂFC{$§721£<C}Q(B_UB+):@,

and conclude that card(F \ (A~ U A")) < ¢. Consequently, there is a con-
nected component I of [«, 3] \ F' such that cl] = F¢ for some £ < ¢. Then
o =x¢9€ B Na,f], B =x¢1 € BT, and F N[, 5] = 0. So by Proposi-
tion 4.1, f is connected.

Finally assume that A~ and A% satisfy (4.6). Then arguing as in the
previous case, we can conclude that f is almost continuous. =

THEOREM 4.7. Let A=, AT C R. The following are equivalent:

(i) the sets A~ and A" satisfy conditions (4.2) and (4.9),
(ii) there is a Darboux function f such that (4.10) holds.

Proof. The implication (i)=-(ii) follows by Proposition 4.6.
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(ii)=(i). Let f be a Darboux function such that (4.10) holds. Then by
Theorem 4.3,

A" Cf<0l=[f<0"C(R\AN)"
Similarly we can show that AT C (R\ A™)*. Condition (4.2) is evident. =
The proofs of Theorems 4.8 and 4.9 mimic the argument used above.
THEOREM 4.8. Let A=, AT C R. The following are equivalent:

(i) the sets A~ and A™ satisfy conditions (4.2), (4.5), and (4.9),
(ii) there is a connected function f such that (4.3) holds,
(iii) there is a functionally connected function f such that (4.3) holds.

THEOREM 4.9. Let A=, AT C R. The following are equivalent:

(i) the sets A~ and A" satisfy conditions (4.2), (4.6), and (4.9),
(ii) there is an almost continuous function f such that (4.3) holds.

5. Examples

EXAMPLE 5.1. Let F' be the ternary Cantor set and let {I,, : n € N} be
a family of connected components of R\ F' such that

cl(UIn>ﬂcl<R\ UIn) - F

neN neN
For each n € N choose an xz,, € I,,. Define

A" = JdL\{zn:neN}, AT =R\ |JdI.
neN neN

Then A~ and A* satisfy (4.1) and (4.2), but they fail (4.5).

EXAMPLE 5.2. Let F be the ternary Cantor set and let {(ay, b,) : n € N}
be the family of all connected components of [0, 1] \ F. Define

A7 = Ulan, (an+62)/2), A" = ((@n +b0)/2,0,] UF* U (R (0,1)).
neN neN

Then A~ and A™ satisfy (4.1), (4.2), and (4.5), but they fail (4.6).
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