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On the complexity of subspaces of Sω

by

Carlos Uzcátegui (Mérida)

Abstract. Let (X, τ) be a countable topological space. We say that τ is an analytic
(resp. Borel) topology if τ as a subset of the Cantor set 2X (via characteristic functions)
is an analytic (resp. Borel) set. For example, the topology of the Arkhangel’skĭı–Franklin
space Sω is Fσδ . In this paper we study the complexity, in the sense of the Borel hierarchy,
of subspaces of Sω. We show that Sω has subspaces with topologies of arbitrarily high
Borel rank and it also has subspaces with a non-Borel topology. Moreover, a closed subset
of Sω has this property iff it contains a copy of Sω.

1. Introduction. Let (X, τ) be a countable topological space. We say
that τ is an analytic (resp. Borel) topology if τ as a subset of the Cantor
set 2X (identifying a subset of X with its characteristic function) is an ana-
lytic (resp. Borel) set. Most of the examples of countable topological spaces
found in the literature are analytic. For example, every second countable
topology is Fσδ, in particular, the topology of the rationals is (in fact a com-
plete) Fσδ subset of 2Q. Other examples of Fσδ topologies are Arens space [1]
or its more general version, the Arkhangel’skĭı–Franklin space Sω (see [2]).
A systematic study of analytic topologies was initiated in [13, 12] where
an explicit connection was shown between descriptive set theoretic proper-
ties and pure topological properties of a given space. For example, analytic
topologies are closely related to spaces of continuous functions: a T2 regular
countable space has an analytic topology iff it is homeomorphic to a count-
able subspace of Cp(NN) (the space of real-valued continuous functions on
the Baire space NN with the pointwise topology) [13, Theorem 6.1].

In this note we are interested in the complexity of subspace topologies of
a given countable space. It is clear that any subspace Y of a space X with
an analytic topology also has an analytic topology. However, the complexity
of the subspace topology of Y (measured in terms of the Borel hierarchy)
might vary considerably depending on X and Y . On the one hand, if X is
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second countable or more generally has an Fσ basis (see Section 3.2 for the
definition), then the topology of every subspace of X is Fσδ. On the other
hand, we will show that the Arkhangel’skĭı–Franklin space Sω (which has
an Fσδ topology) has subspaces with arbitrarily high Borel rank and also
has non-Borel subspaces (see §2 for the definition of Sω and some general
information about it).

Our main result is the following

Theorem 1.1. Let X be a closed subset of Sω. The following are equiv-
alent :

(i) X has a subspace whose topology is not Borel.
(ii) X has subspaces with Borel topology of arbitrarily high Borel rank.

(iii) X contains a copy of Sω.

The proof uses the fact that Sω is a sequential space, thus with every
closed subspace X there is associated an ordinal %(X) called the sequential
rank (see the definition in §2). We will show the following

Theorem 1.2. Let X be a closed subset of Sω.

(i) If %(X) < ω1, then the subspace topology of every subset of X is
Borel.

(ii) If %(X) = ω1, then X contains a closed copy of Sω and a subspace
whose topology is not Borel.

Examples of subspaces of Sω with Borel topology of arbitrarily high rank
are essentially given by the terminal nodes of well founded trees. These
subspaces will have only one non-isolated point and therefore their topology
is given by a filter. Thus in §4 we will construct Borel filters of arbitrarily
high rank which in fact are the nbhd filter of a point in a subspace of Sω.
Parts (i) and (ii) of Theorem 1.2 are shown in §5 and §6 respectively.

A very natural question is to determine which countable spaces satisfy
the conclusion of Theorem 1.1. In particular, we would like to know when a
countable space contains a copy of Sω (a similar question was asked in [2]).
In §3 we show that if in a countable space X with Borel topology the nbhd
filter of every point is Borel, then every subspace of X also has a Borel
topology. In particular, for the homogeneous space Sω, Theorem 1.1 implies
that the nbhd filter of every point in Sω is not Borel. Moreover, we will see
that these nbhd filters are complete analytic sets. This is in contrast with
the fact that Sω has an Fσδ topology.

We end this introduction by making some comments about the connec-
tion between analytic topologies and the descriptive complexity of Cp(X),
the space of real-valued continuous functions on a non-discrete completely
regular countable topological space X with the topology of pointwise con-
vergence. There have been a lot of work on the classification of Cp(X)
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(see [4, 5, 6] and the references therein). One of the main results is that
Cp(X) is homeomorphic to σω (the countable product of the space of se-
quences eventually equal to zero) whenever Cp(X) is Fσδ as a subset of RX .
It can be shown that a regular topology onX is analytic iff Cp(X) is analytic.
However the exact relationship between the complexity of the topology on
X and that of Cp(X) has not been fully investigated. For the case of spaces
with only one non-isolated point, i.e. spaces associated to filters, this has
been done ([6, Lemma 4.2] and references therein). We have not pursued
this issue here but we think it is worth studying.

The papers [11, 5] dealt with the problem of classifying CD(X), the set
of continuous functions on X with the topology of pointwise convergence
on D, where D is a countable dense subset of X, i.e, CD(X) = {f |D :
f ∈ C(X)} ⊆ RD. It was shown that the Borel complexity of CD(X) might
vary considerably depending on D and X. For instance, for every countable
ordinal α there is a space Xα and a dense subset Dα of Xα such that Cp(Xα)
is Fσδ and CDα(Xα) has Borel rank larger than α (see [5, Prop. 2.6]). Our
results show that a similar phenomenon happens within the single space Sω.

2. Preliminaries. We will use the standard notions and terminology
of descriptive set theory (see for instance [10]). ω<ω denotes the collection
of finite sequences of natural numbers. For s ∈ ω<ω, |s| denotes its length.
For n ∈ N, ŝ n is the concatenation of s with n. For α ∈ NN, we denote by
α|n the restriction of α to {0, 1, . . . , n− 1}. The Borel sets of rank α will be
denoted by Σ0

α and Π0
α, where for instance Σ0

1 and Π0
1 are respectively the

open and closed sets, Σ0
2 and Π0

2 the Fσ and Gδ sets and so on. A subset
of a Polish space is analytic (or Σ1

1) if it is a continuous image of the Baire
space NN. A well known result of Suslin is that a subset of a Polish space is
Borel iff it is analytic and co-analytic (see for instance [10, Theorem 14.11]).

Let X,Y be Polish spaces and A ⊆ X, B ⊆ Y . The set A is said to be
Wadge reducible to B, denoted by A ≤w B, if there is a continuous function
f : X → Y such that x ∈ A iff f(x) ∈ B (see [10, §21.E]). Notice that if
A ≤w B and A is Borel (resp. projective), then the Borel (resp. projective)
type of B is at least that of A. Let Γ be a class of sets in Polish spaces.
If Y is a Polish space, a set A ⊆ Y is called Γ -complete if A ∈ Γ (Y ) and
B ≤w A for all B ∈ Γ (see [10, §22.B]). The archetypical Σ1

1-complete set
is the collection of ill founded trees on N, i.e. trees with at least one infinite
branch (see [10, 27.1]). Any Σ1

1-complete set is not Borel. Thus to show that
an analytic subset A of a Polish space Z is not Borel it suffices to show that
the set of ill founded trees is Wadge reducible to A.

Let A be a subset of a topological space X. The sequential closure of
A is defined by transfinite recursion as follows [2]. Let A(0) = A and A(1)

be the set of all limits of convergent sequences in A, A(α+1) = [A(α)](1) and
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A(β) =
⋃
α<β A

(α) for β a limit ordinal. The sequential closure of A, denoted
by [A]seq, is the set A(ω1). The space X is called sequential if for every A ⊆ X
the closure of A is equal to its sequential closure, i.e. A = [A]seq. A subset
O ⊆ X is said to be sequentially open if for all x ∈ O and any sequence
xn converging to x there is N such that xn ∈ O for all n > N . A space is
sequential iff every sequentially open set is in fact open. A closed subspace
of a sequential space is sequential.

Definition 2.1. Let X be a sequential space and A ⊆ X. The sequential
rank of A in X, denoted by σ(A,X), is defined by

σ(A,X) = min{α : A(α) = A(α+1)}.
The sequential rank of X is defined by

%(X) = sup{σ(A,X) : A ⊆ X}
The local versions of these ordinals are defined as follows. Given A ⊆ X and
s ∈ X define

σ(s,A) = min{α : s ∈ A(α)} for s ∈ A,
%(s,X) = sup{σ(s,A) : s ∈ A&A ⊆ X}.

The following elementary facts about these ordinals are stated for later
reference.

Proposition 2.2. Let X be a sequential space, A ⊆ X and s ∈ X.

(i) A(σ(A,X)) = A.
(ii) %(s,X) = 0 iff s is isolated in X.

(iii) σ(A,X) = sups∈A σ(s,A).
(iv) %(X) = sups∈X %(s,X).

Now we recall the definition of Sω and some basic facts about it. Define
a topology τ on ω<ω by

U ∈ τ ⇔ {n ∈ N : ŝ n 6∈ U} is finite for all s ∈ U .

Let Sω be the space (ω<ω, τ). It is clear that Sω is T2, zero-dimensional and
has no isolated points. Notice that a set U is τ -open iff there is f : ω<ω → N
such that if s ∈ U , then ŝ n ∈ U for all n ≥ f(s). A sequence {xi}i in Sω
converges to s iff {xi}i is eventually of the form ŝ ni for some increasing
sequence {ni} of integers. From this it follows that Sω is sequential. For
each t ∈ ω<ω we define

Nt = {s ∈ ω<ω : t � s}.
Notice that Nt is a clopen set in Sω. If we consider τ as a subset of 2ω

<ω

(the latter with the product topology is homeomorphic to the Cantor set),
then it is clear that τ is Fσδ.
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Sω has showed up in many different contexts. The first occurrence was as
an example of a sequential homogeneous space of sequential rank ω1 (see [2]).
A very interesting description of Sω as a translation invariant topology over
Z is given in [7]. Sω has been implicitly used to study sequential conver-
gence in Cp(X) (see [9]). For instance, if Z is a topological space such that
there is a continuous surjection from Z onto a non-meager subset of R, then
Cp(Z) contains a copy of Sω. Another occurrence of Sω is in the following
result about spaces with the Schur property. Let E be a linear normed space.
Then every weakly convergent sequence in E is norm-convergent iff E with
the weak topology contains no copy of Sω ([13, Theorem 5.3] and [9, Theo-
rem 17]). Another interesting property of Sω appears in [3, Example 3.8].

3. Complexity of neighborhood filters. In this section we make
some comments about the problem of when every subspace topology of a
Borel topology is also Borel. Let us start by analyzing the case of a (Haus-
dorff) space with only one non-isolated point. Let F be a filter over ω and
X be ω + 1 with the topology where every n ∈ ω is isolated and the nbhds
of ω are the elements of F . Let Y ⊆ X. Then the restriction of F to Y ,
denoted by FY , is easily seen to have the property that A ∈ FY iff A ⊆ Y
and A ∪ (X \ Y ) ∈ F . This shows that FY ≤w F . Therefore, if F is Borel,
then FY is also Borel and thus the subspace topology of Y is Borel for every
Y ⊆ X.

Recall that the nbhd filter Fx of a point x ∈ X is the filter over X \ {x}
defined by A ∈ Fx if there is an open set V such that x ∈ V ⊆ A ∪ {x}.
Notice that if τ is analytic, then every Fx is also analytic. It is elementary
to show that V is open iff V \ {x} ∈ Fx for all x ∈ V . In particular, this
says that if every Fx is Borel, then τ is also Borel. The converse is not true:
as we will see in §6, Sω has a Borel topology but in fact all its nbhd filters
are non-Borel.

A basis B for a countable topological space X is said to be Fσ if B is an
Fσ set as a subset of 2X . Every space with an Fσ basis has an Fσδ topology
[13, Proposition 3.2]. The converse is not true, since Sω has an Fσδ topology
but it does not admit an Fσ basis [13, Proposition 5.2] (this will also be
deduced from one of the results presented in this paper). A countable T2
regular space X has an Fσ basis iff X has a closed subbasis iff X is homeo-
morphic to a countable subspace of Cp(2N) [13, Theorems 3.2, 3.4 and 6.1].
It is easy to check that having an Fσ basis is a hereditary property. More-
over, in this case, every nbhd filter is Fσ. In fact, let {Fn}n be closed subsets
of 2X such that B =

⋃
n Fn is a basis for τ . Then

A ∈ Fx ⇔ ∃n ∈ N ∃V [V ∈ Fn &x ∈ V ⊆ A ∪ {x}].
The set of all (V,A) ∈ 2X × 2X such that V ∈ Fn &x ∈ V ⊆ A ∪ {x} is
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compact for any x ∈ X and n ∈ N. So Fx is a countable union of projections
of compact sets, therefore it is Fσ for all x. We state this result in the
following

Proposition 3.1. If τ has an Fσ basis, then Fx is Fσ for all x.

We do not know if the converse holds. The Arens space S2 (which can be
defined as ω≤2 with the topology inherited from Sω (see [8, Example 1.6.19])
is an example of a space whose topology does not admit an Fσ basis [13]
but all its nbhd filters are Borel (in fact, they are Σ0

4, see Lemma 4.5).
We will denote the closure operator of a topological space (X, τ) by clX

or clτ . The following result characterizes when every Fx is Borel for an
analytic (and therefore Borel) topology.

Theorem 3.2. Let τ be an analytic topology over a countable set X.
The following are equivalent :

(i) Fx is Borel for every x ∈ X.
(ii) For each x ∈ X, the set Cx = {A ⊆ X : x ∈ A} is Borel.

(iii) clτ is a Borel function from 2X into 2X .
(iv) The relation R(A, Y ) given by “A is closed in Y ” is Borel (in

2X × 2X).

Proof. Since τ is analytic, R is analytic and each Cx is co-analytic. The
following equivalences are straightforward:

A ∈ Fx ⇔ x 6∈ A&X \ (A ∪ {x}) 6∈ Cx,
A ∈ Cx ⇔ X \ (A ∪ {x}) 6∈ Fx,
R(A, Y ) ⇔ ∀B [clτ (A) = B → B ∩ Y ⊆ A],

A ∈ Cx ⇔ x ∈ A or [x 6∈ A&¬R(A,A ∪ {x})],
clτ (A) = B ⇔ A ⊆ B&∀x (x ∈ B → A ∈ Cx) &X \B ∈ τ.

Notice that the complementation mapping is a homeomorphism of the
Cantor set and thus the function A 7→ X \ (A∪ {x}) is continuous for every
x ∈ X. To finish the proof we notice that the first two equivalences above
show that Fx is Borel iff Cx is Borel. The third one shows that if clτ is
Borel, then R is co-analytic and, being analytic, it is then Borel by Suslin’s
theorem [10, Theorem 14.11]. The fourth one shows that if R is Borel, then
Cx is Borel for all x. And the last equivalence shows that if Cx is Borel
for all x, then clτ has an analytic graph and thus it is a Borel function
[10, Theorem 14.12].

In view of the previous result it is natural to introduce the following
notion. Let us say that a topology on a countable set X is hereditarily Borel
if the subspace topology of every Y ⊆ X is Borel. Thus by Theorem 3.2 we
have the following result.
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Corollary 3.3. Let τ be an analytic topology over X. If every nbhd
filter Fx of X is Borel , then the topology of X is hereditarily Borel. More-
over , the Borel rank of the subspace topologies is uniformly bounded.

Remark 3.4. We do not know whether the converse of 3.3 holds, that
is to say, whether it is true that if X has an analytic topology such that
the nbhd filter of some point is not Borel, then X has a subspace with a
non-Borel topology.

We end this section by showing a general fact about the Baire measura-
bility of clτ .

Proposition 3.5. Let τ be a meager (as a subset of 2X) T1 topology
with infinitely many limit points. Then clτ is not of Baire class 1.

Proof. Since τ is T1, it is a dense subset of 2X . Thus the collection
of τ -closed sets is also dense and meager. Given any non-τ -closed set B,
there is a sequence of finite sets Fn such that B = limn Fn (in the product
topology of 2X). Since τ is T1, it follows that F n = Fn and therefore clτ is
not continuous at B. This shows that the collection of discontinuity points
of clτ is a co-meager set, and therefore clτ cannot be of Baire class 1.

Remark 3.6. In particular, by [13, Corollary 2.6]), clτ is not of Baire
class 1 when τ is an analytic T1 topology with infinitely many limit points.

4. Subspaces of Sω with topology of arbitrarily high Borel rank.
In this section we will show the following

Theorem 4.1. For any countable ordinal α there is X ⊆ Sω such that
subspace topology of X is a Borel set of rank ≥ α.

The idea of the proof of 4.1 is to associate to a well founded tree T on
N a subspace XT of Sω in such a way that the Borel rank of the topol-
ogy of XT will be, roughly speaking, equal to the rank of T . Let E(T ) be
the terminal nodes of T . The subspaces we will construct are of the form
{∅} ∪ E(T ). Let us observe that any antichain D (i.e. no element in D ex-
tends another one) is discrete as a subset of Sω, so in particular E(T ) is a
discrete set. Therefore, we will actually construct filters of arbitrarily high
Borel rank. Our filters are similar to those constructed in [4]. It is interesting
to realize that these filters correspond to nbhd filters of points in a subspace
of Sω.

Definition 4.2. For any well founded tree T on N, let FT be the nbhd
filter of ∅ in the subspace {∅} ∪ E(T ) of Sω.

We will construct by recursion an ω1-sequence of trees Tα such that FTα
is Σ0

α-complete, that is to say, they will satisfy the following two conditions:
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(i) FTα is Σ0
α.

(ii) For every A in Σ0
α there is a continuous function V : 2N → 2E(Tα)

such that x ∈ A iff V (x) ∈ FTα .

Recall that the exact Borel rank of a Σ0
α-complete set is precisely α.

Before stating the preliminary lemmas needed for the proof of Theo-
rem 4.1 we make a general observation which shows that the subspaces we
will construct cannot be sequential.

Proposition 4.3. Let X ⊆ Sω. If X is a sequential subspace of Sω,
then the topology of X is Π0

3.

Proof. Since X is sequential, V ⊆ X is open in X iff V is sequentially
open. Therefore V is open in X iff for all s ∈ V the following holds:

If {n : ŝ n ∈ X} is infinite, then ∃N ∀m ≥ N [ŝ m ∈ X → ŝ m ∈ V ],

and from this it follows that the topology of X is Π0
3.

We will use the following result [4, Lemma 8.2] (see also [10, 23.5]).

Lemma 4.4. Let A ⊆ 2N and α > 1 a countable ordinal.

(i) A belongs to Π0
α+1 iff there are sets Am in Π0

βm
for some βm < α

such that
x ∈ A ⇔ ∀n ∃m ≥ n [x ∈ Am].

(ii) A is in Σ0
α+1 iff there are sets Am in Σ0

βm
for some βm < α such

that
x ∈ A ⇔ ∃n ∀m ≥ n [x ∈ Am].

For α = 1, the sets Am can be chosen to be clopen.

The base for the induction is given in the following

Lemma 4.5. Let T = ω≤2. Then FT is Σ0
4-complete.

Proof. Notice that E(T ) = ω2. Let V ⊆ E(T ). It is easy to check that

V ∈ FT iff ∃N ∀n ≥ N ∃M ∀m ≥M [〈n,m〉 ∈ V ].(1)

From this it follows that FT is Σ0
4. To see that FT is Σ0

4-complete fix a Σ0
4

set A ⊆ 2N. By Lemma 4.4 there are clopen sets F (n,m) such that

x ∈ A ⇔ ∃N ∀n ≥ N ∃M ∀m ≥M [x ∈ F (n,m)].(2)

Let V : 2N → 2E(T ) by given by V (x) = {〈n,m〉 : x ∈ F (n,m)}. Since
the F (n,m)’s are clopen, V is continuous. From (1) and (2) we conclude
that x ∈ A iff V (x) ∈ FT .

Remark 4.6. Recall that the Arens space S2 is the subspace ω≤2 of Sω.
Thus the previous lemma might be known (see [4, Remark 8.11]) but we
have included the proof for the sake of completeness.
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Lemma 4.7. Let Tn be well founded trees such that FTn is Σ0
αn-complete.

Let T be the tree
T =

⋃

n

{〈n〉̂ s : s ∈ Tn} ∪ {∅}.

Then T is well founded and FT is Σ0
α+1-complete for α = sup{αn + 1 :

n ∈ N}.
Proof. It is clear that T is well founded. Notice that E(T ) is the union

of {〈n〉̂ s : s ∈ E(Tn)}. Let Φn : Sω → N〈n〉 be defined by Φn(s) = 〈n〉̂ s. It is
clear that Φn is a homeomorphism. Let Gn = Φn[FTn]. Then Gn is the nbhd
filter of 〈n〉 in the subspace Φn[E(Tn) ∪ {∅}] = {〈n〉̂ s : s ∈ E(Tn)} ∪ {〈n〉}
and moreover Gn is Σ0

αn .
Let A ⊆ E(T ). We claim that

A ∈ FT iff ∃N ∀n ≥ N [A ∩N〈n〉 ∈ Gn].(3)

From this and Lemma 4.4 it follows that FT is Σ0
α+1.

To show (3), suppose A ∈ FT and let W be an open set in Sω such
that ∅ ∈ W and W ∩ E(T ) = A. There is N such that 〈n〉 ∈ W for all
n ≥ N . Notice that Wn = W ∩ N〈n〉 is an open set in N〈n〉, 〈n〉 ∈ Wn

and Wn ∩ Φn[E(Tn)] ⊆ A ∩ N〈n〉. Conversely, suppose the right hand side
of (3) holds and let Wn be an open set in N〈n〉 such that 〈n〉 ∈ Wn and
Wn ∩ Φn[E(Tn)] = A ∩N〈n〉 for all n ≥ N . Let W be the union of the Wn’s
together with ∅. Then W is an open nbhd of ∅. It is routine to check that
W ∩ E(T ) ⊆ A.

Now we will show that FT is Σ0
α+1-complete. Let A ⊆ 2N be a Σ0

α+1 set.
By Lemma 4.4 there are Σ0

βn
sets An with βn < α such that

x ∈ A ⇔ ∃N ∀n ≥ N [x ∈ An].

We can assume that βn ≤ αn. (In fact, suppose α0 < β0. Find the least
n such that β0 ≤ αn. Replace the original sequence {Ak} by {A′k} which
now starts with n copies of 2N followed by the original sequence {Ak}. Now
β′0 ≤ α0. Repeat this procedure as many times as necessary.)

Since FTn is Σ0
αn-complete, there are continuous functions Vn : 2N →

2E(Tn) such that

x ∈ An ⇔ Vn(x) ∈ FTn .(4)

Let V (x) =
⋃
n Φn[Vn(x)]. Notice that V : 2N → 2E(T ) is continuous and

V (x)∩N〈n〉 = Φn[Vn(x)]. From this, (3), (4) and the definition of Gn we have
V (x) ∈ FT iff ∃N ∀n ≥ N [Φn[Vn(x)] ∈ Gn] iff ∃N ∀n ≥ N [Vn(x) ∈ FTn ] iff
x ∈ A.

Remark 4.8. The definition of the filter FT occurring in the proof of
the previous result could be stated in terms of the Hausdorff operation (see
[10, Exercise 23.5]) and the Fréchet product (see [4, Section 8]). Thus the
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Σ0
α+1-completeness of FT can be proved basing on some general results

about these operations. Our filters are similar to the filters Fα’s constructed
in [4, Section 8]. For instance, FT with T = ω≤2 corresponds to F2.

Proof of 4.1. We will define by recursion a sequence Uα of well founded
trees such that FUα is Σ0

α-complete where α is either an even integer greater
than 2 or an odd infinite ordinal.

We start with U4 = ω≤2 which works by Lemma 4.5. Now taking Tn
equal to U2k for all n and applying Lemma 4.7 we obtain U2k+2. For infinite
ordinals we start by taking Tn = U2n in Lemma 4.7 and obtain Uω+1. Now
for the inductive step the pattern should be clear.

It is quite easy to define topologies on the Π side of the Borel hierarchy
once we have available topologies on the Σ side.

Proposition 4.9. Let (X, τ) be a countable topological space. Suppose
X =

⋃
n Un where Un is a pairwise disjoint family of non-empty open

sets. Suppose that τ restricted to Un is Σ0
αn-complete and αn is an in-

creasing sequence of countable ordinals. Then τ is Π0
λ-complete, where λ is

supn(αn + 1).

Proof. For V ⊆ X, it is clear that V ∈ τ iff V ∩ Un is open in Un for
all n. Thus τ is Π0

λ. Fix a Π0
λ subset A of a zero-dimensional Polish space Y .

Let Bn be a Σ0
βn

set with βn < λ such that A =
⋂
nBn. We can suppose

that βn ≤ αn. Then as τ restricted to Un is Σ0
αn-hard, there are continuous

functions fn : Y → 2Un such that y ∈ Bn iff fn(y) is open in Un. Define
f : Y → 2X by f(y) =

⋃
n fn(y). Since the Un’s are pairwise disjoint, f is

easily seen to be continuous and y ∈ A iff f(y) ∈ τ .

Remark 4.10. The method of constructing subspaces in the proof of 4.1
and 4.9 does not provide examples of topologies of any possible Borel type.
For instance, it will be interesting to determine whether Sω has subspaces
with topology of type Π0

2n, Σ0
2n+1 (n ≥ 2) and Σ0

ω.

Remark 4.11. Notice also that from 4.1 and 3.1–3.3 it follows that Sω
does not have an Fσ basis, a fact proved in [13, Proposition 5.2] by a different
method.

5. Subspaces of Sω whose topology is hereditarily Borel. In this
section we will show the following

Theorem 5.1. Let X ⊆ Sω be a closed subspace with %(X) < ω1. Then
the closure operator clX for the subspace topology of X is Borel. In partic-
ular , every subspace of X has a Borel topology and , moreover , the Borel
rank of the topologies of subspaces of X is uniformly bounded.
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Let X be a closed subspace of Sω with %(X) < ω1. In order to use 3.2
and 3.3 we need to show that the sets

Cs = {A ⊆ X : s ∈ A }
are Borel for all s ∈ X. We will also allow s 6∈ X, since in this case Cs is
empty.

Lemma 5.2. Let X be a closed subspace of Sω. Then for all N ,

Cs = {A ⊆ X : s ∈ A} ∪
⋂

n≥N

⋃

m≥n
Cŝm.

Proof. Let A ⊆ Sω and s ∈ A \ A. A straightforward induction on
σ(s,A) shows that there is an increasing sequence {ni}i of integers such
that ŝ ni ∈ A for all i. From this the inclusion ⊆ follows. For the other one,
just observe that ŝ ni converges to s.

Lemma 5.3. Let X be a closed subspace of Sω and s ∈ X. If %(s,X)
< ω1, then there is N such that %(ŝ m,X) < %(s,X) for all m ≥ N such
that ŝ m ∈ X.

Proof. Let α = %(s,X) and let B be the set of all m such that %(ŝ m,X)
≥ α and ŝ m ∈ X. Suppose, towards a contradiction, that B is infinite.
Notice that α > 0, otherwise s would be isolated in X and there would be
only finitely many m such that ŝ m ∈ X. We will only analyze the case
when α is a limit ordinal; the successor case can be treated similarly.

Since α < ω1, we can fix an increasing sequence of ordinals αn < ω1

converging to α. For each n ∈ B, there is An such that ŝ n ∈ An and
σ(ŝ n, An) ≥ αn. We can assume that An ⊆ Nŝn. Let

A =
⋃

n∈B
An.

Notice that s ∈ A. We claim that σ(s,A) > α, which is a contradiction. In
fact, suppose s ∈ A(α); then there is m such that s ∈ A(αm+1). Therefore
there is an increasing sequence of integers ni such that ŝ ni ∈ A(αm) for all i.
Since An ⊆ Nŝn and the Nŝn’s are disjoint, it follows that ŝ ni ∈ A(αm)

ni for
all i. Thus αni ≤ σ(ŝ ni, Ani) ≤ αm, which is impossible if m < ni.

Proof of 5.1. By Propositions 3.2 and 3.3 it suffices to show that Cs is a
Borel subset of 2X for all s ∈ X. We will show this by induction on %(s,X).

If %(s,X) = 0, then s is isolated in X, therefore Cs consists of all A ⊆ X
such that s ∈ A, and thus Cs is a closed subset of 2X . Suppose that Ct is
Borel for all t ∈ X with %(t,X) < α and let s ∈ X with %(s,X) = α. By
Lemma 5.3 there is N such that %(ŝ m,X) < α for all m ≥ N such that
ŝ m ∈ X. By the inductive hypothesis, Cŝm is Borel for all m ≥ N . Now
from Lemma 5.2 it follows that Cs is also Borel.
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Remark 5.4. Let T be a tree on N. Then T is closed as a subset of Sω,
and thus a sequential space. By 4.3 the topology of T is Fσδ. If T is well
founded, it has an associated rank as a tree, which we will denote by rk(T )
(see [10, §2.E]). It is routine to check that %(T ) ≤ rk(T ). For the trees Uα
constructed in the proof of 4.1, it can be easily verified by induction that
%(Uα) = rk(Uα) ≤ α. It can also be verified that every subspace of Uα has
a Borel topology of rank at most α and there is one (namely E(Uα) ∪ {∅})
whose topology is Borel of rank exactly α. So for this example, the sequential
rank %(X) gives a good (uniform) bound for the Borel complexity of the
topology of subspaces of X.

6. Subspaces of Sω with an analytic non-Borel topology. In this
section we will show the following

Theorem 6.1. Let X ⊆ Sω be a closed subspace with %(X) = ω1. Then
there is Y ⊆ X such that the subspace topology of Y is not Borel. Moreover ,
there is a closed copy of Sω inside X.

The key lemma is

Lemma 6.2. Let D ⊆ ω<ω be an antichain and s ∈ D with %(s,D) = ω1.
Then the topology of D ∪ {s} is a complete analytic set , in particular , it is
not Borel.

Since any antichain is a discrete subset of Sω, it follows that s is the only
non-isolated point of D ∪ {s}. So the topology of D ∪ {s} is given by the
nbhd filter of s in D ∪ {s}.

A concrete example of an antichain D such that %(∅,D) = ω1 is the
following:

D = {ŝ2n : s(i) is odd for all i < |s| and n ∈ N}.(5)

Notice that the collection of all finite sequences of odd integers is a
subset of D and ∅ ∈ D. Thus D contains a closed copy of Sω. Therefore
%(∅,D) = ω1 and from Lemma 6.2 we conclude that the subspace topology
of D ∪ {∅} is analytic and non-Borel.

From 6.1, 3.2 and 3.3 we know that there must be some s ∈ Sω such
that the nbhd filter Fs of s is not Borel. Since Sω is homogeneous, every Ft
is non-Borel. Even more, we will show that Ft is a complete analytic set for
every t ∈ Sω. It suffices to show this for t = ∅. In fact, let D be an antichain
such that ∅ ∈ D and the topology of D ∪ {∅} is a complete analytic set (for
instance, the one given by (5)). By 6.2 the nbhd filter G of ∅ in D ∪ {∅}
is a complete analytic set. It is easy to check that A ∈ G iff A ⊆ D and
A ∪ (Sω \D) ∈ F∅. Thus G ≤w F∅. So we have shown the following
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Proposition 6.3. Let Fs be the nbhd filter of s in Sω. Then Fs is a
complete analytic set.

This proposition also follows from a result of [14]. In fact, for every tree
T let

F (T ) = {r ∈ Sω : ∃t ∈ T [|t| = |r|& t(i) ≤ r(i) for all i < |r|]}.
Let Tα be the set of all initial segments of α, where α ∈ NN. Let F be the
filter given by S ∈ F iff there is α ∈ NN such that F (Tα) ⊆ S. Notice that
F ⊆ F∅. The proof of the main result in [14] shows that if T is not well
founded, then F (T ) ∈ F , and when T is well founded, then F (T ) 6∈ F∅.
Thus F and F∅ are both complete analytic sets. The proof of 6.2 uses a
similar argument and the fact that Sω is a sequential space. However, we do
not know how to prove the existence of a subspace of Sω whose topology is
not Borel just from the fact that the nbhd filters of Sω are not Borel. This
is precisely an instance of the general question stated in 3.4.

Now we start the proof of Theorem 6.1. We will need another property
of the ordinal % defined in §2.

Lemma 6.4. Let X ⊆ Sω be a closed subspace and s ∈ ω<ω. If %(s,X) =
ω1, then %(ŝ m,X) = ω1 for infinitely many m’s.

Proof. Suppose that %(ŝ m,X) < ω1 for all m ≥ N with ŝ m ∈ X. Let
α = sup{%(ŝ m,X) : ŝ m ∈ X, m ≥ N}. Let A ⊆ X be such that s ∈ A. It
suffices to show that σ(s,A) ≤ α+1. We can assume that s 6∈ A. Then there
is an increasing sequence {ni}i of integers such that ŝ ni ∈ A. By hypothesis
%(ŝ ni,X) ≤ α. Therefore σ(ŝ ni, A) ≤ α, thus σ(s,A) ≤ α+ 1.

Proof of 6.1. From 2.2(iv) we know that there is s ∈ X such that
%(s,X) = ω1. We will construct an antichain D ⊆ X such that s ∈ D
and %(s,D) = ω1. Thus Y = D ∪ {s} will be the required subspace of X.
By Lemma 6.4, %(ŝ m,X) = ω1 for infinitely many m. The idea is to put
in D “half” of these sequences ŝ m and repeat this process with the other
“half”. More formally, for each sequence t such that %(t,X) = ω1 put

Bt = {m : %(t̂m,X) = ω1}
and let B0

t , B
1
t be a partition of Bt into two infinite pieces. We define by

recursion two sequences of sets Dn and En as follows:

D1 = {ŝ m : m ∈ B1
s},

E1 = {ŝ m : m ∈ B0
s},

Dn+1 = {t̂m : t ∈ En &m ∈ B1
t },

En+1 = {t̂m : t ∈ En &m ∈ B0
t }.
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Let
D =

⋃

n≥1

Dn, E =
⋃

n≥1

En.

It is not hard to verify by induction on n that En ⊆ D. It is clear that D
is an antichain and s ∈ D. To see that %(s,D) = ω1 it suffices to verify
that E ∪ {s} is a closed copy of Sω. It is clear that E ∪ {s} is a copy of Sω.
To check that it is closed, notice that if t ∈ E, t′ ≺ t and |s| < |t′|, then
t′ ∈ E.

Proof of 6.2. Since Sω is a homogeneous space, we can assume that s = ∅.
Consider the following function F that maps a tree T on N to a subset of D:

F (T ) = {r ∈ D : ∃t ∈ T [|t| = |r|& t(i) ≤ r(i) for all i < |r|]}.
For a given r there are only finitely many sequences t such that |t| = |r| and
t(i) ≤ r(i) for all i < |r|, thus F is continuous.

We claim that T is ill founded iff F (T )∪ {∅} is open in D ∪ {∅}. In fact,
suppose first that T is ill founded. Let α be an infinite branch of T . Define

W = {t ∈ ω<ω : α(i) ≤ t(i) for all i < |t|}.
It is clear that W is an open set of Sω and ∅ ∈W . Let

O =
⋃

t∈F (T )

Nt ∪W.

Then O is an open set of Sω. We will show that

F (T ) ∪ {∅} = (D ∪ {∅}) ∩O.
It is clear that F (T ) ∪ {∅} ⊆ (D ∪ {∅}) ∩ O. Conversely, let r ∈ D ∩ O.
There are two cases: (i) If r ∈ Nt ∩O with t ∈ F (T ), then t = r as D is an
antichain. (ii) If r ∈W ∩D, then α(i) ≤ r(i) all i < |r|. Since α is a branch
of T , we have r ∈ F (T ) by the definition of F (T ).

Suppose now that F (T ) ∪ {∅} is open in D ∪ {∅} and let O be an open
subset of Sω such that F (T ) ∪ {∅} = (D ∪ {∅}) ∩ O. By recursion we will
define α ∈ NN and a sequence rn ∈ ω<ω such that:

(1) rn ∈ O ∩D for all n.
(2) α|j ∈ O ∩D for all j.
(3) rn(i) ≤ α(i) for all i < |rn|.
(4) %(α|j,D) = ω1 for all j.
(5) |rn| < |rn+1| for all n.

Granting this has been done we finish the proof. To show that T is not well
founded, let

T0 = {t ∈ T : t(i) ≤ α(i) for all i < |t|}.
It is clear that T0 is a finitely branching subtree of T . So it suffices to show
that T0 is infinite. In fact, by (1), rn ∈ O ∩D ⊆ F (T ), thus there is tn ∈ T
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such that tn(i) ≤ rn(i) for all i < |rn| = |tn|. From (5) we conclude that the
tn’s are all different and from (3) we have tn ∈ T0 for all n.

So it remains to show that such α ∈ NN and rn ∈ ω<ω exist. Since
∅ ∈ O ∩D, there is r0 ∈ O ∩D. By Lemma 6.4 there are infinitely many n
such that %(〈n〉,D) = ω1. Thus let α(0) ≥ r0(0) be such that 〈α(0)〉 ∈ O and
%(〈α(0)〉,D) = ω1. We can continue this way and define α(i) for all i < |r0|.
Thus (1) and (3) are satisfied for n = 0, and (2) and (4) for j < |r0|.

Suppose we have defined rn and α(i) for all i < |rn| = k. Let

s = 〈α(0), α(1), . . . , α(k − 1)〉.
By (2), s ∈ D ∩O, thus there is rn+1 ∈ D ∩O extending s. By (4), %(s,D)
= ω1, therefore rn+1 extends properly s. Hence |rn| < |rn+1| and (5) holds.
Now we repeat the same argument as for the case n = 0 and define α up to
|rn+1| so that (2) and (4) hold for every j < |rn+1|.
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