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Thermodynamic formalism, topological pressure,
and escape rates for

critically non-recurrent conformal dynamics

by

Mariusz Urbański (Denton, TX)

Abstract. We show that for critically non-recurrent rational functions all the def-
initions of topological pressure proposed in [12] coincide for all t ≥ 0. Then we study
in detail the Gibbs states corresponding to the potentials −t log |f ′| and their σ-finite
invariant versions. In particular we provide a sufficient condition for their finiteness. We
determine the escape rates of critically non-recurrent rational functions. In the presence
of parabolic points we also establish a polynomial rate of appropriately modified escape.
This extends the corresponding result from [6] proven in the context of parabolic ra-
tional functions. In the last part of the paper we introduce the class of critically tame
generalized polynomial-like mappings. We show that if f is a critically tame and crit-
ically non-recurrent generalized polynomial-like mapping and g is a Hölder continuous
potential (with sufficiently large exponent if f has parabolic points) and the topological
pressure satisfies P(g) > sup(g), then for sufficiently small δ > 0, the function t 7→ P(tg),
t ∈ (1− δ, 1 + δ), is real-analytic.

1. Introduction and preliminaries. A rational function f : C → C
is called critically non-recurrent if no critical point contained in its Julia
set is recurrent. In [17] and [18] we explored some geometrical and dynami-
cal properties of critically non-recurrent rational functions. In this paper we
continue the investigations originated in these two papers. More precisely, in
Section 2 we deal with various generalizations of topological pressure P(t)
of the potential −t log |f ′|, t ≥ 0, proposed in [12]. We demonstrate (see
Theorem 2.6) that for critically non-recurrent rational functions all these
definitions of topological pressure coincide for all t ≥ 0. In Section 3 we deal
with thermodynamic formalism of critically non-recurrent dynamics. We
study in detail the Gibbs states corresponding to the potentials −t log |f ′|
and their σ-finite invariant versions. In particular we provide a sufficient
condition for these invariant measures to be finite. In Section 4 we deal with
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escape rates. We show that in the critically non-recurrent case this rate is
equal to P(2). In the presence of parabolic points we establish a polynomial
rate of appropriately modified escape. This extends the corresponding result
from [6] proven in the context of parabolic rational functions. Our approach
differs from Haydn’s and Isola’s in that we estimate moduli of appropriate
annuli and we use McMullen’s result relating such moduli to hyperbolic di-
ameters of the corresponding sets enclosed by these annuli. In Section 5,
we deal with generalized polynomial-like maps and Hölder continuous po-
tentials. We show that if f is a critically tame and critically non-recurrent
generalized polynomial-like mapping and g is a Hölder continuous potential
(with sufficiently large exponent if f has parabolic points) and the topolog-
ical pressure satisfies P(g) > sup(g), then for sufficiently small δ > 0, the
function t 7→ P(tg), t ∈ (1− δ, 1 + δ), is real-analytic.

2. Various pressures. Let f : C → C be a rational function on the
Riemann sphere C of degree ≥ 2. In [12] F. Przytycki proposed several ways
of extending the concept of topological pressure of the potential −t log |f ′|,
t ≥ 0, to the general case. Let us describe them briefly:

1. Variational pressure:

Pvar(t) = sup
{
hµ(f)− t

�
log |f ′| dµ

}
,

where the supremum is taken over all ergodic f -invariant measures on J(f).
2. Hyperbolic variational pressure:

Phypvar(t) = sup
{
hµ(f)− t

�
log |f ′| dµ

}
,

where the supremum is taken over all ergodic f -invariant measures on J(f)
with positive Lyapunov exponent, i.e. such that χµ(f) = � log |f ′| dµ > 0.

3. Hyperbolic pressure. We call a forward invariant compact set X⊂J(f)
hyperbolic if there exists n ≥ 1 such that for every x ∈ X, |(fn)′(x)| > 1.
The hyperbolic pressure is

Phyp(t) = sup
X
{P(f |X ,−t log |f ′|)},

where the supremum is taken over all f -invariant hyperbolic subsets X of
J(f) such that an iterate of f |X is topologically conjugate to a subshift of
finite type.

4. DU pressure. Let V be an open subset of J(f) such that J(f) ∩
Crit(f) ⊂ V and let

K(V ) = J(f) \
⋃

n≥0

f−n(V ).

Since K(V ) is compact, f -invariant and disjoint from Crit(f), we can con-
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sider the standard topological pressure P(f |K(V ),−t � log |f ′|). Put

PDU(t) = sup
V
{P(f |K(V ),−t log |f ′|)},

where the supremum is taken over all open sets V considered above.
5. Minimal conformal eigenvalue. The minimal conformal eigenvalue

λ(t) is defined to be the infimum of all λ > 0 for which there exists a
Borel probability measure m such that

d(m ◦ f)
dm

= λ|f ′|t.
We set

Pc(t) = log λ(t).

6. Point pressure. Given z ∈ C \⋃n≥0 f
n(Crit(f)) and t ≥ 0 put

Pz(t) = lim sup
n→∞

1
n

∑

x∈f−n(z)

|(fn)′(x)|−t.

F. Przytycki proved in [12] that there exists a set G ⊂ C \⋃n≥0 f
n(Crit(f))

such that HD(C \G) = 0 and Pz(t) = Pw(t) for all z, w ∈ G. This common
value will be denoted by Pp(t). It is not difficult to check (see [12]) that the
following proposition is true.

Proposition 2.1. All the pressures defined in items 1–6 are Lipschitz
continuous and monotone with respect to the variable t.

The following fact has been proved in [12] (cf. [4] and [14]).

Theorem 2.2. There exists a number h = h(f) called the Poincaré ex-
ponent of the function f in [12] and called the dynamical dimension of the
Julia set in [4] such that all the pressures defined in items 1–6 coincide on
the interval [0, h], are positive on [0, h) and vanish at h.

Our aim in this section is to extend this equality of pressures to the
whole set [0,∞) in the case of critically non-recurrent dynamics. We start
with the following.

Lemma 2.3. If f is critically non-recurrent and y ∈ J(f) is a periodic
point of f , say of period q, then there exists a sequence {yn}∞n=1 ⊂ J(f) of
periodic points of f , all different from y, of respective periods qn, such that
limn→∞ yn = y and

lim
n→∞

1
qn

log |(f qn)′(yn)| ≤ 1
q

log |(f q)′(y)|.

In addition, if there exists no k ≥ 1 such that f−k(y) \ {f j(y) :
0 ≤ j ≤ q − 1} ⊂ Crit(f) or if y ∈ Ω, then this inequality can be replaced
by equality.
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Proof. Our strategy is to approximate y by periodic points of f q. With-
out loss of generality we may assume that q = 1. Regardless of whether y
is repelling or rationally indifferent there exist θ > 0, x ∈ J(f) ∩ B(y, θ)
and ε > 0 such that all the local holomorphic inverse branches f−ny of all
iterates of f are defined on B(x, 2ε) ⊂ B(y, θ)\{y}, the closed ball centered
at x and with radius 2ε. Local means here that limn→∞ f−ny (x) = y and
f−ny (B(x, 2ε)) ⊂ B(y, θ). In the case when y is a repelling point all these
branches are defined on the entire ball B(y, θ) for θ > 0 small enough. Since⋃
n≥0 f

n(Crit(f)) is, by Lemma 5.2 of [17], nowhere dense in J(f)), there
exists a closed ball B ⊂ 2B ⊂ B(x, ε) centered at a point w ∈ J(f) such that
2B ∩⋃n≥0 f

n(Crit(f)) = ∅. This implies that f−ny (2B) ∩⋃n≥0 f
n(Crit(f))

= ∅ for every n ≥ 0, and since f : J(f)→ J(f) is topologically exact, there
exists l ≥ 1 independent of n and a holomorphic branch f−l∗ : f−ny (2B)→ C
of f−l sending f−ny (w) to B. Therefore, for every n ≥ 1 large enough,
f−l∗ ◦f−ny (2B) ⊂ 2B. Hence by the Brouwer fixed point theorem there exists a
fixed point yn+l ∈ 2B of f−l∗ ◦f−ny : 2B → 2B. Hence fn+l(yn+l) = yn+l and
yn+l 6= y as, by the choice of ε, y 6∈ 2B. It is clear that in the repelling case

lim
n→∞

1
n

log |(fn)′(yn)| ≤ log |f ′(y)|;(2.1)

in the parabolic case this follows from the fact that |(f−ny )′(w)| � n−(p+1)/p

for all w ∈ B(x, ε), where p ≥ 1 is the number of petals of the point y. If there
exists no k ≥ 1 such that f−k(y)\{f j(y) : 0 ≤ j ≤ q−1} ⊂ Crit(f), then f−l∗
extends holomorphically onto B(y, κ) for some κ > 0 sufficiently small and
the inequality (2.1) becomes an equality. If y ∈ Ω and f−k(y) \ {f j(y) : 0 ≤
j ≤ q− 1} ⊂ Crit(f), then |(f−ny )′(yn+l)| � n−(p+1)/p and |f−ny (yn+l)− y| �
n−1/p. If l < k, we conclude the proof as above. If k ≤ l, passing to a subse-
quence, we may assume that limn→∞ yn+l = c, a critical point of f l belonging
to f−l(y). Denote the order of the critical point c of f l by s. We then obtain

|(f−l∗ ◦ f−ny )′(yn+l)| = |(f−l∗ )′(f−ny (yn+l))| · |(f−ny )′(yn+l)|
� (n−1/p)1/s−1 · n−(p+1)/p = n−(1+1/(sp)).

Thus |(fn+l)′(yn+l)| � n1+1/(sp) and therefore

lim
n→∞

1
n+ l

log |(fn+l)′(yn+l)| = 0.

Let Ω be the set of all parabolic points of f , i.e.

Ω = {ω ∈ J(f) : ∃q≥1f
q(ω) = ω and (f q)′(ω) = 1}.

Lemma 2.4. Assume that f is critically non-recurrent. If µ is a Borel
probability f -invariant ergodic measure supported on J(f), then either

χµ =
�
log |f ′| dµ > 0 or µ(Ω) = 1.
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Proof. Suppose that µ(Ω) < 1. Since Ω consists of periodic points and
since µ is ergodic, this implies that µ(Ω) = 0. Since no critical point con-
tained in the Julia set of f is periodic, we conclude that

µ
( ⋃

n≥0

f−n(Ω ∪ (Crit(f) ∩ J(f)))
)

= 0.

Hence, by Birkhoff’s ergodic theorem there exists z ∈ J(f) \⋃n≥0 f
−n(Ω ∪

(Crit(f) ∩ J(f))) such that
�
log |f ′| dµ = lim

n→∞
1
n

log |(fn)′(z)|.(2.2)

In view of Proposition 6.1 from [17] there exist a sequence {nj}∞j=1 (depend-
ing on z) increasing to infinity and a number η(z) > 0 such that

Cnj (z,B(fnj(z), η(z))) ∩ Crit(fnj) = ∅,
where Cn(z, F ) is the connected component of f−n(F ) containing z. We may
assume that η(z) ≤ η, where η > 0 is the constant appearing in Lemma 7.7
of [18]. It therefore follows from Koebe’s distortion theorem that

|(fnj)′(z)| � diam(Cnj(z,B(fnj(z), η(z)/2))).(2.3)

Choose θ > 0 used in the definition of the operation Compk∗ from [18].
Then for every n ≥ 1 there exists a unique n∗ ≤ n such that z ∈
Compn

∗
∗ (B(fnj(z), η(z)/2)) = Cn(z,B(fn(z), η(z))). Combining (2.3) and

Lemma 7.7 of [18] we obtain

lim inf
j→∞

1
n∗j

log |(fnj)′(z)| > 0.(2.4)

Since µ(Ω) = 0, we may require θ > 0 to be so small that µ(B(Ω, 2θ)) < 1/2.
Applying now Birkhoff’s ergodic theorem we deduce that we could choose
z to satisfy

lim inf
j→∞

n∗j
nj
≥ lim

n→∞
1
n

n−1∑

j=0

�
J(f)\B(Ω,2θ) ◦ f j(z) > 1/2.

Combining this, (2.4) and (2.2), we conclude that � log |f ′| dµ > 0.

As an immediate consequence of this lemma we get the following.

Corollary 2.5. If f is semi-hyperbolic (critically non-recurrent and
Ω = ∅), then � log |f ′| dµ > 0 for every Borel probability f -invariant ergodic
measure µ supported on J(f).

The main result of this section is the following.

Theorem 2.6. Assume that f is critically non-recurrent. Then

(a) All the pressures defined in items 1–6 coincide throughout the whole
interval [0,∞); denote their common value by P(t).

(b) If Ω = ∅, then P(t) < 0 for all t > h.
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(c) If Ω 6= ∅, then P(t) = 0 for all t ≥ h.
(d) h = HD(J(f)), the Hausdorff dimension of the Julia set J(f).

Proof. Item (d) is an immediate consequence of the results obtained
in [17]. It follows from the facts established in the course of the proof of
Theorem A2.9 in [12] that

Pc(t) = Pp(t) ≥ Phypvar(t) = Phyp(t) ≤ Pvar(t) ≥ PDU(t).

Thus, in order to complete the proof of item (a), it suffices to show that

Pvar(t) = Phypvar(t)(2.5)

and

PDU(t) ≥ Pc(t).(2.6)

Indeed, if Ω = ∅, then (2.5) follows immediately from Lemma 2.4. If Ω 6= ∅
and t > h, then in view of Proposition 2.1, Pvar(t) = 0. Using in addi-
tion Lemma 2.4, we see that also Phypvar(t) = 0. Therefore, applying Theo-
rem 2.2, we conclude the proof of formula (2.5).

In order to prove (2.6) we shall construct a Borel probability measure m
on J(f) such that d(m ◦ f)/dm = eP̂(t)|f ′|t for some P̂(t) ≤ PDU(t). Indeed,
for every c ∈ Crit(f)∩J(f) there exists yc ∈ ω(c)\⋃n≥0 f

−n(Crit(f)∩J(f)).
For every n ≥ 1 let

Vn =
⋃

c∈Crit(f)∩J(f)

B(yc, 1/n).

Then for all n large enough, Vn ∩ Crit(f) = ∅. In addition, for every c ∈
Crit(f) ∩ J(f) there exists k(c) ≥ 1 such that f k(c)(c) ∈ Vn and

K(Vn) ⊂ K
( ⋃

c∈Crit(f)∩J(f)

f−k(c)(Vn)
)
.

Thus

Pn(t) := P(f |K(Vn),−t log |f ′|)(2.7)

≤ P(f |K(
⋃
c∈Crit(f)∩J(f) f

−k(c)(Vn)),−t log |f ′|) ≤ PDU(t).

Since it is not difficult to see that f |K(
⋃
c∈Crit(f)∩J(f) f

−k(c)(Vn)) is expansive

and consequently so is f |K(Vn), it follows from Theorem 3.12 of [2] that there
exists a Borel probability measure mn supported on K(Vn) for which

mn(f(A)) =
�
A

ePn(t)|f ′|t dmn(2.8)

for every Borel set A ⊂ K(Vn) \ ∂Vn (∂Vn is the only set where the map
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f |K(Vn) may fail to be open) such that f |A is 1-to-1, and

mn(f(A)) ≥
�
A

ePn(t)|f ′|t dmn(2.9)

for every Borel set A ⊂ K(Vn) such that f |A is 1-to-1. A straightforward
analysis (see [4] for details) shows that (2.8) continues to hold for all sets
A ⊂ J(f) \ Vn and (2.9) continues to hold for all sets A ⊂ J(f) satisfying
in each case the requirement that f |A is 1-to-1. Let m be a weak limit of
the measures mn as n↗∞. Since Pn(t) is an increasing function, the limit
P̂(t) = limn→∞ Pn(t) exists and by (2.7), P̂(t) ≤ PDU(t). Proceeding as in
the proof of Lemma 5.5 in [4] (cf. [14]) we conclude that

m(f(A)) =
�
A

eP̂(t)|f ′|t dm(2.10)

for every Borel set A ⊂ J(f) \ {yc : c ∈ Crit(f)} such f |A is 1-to-1, and

m(f(A)) ≥
�
A

eP̂(t)|f ′|t dm(2.11)

for every Borel set A ⊂ J(f) such f |A is 1-to-1. In order to proceed further
we need to impose more restrictions on the choice of points yc. Namely, since
for every c ∈ Crit(f), ω(c) is compact and f(ω(c)) ⊂ ω(c), there exists a
Borel probability f -invariant ergodic measure µc supported on ω(c). Fix an
arbitrary point yc ∈ supp(ω(c)) which is recurrent and such that

lim
n→∞

1
n

log |(fn)′(yc)| = χµc =
�
log |f ′| dµc.(2.12)

Our aim is to show that (2.10) is also satisfied for the singleton A = {yc}.
Suppose first that yc is eventually periodic. Since yc is recurrent, it must be
periodic. Fix ε > 0. In view of Lemma 2.3 there exists a periodic point xc
whose periodic orbit is disjoint from Crit(f) and such that

1
q

log |(f q)′(xc)| ≤ χµc + ε,

where q ≥ 1 is the shortest period of xc. Let µq be the atomic probability
measure equidistributed on the forward orbit of xc. Of course µq is ergodic
and f -invariant. Since xc ∈ K(Vn) for all n ≥ 1 large enough, we get

P̂(t) ≥ Pn(t) ≥ hµq − t log |f ′| dµq = −t 1
q

log |(f q)′(xc)| ≥ −tχµc − tε.

Letting ε↘ 0 we therefore get P̂(t) ≥ −tχµc = −(t/p) log |(fp)′(yc)|, where
p ≥ 1 is the shortest period of periodic point yc. Equivalently,

epP̂(t)|(fp)′(yc)|t ≥ 1 or epP̂(t)|(fp)′(f(yc))|t ≥ 1.
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Using this and applying (2.11) consecutively to the sets {f p(yc)}, {fp−1(yc)},
. . . , {f(yc)}, we get

m(f(yc)) = m(f(fp(yc))) ≥
�

fp(yc)

eP̂(t)|f ′|t dm

≥
�

fp−1(yc)

e2P̂(t)|(f2)′(f(yc))|t dm ≥ . . .

≥
�

f(yc)

epP̂(t)|(fp)′(f(yc))|t dm

= epP̂(t)|(fp)′(f(yc))|m(f(yc)) ≥ m(f(yc)).

So, all the inequalities in this formula are in fact equalities and in particular

m(f(yc)) =
�

fp(yc)

eP̂(t)|f ′|t dm =
�
yc

eP̂(t)|f ′|t dm,

and we are done in this case.
So, suppose that the point yc is not eventually periodic. Since yc ∈

supp(ω(c)), along with Lemma 2.4 and (2.12) this implies that

lim
n→∞

1
n

log |(fn)′(yc)| = χµc > 0.

It is not difficult to demonstrate (see [14] for instance) that there exists
R > 0 such that for every n ≥ 1 the holomorphic inverse branch f−nyc :
B(fn(yc), 4R) → C of fn sending fn(yc) to yc is well defined. Since by
Corollary 6.2 of [17] and by Koebe’s distortion theorem,

lim
n→∞

1
n

diam(f−nyc (B(fn(yc), 2R))) = 0,

and since the point yc is recurrent, there exists a sequence {nk}k≥1 of positive
integers increasing to infinity such that

f−nkyc (B(fnk(yc), R)) ⊂ B(fnk(yc), R).

Therefore, by Brouwer’s fixed point theorem for every k ≥ 1 there exists
a point xk ∈ B(fnk(yc), R) such that f−nkyc (xk) = xk. This implies that
fnk(xk) = xk and by Koebe’s distortion theorem,

|(fnk)′(xk)|−1 = |(f−nkyc )′(xk)| ≥ K−1|(f−nkyc )′(fnkyc (yc))|(2.13)

= K−1|(fnk)′(yc)|−1,

where K ≥ 1 is the Koebe constant corresponding to the Koebe factor 1/2.
Since limk→∞ xk = yc and all the points xk are different from yc, infinitely
many of them are mutually distinct and (since these are periodic) their
forward trajectory is disjoint from {ya : a ∈ Crit(f)}. Hence, for every
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k ≥ 1 there exists jk ≥ 1 such that xk ∈ K(Vjk). Therefore

P̂(t) ≥ Pjk(t) ≥ hνk(f)− t
�
log |f ′| dνk =

−t
nk

log |(fnk)′(xk)|,

where νk is the ergodic f -invariant probability measure equidistributed on
the forward orbit of xk. Thus, it follows from (2.13) that

enkP̂(t)|(fnk)′(yc)|t ≥ enkP̂(t)K−t|(fnk)′(xk)|t ≥ K−t.
So, applying (2.11) we obtain

1 ≥ m({fnk(yc) : k ≥ 1}) ≥
∞∑

k=1

K−tm(yc),

which implies that m(yc) = 0. Replacing in the above considerations yc by
f(yc), we see that also m(f(yc)) = 0, and in particular

m(f(yc)) =
�
yc

eP̂(t)|f ′|t dm.

Consequently, (2.10) holds for every Borel set A ⊂ J(f) such f |A is 1-to-1.

Thus Pc(t) ≤ P̂(t) ≤ PDU(t), which completes the proof of part (2.6) and
the whole item (a) of Theorem 2.6.

In order to prove (b) notice that it follows immediately from Theorem 2.1
of [1] and Koebe’s distortion theorem that if Ω = ∅, then there are constants
C > 0 and β > 1 such that for every z ∈ J(f) \ ⋃n≥0 f

n(Crit(f)), every

n ≥ 1 and every x ∈ f−n(z), we have |(fn)′(x)| ≥ Cβn. Write t in the form
δ + η, η > 0. Then for every n ≥ 1,∑

x∈f−n(z)

|(fn)′(x)|−(δ+η) =
∑

x∈f−n(z)

|(fn)′(x)|−η|(fn)′(x)|−δ

≤ C−ηβ−ηn
∑

x∈f−n(z)

|(fn)′(x)|−δ.

Hence

Pp(t) ≤ lim sup
n→∞

1
n

log(C−η)− η log β + lim
n→∞

1
n

∑

x∈f−n(z)

|(fn)′(x)|−δ

= −η log β + Pp(δ) ≤ −η log β < 0.

Let us finally prove (c). If ω ∈ Ω, let ν be the purely atomic probability mea-
sure equidistributed on the forward orbit of ω. The measure ν is f -invariant
and ergodic. It follows from item (a) of our theorem that for each t ≥ 0,
P(t) = Pvar(t) ≥ hν − t log |f ′| dµ = 0− 0 = 0. The proof of Theorem 2.6 is
complete.

Remark 2.7. As Feliks Przytycki has pointed out to me, the equality
Pp(t) = Pvar(t) follows easily for all rational functions and all t ≥ 0 from
the results proven in [13].
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3. Conformal and invariant measures. Throughout the entire sec-
tion, as in the previous one, f : C → C is assumed to be a critically non-
recurrent rational function. Given t ≥ 0, a Borel probability measure mt

supported on the Julia set J(f) is called a t-conformal Gibbs state if f is
non-singular with respect to mt and moreover

d(mt ◦ f)
dmt

= eP(t)|f ′|t.

It follows from Theorem 2.6 that a t-conformal Gibbs state exists for all
t ≥ 0. Since no critical point in the Julia set is periodic, for every c ∈
Crit(J(f)) := Crit(f) ∩ J(f) there exists p(c) ≥ 1 such that f p(c)−1 ∈
Crit(J(f)) and

{f j(c) : j ≥ p(c)} ∩ Crit(f) = ∅.(3.1)

Let

χ(c) = lim inf
k→∞

1
k

log inf
n≥1
{|(fk)′(fn(c))|}, χ := min

{
χ(c)
q(c)

: c ∈ Crit(f)
}
,

where q(c) is the order of the critical point c for the function f p(c). We have
the following.

Proposition 3.1. If f : C → C is a critically non-recurrent rational
function, then

mt

(⋃

n≥1

fn(Crit(J(f)))
)

= 0

for each t-conformal Gibbs state mt. If in addition t ∈ [0,HD(J(f))] (the
case t = HD(J(f)) is established in [17]), then mt(Ω) = 0.

Proof. Since the set
⋃
n≥1 f

n(Crit(J(f))) is nowhere dense in J(f), the
desired equality can be proved in the same way as Corollary 7.2 and Lem-
ma 7.1 in [17]. For an elaborated argument in a more complex situation
see [16].

The same reasoning as in Theorem 4.2 of [18] gives the following.

Theorem 3.2. If mt is a t-conformal Gibbs state and if mt(Ω) = 0,
then up to a multiplicative constant there exists a unique f -invariant σ-
finite measure µt absolutely continuous with respect to mt. Moreover µt is
equivalent to mt and it is conservative and ergodic.

The measure µt will be frequently called an invariant t-conformal Gibbs
state. The critical question for our purposes is when the measure µt is finite.
In order to give at least a partial answer to this question we need to know
how the measure µt is constructed. This is done in the paper [8]. So, let us
describe the relevant theorem and construction from that paper. Suppose
that X is a σ-compact metric space, m is a Borel probability measure on X,
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positive on open sets, and that a measurable map T : X → X is given
with respect to which the measure m is quasi-invariant, i.e. m ◦ T−1 ≺ m.
Moreover we assume the existence of a countable partition α = {An : n ≥ 0}
of X into subsets which are all σ-compact and of positive m-measure. We
also assume that m(X \⋃n≥0An) = 0, and if additionally for all m,n ≥ 1
there exists k ≥ 0 such that

m(T−k(Am) ∩An) > 0,

then the partition α is called irreducible. Martens’s result comprising Propo-
sition 2.6 and Theorem 2.9 of [8] reads as follows.

Theorem 3.3. Suppose that α = {An : n ≥ 0} is an irreducible partition
for T : X → X. Suppose that T is conservative and ergodic with respect to
the measure m. If for every n ≥ 1 there exists Kn ≥ 1 such that for all
k ≥ 0 and all Borel subsets A of An,

K−1
n

m(A)
m(An)

≤ m(T−k(A))
m(T−k(An))

≤ Kn
m(A)
m(An)

,

then T has a σ-finite T -invariant measure µ absolutely continuous with
respect to m. Additionally µ is equivalent to m, conservative and ergodic,
and unique up to a multiplicative constant.

Since in what follows we make use of the method in which the invariant
measure claimed in Theorem 3.3 is produced, we shall also describe this
procedure briefly. Following Martens one considers the following sequences
of measures:

Sk(m) =
k−1∑

i=0

m ◦ T−i and Qk(m) =
Sk(m)

Sk(m)(A0)
.

It is proven in [8] that each weak limit µ of the sequence Qn(m) has the prop-
erties required in Theorem 3.3, where a sequence {νk : k ≥ 1} of measures
on X is said to converge weakly if for all n ≥ 1 the measures νk converge
weakly on all compact subsets of An. In fact it turns out that the sequence
Qn(m) converges and

µ(F ) = lim
n→∞

Qn(m)(F )

for every Borel set F ⊂ X. Let us now describe the construction of a par-
tition α in the context of critically non-recurrent rational functions. Set
Y = J(f)\ (PC(f)∪Ω), where PC(f) =

⋃
n≥1 f

n(Crit(f)). For every y ∈ Y
consider a ball B(y, r(y)) such that r(y) > 0, m(∂B(y, r(y))) = 0, and
r(y) < 1

2 dist(y,PC(f) ∪Ω). The balls B(y, r(y)), y ∈ Y , cover Y and since
Y is a metric separable space, one can choose a countable subcover, say
{Ãn : n ≥ 0}. We may additionally require that the family {Ãn : n ≥ 0} is
locally finite, that is, each x ∈ Y has an open neighborhood intersecting only
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finitely many balls Ãn, n ≥ 0. We now define the family α = {An : n ≥ 0}
inductively setting

A0 = Ã0 and An+1 = Ãn + 1 \
n⋃

k=1

Ãn

(and throwing away empty sets). Obviously α is a disjoint family and
⋃

n≥1

An ⊃ J(f) \ (PC(f) ∪Ω) \
⋃

n≥0

∂Ãn,

whence in view of Corollary 7.2 in [17], m(
⋃
n≥0An) = 1.

In order to provide some sufficient conditions for the measure µt to be
finite, we need an assumption stronger than critical non-recurrence. Namely,
from now on throughout this section we assume that f : C → C is parabol-
ically semi-hyperbolic, that is, c 6∈ ω(Crit(f)) for all c ∈ Crit(J(f)) and
ω(Crit(J(f))) ∩Ω(f) = ∅.

Theorem 3.4. Suppose that f : C→ C is a parabolically semi-hyperbolic
map and that P(t) > −χt. If mt is the t-conformal Gibbs state and
mt(Ω) = 0, then the set of points of infinite condensation of the invariant
t-conformal Gibbs state µt is contained in Ω(f).

Proof. By the standard normal family argument there exist u ≥ 1 and
λ > 1 such that

|(fu)′(z)| > λ

for all z ∈ ω(Crit(J(f))). Thus

|(fu)′(fn(c))| ≥ λ(3.2)

for every c ∈ Crit(J(f)) and all n large enough. Since the conformal measure
mt is positive on non-empty open sets, inf{mt(B(x, r)) : x ∈ J(f)} > 0 for
every r > 0; even more, there exists α(r) ∈ (0, r) such that

M(r) = inf{mt(B(x, r) \B(x, α(r))) : x ∈ J(f)} > 0.(3.3)

It follows from (3.1) and (3.2) that there exists δ > 0 such that for every
c ∈ Crit(J(f)), k ≥ 1 and every n ≥ p(c) the holomorphic inverse branch
f−k
fn(c) : B(fn+k(c), 4δ)→ C sending fn+k(c) to fn(c) is well defined. It also

follows from (3.2) that for all u large enough, all c ∈ Crit(J(f)), all k ≥ 0
and all 0 ≤ i ≤ u− 1,

f−u
fp(c)+i+ku

(B(fp(c)+i+(k+1)u(c), 2δ)) ⊂ B(fp(c)+i+ku(c), α(δ)).(3.4)

For every c ∈ Crit(J(f)), all 0 ≤ j ≤ u− 1 and all i ≥ 0 define now

Ri,j(c) = f−ju
fp+i(c)(B(fp+i+ju(c), 2δ)) \ f−(j+1)u

fp+i(c) (B(fp+i+(j+1)u(c), 2δ))(3.5)

= f−ju
fp+i(c)(B(fp+i+ju(c), 2δ) \ f−u

fp+i+ju(c)(B(f (p+i+(j+1)u(c), 2δ))),
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where p = p(c). Applying Koebe’s distortion theorem and using (3.3) along
with (3.4) we conclude that

(3.6) mt(Ri,j(c)) � e−P(t)ju|(f ju)′(fp+i(c))|−t

×mt(B(fp+iju(c), 2δ) \ f−u
fp+i+ju(c)(B(f (p+i+(j+1)u(c), 2δ)))

� e−P(t)ju|(f ju)′(fp+i(c))|−t.

Fix now a point ξ ∈ ⋃n≥0 f
n(Crit(J(f))). Obviously, because of parabol-

ical semi-hyperbolicity of f , the latter set is disjoint from Ω. Let x = f s(ξ),
where s ≥ 1 is so large that

{fn(x) : n ≥ 0} ∩ Crit(f) = ∅.(3.7)

Since Crit(J(f)) ∩ ω(Crit(J(f))) = ∅, it follows from Lemma 2.13 in [17]
that there exists 0 < γ < δ/2 such that if n ≥ 1 and y ∈ f−n(x),
then fk(Cn(y,B(x, 4γ))) ∩ Crit(f) consists of at most one point for ev-
ery 0 ≤ k ≤ n − 1. Without loss of generality we may assume that the
set A0 involved in the definition of the invariant measure µt is contained in
B(x, γ). Suppose first that Cn(y,B(x, 2γ)) ∩ Crit(fn) = ∅. It then follows
from Koebe’s distortion theorem that

mt(Cn(y,B(x, γ)))
mt(Cn(y,B(x, γ)) ∩ f−n(A0))

� mt(B(x, γ)
mt(A0)

� 1.(3.8)

Suppose in turn that Cn(y,B(x, 2γ)) ∩ Crit(fn) 6= ∅ and let 0 ≤ k ≤ n− 1
be the least integer such that f k(Cn(y,B(x, 4γ))) ∩ Crit(f) is not-empty.
Denote by c its only element. Note that by (3.7), k+p(c) ≤ n. Put p = p(c).
Taking γ > 0 sufficiently small, we may assume that

Crit(f) ∩
n⋃

k=0

fk(Cn(y,B(x, γ))) ⊂ {f j(c) : 0 ≤ j ≤ p− 1}.

In particular

c ∈ fk(Cn(y,B(x, 2γ))).(3.9)

We have

|(fp+i)′(z)| � |z − c|q(c)−1(3.10)

for all 0 ≤ i ≤ u − 1 and all z ∈ Cp+i(c,B(fp+i(c), 2δ)) (note that q(c) is
also the order of c for the function f p+i). Write n − k − p = su+ r, s ≥ 0,
0 ≤ r ≤ u− 1. Since

fk(Cn(y,B(x, γ))) ⊂ Cp+r+su(c,B(fp+r+su(c), δ)),

using (3.6) and (3.10), we get
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mt(fk(Cn(y,B(x, γ))))

�
∑

j≥s
|(f ju)′(fp+r(c))|−te−P(t)(p+r+ju)(|(f ju)′(fp+r(c))|−1)(1/q(c)−1)t

�
∑

j≥s
e−P(t)(p+r+ju)|(f ju)′(fp+r(c))|−t/q(c).

Since A0 ⊂ B(x, γ) ⊂ B(fp+r+su(c), δ), using Koebe’s distortion theorem,
we get

mt(fk(Cn(y,B(x, γ))) ∩ f−(n−k)(A0))

� mt(A0)|(f su)′(fp+r(c))|−te−P(t)(p+r+su)(|(f su)′(fp+r(c))|−1)(1/q(c)−1)t

� e−P(t)(p+r+su)|(f su)′(fp+r(c))|−t/q(c).
Therefore, using the assumption P(t) > −χt, we conclude that

(3.11)
mt(fk(Cn(y,B(x, γ))))

mt(fk(Cn(y,B(x, γ))) ∩ f−(n−k)(A0))

�
∑

j≥0

e−P(t)(p+r+ju)|(f ju)′(fp+r+su(c))|−t/q(c) ≤ S(c)

for some number S(c) depending only on c. Using (3.9) we conclude that

(fk(Cn(y,B(x, 4γ))) \ fk(Cn(y,B(x, 2γ)))) ∩ Crit(fn−k) = ∅
and therefore Mod(fk(Cn(y,B(x, 4γ)))\fk(Cn(y,B(x, 2γ)))) ≥ (log 2)/q(c).
Hence, applying Koebe’s distortion theorem and (3.11), we obtain

mt(Cn(y,B(x, γ)))
mt(Cn(y,B(x, γ)) ∩ f−n(A0))

� |(f
k)′(y)|−te−P(t)k

|(fk)′(y)|−te−P(t)k
· mt(fk(Cn(y,B(x, γ))))
mt(fk(Cn(y,B(x, γ))) ∩ f−(n−k)(A0))

� S(c).

Therefore
mt(f−n(B(x, γ))
mt(f−n(A0))

� max{S(c) : c ∈ Crit(J(f))}

and consequently Qn(B(x, γ)) � max{S(c) : c ∈ Crit(J(f))} for all n ≥ 1.
Thus µt(B(x, γ)) <∞ and x is a point of finite condensation of µt. Since µt is
an invariant measure, we conclude that ξ is also a point of finite condensation
of µt and we are done. If ξ ∈ J(f) \ (

⋃
n≥0 f

n(Crit(J(f))) ∪ Ω(f)) the
argument is easier.

A parabolically semi-hyperbolic map f : C→ C is called semi-hyperbolic
if Ω(f) = ∅. As an immediate consequence of Theorem 3.4, we get the
following.
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Corollary 3.5. Suppose f : C→ C is semi-hyperbolic. If P(t) > −χt,
then the invariant t-conformal Gibbs state µt is finite.

Allowing parabolic points we still get the following remarkable

Theorem 3.6. Suppose that f : C→ C is parabolically semi-hyperbolic.
If t ∈ [0,HD(J(f))) (then mt(Ω) = 0 by Proposition 3.1, χ > 0 follows from
parabolical semi-hyperbolicity , and P(t) > 0 > −χt), then the t-conformal
Gibbs state µt is finite.

Proof. Since h = δ(f) and t ∈ [0, h), it follows from Theorem 2.2 that
P(t) > 0. Hence, for every k ≥ 1 and every ω ∈ Ω,

mt(B(ω, k−1/p(ω))) �
∞∑

j=k1/p(ω)

e−P(t)jj−m(p(ω)+1)t/p(ω)

≤
∞∑

j=k1/p(ω)

e−P(t)j � e−P(t)k1/p(ω)
.

Therefore, proceeding exactly as in the proof of Proposition 6.2 from [18],
instead of (6.2) we would get

Qn(B) �
n−1∑

k=1

e−P(t)k1/p(ω) Sn−k(mt)(A)
Sn(mt)(A)

≤
∞∑

k=1

e−P(t)k1/p(ω)
.

Since P(t) > 0, this last series converges and all the numbers Qn(B) are
bounded above by its sum multiplied by a universal constant. This shows
that ω is a point of finite condensation of µt, which finishes the proof in
view of Theorem 3.4.

4. Escape rates. Throughout this section f : C → C is a critically
non-recurrent rational map. Let λ be the normalized Lebesgue measure on
the sphere C (with respect to the spherical metric). Following the reasoning
from Lemma 5.3 of [18] we shall prove the following.

Lemma 4.1. If f : C→C is critically non-recurrent , then for every θ>0
there exists ε > 0 such that if D is an open ball centered in J(f) \B(Ω, θ)
with radius ε and B is an open ball such that 2B ⊂ D \⋃n≥1 f

n(Crit(f)),
then

inf
{
λ(Bn)
λ(Dn)

}
> 0,

where the infimum is taken over all integers n ≥ 0, all connected compo-
nents Dn of f−n(D), and all connected components Bn of f−n(B) con-
tained in Dn.
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Proof. Using Koebe’s distortion theorem we obtain

λ(Bn) � diam2(Bn) =
(

diam(Bn)
diam(Dn)

)2

diam2(Dn) ≥ λ(Dn)
(

diam(Bn)
diam(Dn)

)2

and applying Lemma 3.3 in [18] we get

λ(Bn) � λ(Dn)
(

diam(B)
diam(D)

)2

.

Theorem 4.2. If f is critically non-recurrent , then for every ε > 0
sufficiently small

lim sup
n→∞

1
n

log λ(f−n(B(J(f), ε))) = P(2).

Proof. Fix ε > 0 so small as required in Lemma 4.1 and such that there
exists z ∈ G \⋃n≥1 f

n(Crit(f)) for which B(z, 2ε) ∩ ⋃n≥1 f
n(Crit(f)) = ∅

(by topological exactness of f : J(f)→ J(f),
⋃
n≥1 f

n(Crit(f)) is obviously
a nowhere-dense subset of J(f) in the critically non-recurrent case), where
G is the set coming from item 6 of the definition of topological pressures.
Applying Koebe’s distortion theorem we obtain

(4.1) lim sup
n→∞

1
n

log λ(f−n(B(J(f), ε)))

≥ lim sup
n→∞

1
n

log λ(f−n(B(z, ε))) = lim sup
n→∞

1
n

log
∑

y∈f−n(z)

λ(f−ny (B(z, ε)))

= lim sup
n→∞

1
n

log
∑

y∈f−n(z)

|(fn)′(y)|−2 = P(2).

Since obviously

lim sup
n→∞

1
n

log λ(f−n(B(J(f), ε))) ≤ 0,

combining this, (4.1) and Theorem 2.6(c) concludes the proof in the case
when Ω 6= ∅. If Ω = ∅, cover J(f) by balls {Di}ki=1 centered respectively at
some points {xi}ki=1 in G and with radii so small as required in Lemma 4.1.
Since, as already observed,

⋃
n≥1 f

n(Crit(f)) is nowhere dense in the Julia
set J(f), each ball Di, i = 1, . . . , k, contains a non-empty open ball Bi such
that 2Bi ⊂ Di \

⋃
n≥1 f

n(Crit(f)). Thus, applying Lemma 4.1 and Koebe’s
distortion theorem, we get for every i = 1, . . . , k,

lim sup
n→∞

1
n

log λ(f−n(Di)) = lim sup
n→∞

1
n

log λ(f−n(Bi))

= lim sup
n→∞

1
n

log
∑

y∈f−n(xi)

|(fn)′(y)|−2 = P(2).
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Hence, assuming ε > 0 to be so small that B(J(f), ε) ⊂ D1 ∪ . . . ∪Dk, we
get

lim sup
n→∞

1
n

log λ(f−n(B(J(f), ε))) ≤ lim sup
n→∞

1
n

log λ
( k⋃

i=1

f−n(Di)
)

= P(2).

In particular, it therefore follows from Theorem 2.6(b) that if Ω = ∅,
then the rate of escape is exponential. In the case when Ω 6= ∅, something
more can be said about a modified rate of escape. Let p(ω) ≥ 1 be the
number of petals of a parabolic point ω and let

p = max{p(ω) : ω ∈ Ω}, ξ =
( ∏

c∈Crit(f)

q(c)
)−1

,(4.2)

where q(c) ≥ 2 is the order of the critical point c of f . Let θ have the same
meaning as in [18]. We will need the following.

Lemma 4.3. If f is critically non-recurrent , then there exists a constant
B ≥ 1 such that if ε > 0 is small enough, n ≥ 1 is an integer , z ∈ J(f),
and fn(z) 6∈ B(Ω, θ), then

diam(Cn(z,B(fn(z), ε))) ≤ Bn−ξ(p+1)/p.

Proof. Since

lim
n→∞

sup{diam(Cn(w,B(fn(w), ε))) : w ∈ J(f), fn(w) 6∈ B(Ω, θ)} = 0,

there exists q ≥ 1 such that for every n ≥ q, w ∈ J(f), fn(w) 6∈ B(Ω, θ), we
have

diam(Cn(w,B(fn(w), ε))) < ε/4.

Suppose now that n ≥ q + 1. We shall inductively define the sequence

x0 = fk0(z), x1 = fk1(z), . . . , xl = fkl(z)

(l ≤ n) of points from the set {z, f(z), . . . , fn(z)} as follows. We declare
k0 = n and x0 = fn(z). If all other points from {z, f(z), . . . , fn(z)} are
contained in B(Ω, θ), we put x1 = z and stop the inductive procedure.
Assume now that xj = fkj (z) ∈ {z, f(z), . . . , fn(z)} \ B(Ω, θ) has been
defined for all j ∈ {0, 1, . . . , n}. If kj < q, we stop the inductive procedure.
If {z, f(z), . . . , fkj−q(z)} ⊂ B(Ω, θ), we stop the inductive procedure by
setting xj+1 = z. Otherwise we define xj+1 = fk(z), where 0 ≤ k ≤ kj− q is
the largest integer such that f k(z) 6∈ B(Ω, θ). For every 0 ≤ j ≤ l− 1 define
first the sets

Cj = Ckj−kj+1(xj+1, B(xj , ε)) and Bj = Ckj (z,B(xj, ε)).

Since kj − kj+1 ≥ q, we have Cj ⊂ B(xj+1, ε/2) and define the set

Aj = Ckj+1(z,B(xj+1, ε)) \ Ckj+1(z, Cj) = Bj+1 \Bj .
Since Cj ⊂ B(xj+1, ε/2), we obtain Bj ⊂ Bj+1 if j ≤ l − 1 and

Aj ⊃ Ckj+1(B(xj+1, ε) \ Cj)(4.3)
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where Ckj+1(B(xj+1, ε) \ Cj) is the connected component of the set
f−kj+1(B(xj+1, ε) \ Cj) that encloses Bj in Bj+1. Improving slightly Lem-
ma 3.1 of [18] we get

Mod(Aj) ≥ ξ log 2.(4.4)

It follows from the local behavior of f around parabolic points and the
definition of the sequence {xj}lj=0 that there exists a constant L ≤ 1 such
that for all 0 ≤ j ≤ l − 1,

diam(Cj) ≤ (L(kj − kj+1))−(p+1)/p.(4.5)

Fix now an integer u ≥ 1 so large that for every t ≥ 2,

teMt

ut−1 ≤ 1, where M = −
(

logL+
p

p+ 1
log ε

)
.(4.6)

We define
R = {j ∈ {0, 1, . . . , l − 1 : kj − kj+1 ≥ u}.

It then follows from (4.5) that for all j ∈ R,

Mod(B(xj+1, ε) \ Cj) ≥ log ε− log diam(Cj)

≥ log ε+
p+ 1
p

logL+
p+ 1
p

log(kj − kj+1)

=
p+ 1
p

(log(kj − kj+1)−M).

Proceeding in the same way as in the proof of Lemma 3.1 in [18] and us-
ing (4.3), we deduce that if j ∈ R, then

Mod(Aj) ≥ ξ
p+ 1
p

(log(kj − kj+1)−M).(4.7)

Combining this with (4.4) and using the Grötzsch inequality, we conclude
that

(4.8) Mod(B(z, ε) \ Cn(z,B(fn(z), ε)))

≥ ξ log 2(l − 1−#R) + ξ
p+ 1
p

(∑

j∈R
log(kj − kj+1)−M#R

)
.

If #R ≥ 2, then using (4.6) we obtain

(4.9)
exp
(
−ξ p+1

p (
∑

j∈R log(kj − kj+1)−M#R)
)

(
∑

j∈R(kj − kj+1))−ξ(p+1)/p

=
(
eM#R

∑
j∈R(kj − kj+1)∏
j∈R(kj − kj+1)

)ξ(p+1)/p

=
(
eM#R

∑

j∈R

1∏
i∈R\{j}(ki−ki+1)

)ξ(p+1)/p
≤
(

#ReM#R

u#R−1

)ξ(p+1)/p

≤ 1.
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Since, by our inductive construction,

l − 1−#R ≥ 1
q

(
n− q −

∑

j∈R
(kj − kj+1)

)
≥ 1

2q

(
n−

∑

j∈R
(kj − kj+1)

)

for all n large enough, we therefore obtain

(4.10) exp(−Mod(B(z, ε) \ Cn(z,B(fn(z), ε))))

≤ exp
(−ξ log 2

2q

(
n−
∑

j∈R
(kj − kj+1)

))(∑

j∈R
(kj − kj+1)

)−ξ(p+1)/p

≤ B1n
−ξ(p+1)/p

for a sufficiently large constant B1. Since in the case #R ≤ 1, (4.10) follows
immediately from (4.8), the formula (4.10) is always true. In view of The-
orem 2.4 of [11], the hyperbolic diameter of Cn(z,B(fn(z), ε)) in B(z, ε) is
bounded above by

B2 exp(−Mod(B(z, ε) \ Cn(z,B(fn(z), ε)))) ≤ B2B1n
−ξ(p+1)/p

for some universal constant B2, and the inequality sign was written due
to (4.10). Since z ∈ Cn(z,B(fn(z), ε)) and limn→∞B2B1n

−ξ(p+1)/p = 0, the
euclidean and hyperbolic diameters of Cn(z,B(fn(z), ε)) become compara-
ble, and consequently there exists a constant B ≥ 1 such that

diam(Cn(z,B(fn(z), ε))) ≤ Bn−ξ(p+1)/p

for all n ≥ 1.

Remark 4.4. In the proof of Lemma 4.3 one shows in fact that Mod(Aj)
≥ ξn, where ξn is the degree of fn restricted to Cn(z,B(fn(z), ε)). In par-
ticular if Cn(z,B(fn(z), ε)) contains no critical points of fn, then ξn = 1
and

diam(Cn(z,B(fn(z), ε))) ≤ Bn(p+1)/p.

So, in the parabolic case (no critical points in the Julia sets), we get the
result proven in [6].

Recall that in view of Theorem 2.6, h = HD(J(f)) and P(h) = 0. Devel-
oping now the approach from [6] we shall prove the following.

Theorem 4.5. If f is a critically non-recurrent rational function, then
for every 0 < δ < diam(J(f)) there exist constants ε> 0 and C ≥ 1 such
that

C−1n−2(p+1)/p ≤ λ(f−n(B(J(f) \B(Ω, δ), ε))) ≤ Cn−ξ(h−2)(p+1)/p.

Proof. Fix ω ∈ Ω such that p(ω) = p. Let q ≥ 1 be the period of ω. Fix
also y ∈ B(J(f)\B(Ω, δ), ε)\⋃n≥1 f

n(Crit(f)) and then x ∈ f−l(y) for some

l ≥ 1, so close to ω that the inverse branches f−qkω of f qk are well defined on
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some neighborhood B(x, r) of x and limk→∞ f
−qk
ω (B(x, r)) = ω. Take then

0 < η < ε so small that B(y, η) ⊂ B(J(f) \ B(Ω, δ), ε) and f−lx (B(y, η)) ⊂
B(x, r). It follows from the local behavior of f around parabolic points that
for every k ≥ 1,

λ(f−(l+qk)(B(J(f) \B(Ω, δ), ε))) ≥ λ(f−qkω (B(x, r)))

� |(f−qkω )′(x)|2 � (qk)−2(p+1)/p

and the first inequality of Theorem 4.5 easily follows. In order to prove
the opposite inequality fix κ > 0 ascribed to δ > 0 so small as required in
Lemma 4.1 and cover J(f)\B(Ω, δ) with finitely many open ballsD1, . . . ,Dk

with radii κ centered at points of the set J(f)\B(Ω, δ). Since J(f)\B(Ω, δ)
is a compact set, there exists ε > 0 such that

B(J(f) \B(Ω, δ), ε) ⊂ D1 ∪ . . . ∪Dk.(4.11)

For every i ∈ {1, . . . , k} fix then an open ball Bi such that 2Bi ⊂ Di \⋃
n≥1 f

n(Crit(f)) and denote its center by zi. Now, applying Koebe’s dis-
tortion theorem and Lemma 4.3 (with δ = θ), for every i ∈ {1, . . . , k} and
for every n ≥ 1 we obtain

(4.12) λ(f−n(Bi))

= λ
( ⋃

x∈f−n(zi)

f−nx (Bi)
)
≤

∑

x∈f−n(zi)

λ(f−nx (Bi))

�
∑

x∈f−n(zi)

|(fn)′(x)|−2λ(Bi)

� λ(Bi)
∑

x∈f−n(zi)

|(fn)′(x)|h−2|(fn)′(x)|−h

� λ(Bi)
∑

x∈f−n(zi)

diam(Cn(x,B(zi, r)))2−h|(fn)′(x)|−h

� λ(Bi)
∑

x∈f−n(zi)

nξ(h−2)(p+1)/p|(fn)′(x)|−h

= λ(Bi)nξ(h−2)(p+1)/p
∑

x∈f−n(zi)

|(fn)′(x)|−h

� λ(Bi)nξ(h−2)(p+1)/p
∑

x∈f−n(zi)

mh(f−nx (B(zi, r)))

� λ(Bi)nξ(h−2)(p+1)/pmh(f−n(B(zi, r))) � λ(Bi)nξ(h−2)(p+1)/p.

Applying now Lemma 4.1 and (4.11), for every n ≥ 1 we obtain
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λ(f−n(B(J(f) \B(Ω, δ), ε)))

≤
k∑

i=1

λ(f−n(Di)) �
k∑

i=1

λ(f−n(Bi)) �
k∑

i=1

λ(Bi)nξ(h−2)(p+1)/p

≤ kmax{λ(Bi) : i ∈ {1, . . . , k}}nξ(h−2)(p+1)/p.

Since in the parabolic case (no critical points in the Julia sets) ξ = 1, as
an immediate consequence of Theorem 4.5 we get the corresponding result
proven in [6].

5. Real-analyticity of topological pressure. This section differs
from the previous sections in two points. We consider the generalized poly-
nomial-like mappings (defined below) instead of rational functions, and we
consider Hölder continuous potentials instead of the functions−t log |f ′|. No-
tice that each generalized polynomial-like mapping with one critical point
was proved in [7] to be quasiconformally conjugate to a polynomial. The
case of a larger number of critical points can be treated similarly. Since
such a conjugacy is Hölder continuous, it might turn out to be helpful in
some parts of this section if one wants to deal with maps without parabolic
points only. Since this conjugacy is usually not Lipschitz continuous, it is
rather useless if parabolic points are present. In order to define the gen-
eralized polynomial-like mappings let U ⊂ C be an open Jordan domain
with smooth boundary and let {Uj}lj=1 be a finite family of Jordan domains
contained in U and with mutually disjoint closures. A map

f :
l⋃

j=1

Uj → U

is called a generalized polynomial-like mapping (GPL) if f extends holo-
morphically to an open neighborhood of

⋃l
j=1Uj and for all j = 1, . . . , l,

the restriction f |Uj : Uj → U is a surjective branched covering map. The
branched points of f coincide of course with Crit(f), the set of all critical
points of f , and we denote by Br the set of i ∈ {1, . . . , l} such that Ui con-
tains a critical point of f . We call Br the set of branched indices. If j ∈ Br,
then we denote by Cj the set of critical points of f contained in Uj . We also
assume that if ∂Uj ∩∂U 6= ∅ for some j ∈ {1, . . . , l}, then this intersection is
a singleton consisting of a periodic parabolic point. Following tradition we
call the branched conformal GPL f critically non-recurrent if for all j ∈ Br,

U j ∩
⋃

n≥1

fn(Cj) = ∅.

We finally call a GPL critically tame if there exists 1 ≤ j ≤ l such that

Uj ∩
⋃

n≥1

fn(Crit(f)) = ∅, U j ⊂ U, Uj ∩ J(f) 6= ∅,
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where J(f) is the Julia set of f , i.e. the boundary of the set of those points in
U whose forward iterates under f are all well defined. In the context of crit-
ically tame GPLs we will always assume without loss of generality that the
distinguished index j is equal to 1. Notice that each critically non-recurrent
GPL with one critical point is critically tame if for the branched index j,
U j ⊂ U . There are of course critically tame GPLs which are not recurrent.
It can be easily verified that everything proven so far for rational critically
non-recurrent functions can also be proven for critically non-recurrent GPLs.
Let g : U → R be a Hölder continuous function such that

P(g) = P(g, f |J(f)) > sup{g|J(f)}.
Similarly to [3] but more easily, due to the fact that the disk U is already
given, we can prove the following.

Theorem 5.1. Let f be a generalized polynomial-like mapping and let
g : U → R be a Hölder continuous function such that P(g) = P(g, f |J(f)) >
sup{g|J(f)}. Then

(a) There exists a unique Borel probability measure m supported on J(f)
such that

m(f(A)) =
�
A

eP(g)−g dm

for every Borel set A ⊂ ⋃l
j=1Uj such that f |A is 1-to-1. The measure m is

atomless.
(b) There exists a unique Borel probability f -invariant measure µ ab-

solutely continuous with respect to m. In addition, µ is ergodic and the
Radon–Nikodym derivative ψ = dµ/dm : J(f) → [0,∞) has in L1(µ) a
continuous version which is bounded away from zero.

We will need the following technical mixing type result.

Lemma 5.2. Assume the same as in Theorem 5.1. Then there exists 0 <
η < 1 such that

µ
( n−1⋂

j=0

f−j(U \ U1)
)
≤ ηn

for all n ≥ 1.

Proof. It follows from Theorem 5.1 that

0 < ψ := inf{ψ(z) : z ∈ J(f)} ≤ ψ := sup{ψ(z) : z ∈ J(f)} <∞.
Consider a partition D1, . . . ,Dq (modulo a set of µ-measure zero) of U such
that all holomorphic inverse branches of f are well defined on each Dj,
j = 1, . . . , q. Such a partition exists since, due to Theorem 5.1, the measures
m and µ are atomless (in particular m(f(Crit(f))) = µ(f(Crit(f))) = 0).
Notice also that due to the same theorem the map f is non-singular with
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respect to both m and µ. For every i ∈ {1, . . . , q} choose one holomorphic
inverse branch f−1

i of f mapping Di into U1. Applying Theorem 5.1 we get,
for every Borel set A ⊂ U ,

µ(U1 ∩ f−1(A)) ≥ µ
( q⋃

i=1

f−1
i (A ∩Di)

)
=

q∑

i=1

µ(f−1
i (A ∩Di))

≥ ψ
q∑

i=1

m(f−1
i (A ∩Di)) = ψ

q∑

i=1

�
A∩Di

eg◦f
−1
i −P(g) dm

≥ ψe−P(g)e−‖g‖∞
q∑

i=1

m(A ∩Di) = ψe−(P(g)+‖g‖∞)m(A)

= γµ(A),

where γ = ψψ−1e−(P(g)+‖g‖∞) > 0. Therefore

µ((U \ U1) ∩ f−1(A)) = µ(f−1(A))− µ(U1 ∩ f−1(A))

= µ(A)− µ(U1 ∩ f−1(A))

≤ µ(A)− γµ(A) = (1− γ)µ(A).

Thus

µ
( n−1⋂

j=0

f−j(U \ U1)
)

= µ
(

(U \ U1) ∩ f−1
( n−2⋂

j=0

f−j(U \ U1)
))

≤ (1− γ)µ
( n−2⋂

j=0

f−j(U \ U1)
)

and the lemma follows by induction upon taking η = 1− γ.

From now on we assume that

f :
l⋃

j=1

Uj → U

is a critically tame GPL. Our first aim is to associate with f a conformal
infinite (hyperbolic) iterated function system satisfying all the requirements
from [9]. Since f is critically tame, there exists an open topological disk
V ⊃ U1 whose closure is contained in U and is disjoint from U 2 ∪ . . . ∪ U l.
In particular

V ∩
⋃

n≥1

fn(Crit(f)) = ∅.(5.1)

For every n ≥ 1 let

Rn = {z ∈ U1 : fn(z) ∈ U1 and U1 ∩ {fk(z) : k = 1, . . . , n− 1} = ∅}.
That is, Rn is the set of those points in U1 whose first return time to U1 is n.
Let now x ∈ Rn. In view of (5.1) there exists a unique holomorphic inverse
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branch f−nx : V → C of fn sending fn(x) to x. Notice that f−nx (V ) ⊂
U1 ⊂ V . Since if y is another point in Rn, then either f−ny = f−nx or
f−nx (V ) ∩ f−nx (V ) = ∅, we conclude that there exists a finite set An ⊂ Rn
such that f−nx (V ) ∩ f−ny (V ) = ∅ for all x, y ∈ An, x 6= y, and for every
z ∈ Rn there exists w ∈ An such that f−nz = f−nw . Therefore, the countable
family

S = {f−nx : V → V, f−nx : U1 → U1}n≥1, x∈An
forms a conformal iterated function system in the sense of [9]. We will fre-
quently denote the elements of S by φi, i ∈ I. Given ω = ω1 . . . ωn ∈ In, we
put

φω = φω1 ◦ . . . ◦ φωn .
Let N(i) denote the only integer satisfying φi = f−Nix for some x ∈ ANi .
Given t ≥ 0 and s ∈ R we introduce the family Gt,s = {gi,t,s : V → R}i∈I
by the formulas

gi,t,s(x) = t

Ni∑

j=1

g ◦ f j(φi(x))− sN(i).

Recall that p = max{p(ω) : ω ∈ Ω}. Let us prove the following.

Lemma 5.3. Suppose that f is a critically tame and critically non-recur-
rent GPL. If f has no parabolic points, then all the functions gi,t,s, i ∈ I, are
Hölder continuous with the same Hölder exponent and the same Hölder con-
stant. If f has parabolic points, then the same is true assuming additionally
that the Hölder exponent of g is greater than p/(p+ 1).

Proof. Notice first that U1 has no parabolic points. In the case of the
lack of parabolic points, this immediately follows from Lemma 7.7 of [18]
(the stars can be dropped there); cf. [1]. So, suppose that Ω 6= ∅. It then
follows from (5.1) and Remark 4.4 that diam(Vn) ≤ Bn−(p+1)/p for all n ≥ 1
and all connected components Vn of f−n(V ). Hence, it follows from Koebe’s

distortion theorem that |(f−n∗ )′(x)| ≤ B̃(n + 1)−(p+1)/p for all n ≥ 0, all
holomorphic inverse branches f−n∗ : V → U of fn, all x ∈ U1 and some
B̃ > 0. In particular if y, z ∈ U 1, then for all i ∈ I,
∣∣∣
Ni∑

j=1

g ◦ f j(φi(z))−
Ni∑

j=1

g ◦ f j(φi(y))
∣∣∣ ≤

Ni∑

j=1

|g ◦ f j(φi(z))− g ◦ f j(φi(y))|

≤
Ni∑

j=1

C|f j(φi(z))− f j(φi(y))|α

≤
Ni∑

j=1

CB̃(Ni + 1− j)−(p+1)/p|z−y|α ≤
∞∑

j=1

k−α(p+1)/p|z − y|α,

where α is the Hölder exponent of g and C is the Hölder constant.
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Lemma 5.4. For all t ≥ 0 and s ∈ R, Gt,s is a Hölder family of functions
in the sense of [5] and [10].

Proof. By Montel’s theorem the family {φi : V → U1}i∈I is normal, and
since U1 ∩ J(f) 6= ∅, all its limit functions are constant. Therefore all the
limit functions of the derivatives φ′i of φi are equal to the constant function 0.
Thus, there exists q ≥ 1 such that ‖φ′ω‖∞ ≤ 1/2 for all ω ∈ In with n ≥ q,
where ‖ · ‖∞ is the supremum norm on U1. Notice also that by Koebe’s
distortion theorem (and since U 1 ⊂ V ),

Q = sup{‖φ′ω‖∞ : ω ∈ In, 1 ≤ n ≤ q − 1} <∞.
Fix now n ≥ 1, ω ∈ In, and two points x, y ∈ U 1. Write n − 1 = kq + r,
where 0 ≤ r ≤ q−1. Then ‖φ′ω‖∞ ≤ (1/2)kQ ≤ Q(1/2)(n−1)/q and therefore

diam(φω(U1)) ≤ Q(2−1/q)n−1,

where Q is the constant depending on Q, the diameter of U1, and the maxi-
mal number of segments needed to join each point in U 1 with an arbitrarily
frozen point in U1 (note that U1 is not assumed to be convex nor of the
star shape). Using Lemma 5.3, with the Hölder exponent α following from
Lemma 5.3, we conclude that

|gω1,t,s(φσ(ω)(y))− gω1,t,s(φσ(ω)(x))| ≤ C1|φσ(ω)(y)− φσ(ω)(x)|α

≤ C1Q(2−α/q)n−1

for some universal constant C1 depending on t.

We recall (see [10]; cf. [5], where a different terminology was used) that
a Hölder family {qi : U1 → R}i∈I is called summable if

∑

i∈I
esup(qi) <∞.

Using Lemma 5.2 let us prove the following.

Lemma 5.5. Assume the same as in Lemma 5.3. If P(g) > sup(g), then
there exists δ > 0 such that if (t, s) ∈ (1 − δ, 1 + δ) × (P(g) − δ,∞), then
Gt,s is a summable Hölder family of functions.

Proof. The fact that the families Gt,s are Hölder has been proved in
Lemma 5.4. Since

Rn = U1 ∩
n−1⋂

j=1

f−j(U \ U1) ∩ f−n(U1) ⊂ f−1
( n−2⋂

j=0

f−j(U \ U1)
)

and since the measure µ is f -invariant, it follows from Lemma 5.2 that
µ(Rn) ≤ ηn−1. Applying now Theorem 5.1(b), we infer that there exists a
constant C1 > 0 such that
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m(Rn) ≤ C1η
n

for all n ≥ 1. Combining this, Lemma 5.3 and Theorem 5.1, we conclude
that there exists a constant C2 > 0 such that

∑

w∈An
exp

(
sup
U1

( n∑

j=1

g ◦ f j ◦ f−1
w − P(g)n

))
≤ C2η

n

for all n ≥ 1. Hence, for every t ≥ 0 and all s ∈ R, we get

∑

w∈An
exp

(
sup
U1

( n∑

j=1

tg ◦ f j ◦ f−1
w − sn

))

=
∑

w∈An
exp

(
sup
U1

( n∑

j=1

g ◦ f j ◦ f−1
w − P(g)n

+ (t− 1)
n∑

j=1

g ◦ f j ◦ f−1
w + (P(g)n− sn)

))

≤ exp(|t− 1| ‖g‖∞n) exp((P(g)− s)n)

×
∑

w∈An
exp

(
sup
U1

( n∑

j=1

g ◦ f j ◦ f−1
w − P(g)n

))

≤ C2 exp(−κn) exp((P(g)− s)n) exp(|t− 1| ‖g‖∞n),

where κ = − log η. Taking now δ = κ(4(1 + ‖g‖∞)−1, we conclude that for
all (t, s) ∈ (1− δ, 1 + δ)× (P(g)− δ,∞) and all n ≥ 1,

∑

w∈An
exp

(
sup
U1

( n∑

j=1

tg ◦ f j ◦ f−1
w − sn

))
≤ C2 exp(−κn/2)

and therefore
∑

n≥1

∑

w∈An
exp

(
sup
U1

( n∑

j=1

tg ◦ f j ◦ f−1
w − sn

))
<∞.

Since both functions g 7→ P(g) and g 7→ sup(g) are continuous, we get
the following.

Lemma 5.6. If P(g) > sup(g), then there exists δ > 0 such that P(tg) >
sup(tg) for all t ∈ (1− δ, 1 + δ).

Given ω = ω1 . . . ωn ∈ In, n ≥ 1, let σ(ω) = ω1 . . . ωn−1. Recall from [5]
and [10] that the topological pressure P(Gt,s) of the family Gt,s is defined
as follows:
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P(Gt,s) = lim
n→∞

1
n

log
∑

|ω|=n

∥∥∥ exp
( n∑

j=1

gωj ,t,s ◦ φσjω
)∥∥∥

0

= lim
n→∞

1
n

log
∑

|ω|=n
exp

(
sup
U1

n∑

j=1

gωj ,t,s ◦ φσjω
)
.

Consider the iterated function system

S = {f−nx : V → V, f−nx : U1 → U1}n≥1, x∈An .

Its limit set is defined as follows:

JS =
∞⋂

n=1

⋃

|τ |=n
φτ (U1).

For an alternative definition and further properties of JS see [9] and [10] for
example. Let us also recall ([5], [10]) that the Gt,s-conformal measure mGt,s

supported on JS is uniquely determined by the following two properties:

mGt,s(φi(A)) =
�
A

exp(gi,t,s − P(F )) dmGt,s, ∀i ∈ I,

m(φi(U1) ∩ φj(U1)) = 0 for all i 6= j.

Let δ(g) > 0 be the minimum of the numbers δ from Lemmas 5.5 and 5.6.
For t ∈ (1− δ, 1 + δ) let mt be the measure produced by Theorem 5.1(a) for
the potential tφ.

We now prove the following.

Lemma 5.7. If t ∈ (1− δ(g), 1 + δ(g)), then

P(Gt,P(tg)) = 0 and mGt,P(tg) = mt|JS .

Proof. Denote P(Gt,P(tg)) by P̂(t) and mGt,P(t) by m̂t. By the definitions
of the measures m̂t, mt and by Lemmas 5.4, 5.6 and Theorem 5.1, for every
τ ∈ I∗ =

⋃
n≥1 I

n, we have

m̂t(φτ (U1))
mt(φτ (U1))

=
� exp(

∑|τ |
j=1 gτj ,t,P(tg)) exp(−P̂(t)|τ |) dm̂t

� exp(
∑|τ |

j=1 gτj ,t,P(tg)) dmt

(5.2)

� exp(−P̂(t)|τ |).
So, if P̂(t) > 0, then m̂t(JS) = 0, and if P̂(t) < 0, then mt(JS) = 0, which
contradicts the fact that mt(JS) = mt(U1) > 0; the latter follows by a
straightforward induction from the formula mt(

⋃
i∈I φi(U1)) = mt(U1) re-

sulting from Poincaré’s recurrence theorem. Thus P̂(t) = 0 and the first part
of our lemma is proven. The equality m̂t = mt|JS follows now from (5.2) con-
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sidered as two formulas: one for the numerator and one for the denominator,
along with either Theorem 3.1.7 of [10] or Corollary 2.12 of [5].

Following [10] and [5] we call gt,s : I∞ → R defined by the formula

gt,s(τ) = gτ1,t,s(π(στ))

the amalgamated function of the family Gt,s. Here π : I∞ → C is the
projection associated with the conformal iterated function system S and
σ : I∞ → I∞ is the shift map. We are now in a position to prove the
following.

Theorem 5.8. Assume that f is a critically tame and critically non-
recurrent GPL, and that φ is Hölder continuous, with exponent greater than
p/(p+ 1) if f has parabolic points. Then the function t 7→ P(tg), t ∈ (1− δ,
1 + δ), is real-analytic.

Proof. Let m̂t = mGt,P(tg). In view of Theorem 2.6.12 of [10] (see also [19]
and [5]) and Lemma 5.5, the function

(t, s) 7→ P(gt,s) = P(Gt,s), (t, s) ∈ (1− δ, 1 + δ)× (P(g)− δ,P(g) + δ),

is real-analytic. In view of Lemma 5.7 and the implicit function theorem,
it is therefore now enough to demonstrate that ∂P

∂s (t, s) 6= 0 at the point
(t,P(tg)) for every t ∈ (1 − δ, 1 + δ). Indeed, let µ̃t, t ∈ (1 − δ, 1 + δ), be
the shift invariant measure on I∞ equivalent to ˜̂mt, the lift of m̂t to the
coding space I∞. Since µt, the measure appearing in Theorem 5.1(b) for
the potential tg, is f -invariant and the system S is defined according to the
first-return time, µt is S-invariant in the sense that

µt

(⋃

i∈I
φi(A)

)
=
∑

i∈I
µt(φi(A)) = µt(A)

for every Borel set A ⊂ JS. Hence, using the last part of Lemma 5.7, we
deduce that µt|JS = µ̃t ◦ π−1. Therefore applying Proposition 2.6.13 of [10]
(see also [19] and [5]) along with Kac’s lemma, we obtain

∂P
∂s

(t,P(tg)) = −
�
I∞
N(τ1) dµ̃t = −

�
JS

N dµt|JS = − 1
µt(JS)

6= 0,

where after the second equality sign, we treated (slightly informally) the
function N as defined on JS.

After this paper has been written the analogous result for potentials of
the form −t log |f ′| was established in [15].
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