
FUNDAMENTA
MATHEMATICAE

176 (2003)

The diameter of a Lascar strong type

by

Ludomir Newelski (Wrocław)

Abstract. We prove that a type-definable Lascar strong type has finite diameter.
We also answer some other questions from [1] on Lascar strong types. We give some
applications on subgroups of type-definable groups.

In this paper T is a complete theory in language L and we work within
a monster model C of T . For a0, a1 ∈ C let a0Θa1 iff 〈a0, a1〉 extends to
an indiscernible sequence 〈an, n < ω〉. We define a distance function d on
C by letting d(a, b) be the minimal natural number n such that for some
a0 = a, a1, . . . , an−1, an = b we have a0Θa1Θ . . . an−1Θan. If no such n
exists, we set d(a, b) =∞.

The transitive closure
Ls≡ of Θ (denoted also by EL) is the finest bounded

invariant equivalence relation on C; its classes are called Lascar strong types.

So a
Ls≡ b ⇔ d(a, b) < ∞. Moreover,

bd≡ (denoted also by EKP) is the finest
bounded type-definable equivalence relation on C. For details see e.g. [1].

So
bd≡ is coarser than

Ls≡ and each
bd≡-class is a union of a number of Lascar

strong types.

1. Assume a ∈ C and let X be the Lascar strong type of a. We define the
diameter diam(X) as the supremum of d(a, b), b ∈ X. In [1] the authors ask
whether X being type-definable implies that X has finite diameter. (Strictly
speaking, this is an equivalent version of the question from [1].) Also they

ask how many Lascar strong types may be contained in a given
bd≡-class.

We answer both questions in Corollary 1.8. Before we approach them it is
convenient to consider a more general problem: how many Lascar strong
types are needed to make a type-definable set. We answer this question in
the next theorem. For a type or formula s(x), [s(x)] denotes the set of types
containing s(x).
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Theorem 1.1. Assume that p∗ ∈ S(∅) and X ⊆ p∗(C) is a type-defina-
ble set which is a union of a number of Lascar strong types of infinite diam-

eter. Then |X/ Ls≡| ≥ 2ℵ0 .

In the proof of Theorem 1.1 we will need a topological lemma related
to the Baire category theorem. Assume K is a compact space and A is a
covering of K. We define an increasing sequence Zα, α ∈ Ord ∪ {−1}, of
open subsets of K. We let Z−1 = ∅, for limit α we put Zα =

⋃
β<α Zβ, and

for α = β + 1 we define

Zα =
⋃

A∈A
int(Zβ ∪A).

We call 〈Zα〉α∈Ord∪{−1} the open analysis of K with respect to A. There
is a minimal β such that Zβ = Zβ+1. We call this β the height of K with
respect to A. If Zβ = K, we say that K is analyzable with respect to A, or
A-analyzable. The closed set K \ Zβ is called the core of K with respect
to A, or the A-core of K.

The Cantor–Bendixson analysis of K is the open analysis with respect
to A = {{x} : x ∈ K}. Also Morley rank may be defined in terms of open
analyses of some compact spaces.

If A′ is another covering of K, we say that A′ refines A if every member
of A′ is contained in some member of A.

Remark 1.2. (1) If K is A-analyzable and Zα 6= K, then Zα+1 \ Zα is
relatively open and dense in K \ Zα and the height of K with respect to A
is a successor ordinal.

(2) If A′ refines A and K is A′-analyzable, then K is A-analyzable.

Lemma 1.3. Assume f : K ′ → K is a continuous surjection of compact
spaces, A is a covering of K and A′ is a covering of K ′.

(1) Assume A = A0 ∪ A1,
⋃A0 ∩

⋃A1 = ∅ and S =
⋃A0. If K is

A-analyzable, then the set
⋃
A∈A0

intS(A) is relatively open and dense in S.
(2) Assume A′ = {f−1[A] : A ∈ A}. Let C ′ be the A′-core of K ′.

Then f [C ′] is the A-core of K. In particular , K ′ is A′-analyzable iff K is
A-analyzable.

(3) Assume A = {f [A′] : A′ ∈ A′}. If K ′ is A′-analyzable, then K is
A-analyzable.

Proof. Let 〈Zα〉 be the open analysis of K with respect to A.
(1) Assume U is an open subset of K meeting S. We have Z0 ∩U ∩ S ⊆⋃

A∈A0
intS(A). If Z0∩U∩S = ∅, then S is dense in U \Z0. Indeed, otherwise

there is some open set V ⊆ U with V \ Z0 non-empty and disjoint from S.
But then V ⊆ K \ S ∈ A1, hence V ⊆ Z0, a contradiction.

Consequently, Z1 ∩ U ∩ S 6= ∅ and Z1 ∩ U ∩ S ⊆
⋃
A∈A0

intS(A).
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(2) Let C be the A-core of K. Clearly f [C ′] ⊆ C. We will show the
reverse inclusion: C ⊆ f [C ′].

Replace K by C and K ′ by f−1[C], and then replace A by {A ∩ C :
A ∈ A} and A′ by {A ∩ f−1[C] : A ∈ A′}. So now the sets Zα (the analysis
of the new K) are all empty, and the A′-core of K ′ is still C ′ (because
C ′ ⊆ f−1[C]). Let 〈Z ′α〉 be the open analysis of K ′ with respect to A′.

Suppose for a contradiction that f [C ′] 6= K. We have Z0 = ∅. This
means that the sets from A have empty interior. We construct recursively
non-empty open subsets Ul of K and numbers αl ∈ Ord ∪ {−1}, l < ω,
such that the sequence 〈αl〉l<ω is strictly decreasing (hence we will reach a
contradiction) and
(∗) αl is minimal such that f−1[cl(Ul)] ⊆ Z ′αl+1.

We define U0 as a non-empty open subset of K with cl(U0) ∩ f [C ′] = ∅.
Then for some β we have f−1[cl(U0)] ⊆ Z ′β. Since f−1[cl(U0)] is compact,
we can choose α0 as in (∗).

Suppose we have defined Ul and αl; we will define Ul+1 and αl+1. Since
f−1[cl(Ul)] is compact, by (∗) there are finitely many sets A0, . . . , Ak−1 ∈ A
(for some k < ω) and open sets Vi ⊆ K ′, i < k, with cl(Vi) ⊆ Z ′αl∪A′i (where
A′i = f−1[Ai]), such that f−1[cl(Ul)] ⊆

⋃
i<k Vi. Let V = f [

⋃
i<k cl(Vi)\Z ′αl ].

So V is a closed subset of K. There are two cases to consider:

Case 1: V has non-empty interior. Then one of the sets f [cl(Vi) \ Z ′αl ]
has non-empty interior, but f [cl(Vi) \Z ′αl ] ⊆ Ai, and Ai has empty interior,
a contradiction.

Case 2: V has empty interior. Choose a non-empty open set Ul+1 ⊆ Ul
with cl(Ul+1) ∩ V = ∅. So f−1[cl(Ul+1)] ⊆ Z ′αl . Hence αl ≥ 0 and we may
choose αl+1 so that (∗) holds.

In this way we have finished the construction and the proof of (2).
(3) Let A′′ = {f−1[A] : A ∈ A}. Then A′ refines A′′, hence by Remark 2,

K ′ is A′′-analyzable. By (2), K is A-analyzable.

Let us consider the case where in Lemma 1.3(1), A0 is a countable family
of closed sets, S =

⋃A0 is a Gδ-set and A1 = {K \S}. Then the remaining
assumption of Lemma 1.3(1) holds: K is A-analyzable.

Indeed, it is enough to show that Z0 6= ∅. By the Baire category theorem
the conclusion of Lemma 1.3(1) holds, hence there is a non-empty set U
such that U ∩S is contained in a single closed set F ∈ A0. If U ⊆ F , we get
U ⊆ Z0 and Z0 6= ∅. Otherwise, there is an open non-empty set V ⊆ U \ F .
Then necessarily V ⊆ K \ S ∈ A1, hence V ⊆ Z0 and Z0 6= ∅, too. In this
way Lemma 1.3 is related to the Baire category theorem.

From now on until the end of the proof of Theorem 1.1 we assume that
X ⊆ p∗(C) is a type-definable union of a number of Lascar strong types of
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infinite diameter and a = 〈aα〉α<µ is a tuple of representatives of the Lascar
strong types contained in X. So X is definable by a type Φ0(x) over some
C ⊆ C. It follows that X is also type-definable over a.

To see this, consider the restriction map r : S(Ca) → S(a). Since r is
continuous, the image of the compact set S(Ca) ∩ [Φ0(x)] via r is closed
in S(a), hence r[S(Ca) ∩ [Φ0(x)]] = S(a) ∩ [Φ(x, a)] for some type Φ(x, a)
over a. Since X is a-invariant, Φ(C, a) = X.

Let Y = S(a) ∩ [Φ(x, a)] = {tp(b/a) : b ∈ X}. So Y is a closed subset of
S(a). For α < µ and n < ω let

Yα = {tp(b/a) : b
Ls≡ aα}, Y n

α = {tp(b/a) : d(aα, b) ≤ n}.
Then the sets Y n

α are closed in S(a), Yα =
⋃
n Y

n
α and Y =

⋃
α,n Y

n
α . Let

〈Zα〉 be the open analysis of Y with respect to Y = {Y n
α : α < µ, n < ω}

and let β+ be the corresponding height of Y . The main part of the proof of
Theorem 1.1 is the following proposition.

Proposition 1.4. Y is not analyzable with respect to Y, i.e., Zβ+ 6= Y .

Proof. Suppose for a contradiction that Zβ+ = Y and Y is Y-analyzable.

For every b∈X and n<ω let Ub = {tp(c/b) : c∈X}, Yb = {tp(c/b) : c
Ls≡ b},

Y n
b = {tp(c/b) : d(c, b) ≤ n} and

Z0
b = {r ∈ Yb : Yb ∩ [ϕ(x)] ⊆ Y n

b for some ϕ(x) ∈ r and n < ω}.
Claim 1.5. Z0

b is a relatively open and dense subset of Yb. Moreover

there is no bound on d(c, b) for c
Ls≡ b with tp(c/b) ∈ Z0

b .

Proof. We could have chosen a so that a0 = b. So we may assume b = a0.
The set Ub is closed as a continuous image (via the restriction map) of the
closed set Y . If µ is countable, then one can show that the set Yb is a
Gδ-subset of Ub, and then the claim follows directly from the Baire category
theorem (which holds in a Gδ-subset of a compact space), since Yb =

⋃
n Y

n
b .

In general µ may be uncountable, so we have to argue differently. Let
f : Y → Ub be the restriction map and Y ω

0 = Y \ ⋃n Y
n

0 . Then A′ =
{Y n

0 : n ≤ ω} is a covering of Y such that Y is finer than A′. Since Y is
Y-analyzable, by Remark 2 it is also A′-analyzable.

Let A = {Y n
b : n ≤ ω}, where Y ω

b = Ub \
⋃
n<ω Y

n
b . By Lemma 1.3 (for

K ′ := Y and K := Ub) we find that Ub is A-analyzable and Z0
b is dense

in Yb. Let 〈Z∗α〉 be the open analysis of Ub with respect to A.

For the last clause, suppose there is a bound k on d(c, b) for c
Ls≡ b with

tp(c/b) ∈ Z0
b . We will prove that Yb = Z0

b .
Suppose otherwise. Choose the first α such that Z∗α meets Yb \ Z0

b .
It follows that Z∗α contains an open subset W of Ub such that ∅ 6=
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W ∩ (Yb \ Z0
b ) ⊆ Y n

b for some n < ω. But then for all c with tp(c/b) ∈
(W ∩ Yb) ∪ Z0

b we have d(c, b) ≤ max{n, k}, hence W ∩ Yb ⊆ Z0
b , a contra-

diction.
Now Yb = Z0

b implies that the diameter of the Lascar strong type of b is
≤ k, contradicting the assumptions of Theorem 1.1.

For any b ∈ X we define d(a, b) as d(aα, b) for the aα with aα
Ls≡ b. We

carry out an inductive analysis of X. For n < ω let

Xn = {b ∈ X : d(a, b) ≤ n}, Y n = {tp(b/a) : b ∈ Xn}.
We see that X =

⋃
nX

n, Y =
⋃
n Y

n and Y n, n < ω, are unions of the
closed sets Y n

α , α < µ. Let 〈Zα〉 be the open analysis of Y with respect to
Y ′ = {Y n : n < ω}. Since Y refines Y ′ and Y is Y-analyzable, Remark 1.2
shows that Y is also Y ′-analyzable. Let β∗ be the height of Y with respect
to Y ′. By Remark 1.2, β∗ is a successor, say β∗ = α∗ + 1 for some α∗ ∈
Ord ∪ {−1}.

Lemma 1.6. (1) If there is a finite bound on d(a, b) for b ∈ ϕ(C, a) with
tp(b/a) ∈ Zα+1 \ Zα, then Y ∩ [ϕ(x, a)] ⊆ Zα+1.

(2) There is some k > 0 such that for all b ∈ X with tp(b/a) ∈ Y \Zα∗ ,
we have d(a, b) ≤ k.

(3) β∗ = 0 iff there is a finite bound on the diameters of the Lascar
strong types contained in X.

Proof. (1) By Remark 1.2, Zα+2 \Zα+1 is dense in Y ∩ [ϕ(x, a)] \Zα+1.
On the other hand our assumptions imply that Zα+2 ∩ [ϕ(x, a)] ⊆ Zα+1

(apply directly the definition of Zα+2). Therefore the set

(Zα+2 \ Zα+1) ∩ Y ∩ [ϕ(x, a)]

is empty, and so is Y ∩ [ϕ(x, a)] (because it has an empty dense subset).
Hence Y ∩ [ϕ(x, a)] ⊆ Zα+1.

(2) The set Y \ Zα∗ is covered by relatively open subsets of some Y n,
n < ω. By compactness, a finite number of these sets cover Y \ Zα∗ , hence
the conclusion follows.

(3) Immediate.

Proof of Proposition 1.4 continued. We will define recursively elements
bl ∈ X, formulas ϕl(x, a), ψl(x, bl) and numbers αl, βl ∈ Ord∪{−1} for l < ω
so that αl < βl, the sequences 〈αl〉l<ω, 〈βl〉l<ω are strictly decreasing (hence
we will reach a contradiction) and the following hold:

(a) tp(bl/a) ∈ Zβl+1 \ Zβl .
(b) ψl(x, bl) ` ϕl(x, a).
(c) ∅ 6= Ybl ∩ [ψl(x, bl)]⊆ Y m

bl
for some m<ω.

(d) αl < α∗ is minimal such that Y ∩ [ϕl(x, a)] ⊆ Zαl ∪ Y n for some
n < ω.
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First we deal with the case l = 0. Choose a b0 ∈ X with tp(b0/a) ∈ Y \Zα∗
and let β0 = α∗. Let k > 0 be as in Lemma 1.6. So d(a, b0) ≤ k.

By Claim 1.5 choose c
Ls≡ b0 with tp(c/b0) ∈ Z0

b0
and d(b0, c) ≥ 3k. By

the triangle inequality it follows that d(a, c) ≥ 2k, hence by the choice of k,
tp(c/a) ∈ Zα∗ and the same is true for any other c′ |= tp(c/b0).

The set Y \ Zα∗ is closed in S(a), so we can regard it as a type over a.
We know that the type (Y \ Zα∗)(x) ∪ tp(c/b0)(x) is inconsistent, hence
there are formulas ψ0(x, b0) ∈ tp(c/b0) and ϕ0(x, a) satisfying (b), (c) and
Y ∩[ϕ0(x, a)] ⊆ Zα∗ . Then we choose α0 < α∗ satisfying (d) by the definition
of Zα

∗
.

Next suppose we have found bl, ϕl, ψl, αl and βl satisfying (a)–(d) and
we will define bl+1, ϕl+1, ψl+1, αl+1 and βl+1.

Choose a formula θ(y, a) ∈ tp(bl/a) with ψl(x, y) ∧ θ(y, a) ` ϕl(x, a).
Since tp(bl/a) ∈ Zβl+1 \ Zβl , by Lemma 6 for every γ < βl there is no
finite bound on d(a, b′) for b′ ∈ θ(C, a) with tp(b′/a) ∈ Zγ+1 \ Zγ . If βl is a
successor, let βl+1 be the predecessor of βl, while for limit βl choose βl+1 < βl
with αl < βl+1. Then choose bl+1 ∈ θ(C, a) with tp(bl+1/a) ∈ Zβl+1+1\Zβl+1

and such that d(a, bl+1) > n+m.
Since tp(bl) = tp(bl+1), ψl(C, bl)∩ Ybl being non-empty implies that also

ψl(C, bl+1) ∩ Ybl+1 6= ∅. There are two cases.

Case 1: There is some c′ ∈ ψl(C, bl+1) with c′
Ls≡ bl+1 and tp(c′/a)

6∈ Zαl . For such a c′ we have d(a, c′) ≤ n, d(bl+1, c
′) ≤ m (by (c), (d)), while

d(a, bl+1) > n+m, which violates the triangle inequality.

This contradiction shows that αl ≥ 0 and the following Case 2 holds.

Case 2: For every c′ ∈ψl(C, bl+1) with c′
Ls≡ bl+1 we have tp(c′/a)∈Zαl .

Choose such a c′. Again we see that the type tp(c′/bl+1)(x)∪ (Y \Zαl)(x) is
inconsistent, hence for some ψl+1(x, bl+1) ∈ tp(c′/bl+1) implying ψl(x, bl+1)
and for some ϕl+1(x, a) we have

(b′) ψl+1(x, bl+1) ` ϕl+1(x, a) and
(d′) Y ∩ [ϕl+1(x, a)] ⊆ Zαl+1 ∪ Y n for some minimal αl+1 ∈ Ord ∪ {−1}

with αl+1 < αl and some n < ω.

In this way we have completed the recursive construction and the proof
of Proposition 1.4.

Lemma 1.7. (1) There is a non-empty set X ′ ⊆ X type-definable over
a such that for every formula ϕ(x) over a, if X ′ ∩ ϕ(C) 6= ∅, then

|(X ′ ∩ ϕ(C))/
Ls≡| ≥ 2.
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(2) Assume a, b ∈ X and d(a, b) = ∞. Then there are formulas ϕ(x) ∈
tp(a/a) and ψ(x) ∈ tp(b/a) such that for all a′ ∈ ϕ(C) and b′ ∈ ψ(C) we
have d(a′, b′) > n.

Proof. (1) Let X ′ = {b ∈ X : tp(b/a) ∈ Y \ Zβ+}. By Proposition 1.4,
X ′ is non-empty. We will prove that X ′ satisfies our demands.

Consider a formula ϕ(x) over a with X ′ ∩ ϕ(C) 6= ∅. Suppose for a
contradiction that X ′∩ϕ(C) is contained in a single Lascar strong type, say

aγ/
Ls≡. Then

(Y \ Zβ+) ∩ [ϕ(x)] ⊆ Yγ =
⋃

n

Y n
γ ,

hence by the Baire category theorem one of the sets Y n
γ , n < ω, has non-

empty interior in Y \ Zβ+ . This means that Zβ++1 6= Zβ+ , a contradiction.
(2) Let p = tp(a/a) and q = tp(b/a). The type

{“d(x, y) ≤ n”} ∪ p(x) ∪ q(y)

is inconsistent. So there is a formula χ(x, y) such that “d(x, y) ≤ n” `
χ(x, y), and there are formulas ϕ(x) ∈ p(x) and ψ(y) ∈ q(y) such that the
formula χ(x, y)∧ϕ(x)∧ψ(y) is contradictory. Clearly the formulas ϕ(x) and
ψ(x) satisfy our demands.

Proof of Theorem 1.1. Choose X ′ as in Lemma 1.7(1). Using Lem-
ma 1.7(2) we construct a tree ϕη(x), η ∈ 2<ω, of formulas over a such
that

(a) ϕη(C) ∩X ′ 6= ∅,
(b) ϕη_〈i〉(x) ` ϕη(x) for i = 0, 1, and
(c) if η 6= ν ∈ 2n, then for all a∈ϕη(C) and b∈ϕν(C) we have d(a, b)≥ n.

Since X ′ is type-definable over a, for η ∈ 2ω we can choose aη ∈ X ′ ∩⋂
n<ω ϕη�n(C). We see that for η 6= ν ∈ 2ω we have d(aη, aν) =∞.

Corollary 1.8. (1) A type-definable Lascar strong type has finite di-
ameter.

(2) Assume X is a
bd≡-class which is not a Lascar strong type. Then

|X/Ls≡| ≥ 2ℵ0 .

Proof. (1) Let X be a type-definable Lascar strong type. If diam(X) is
infinite, then we get a contradiction with Theorem 1.1. (2) is immediate.

Ziegler [1] has given an example of a theory where
Ls≡ and

bd≡ differ. This
example is constructed from a sequence of definable Lascar strong types
with growing finite diameters. Using Theorem 1.1 we can see that this is
not accidental.
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Corollary 1.9. (1) Assume in T there is a sequence of type-definable
Lascar strong types Xn, n < ω, with growing finite diameters. Then in
T there is a Lascar strong type which is not type-definable. In particular ,
Ls≡ and

bd≡ differ.

(2)
Ls≡ and

bd≡ agree iff there is a finite bound on the diameters of Lascar
strong types.

Proof. (1) Let an ∈ Xn, a = 〈an〉n<ω and let X be the Lascar strong type
of a. Then X projects onto each Xn and for a′ = 〈a′n〉n<ω ∈ X, d(a, a′) ≥
d(an, a′n). So X has infinite diameter and is not type-definable.

(2) follows from (1).

Related to
Ls≡ and

bd≡ are the groups

AutfL(C) = {f ∈ Aut(C) : f preserves each
Ls≡-class},

AutfKP(C) = {f ∈ Aut(C) : f preserves each
bd≡-class}.

Moreover, as a subgroup of Aut(C), AutfL(C) is generated by
⋃{Aut(C/M) :

M ≺ C} (see [1]).

Corollary 1.10. AutfL(C) = AutfKP(C) ⇔ AutfL(C) is generated by⋃{Aut(C/M) : M ≺ C} in finitely many steps.

The fact that
Ls≡ and

bd≡ differ is equivalent to AutfL(C) 6= AutfKP(C).
Hence we get the following corollary.

Corollary 1.11. Assume AutfL(C) 6= AutfKP(C). Then

|AutfKP(C)/AutfL(C)| ≥ 2ℵ0 .

Corollary 1.11 answers another question from [1]. When T is countable,
then in the above results we can replace ≥ 2ℵ0 by = 2ℵ0 . This is because the
objects in question are then Borel by nature. For example, as explained in [1],

when X is a
bd≡-class, then we can interpret X/

Ls≡ as the set of equivalence
classes of some Borel equivalence relation on a Polish space.

More generally, in the above results
Ls≡ may be replaced by any equiv-

alence relation E defined as the reflexive and transitive closure of some
0-type-definable symmetric binary relation R(x, y) implying tp(x) = tp(y).
The corresponding distance function dR on an E-class is given by:

dR(a, b) = the minimal number of steps needed to go from a to b via R.

Let S be a 0-type-definable set (possibly of infinite tuples). Let R(x, y) be

the conjunction of all formulas ϕ(x, y) such that on S, x
Ls≡ y implies ϕ. In

other words, R is the closure of
Ls≡ in the Stone topology on S×S. Let E be

the transitive closure of R. [1, Corollary 2.6] proves that on S, E equals
bd≡.
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Hence by the extended version of Corollary 1.8(1), the dR-diameter of each
E-class is finite. In fact, [1, Corollary 2.6] proves further that this diameter
is ≤ 2.

Let us consider an even more general situation. We say that an equiv-
alence relation E is

∨∧
-definable if E =

⋃
n<ω Φn, where each Φn is type-

definable. We can and will assume additionally that each Φn is reflexive,
symmetric, and Φn(x, y) ∧ Φn(y, z) implies Φn+1(x, z). In this case we say
that

∨
n<ω Φn is a normal form of E.

Corollary 1.12. Assume E(x, y) is an
∨∧

-definable equivalence rela-
tion implying tp(x) = tp(y), with normal form

∨
n<ω Φn. Assume p ∈ S(∅)

and X ⊆ p(C) is a type-definable set which is a union of some E-classes.
Then either E is equivalent on X to some Φn(x, y) (and is type-definable
on X) or |X/E| ≥ 2ℵ0 .

Proof. For a, b ∈ X let dE(a, b) be the minimal n such that aΦnb. Then
dE satisfies the triangle inequality, hence we can repeat the proof of Theo-
rem 1.1.

2. Thus far we have not used the fact that
Ls≡ is bounded. We shall take

advantage of this property in the proofs of the next results.
Assume X is a Lascar strong type and a = 〈ai〉i<k is a non-empty

(possibly infinite) tuple of elements of C with a0 ∈ X. For a ∈ X let
Xn
a = {b ∈ X : d(a, b) ≤ n}.

We define subsets Zαa of X, α ∈ Ord ∪ {−1}, recursively relatively
∨

-
definable over a. We put Z−1

a = ∅, Zαa =
⋃
β<α Z

β
a for limit α, and for

α = β + 1 we define

Zαa = {b ∈ X : X ∩ ϕ(C) ⊆ Zβa ∪Xn
a0

for some ϕ(x) ∈ tp(b/a) and n < ω}.
The minimal α such that Zαa = Zα+1

a is called the height of X over a. We
say that X is analyzable (over a) if X = Zαa for some α. By Lemma 1.3,
X is analyzable over a iff X is analyzable over a0 iff X is analyzable over
any b with b0 ∈ X.

On the level of types, the sets Zαa correspond to an open analysis of the
set Ya = {tp(b/a) : b ∈ X}. If X is type-definable, then Ya is a closed subset
of S(a). In general Ya is only an Fσ-subset of S(a), hence this analysis does
not have properties as nice as in Section 1. However, choosing a suitably

and using the boundedness of
Ls≡ we can recover some of these properties in

the present setting. This is done in the next lemma.

Lemma 2.1. Assume X is an analyzable Lascar strong type. Then for
some a = 〈ai〉i<k, the height of X over a is a successor γ + 1 for some
γ ∈ Ord ∪ {−1} and there is a finite bound on d(a0, b), b ∈ X \ Zγa .



166 L. Newelski

Proof. For a = 〈ai〉i<k with a0 ∈ X choose a minimal β such that
X1
a0
⊆ Zβa . Choose a so that β is minimal possible. Since X1

a0
is type-

definable, β is a successor, say β = γ + 1. Let Φ(x, a) be a disjunction of
formulas with Φ(C, a) ∩X = Zγa . By compactness choose ϕ(x, a) such that
X1
a0
\ Zγa ⊆ ϕ(C, a) ∩ X ⊆ Zβa . Using the definition of Zαa we get a bound

m < ω on d(a0, b) for b ∈ X ∩ ϕ(C, a) \ Zγa . We prove that

(∗) there are finitely many tuples aj = 〈aji 〉i<k, j < n (for some n),
realizing tp(a) and such that X ⊆ ⋃j<n(Zγ

aj
∪ ϕ(C, aj)).

Suppose not. Then we find aj , j < ω, such that aj0 ∈ X, tp(aj) = tp(a)
and aj0 6∈

⋃
i<j(Φ(C, ai) ∪ ϕ(C, ai)). By Ramsey’s theorem we may assume

that the sequence 〈aj〉j<ω is indiscernible. But then d(a0
0, a

1
0) = 1, hence

a1
0 ∈ Φ(C, a0) ∪ ϕ(C, a0), a contradiction.

Choose a0, . . . , an−1 as in (∗) and let a′ = 〈a′i〉i<kn be the concatenation of
a0, . . . , an−1. We see that X ⊆ Zβa′ . By the choice of a, X1

a′0
6⊆ Zγa′ , hence β is

the height of X over a′. Also,
⋃
j<n Z

γ
aj
⊆ Zγa′ , hence X\Zγa′ ⊆

⋃
j<n ϕ(C, aj).

Let l = max{d(a0
0, a

j
0) : j < n}. By the triangle inequality, m+ l is a bound

on d(a′0, b), b ∈ X \ Zγa′ .
Clearly any Lascar strong type of finite diameter is analyzable and has

height 0.

Theorem 2.2. No Lascar strong type of infinite diameter is analyzable.

Proof. Suppose for a contradiction that X is an analyzable Lascar strong
type of infinite diameter. By Lemma 2.1 choose a such that the height of X
over a is a successor ordinal β∗ = α∗ + 1 and there is a bound on d(a0, b)
for b ∈ X \ Zα∗a .

Now essentially we may repeat the proof of Proposition 1.4, reaching
a contradiction. For example, for b ∈ X let Yb = {tp(c/b) : c ∈ X}. By
analyzability, the set

Z0
b = {r ∈ Yb : ϕ(C) ∩X ⊆ Xn

b for some ϕ(x) ∈ r and n < ω}
is open and dense in Yb. We leave the details to the reader.

We say that a countable theory T is small if S(A) is countable for every
finite A ⊆ C.

Corollary 2.3. Assume T is small. Then
Ls≡ and

bd≡ agree on finite
tuples and AutfL(C) is dense in AutfKP(C).

Proof. The first clause is equivalent to the second one. Choose a Lascar
strong type X of a finite tuple a. Let Y = {tp(b/a) : b ∈ X} and Y n =
{tp(b/a) : b ∈ Xn

a }. Then Y =
⋃
n Y

n is an Fσ-subset of S(a). But since
S(a) is countable, every subset of S(a) is also aGδ-set. Hence as noticed after
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the proof of Lemma 1.3, S(a) is analyzable with respect to {Y n : n ≤ ω},
where Y ω = S(a) \ Y . It follows that X is analyzable, hence has finite

diameter and is the
bd≡-class of a. �

In [1] there is an example of a small theory where
Ls≡ and

bd≡ differ (on infi-
nite tuples; we mentioned it before Corollary 1.9), so Corollary 2.3 is sharp.
In this example the height of the Lascar strong type with infinite diameter
equals −1. Corollary 2.3 should be compared with a result of Kim [2], who

proves that in a small theory
bd≡ equals ≡ (equality of types; another proof

is given in [3]). A. Ivanov has found an ℵ0-categorical theory where
Ls≡ and

bd≡ differ. Still, no theory is known where
Ls≡ and

bd≡ differ and there is a finite
bound on the diameter of all type-definable Lascar strong types.

In [1] the authors conjecture that if
bd≡ and

Ls≡ differ, then
Ls≡ should be

complicated from the Borel point of view. Theorem 2.2 supports this conjec-
ture. For example, assume X is a Lascar strong type with infinite diameter.
Then by the proof of Corollary 2.3, S(a) is not analyzable with respect to
{Y n : n ≤ ω}, where a ∈ X. In particular, Y is not a Gδ-subset of S(a).

More generally, let M be any model of T and let g : C → S(M) be
the function defined by g(a) = tp(a/M). If tp(a/M) = tp(b/M), then
d(a, b) ≤ 1, hence each Lascar strong type is type-definable over M . For

p, q ∈ S(M) let d(p, q) = inf{d(a, b) : a |= p, b |= q}. Define
Ls≡ on S(M)

by p
Ls≡ q ⇔ d(p, q) < ∞. For each p ∈ S(M), the set Y n

p = {q ∈ S(M) :

d(p, q) ≤ n} is closed (and equals g(Xn
a ) for every a |= p), hence

Ls≡ is an Fσ-

equivalence relation on S(M), and for every a, b ∈ C, a
Ls≡ b ⇔ tp(a/M)

Ls≡
tp(b/M).

Let Y = {tp(a/M) : a ∈ X} and let p ∈ Y . Then by Lemma 1.3
(using g), S(M) is not analyzable with respect to {Y n

p : n ≤ ω}, where
Y ω
p = S(M) \⋃n<ω Y

n
p . In particular, Y is not a Gδ-subset of S(M).

The last results may be generalized to an arbitrary bounded
∨∧

-definable
equivalence relation E refining ≡, but the assumption of boundedness is es-
sential. For example, in an algebraically closed field K consider the relation
x ∼ y ⇔ x and y are interalgebraic. The equivalence classes of ∼ are ana-
lyzable and of infinite diameter.

3. The methods developed in this paper apply to yet another context.
Assume G ⊆ C is a 0-type-definable group and H is a subgroup of G gen-
erated (as a group) by countably many 0-type-definable sets Vn, n < ω. For
x, y ∈ G let x ≡H y ⇔ xH = yH. So ≡H is an equivalence relation on G
whose classes are the right cosets of H.
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When G is definable, our methods apply to ≡H almost directly. Namely,
let G∗ be an auxiliary copy of G on which G acts by right translation,
denoted by ∗. Consider the 2-sorted structure C∗ = (G,G∗, ∗), where G
is equipped with the structure induced from C and there is no structure
on G∗, except for the action ∗. Then in C∗, G∗ is the set of realizations
of a complete isolated type p∗, and the orbit relation on G∗ defined by
xE y ⇔ (∃g ∈ H)(x ∗ g = y) is an

∨∧
-relation. So our previous results

apply.
In general we cannot associate with G its affine copy so smoothly. Still,

G acts transitively on itself by right translation, and this makes it similar to
the set of realizations of a complete type (on which Aut(C) acts transitively).
So we have the following result.

Theorem 3.1. Assume G is a 0-type-definable group and H is a sub-
group of G generated by countably many 0-type-definable sets Vn, n < ω.

(1) If H is type-definable, then H is generated by finitely many of the
sets Vn, in finitely many steps.

(2) If H is not type-definable, then [G : H] ≥ 2ℵ0. If moreover T is
small and G consists of finite tuples, then [G : H] is unbounded.

Proof. Let Wn, n < ω, be an increasing sequence of 0-type-definable
subsets of G such that H =

⋃
nWn, W0 = {e}, Wn = W−1

n and Wn ·Wn

⊆Wn+1. For x, y ∈ G define d(x, y) as the minimal n such that x−1y ∈Wn.
If no such n exists, we put d(x, y) = ∞. So d is a distance function on G,
which is invariant under left translation. The theorem may be restated as
follows.

(a) If the diameter of H is infinite, then H is not type-definable and
[G : H] ≥ 2ℵ0 .

(b) If moreover T is small, then [G : H] is unbounded.

(a) corresponds to Theorem 1.1 and Proposition 1.4, while (b) corresponds
to Theorem 2.2 and Corollary 2.3. We will sketch the proof.

For (a) we prove first that [G : H] ≥ 2ℵ0 . Here we may assume [G : H] is
bounded. Let a = 〈aα〉α<µ be a tuple of representatives of the right cosets of
H in G such that a0 = e, the neutral element of G (notice that e ∈ dcl(∅)).
We proceed as in the proof of Proposition 1.4, with X = G. Claim 1.5 is
still true in our present setting: when b = e, the proof is the same, and this
case implies the general case of an arbitrary b ∈ X (since left translation by
b maps Z0

e into a subset of Z0
b ).

For the remaining part of (a) suppose that H is type-definable. Then we
can replace G by H, getting [G : H] = 1 and contradicting [G : H] ≥ 2ℵ0 .

To prove (b), suppose for a contradiction that [G : H] is bounded. It fol-
lows that every infinite indiscernible sequence of elements of G is contained
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in a single coset of H. So we may assume that if a, b ∈ G and 〈b, ba〉 extends
to an infinite indiscernible sequence, then a ∈W1.

We proceed as in the proofs of Lemma 2.1, Theorem 2.2 and Corollary 2.3,
with the following modifications. Let X = H. We define subsets Xn

a and Zαa
of X for a ∈ X and finite non-empty tuples a ⊂ X as in Section 2. Notice
however the new meaning of d. Also we have:

(c) If a ⊆ dcl(a′), then Zαa ⊆ Zαa′ .
(d) For b ∈ X, b · Zαa ⊆ Zαa_〈b〉.

We define the height and analyzability of X over a as before. The following
lemma corresponds to Lemma 2.1. The proof is also similar.

Lemma 3.2. Assume X is analyzable. Then for some a ⊂ X, the height
of X over a is a successor γ + 1 for some γ ∈ Ord ∪ {−1} and there is a
finite bound on d(a0, b), b ∈ X \ Zγa .

Proof. For a = 〈ai〉i<k ⊂ X choose a minimal β such that X1
e ⊆ Zβa .

Choose a so that β is minimal possible. β is a successor, say β = γ + 1.
Choose Φ(x, a) and ϕ(x, a) such that Φ(G, a) ∩ X = Zγa and X1

e \ Zγa ⊆
ϕ(G, a) ∩X ⊆ Zβa (as in Lemma 2.1). Using the definition of Zαa , we get a
bound m < ω on d(a0, b) for b ∈ X ∩ ϕ(G, a) \ Zγa . Notice that if b ∈ X,
then by (d) we have

b · Zγa = b · Φ(G, a) ∩X ⊆ Zγa_〈b〉,
and by the left invariance of d,

X1
b = b ·X1

e ⊆ b · (Φ(G, a) ∪ ϕ(G, a)) ∩X ⊆ Zβa_〈b〉.
We prove that

(∗) there are finitely many elements bj ∈ X, j < n (for some n), such
that X ⊆ ⋃j<n(Zγ

a_〈bj〉 ∪ bj · ϕ(G, a)).

Suppose not. Then we find bj ∈ X, j < ω, such that

(e) bj 6∈
⋃
i<j bi · (Φ(G, a) ∪ ϕ(G, a)).

By Ramsey’s theorem we may assume (allowing bj ∈ G) that, in addi-
tion to (e), the sequence 〈bj〉j<ω is indiscernible. But then by the choice
of W1, d(b0, b1) = 1, hence

b1 ∈ X1
b0 ⊆ b0 · (Φ(G, a) ∪ ϕ(G, a)) ,

a contradiction.
Choose b0, . . . , bn−1 as in (∗) and let a′ = a_〈bi〉i<n. We see thatX ⊆ Zβa′ .

By the choice of a, X1
e 6⊆ Zγa′ , hence β is the height of X over a′. Also,⋃

j<n Z
γ
a_〈bj〉 ⊆ Z

γ
a′ , hence X \Zγa′ ⊆

⋃
j<n bj · ϕ(G, a). The rest is as in the

proof of Lemma 2.1.
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Using Lemma 3.2 we conclude the proof of (b) as in Theorem 2.2 and
Corollary 2.3.

Just as in Theorem 1.1, under the assumptions of Theorem 3.1, if X ⊆ G
is a type-definable union of a number of right cosets of H, and H is not
type-definable, then |X/H| ≥ 2ℵ0 .

There is a topological counterpart of Theorem 3.1(1). Assume G is a
compact topological group and H is a closed subgroup of G generated by
closed sets Vn, n < ω. Then by the Baire category theorem H is generated
by finitely many of the sets Vn, in finitely many steps.

Theorem 3.1 suggests the possibility of defining a “generic type” in an
arbitrary type-definable group.
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