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Return time statistics for unimodal maps

by

H. Bruin (Groningen) and S. Vaienti (Toulon and Marseille)

Abstract. We prove that a non-flat S-unimodal map satisfying a weak summability
condition has exponential return time statistics on intervals around a.e. point. Moreover
we prove that the convergence to the entropy in the Ornstein–Weiss formula enjoys normal
fluctuations.

1. Introduction and statements of the results. The subject of this
paper is the asymptotic distribution of return times in dynamical systems.
We consider a measure preserving ergodic dynamical system (X, f, µ). For
z ∈ X, denote by Uz a measurable set containing z and by µUz = µ|Uz/µ(Uz)
the conditional measure on Uz. Let τUz(x) be the first return of the point x
to Uz: τUz (x) = inf{k > 0 | fk(x) ∈ Uz, x ∈ Uz}. We are interested in the
distribution

µUz({x ∈ Uz | τUz(x)µ(Uz) > t})(1)

as µ(Uz)→ 0. We refer to [16, 8, 14] for the history and motivation of this
question and for a presentation and discussion of the different techniques
to solve it. Surprisingly, the limiting distribution of (1) shows a universal
behavior for a wide class of dynamical systems with some degree of mixing,
namely the distribution tends to e−t. Under slightly stronger mixing con-
ditions, one can also prove that the statistics of successive returns have a
Poissonian distribution [16, 14]. We want to stress that the convergence of
the distribution (1) holds for µ-a.e. z and that the choice of the set Uz is
also relevant. Proofs usually require U to be a cylinder set (with respect to
some partition) or a ball; the use of balls is much more general and we will
assume it in this paper. It is interesting that “return times to balls” recently
allowed reformulating several results of thermodynamic formalism in terms
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of return times statistics only (see [15, 2, 31, 13]). In [31] this approach was
called “thermodynamics of return times”.

In [8] we advocated the technique of inducing to explain the observed
universality in the distribution of return times. Let us briefly recall the main
result of that paper. Assume that X is a Riemannian manifold, consider an
open set X̂ ⊂ X and let f̂ : X̂ → X̂ be the first return map. We denote by
µ̂ the conditional measure on X̂, which can be proved to be f̂ -invariant and
ergodic. Let Ur(z) be the ball of radius r centered at z ∈ X and let τUr(z)(x)

(resp. τ̂Ur(z)(x)) be the first return time to Ur(z) for f (resp. f̂). As above
we denote by µA (resp. µ̂A) the conditional measure on A. We suppose that
(X̂, µ̂, f̂) has return time statistics ĝ(t), i.e., for µ̂-a.e. z ∈ X̂, there exists
εz(r) > 0 with εz(r)→ 0 as r → 0 such that

sup
t≥0

∣∣∣∣µ̂Ur(z)
({

x ∈ Ur(z)
∣∣∣∣ τ̂Ur(z)(x) >

t

µ̂(Ur(z))

})
− ĝ(t)

∣∣∣∣ < εz(r).

The key result of [8] is that the map f̂ enjoys on X̂ the same distribution
as f :

Theorem 1 (see [8]). If the function ĝ is continuous at 0, then there
exists g : R+ → [0, 1] such that N := {x | g(x) 6= ĝ(x)} is countable and for
µ-a.e. z ∈ X̂ and t 6∈ N , there exists δz,t(r) > 0 with δz,t(r)→ 0 uniformly
in t as r → 0 such that∣∣∣∣µUr(z)

({
x ∈ Ur(z)

∣∣∣∣ τUr(z)(x) >
t

µ(Ur(z))

})
− g(t)

∣∣∣∣ < δz,t(r).

This result is useful for dynamical systems that admit neighborhoods
(around µ-a.e. point) where the induced (i.e. first return) map is hyperbolic.
The distribution in the induced system can therefore be computed by the
usual techniques, quoted for example in [16, 14, 8], and then pushed back,
by Theorem 1, to the original system. We gave in [8] a few applications; in
particular we proved the exponential statistics g(t) = e−t for C3 interval
maps of the interval such that the closure of the orbit of the critical points
has zero measure.

The existence of a hyperbolic first return map around µ-a.e. point is,
however, unlikely. In this paper we show how, for unimodal maps, this as-
sumption can be discarded. Instead, we impose a summability condition
which is used (among other things) to guarantee the existence of an invari-
ant probability measure µ which is absolutely continuous with respect to
Lebesgue measure. This summability condition is considerably weaker than
the Collet–Eckmann condition, which requires that the derivatives along the
critical orbit grow exponentially fast. Hence Theorem 2 below extends the
results in [29].
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Let f : I → I be a C3 S-unimodal map. The S stands for negative
Schwarzian derivative, i.e., f ′′′/f ′− 3

2(f ′′/f ′)2 < 0 for all non-critical points.
Let c be the critical point, and assume that it is non-flat . This means that
there exists l ∈ (1,∞) such that limx→c |f(x) − f(c)|/|x − c|l exists and is
positive. Denote f i(c) by ci. In Section 2 we will prove the following theo-
rem:

Theorem 2. Let f be a non-flat C3 S-unimodal map satisfying
∑

n≥1

|Dfn−1(c1)|−1/l <∞.(2)

Let µ be the invariant measure which is absolutely continuous with respect
to Lebesgue measure. Then f has exponential return time statistics on in-
tervals, i.e., for µ-a.e. z,

µU ({y | τU (y) > t/µ(U)})→ e−t as µ(U)→ 0,

where U are intervals around z.

The summability condition (2) is the same as was used by Nowicki & van
Strien [27] to show the existence of an absolutely continuous invariant prob-
ability measure µ. Clearly (2) is more inclusive than the Collet–Eckmann
condition which was used in comparable results on return statistics [3, 9].
In particular, Theorem 2 applies to systems where the decay of correlations
is not exponentially fast (cf. [26]).

As a second main result, we will prove the log-normal fluctuations for
the entropy given by the Ornstein–Weiss formula. Given a generating par-
tition C and corresponding cylinder sets Cn(x), this formula says that the
first return of µ-a.e. x grows like enhµ , where hµ is the measure theoretic
entropy of µ. The distribution of the process (log τCn(x)(x)− nhµ)/

√
n, suit-

ably normalized, will converge in law to the Gauss zero-one law.
In Section 3, we will show that this applies to unimodal maps and C =

{[c2, c], [c, c1]}, the partition into the two monotonicity intervals. To the
absolutely continuous invariant measure µ we associate the variance σµ:

σ2
µ = σ2

µ(ϕ) =
�
ϕ2 dµ−

( �
ϕdµ

)2
+ 2

∞∑

n=1

[ �
ϕ(fn)ϕdµ−

( �
ϕdµ

)2]
,(3)

where ϕ = log |f ′| − � log |f ′| dµ.

Theorem 3. Let f be a non-flat C3 S-unimodal interval map. Assume
that |Dfn(c1)| ≥ Cnτ for some τ > 4l − 3 and C > 0. If σ2

µ > 0, then

µ

({
x ∈ I

∣∣∣∣
log τCn(x)(x)− nhµ

σµ
√
n

> u

})
⇒ 1√

2π

∞�
u

e−x
2/2 dx.(4)
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The most difficult part in the proof will be the verification of the Central
Limit Theorem for the potential ϕ (see Theorem 4). We think that this is
interesting enough to be stated separately.

Theorem 4. Under the assumptions of Theorem 3, ϕ satisfies the Cen-
tral Limit Theorem.

2. The exponential statistics

2.1. The Hofbauer tower. Let us come back to the unimodal map f :
I → I defined in the introduction. If we denote f i(c) by ci, we can rescale,
without loss of generality, f so that I = [c2, c1]. Condition (2) implies that c
is not attracted to a stable periodic orbit, nor is f infinitely renormalizable.

We presently describe the canonical Markov extension (Hofbauer tower)
of f . Let D2 = [c2, c1] and

Dk+1 =
{
f(Dk) if c 6∈ Dk,

[ck+1, c1] if c ∈ Dk.

A short induction argument shows that Dk = [ck, cβ(k)] or Dk = [cβ(k), ck],
where β(k) = k − max{i < k | Di 3 c}. See [4] for a proof and additional
information. The Hofbauer tower is the disjoint union Î :=

⊔
k≥2Dk. We

can define the following map ĝ:

ĝ(x ∈ Dk) = f(x) ∈
{
Dk+1 if c 6∈ [ck, x],

Dβ(k)+1 if c ∈ [ck, x].

By construction, (Î , ĝ) is a Markov map, in the sense that the image of each
level Dk is precisely the union of some levels Di. Let π : Î → I be the
natural projection. By construction (I, f) is a factor of (Î , ĝ): π ◦ ĝ = f ◦ π.
Keller’s result [17] states that the measure µ can be lifted to a measure µ̂
on Î which is ĝ-invariant, absolutely continuous and satisfies µ = µ̂ ◦ π−1.
In short, µ̂ is constructed as the vague limit of the following sequence:

µ̂1|D2 = normalized Lebesgue, µ̂1|Dk ≡ 0 for k ≥ 3,

µ̂n = µ̂n−1 ◦ ĝ−1.

Several of our estimates are based on versions of the Koebe Lemma. We
recall it in the form that we use. Originally this lemma is proved under
the assumption that f has negative Schwarzian derivative. Recent work of
Kozlovski shows that the C3 assumption is sufficient (see [24, Section IV.3]
and [21]), but the focus of our results would not justify more complicated
proofs avoiding the negative Schwarzian assumption.

Lemma 1. Let g : (a, b) → R be a monotone C3 map with negative
Schwarzian derivative. Then for any δ > 0, there is a Koebe constant K =
K(δ) = ((1 + δ)/δ)2 such that the following hold :
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• (Koebe Principle) If x ∈ (a, b) is such that

min{|g(b)− g(x)|, |g(x)− g(a)|}
|g(b)− g(a)| ≥ δ,

then
1
K

|g(b)− g(a)|
|b− a| ≤ |g′(x)| ≤ K |g(b)− g(a)|

|b− a| .

• (Macroscopic Koebe Principle) Under the same hypothesis,

min{|b− x|, |x− a|}
|b− a| ≥ 1

K2 .

Lemma 2. Assume that f is conservative with respect to Lebesgue mea-
sure. There exists δ > 0 such that for Lebesgue a.e. x ∈ I, there exist
sequences of intervals In ⊃ Jn 3 x satisfying :

• both components of In \ Jn have length ≥ δ|In|;
• |In| → 0;
• f i(∂Jn) ∩ I◦n = ∅ for all i ≥ 1. (Here I◦n denotes the interior.)

The sets Jn (or rather certain lifts of them) will play the role of X̂
from Theorem 1. The property orb(∂Jn) ∩ Jn = ∅ implies that any branch
f s : H ⊂ Jn → Jn of the first return map to Jn (i.e., H is a maximal interval
on which this first return map is continuous) satisfies f s(∂H) ⊂ ∂Jn. In
particular, if f s|H is monotone, then f s(H) = Jn. Most of these branches
are extendible to an onto branch f s : H ′ → In, and then the Koebe Principle
implies that the distortion of f s|H is uniformly bounded (by K(δ)).

Proof of Lemma 2. The proof depends on a result of Martens [23, Lemma
4.2] valid for conservative maps. It states that there exist symmetric intervals
V,U around c, with V compactly contained in U , such that both f i(∂V )
and f i(∂U) are disjoint from the interior of U for all i ≥ 1. Furthermore,
for Lebesgue a.e. x there exists an integer sequence kn → ∞ and intervals
In ⊃ Jn 3 x such that fkn maps In monotonically onto U and Jn onto V . By
the macroscopic Koebe Principle, there exists δ > 0, depending only on V
and U , such that both components of In \Jn have length ≥ δ|In|. Moreover,
if f i(∂Jn) ∩ I◦n 6= ∅ for some i > 0, then fkn+i(∂Jn) = f i(∂V ) intersects
fkn(I◦n) = U◦, contradicting the properties of V . Finally, due to the absence
of wandering intervals (see [24, p. 267]), |In| → 0 as n → ∞. Hence the In
and Jn have all the asserted properties.

Given In ⊃ Jn, let Ĵn =
⊔{Dk ∩ Jn | Dk ⊃ In} ⊂ Î. Note that, in

general, π−1(Jn) strictly contains Ĵn. Only if x 6∈ orb(c), the two sets are
equal for n sufficiently large. Define F̂n : Ĵn → Ĵn to be the first return map.
It is known (see [17, Theorem 1(3)]) that (Î , ĝ) is ergodic and conservative.
Therefore F̂n is defined µ̂-a.e. on Ĵn. By the Markov property of the Hofbauer
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tower and the construction of Jn it follows that F̂n is an extendible Markov
map in the sense that if y ∈ Ĵn and F̂n|{y} = ĝi, then there exists an
interval V 3 y such that ĝi maps V continuously and monotonically onto
an interval W such that π(W ) = In. These ideas were discussed in detail
in [5]. It follows by the Koebe Principle that all branches of all iterates of
F̂n have the same distortion bounds. Moreover, there exists k0 such that
infk≥k0 infy∈Ĵn |DF̂

k
n (y)| > 1.

Lemma 3. Let U be any subinterval of Jn and Ûn := π−1(U)∩ Ĵn. Then
the system (Ĵn, µ̂Ĵn , F̂n) has exponential return time statistics on Ûn.

Proof. The map F̂n corresponds to a jump transformation Fn on Jn,
defined by Fn(y) = π ◦ F̂n ◦ π−1(y). The above described properties of F̂n
show that Fn is well defined. In fact Fn(y) = f τ̃(y)(y), where τ̃(y) is the first
n-decent return to Jn, defined as
τ̃(y) = τ̃U (y) = min{i > 0 | f i(y) ∈ U and there exists an interval K 3 y

such that f i : K → In is monotone onto}.
As was shown in [5], τ̃(y) = τ̂(ŷ) for any ŷ ∈ Ĵn and τ̂ the first return time
to Ĵn. The map Fn is a Rychlik map as defined in [8]. The results of that
paper yield the exponential return statistics.

2.2. Proof of Theorem 2. Let us first collect some facts on the invariant
density h(y) = dµ(y)/dy of µ. Define δk = |Dfk−1(c1)|−1/l. It was shown by
Nowicki [25] that for some constant C > 0,

h(y) ≤ C
∑

k≥1

δk|y − ck|−(1−1/l).(5)

In particular ∑

k

δk|ck − x|1/l−1 <∞ for µ-a.e. x.(6)

If, in addition, f satisfies the Collet–Eckmann condition (i.e., δk → 0 expo-
nentially), then more precise estimates are known [32, 19]. Keller & Nowicki
showed that h(y) = ψ(y)

∑
k≥1 δk|y − ck|−(1−1/l), where ψ has bounded

variation. For our purpose we only need the upper bound in (5). It imme-
diately follows that the density h is finite at c. Indeed, the Chain Rule and
non-flatness give

|Dfk(c1)| = |Dfk−1(c1)| |Df(ck)| = O(l)|Dfk−1(c1)| |c− ck|l−1.

Therefore
h(c) ≤ C

∑

k

|Dfk−1(c1)|−1/l|c− ck|1−1/l(7)

≤ O(Cl)
∑

k

|Dfk(c1)|−1/l <∞.
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We want to consider “intermediate” first return maps to Jn, where Jn
are neighborhoods of x as introduced in Lemma 2, and eventually we take
limits n→∞, i.e., |Jn| → 0. Assume x 6∈ orb(c). Since endpoints of level Dk

belong to orb(c), every level Dk that contains x also contains In for n large.
Therefore more returns to a small neighborhood U , x ∈ U ⊂ In, will be
n-decent if n gets larger (so the intervals U we can consider depend on n).
We will need a precise statement on the proportion of decent branches for
the return map to U .

Lemma 4. For any x satisfying the assertion of Lemma 2 and (6),

lim
n→∞

sup
x∈U⊂Jn

µU ({y | τU (y) is not n-decent}) = 0.

Proof. As in Lemma 3, set Ûn := π−1(U) ∩ Ĵn. Define ĥ(y) = dµ̂(y)/dy
and let ĥk = ĥ|Dk be the densities on levels of Î. Clearly h =

∑
k ĥk.

Moreover, ĥ is a fixed point of the Perron–Frobenius operator on Î and the
points c ∈ Dk are the only critical points of ĝ.

Due to the Markov property of (Î , ĝ), ĥk has only two singularities,
namely at the endpoints ck and cβ(k). More precisely, letting ak = ĥk(c)
when c ∈ Dk and ak = 0 otherwise, we have, for y ∈ Dk = [ck, cβ(k)],

ĥk(y) ≤ C(δk|y − ck|−(1−1/l) + ak−β(k)δβ(k)|y − cβ(k)|−(1−1/l)).

The first term is obvious because ĥk ≤ h; the second term arises because
the endpoint cβ(k) is the image of c ∈ Dk−β(k) under ĝk−β(k).

Now let x satisfy the conclusion of Lemma 2 (so that the sets In ⊃ Jn 3 x
are well defined), and also (6). Take an interval U = (u0, u1) such that
x ∈ U ⊂ Jn. Let Φ̂ : π−1(U) → π−1(U) be the first return map. By Φ̂-
invariance of µ̂π−1(U) we find

µ({y ∈ U | τU is not n-decent}) = µ̂(Φ̂−1(π−1(U) \ Ûn)) = µ̂(π−1(U) \ Ûn).

We know (see [18, 6]) that h is bounded away from 0, say h0 =infsupp(µ) h>0.
Then we can integrate

µ̂(π−1(U) ∩Dk)
µ(U)

≤ µ̂(π−1(U) ∩Dk)
h0|u1 − u0|

≤ C

h0|u1 − u0|

u1�
u0

(δk|ck − y|1/l−1 + δβ(k)ak−β(k)|cβ(k) − y|1/l−1) dy

≤ Cl

h0
(δk|ck − x|1/l−1 + δβ(k)ak−β(k)|cβ(k) − x|1/l−1).

As x 6= ck for any k ≥ 0, there exists N = N(n) such that all returns to
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levels Dk with k ≤ N are n-decent, and N(n)→∞ as n→∞. Therefore

µ({y ∈ U | τU is not n-decent})
µ(U)

≤ Cl

h0

∑

k≥N
(δk|ck − x|1/l−1 + δβ(k)ak−β(k)|cβ(k) − x|1/l−1).

As
∑

k ak = h(c) < ∞ and because of (6), both δk|ck − x|1/l−1 and ak are
summable. Therefore

lim
n→∞

µ({y ∈ U | τU is not n-decent})
µ(U)

= 0,

uniformly in U .

Now we are ready to prove the main theorem.

Proof of Theorem 2. Let αn = supx∈U⊂Jn µ̂(Ûn)/µ(U). As we have seen
in Lemma 4, limn αn = 1. Because f ◦ π = π ◦ ĝ we have

µU ({y | τU (y) > t/µ(U)}) = µ̂π−1(U)({ŷ | τ̂π−1(U)(ŷ) > t/µ(U)}).
The right hand side can be rewritten as a sum of three terms:

r.h.s. ≤ µ̂π−1(U)(π
−1(U) \ Ûn)

+ µ̂π−1(U)({ŷ ∈ Ûn | τ̂Ûn(ŷ) > t/µ(U)})
+ µ̂π−1(U)({ŷ ∈ Ûn | τ̂Ûn(ŷ) > τπ−1(U)(ŷ)})

= I + II + III.

We have the estimate

I =
µ̂(π−1(U) \ Ûn)
µ̂(π−1(U))

=
µ̂(π−1(U) \ Ûn)

µ(U)
≤ 1− αn → 0.

Next

II = αnµ̂Ûn({ŷ | τ̂Ûn(ŷ) > t/µ(U)}) = αnµ̂Ûn({ŷ | τ̂Ûn(ŷ) > t̃/µ̂(Ûn)})

for t̃ = tαn. The main result of [8] says that the return statistics of an
induced transformation coincides with the return statistics of the original
system. In this case, it means that the system (Î , µ̂, ĝ) has the same return
statistics on Ûn as the induced system (Ĵn, µ̂Ĵn , F̂n). By Lemma 3, these

statistics have the exponential distribution. Hence II tends to αne
−t̃ as

µ(U)→ 0, and thus to e−t as n→∞. The third term satisfies

III = µ̂π−1(U)(Φ̂
−1(π−1(U) \ Ûn) ∩ Ûn)

≤ µ̂π−1(U)(π
−1(U) \ Ûn) = I → 0
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as n → ∞. This gives the required upper bound for µU ({y | τU (y) >
t/µ(U)}). Now for the lower bound:

r.h.s. ≥ µ̂π−1(U)({ŷ ∈ Ûn | τ̂Ûn(ŷ) > t/µ(U)})
− µ̂π−1(U)({ŷ ∈ Ûn | τÛn(ŷ) > τπ−1(U)(ŷ)})

= II − III.
The above arguments show that this also tends to e−t as µ(U) → 0 and
n→∞.

Remark 1. It has been shown in [16] that the e−t statistics for local
return times imply the analogous statistics for entrance times. Therefore for
our unimodal maps we get the additional interesting result:

|µ({x ∈ X | τUr(z)(x) > t/µ(Ur(z))})− e−t| → 0

as r → 0 and for µ-almost all z ∈ X.

Remark 2. A lot of work has recently been devoted to the estimation of
the error of the limiting distribution e−t (see for example [16, 14, 30, 11, 1,
29]). This error is related to the rate of mixing of the systems and sometimes
to the degree of hyperbolicity [16]. In particular for some Gibbsian sources,
the error can be obtained by looking at the asymptotic behavior of the
first return of the set Uz to itself [30]. An interesting improvement of our
techniques would be to push back the error term from the induced system
(where it can very often be computed) to the original one; this will probably
require a more constructive way of inducing.

Remark 3. As already pointed out in [8], the techniques of inducing can
be easily adapted to the statistics of successive return times. This means,
with the obvious change of notation, studying the asymptotic distribution
of the quantity

µUr(z)({x ∈ Ur(z) | τk−1
Ur

µ(Ur) ≤ t < τkUrµ(Ur)})
as r → 0, where τkA is the kth return time to A. Under additional mixing
conditions (α-mixing) one can prove that the limiting distribution is the
Poisson law: (tk/k!)e−t for µ-a.e. z.

3. Fluctuations of entropy. One of the most interesting consequences
of the exponential statistics for return times is the behavior of the fluctu-
ations in the convergence to the measure theoretic entropy as given by the
Ornstein–Weiss formula (see [10] and [20] for the first works in this direc-
tion). Let Cn(x) be the unique element of Cn =

∨n
i=1 T

−(i−1)C which con-
tains the point x ∈ X, where C is a finite generating partition of our ergodic
system (X, f, µ). Assume that the sum Hµ(C) = −∑C∈C µ(C) logµ(C) is
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finite. The Ornstein–Weiss Theorem [28] asserts that

lim
n→∞

1
n

log τCn(x)(x) = hµ for µ-a.e. x ∈ X,

where hµ is the measure theoretical entropy of µ. We will define in a moment
a convenient partition for our class of unimodal maps. Assume that the
variance σ2

µ(ϕ) as defined in (3) is positive. We are interested in showing the
following convergence in distribution as n→∞:

µ

({
x ∈ X

∣∣∣∣
log τCn(x)(x)− nhµ

σµ
√
n

> u

})
⇒ 1√

2π

∞�
u

e−x
2/2 dx.(8)

Theorem 5 uses a sufficient condition due to Saussol [30] to prove the con-
vergence (4). Saussol’s result is however much more general since it states
the equivalence of the fluctuations to the entropy according to the Ornstein–
Weiss and Shannon–McMillan formulas provided the e−t law holds for local
return times uniformly in t.

Theorem 5 (see [30]). Define the error of the asymptotic distribution
of the return times into cylinders as

Eµ(Cn(x)) = sup
t≥0
|µCn(x)({x ∈ Cn(x) | τCn(x)µ(Cn(x)) > t})− e−t|.

Suppose that :

(i) Eµ(Cn(x))→ 0 for µ-a.e. x as µ(Cn(x))→ 0;
(ii) the fluctuations in the Shannon–McMillan Theorem are log-normal ,

i.e.

µ

({
x ∈ X

∣∣∣∣
− logµ(Cn(x))− nhµ

σµ
√
n

> u

})
⇒ 1√

2π

∞�
u

e−x
2/2 dx,

where 0 < σµ <∞.

Then the limit (4) follows.

3.1. Proof of Theorem 3. We verify the assumptions of the preceding
theorem. Assumption (i) is just the content of the exponential statistics
established in Section 2. It remains to prove assumption (ii). This will be
achieved in two steps whose details will be given below:

• The invariant measure µ enjoys a weak-Gibbs property. This means
that for µ-a.e. x we have

µ(Cn(x)) ∈ [c1(n)|Dfn(x)|−1, c2(n)|Dfn(x)|−1],

where c1(n) and c2(n) decrease (resp. increase) subexponentially in n. To
be precise, we need

e−n
α ≤ c1(n) ≤ c2(n) ≤ enα
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for some 0 < α < 1/2. (We refer to [10] and [15] for the details on Gibbs
sources and weak-Gibbs measures.) This allows us to replace the measure
of a cylinder of length n with the sum Sn :=

∑n−1
l=0 log |Df(f l)|. Then the

Cesàro mean converges to the positive Lyapunov exponent of the measure
µ which is also equal to the measure theoretic entropy hµ (see [22]): hµ =

� log |f ′| dµ. More precisely, we have the upper bound

µ

({
x ∈ X

∣∣∣∣
− logµ(Cn(x))− nhµ

σµ
√
n

> u

})

≤ µ
({

x ∈ X
∣∣∣∣

log |Dfn(x)| − nhµ
σµ
√
n

> u+
log c1(n)
σµ
√
n

})

≤ µ
({

x ∈ X
∣∣∣∣
∑n−1

i=0 log |Df(f i(x))| − nhµ
σµ
√
n

> u− nα

σµ
√
n

})

≤ µ
({

x

∣∣∣∣
∑n−1

i=0 log |Df(f i(x))| − nhµ
σµ
√
n

> u− δ
})

= µ

({
x

∣∣∣∣
∑n−1

i=0 ϕ(f i(x))
σµ
√
n

> u− δ
})

,

where δ is any positive number greater than nα/(σµ
√
n). Since α < 1/2, we

can take δ → 0 as n→∞. Similar estimates hold for the lower bound.

• Suppose now that the Central Limit Theorem holds for the potential
ϕ = log |f ′| − � log |f ′| dµ with variance σµ > 0. In this case we can continue
the lower bound of the above item as

lim inf
n→∞

µ({x | µ(Cn(x)) < e−nhµ−σµu
√
n}) ≥ 1√

2π

∞�
u−δ

e−x
2/2 dx,

which gives the desired result for the lower bound as δ → 0.

The proofs of the weak-Gibbs property of µ and the Central Limit The-
orem are given in the next subsections.

The weak-Gibbs property and the Central Limit Theorem for the po-
tential ϕ are interesting in their own right, as they allow application of
thermodynamic formalism to our unimodal maps and they establish finer
fluctuation behavior. We think for example of the large deviations property
for the random processes logµ(Cn(x)) and log τCn(x)(x). (See [15] for related
results in the case of (ϕ− f)-mixing systems.)

3.2. The weak-Gibbs property. Let C = {[c2, c], [c, c1]} be the partition
into the two monotonicity intervals of f . In the absence of attracting periodic
points, this partition is generating. Let as before Cn = C ∨ f−1(C) ∨ . . . ∨
f−(n−1)(C), and let Cn(x) be the n-cylinder containing x.
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Lemma 5. Suppose f satisfies condition (2), and let µ be its absolutely
continuous invariant measure. Then for any ε > 0 and µ-a.e. x there exists
n0 such that

b

n3(l+1)
≤ b

n2(l+1)
|fn(Cn(x))| ≤ µ(Cn(x))|Dfn(x)| ≤ n2(1+ε)

for all n ≥ n0 and b = 1
2 infsupp(µ) dµ(y)/dy > 0.

Proof. The upper bound: We have the invariant measure µ and Lebesgue
measure m. The arguments use the Borel–Cantelli Lemma applied to m. Let
Wn be the collection of n-cylinders C such that µ(C) > n1+εm(C). Write
An =

⋃
C∈Wn

C. Since µ is a probability measure, 1 ≥ ∑
C∈Wn

µ(C) ≥
n1+ε∑

C∈Wn
m(C), hence m(An) ≤ n−(1+ε). The Borel–Cantelli Lemma

implies that m-a.e. x belongs to An only for finitely many n.
Next, for each n-cylinder C, let U(C)={x ∈ C | |Dfn(x)|>n1+ε|C|−1}.

Write Bn =
⋃
C∈Cn U(C). Then

1 ≥
�

U(C)

|Dfn(x)| dx ≥ n1+ε

|C| m(U(C)),

so that m(Bn) =
∑

C∈Cnm(U(C)) ≤ n−(1+ε)∑
C∈Cn |C| = n−(1+ε). Again

the Borel–Cantelli Lemma shows thatm-a.e. x belongs to Bn for only finitely
many n.

Therefore, for m-a.e. x, and because µ� m also for µ-a.e. x, there exists
n0 = n0(x) such that x 6∈ An ∪Bn for all n ≥ n0. It follows that

µ(Cn(x))|Dfn(x)| ≤ n1+ε|Cn(x)| n1+ε

|Cn(x)| ≤ n
2(1+ε).

The lower bound(s): Here we will apply the Borel–Cantelli Lemma to
the invariant measure µ. Let V̂n be the set of x̂ ∈ Î such that d(x̂, ∂Di) ≤
n−(l+1)|Di| for some i ∈ N. Recall that the densities hk on the levels Dk

satisfy hk(y) ≤ δk|y − ck|1/l−1 + ak−β(k)δβ(k)|y − cβ(k)|1/l−1. Therefore

µ̂(V̂n) ≤
∑

k

( ck+n−(l+1)�
ck

+

cβ(k)�
cβ(k)−n−(l+1)

)

(δk|y − ck|1/l−1 + ak−β(k)δβ(k)|y − cβ(k)|1/l−1) dy

≤
∑

k

2
l

(δk + ak−β(k)δβ(k))n
−(l+1)/l ≤ Cn−(l+1)/l

for some constant C < ∞. By the Borel–Cantelli Lemma, for µ-a.e. x,
fn(x̂) ∈ V̂n (for x̂ = π−1(x)∩D2) for only finitely many n. Take such an x.
Since fn(Cn(x)) = Dk if and only if ĝ(x̂) ∈ Dk, we conclude that for n
sufficiently large, there is a Koebe space of relative length n−(l+1) around
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fn(x). This gives

|Dfn(x)| ≥
(

n−(l+1)

1 + n−(l+1)

)2 |fn(Cn(x))
|Cn(x)| ≥

1
2n2(l+1)

|fn(Cn(x))|
|Cn(x)| .

It follows that

µ(Cn(x))|Dfn(x)| ≥ b

n2(l+1)
|fn(Cn(x))|.

Finally we give a lower bound for |Cn(x)|. Take Ûn =
⊔{Dk | |Dk| <

n−(l+1)}. Then

µ̂(Ûn) ≤
∑

Dk⊂Ûn

�
Dk

hk(y) dy ≤ n−(l+1)/l

l

∑

k

(δk + ak−β(k)δβ(k)) ≤ Cn−(l+1)/l.

Using Borel–Cantelli again, we find that for µ-a.e. x, fn(Cn(x)) ≤ n−(l+1)

with at most finitely many exceptions.

3.3. The Central Limit Theorem. We begin with a characterization of
the potential ϕ = log |f ′|− � log |f ′| dµ, which will be useful in order to apply
a theorem by Gordin (see below).

Lemma 6. The potential ϕ = log |f ′| − � log |f ′| dµ belongs to L2(µ).

Proof. First observe that there exists K such that µ((c− ε, c+ ε)) < Kε
for all ε. Indeed, by (5), and analogously to the computations in Lemma 4,

µ((c− ε, c+ ε)) ≤ C
∑

k

c+ε�
c−ε
|y − ck|1/l−1|Dfk−1(c1)|−1/l dy

≤ 2Cε
∑

k

|Dfk−1(f(c))|−1/l
ε�
0

|y|1−1/l dy ≤ Kε1/l,

similarly to (7). As log |f ′| = O(l) log |x− c|,�
(log |f ′|)2 dµ ≤

∑

n

K2(1−n)/l|O(l) log 2−n|2

≤ 2K log 2O(l2)
∑

n

2−n/ln2 <∞.

Let us now prove Theorem 4, which states that the Central Limit The-
orem holds for ϕ. The condition that the variance is positive is non-trivial,
but can, as usual, be reduced to the condition that ϕ is not cohomologous
to 0. Notably, σ2

µ(ϕ) = 0 for the full quadratic map f : x 7→ 4x(1 − x).
The reason is that f is differentiably conjugate to the full tent-map T :
x 7→ 1 − 2|x|. The logarithm of the derivative of the conjugacy ψ := log h′

satisfies ϕ = ψ − ψ ◦ f = 0, which in turn implies that σ2
µ(ϕ) = 0. In this

case, the lengths of cylinder sets are too regular, so the fluctuation of return
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time statistics is less than expected. The precise form of the fluctuation in
this case follows from the results in [10]. In general, if ϕ = ψ − ψ ◦ f has a
solution, Gordin’s [12] results imply that ψ =

∑
j P

j(ϕ) ∈ L1(µ), where P
is the Perron–Frobenius operator. If in addition exp(ψ) ∈ L1(µ), then the
integral of exp(ψ) conjugates f to a tent map. We conjecture that σ2

µ(ϕ) = 0
is very unlikely in the class of maps under consideration.

Proof of Theorem 3. In [7], it was shown that Hölder observables satisfy
the Central Limit Theorem. In our case, ϕ is not Hölder, and not even
bounded. However ϕ ∈ L2(µ) (see Lemma 6), and the singularity of ϕ is
localized and of logarithmic order. From the proofs of [34] and [7] combined,
it turns out that when ϕ is lifted to an appropriate tower, it satisfies the
required Hölder-like property. Let us discuss the construction more precisely.

In [7] a jump transformation F :
⋃
i ωi ⊂ Ω0 → Ω0 is constructed, where

Ω0 is an interval, and {ωi}i an interval partition of Ω0 such that:

• The Lebesgue measure m(Ω0 \
⋃
i ωi) is 0.

• For each i, F |ωi = fRi |ωi for some Ri ≥ 1, and F : ωi → Ω0 is a
diffeomorphism with uniformly (in i) bounded distortion.
• The inducing times Ri are summable:

∑

i

Rim(ωi) <∞.(9)

If we assume that |Dfn(c1)| ≥ Cnτ for some τ > 4l−3, then the tail satisfies∑
Ri>n

m(ωi) ≤ O(n−α) for any α ∈
(
3, τ−1

l−1 − 1
)
. Under Hölder conditions,

the Central Limit Theorem holds.

In [7], Ω0 is a neighborhood of the critical point, but the same construc-
tion is valid if Ω0 is a neighborhood bounded away from c. In addition, the
construction of F (see the definition of the binding period p(x) in [7]) implies
that there is a constant κ > 0 such that

inf{|c− y| | y ∈ f j(ωi)} > κ|f j(ωi)|(10)

for all i and 0 ≤ j < Ri.
The paper [7] proceeds to invoke [34] for the following tower construction:

∆ =
⊔

i

Rj−1⊔

j=0

ωi,j ,

where ωi,j = ωi for each j. Equip ∆ with Lebesgue measure m̃ as reference
measure: m̃|ωi,j = m|ωi. By (9), m̃ is a finite measure. Define a map f̃ :
∆→ ∆ by

f̃(x ∈ ωi,j) =
{
x ∈ ωi,j+1 if j + 1 < Ri,

fRi(x) ∈ Ω0 if j + 1 = Ri,
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where Ω0 =
⋃
i ωi,0 mod m. The system (∆, f̃) is a countable Markov sys-

tem, and in view of (9), a standard argument produces an f̃ -invariant prob-
ability measure µ̃ such that, for each ωi,j , dµ̃/dm is bounded and bounded
away from 0. Define the projection π : ∆→ I by π(x ∈ ωi,j) = f j(x). Lift ϕ
to the tower, i.e., take ϕ̃|ωi,j = ϕ ◦ f j . The f -invariant measure µ on I
satisfies µ = µ̃ ◦ π−1.

We need a theorem of Gordin [12], cited in [33], which translates in our
notation to

Theorem 6 (Gordin). Suppose ϕ̃ ∈ L2(µ̃), and
∑

n≥0

√ �
|E(ϕ̃|f̃−nB)|2 dµ̃ <∞,

where B is the algebra of Lebesgue measurable sets on ∆, and E(ϕ̃|f̃−nB) is
the conditional expectation with respect to µ̃. Then ϕ̃ satisfies the Central
Limit Theorem.

Let h̃ = dµ̃/dm̃ be the density of µ̃. If U(ϕ̃) := ϕ̃ ◦ f̃ and U∗ is its
dual operator (with respect to µ̃), then we can compute (cf. [33]) U ∗n(ϕ̃) =
Pn(ϕ̃h̃)/h̃, where P denotes the Perron–Frobenius operator. Furthermore,

E(ϕ̃|f̃−nB)(x) = UnUn∗(ϕ̃)(x) =
1

h̃ ◦ f̃n(x)

∑

f̃n(y)=f̃n(x)

∣∣∣∣
(ϕ̃h̃)(y)

Df̃n(y)

∣∣∣∣.

Therefore �
∆

|E(ϕ̃|f̃−nB)|2 dµ̃ =
�
∆

|UnU∗n(ϕ̃)|2 dµ̃ =
�
∆

|U∗n(ϕ̃)|2 dµ̃(11)

=
�
∆

|UnU∗n(ϕ̃) · ϕ̃| dµ̃.

Let ∆n := π−1(B(c;L−n)) be the lift of the L−n-ball around c, where L =
sup |f ′|. If f j(ωi) ∩B(c;L−n) 6= ∅, then by (10), |f j(ωi)| ≤ 1/(κLn), and

|f j+n(ωi)| ≤ Ln−1|f j+1(ωi)| ≤ (κL)−1|f ′(ξ)| = O(L−n(l−1))� |Ω0|
for some ξ ∈ f j(ωi). Therefore Ri > j + n. It follows that if y ∈ ωi,j , then
f̃−n ◦ f̃n(y) = {y}, and also

h̃(y)

|Df̃n(y)|h̃ ◦ f̃n(y)
= 1.

Hence for such y, the integrand above is |UnU∗n(ϕ̃) · ϕ̃|(y) = |ϕ̃(y)|2.
Next let ∆′n := π−1(B(c;n−5) \B(c;L−n)). Then |ϕ̃| ≤ O(n(l− 1) logL)

on ∆′n, whereas |ϕ̃| ≤ O(5(l − 1)) logn on π−1(I \ B(c;n−5)). If y ∈ ∆′n,
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then f̃−n ◦ f̃n(y) ∩∆n = ∅. Therefore

�
∆′n\∆n

|UnU∗n(ϕ̃) · ϕ̃(x)| dµ̃ =
�

∆′n\∆n

ϕ̃(x)

h̃ ◦ f̃n(x)

∑

f̃n(y)=f̃n(x)

∣∣∣∣∣
ϕ̃(y)

Df̃(y)

∣∣∣∣∣ dµ̃

≤
�

∆′n\∆n
O(n2) dµ̃.

Combining these estimates, we can continue (11) as

≤
�
∆n

|ϕ̃(y)|2 dµ̃+
�

∆′n\∆n
O(n2) dµ̃+O(logn)

�
∆

|UnU∗n(ϕ̃)| dµ̃

≤ O(L−nn2) +O(n−3) +O(logn)
�
∆

|U∗n(ϕ̃)| dµ̃

= O(L−nn2) +O(n−3) +O(logn)
�
∆

|Pn(ϕ̃h̃)| dm̃.

We next prove that ϕ̃h̃ has sufficient Hölder properties. We chose Ω0
bounded away from c, so ϕ is C2 on Ω0. Given x, y ∈ ωi,j , the separation
time s(x, y), as defined in [34, Section 1.1], counts the minimal number
of returns to Ω0 before x and y belong to different partition elements ωk.
Because F is expanding and fRi−j : f j(ωi)→ Ω0 has bounded distortion, it
is not hard to check that |x− y|/|ωi,j| is exponentially small in s(x, y) (see
also [7, Lemma 4.5]).

Write

ϕ̃ h̃ = C

(
dλ

dm̃
− dλ′

dm̃

)

as the scaled difference of two probability densities, for example

dλ

dm̃
=

1
C

(1 + max{ϕ̃h̃, 0}) and
dλ′

dm̃
=

1
C

(1−min{ϕ̃h̃, 0}).

Here dλ′/dm̃ has the logarithmic singularity, and C > 0 is a normalizing
constant. On each interval ωi,j , h̃(x) is Hölder continuous, bounded and
bounded away from 0. Therefore, there exists β ∈ (0, 1) such that for all
x, y ∈ f j(ωi),

∣∣∣∣
dλ′
dm̃(x)
dλ′
dm̃(y)

− 1

∣∣∣∣ ≤ O(1)

∣∣∣∣
log |x− c|
log |y − c| − 1

∣∣∣∣ ≤ O(1)
|x− y|
|y − c|

≤ O
(

1
κ

) |x− y|
|f j(ωi)|

≤ const βs(x,y).

The estimates for dλ/dm̃ are similar, and give the same upper bound. Hence
both dλ/dm̃ and dλ′/dm̃ belong to C+

β (∆) as in [34]. Following the [34]
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argument, we obtain for the correlations�
∆

|Pn(ϕ̃h̃)| dm̃ = |f̃n∗ λ− f̃n∗ λ′|(∆) ≤ O(n−(α−1))

for the α > 3 as above. Therefore
√

� ∆ |E(ϕ̃|f̃−nB)|2 dµ̃ is indeed summable,
and by Gordin’s Theorem, ϕ̃ satisfies the Central Limit Theorem. The same
is true for the original observable ϕ.
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