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Small profinite m-stable groups
by

Frank O. Wagner (Lyon)

Abstract. A small profinite m-stable group has an open abelian subgroup of finite
M-rank and finite exponent.

1. Introduction. In a series of papers [7]-[12], Ludomir Newelski has
developed the theory of multiplicity in analogy to the theory of indepen-
dence. The basic set-up is that of a profinite structure (which may be thought
of as a hyperdefinable set of algebraic hyperimaginaries), where he defines
the notion of m-independence similarly to forking independence. This notion
is automorphism invariant, symmetric, and transitive; if the ambient theory
is small (with only countably many pure types), it also satisfies extension
over finite sets. The corresponding foundation rank M has similar proper-
ties to Lascar rank in stability theory; a structure is m-stable (really, this
should be m-superstable) if every type has ordinal M-rank. Newelski asked
two questions:

(1) M-GAP CONJECTURE: In a small profinite structure, M (o) is either
finite or oo for any orbit o.
(2) Does any small profinite group have an open abelian subgroup?

In this paper we shall prove the M-gap conjecture for groups, and answer
question (2) affirmatively in the m-stable case. In fact, we show:

THEOREM 1. A small m-stable profinite group has an open abelian sub-
group, and is of finite M-rank.

The line of argument follows the ideas in [4], where it is shown that a
supersimple w-categorical group is finite-by-abelian-by-finite of finite SU-
rank (which in turn was inspired by the w-stable case [1]). It also borrows
some techniques of the bad group analysis from [3, 6, 13].
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2. Profinite structures. We shall quickly review the basic definitions
and properties we shall use. For a more detailed exposition, the reader may
consult [11] or [12].

DEFINITION 1. A profinite topological space is a compact Hausdorff topo-
logical space U together with a system (E; : i < w) of refining equivalence
relations with finitely many classes, such that:

e cach FEj; is closed (as a subset of U2 with the product topology),
e the F;-classes form a basis of open sets for the topology.

(More generally, one should have a directed system of equivalence relations,
but we shall restrict ourselves to the countable case.)

Let Autj(U) be the topological group of automorphisms of U preserving
all equivalence relations (E; : ¢ < w), whose basic open subgroups are the
stabilizers of finite subsets of U. A profinite structure is a pair (U, Aut*(U)),
where Aut™(U) is a closed subgroup of Auty(U); the group Aut*(U) is called
the structure group.

For a finite set A of parameters, let Aut*(U/A) be the group of automor-
phisms in Aut*(U) fixing A pointwise. A subset X of U is A-invariant if it
is invariant under Aut*(U/A); it is A-closed if it is closed and A-invariant.
If A = (), it is usually omitted. A set is *-closed if it is A-closed for some
finite A.

If @ is a finite tuple of elements of U, the orbit of a under Aut*(U/A) is
denoted by o(a/A).

Thus A-closed sets correspond to A-type-definable sets in ordinary model
theory, and orbits correspond to types; moreover orbits are closed. Note that
Newelski says A-definable instead of A-closed. As one really should say A-
type-definable (the complement of a *-closed set need not be *-closed), we
prefer our terminology.

DEFINITION 2. A profinite structure is small if there are only countably
many orbits on finite tuples over ().

Equivalently, we may ask that there are only countably many orbits on
finite tuples, or just 1-orbits, over any finite set of parameters.

REMARK 2. In a small profinite structure, every A-closed set contains
an open orbit over A.

DEFINITION 3. The structure U®? is obtained from U in the following
way. For any (-closed equivalence relation on some U™ we adjoin a new
(imaginary) sort Uy = U™/ E, and a new function g : U™ — Ug mapping a
tuple to its F-class. U is identified with U=. Then Aut*(U) acts continuously
on every sort, and hence on U (with the disjoint union topology). Every
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sort (with the induced structure group) is again a profinite structure, and
U*®1 is a many-sorted profinite structure.

Facrt 3 [11, Proposition 1.4]. Let G be a group interpretable in a profi-
nite structure U4, i.e. its domain and the graphs of multiplication and in-
version are A-closed for some finite A. Then G is a proﬁm'te group, t.e.
there are A-invariant open normal subgroups G; with (), G; = {1} whose
cosets form a basis of open sets for a compact Hausdorff topology.

ExXAMPLE. Let G be an w-saturated w-homogeneous group (possibly
with additional structure), and (G; : i < w) a system of (-definable normal
subgroups of finite index. Put G° =, G;. Then G/G° (with the induced
structure group) is a profinite group; if G is small, so is G/G. A subset of
G/GY is A-closed iff it is induced by an A-type-definable subset of G.

From now on, U will denote an infinite small profinite structure, and G
an infinite small profinite group. A, B, ... will be finite sets of parameters,
and a, b, ... finite tuples (from U®? or G4, respectively).

Fact 4 [11, Lemma 2.2 and Proposition 2.3]. An A-invariant subgroup
of G is A-closed. The group generated by any family of A-invariant sets is
A-closed, and generated in finitely many steps from finitely many sets. There
s no infinite increasing chain of A-invariant subgroups of G. In particular
all characteristic subgroups of G are (-closed, and the ascending (upper)
central series of G becomes stationary after finitely many steps.

COROLLARY 5 [11, Proposition 2.4]. The intersection GNacl(A) is finite
for all (finite) A. In particular, G is locally finite.

Proof. G Nacl(A) is an A-invariant subgroup, hence A-closed, and gen-
erated in finitely many steps from finitely many finite sets in G Nacl(A). =

DEFINITION 4. A tuple a € U is m-independent of B over A, denoted by
a™| ,B,ifo(a/AB) is open in o(a/A). The M-rank M is the least function
from the collection of all orbits to the ordinals together with co satisfying

M(a/A) > a+1if there is B D A with a " , B and M(a/B) > a.
A theory is m-stable if every type has ordinal M-rank.

Fact 6 ([11, Fact 1.10], [12, Lemma 1.5]). In a small profinite struc-
ture U,

(1) m-independence is symmetric and transitive,

(2) if a € acl(A), thena ™| | B for all B,

(3) for any a, A, B there is some o' € o(a/A) with a’ ™| , B,

(4) M(a/A,b) + M(b/A) < M(a,b/A) < M(a/A,b) & M(b/A).
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DEFINITION 5. Let H be a *-closed subgroup of G. A *-closed subset X
of H is generic (for H) if it is open in H. In particular, an orbit is generic
(for H) if it is open in H.

Generic orbits exist by smallness (Remark 2); it is easy to see that if o
and o' are generic orbits for H, then M(0) = M(0’). We define M(H) =
M(o0), where o is any generic orbit for H. In fact, the same reasoning works
for coset spaces G/H, and M(G/H) = M(o), where o is any orbit open in
G/H.

REMARK 7. For two m-independent generic elements g, h of H the in-
verse ¢~ ! and the product gh are both generic, and gh is m-independent
of g and of h (over any parameter set A).

Fact 6(4) immediately implies part (1) of Fact 8 below:
Fact 8 [11, Lemma 2.6]. Let H be a *-closed subgroup of G.

(1) M(H)+ M(G/H) < M(G) L M(H) @ M(G/H).
(2) H is open in G iff H has finite index in G.
(3) If G is m-stable, then H is open in G iff M(H) = M(G).

Hence if G is m-stable, there is no infinite descending chain of *-closed
subgroups, each of infinite index in its predecessor.
Here are two results whose proofs are more involved.

Fact 9 [11, Corollary 3.2]. If G is m-stable, then G has an infinite *-
closed abelian subgroup.

Fact 10 [11, Theorem 3.3]. If G is m-stable and soluble, then G has an
open nilpotent subgroup.

Recall that two groups are commensurable if their intersection has finite
index in either of them.

LEMMA 11. Let H, be an a-closed subgroup of G, and suppose there
is a € o(a) with ' ™| a such that H, and Hy are commensurable. Let
E be the equivalence relation on o(a) given by E(a’,a”) if Hy and Hgyn
are commensurable. Then E is closed, with finitely many classes, all of
which are open; moreover, there is n < w such that if E(a’,a”) holds, then
’Ha/ cHy N Ha//‘ <n.

Proof. PutY = o(a’/a). By homogeneity, o(a) is covered by (-conjugates
of Y; by compactness finitely many conjugates suffice. This shows that F
has finitely many classes, which are all open, so F is closed.

Moreover, if a1,a2 € Y, then the index of H,, N H, in H,, and in H,
equals the index of H, N H, in H, and in Hy, for ¢ = 1,2. It follows that
the index of H,, N H,, in H,, and in H,, is bounded independently of the
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choice of aj,as. Since the same bound holds for all conjugates of Y, the
lemma follows. =

Note that the F-class ag of a is a canonical parameter for the conjugacy
class of H, in G®4.

We finish this section with two purely group-theoretic theorems.

Fact 12 [5, Hauptsatz 7.6]. Let G be a finite group, and H a proper
nontrivial subgroup such that H N H9 = {1} for all g € G — H. Then
N =G = Uyec(H — {1})? is a normal subgroup of G with G = NH and
NNH={1}.

Fact 13 [14, 2, 16, Theorem 4.2.4]. Let G be any group, and $ a family
of uniformly commensurable subgroups. Then there is a subgroup N of G, a
finite extension of a finite intersection of groups in $ (and hence commen-
surable with them), such that N is invariant under all automorphisms of G
fizing $ setwise.

3. Small profinite groups of finite M-rank. Let G be a profinite
group.

DEFINITION 6. A subgroup H of G is minimal if it is infinite, *-closed,
and every *-closed subgroup of infinite index in H is finite.

Note that in an m-stable profinite group every *-closed infinite subgroup
of minimal M-rank is minimal, so every *-closed subgroup contains a mini-
mal one. By Fact 9 a minimal group has an open abelian subgroup.

DEFINITION 7. Let A and B be abelian minimal subgroups of G. A wvir-
tual isogeny f between A and B is a *-closed isomorphism f : D/K — I/C,
where D is open in A, I is open in B, and K and C' are both finite. Two
virtual isogenies f; and fy are equivalent, denoted by f1 ~ fs, if the derived
maps from Dy N Ds to (I1 + I2)/(C1 4+ C2) agree on an open subgroup of A.

Note that fi and fy are equivalent iff their graphs are commensurable.
Equivalence of virtual isogenies is a congruence with respect to addition
and composition (whenever composition makes sense). Moreover, an open
subgroup, or a finite extension of a virtual isogeny (i.e. of the graph, as a
subgroup of A x B), is again a virtual isogeny, which is equivalent to the
original one.

It is standard that in a minimal group G, the family of virtual autogenies
(isogenies from G to G) modulo equivalence, with addition and composition
as operations, forms the set of invertible (nonzero) elements of a division
ring R. (See [15] for this, and related results on virtual iso- and endogenies
in small groups.)
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LEMMA 14. If G is small, then R is locally finite; for every a-closed
virtual autogeny f, the equivalence relation E(x,y) on o(a) given by fy ~ fy
is *-closed and has finitely many classes, which are all open.

Proof. Let f be a finite tuple of virtual autogenies of G, and @ a finite
set of parameters over which f is defined. As G is locally finite, we may
replace every f € f by a finite extension, and assume that it is defined on
the whole of G' (we may have to increase @ to do this). Choose g € G with
g™ @. For any f, f' € (f) we have f(g), f'(g9) € acl(@, g)NG, which is finite.
But if f(g) = f/(g), then g € ker(f — f'); as g &€ acl(a), the kernel of f — f’
must be infinite, whence open by minimality, and f ~ f’.

It follows that R is locally finite, whence a (commutative) field. If f,
is an a-closed virtual autogeny, then every (-conjugate of f, has the same
order as f, modulo equivalence; as there are only finitely many elements in
R of that order, there must be a’ ™| a with f, ~ f,. The rest follows from

Lemma 11. =

In particular, we can consider the equivalence class (f;)~ of a virtual
autogeny as an imaginary element ag.

THEOREM 15. Let G be a small profinite abelian group of finite M-rank.
Then any *-closed subgroup of G is commensurable with one invariant over
some finite tuple in acl(().

Proof. Consider first a minimal subgroup A of Gj; say it is a-closed for
some parameter a. By the finiteness of rank, there exist finitely many con-
jugates of A, say (A4; : ¢ < m), such that every conjugate of A intersects
AV = Y icn Ai in a subgroup of finite index. We may choose the A; almost
linearly independent, i.e. A; N Zj# Aj is finite for all i < n. Fix virtual
isogenies f;; from A; to A; (whenever they exist), and let @ be a finite set
of parameters over which all of this is invariant.

Now consider another conjugate A’ of A. Since A’ N A is infinite by
maximality of n, there must be some minimal i = i(A’) < n such that
AN (A +3 )4 Ay) is infinite; because A and therefore A; are both minimal,
| A+ AiN (A" + 374 Ag)| s finite. For every j # ¢ with A;N (A" +37, ., Ax)
infinite we define a virtual isogeny r(A’,j) from A; to A; via: r(A', j)(x)
={yedjx—ye A+, A =A4N0@+A+5 ;A4 (it
is easy to check from minimality that this is indeed a virtual isogeny). If
Aj 0 (A + 37,4, Ax) is finite, we put 7(A’, j) = 0. Suppose now A” is such
that i(A”) = i(A’), and r(A’,j) and r(A”, j) are equivalent virtual isogenies
for all j # i(A") with r(A’,j) # 0 or r(A”,j) # 0. One can check that then
A’ and A” must be commensurable.

By smallness we may choose A’ such that X := o(a’/a@) is open in
o(a) = o(a’) (where the lower case letter denotes the parameter of the upper
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case group); note that if a” € X, then i(A”) = i(A") =: i. Consider the
equivalence relation Fj(a’,a”) on X given by fji or(A',j) ~ fjior(A”,5)
for a fixed j. Since fj; o r(A’,j) defines a virtual autogeny of A; for all
a’ € X, by Lemma 14 there are only finitely many Fj-classes. Hence there is
a" € X with a” ™| _a’ such that Fj(a’,a") holds for all j, so A" and A" are
commensurable. But a’ ™| a”; by Lemma 11 there are only finitely many
commensurability classes among the (-conjugates of A, and each of them is
uniformly commensurable.

By Fact 13 there is a *-closed subgroup A¢ commensurable with A and
invariant under all automorphisms of G fixing the commensurability class
of A. In other words, if e € acl(() is the canonical parameter for the conju-
gacy class of A, then A€ is e-closed. This proves the assertion for minimal
groups.

If H < G is *-closed but not minimal, then by m-stability it contains a
minimal subgroup A which is commensurable with some acl((})-definable A€.
But HA¢/A¢ is a subgroup of G/A¢ of smaller M-rank; by induction it is
commensurable with an e’-closed group H./A¢, for some ¢’ € acl(()), whose
preimage H€ in G is as required. =

LEMMA 16. If G is small and all centralizers of elements have finite
index, then G has an open abelian subgroup.

Proof. As GNacl(() is finite, we may replace G by an open subgroup and
assume G Nacl()) = {1}. For any g € G, since C(g) has finite index in G,
we get [g,G] C acl(g). If g ™| ¢, then [g, ¢'] € acl(g)Nacl(g’) = acl(@) = {1}.
Since every element ¢’ of G can be written as ¢’ = g1g2 with ¢ ™| ¢1 and
g TZL g2, we obtain [g’g,] = [gagng] = [9592”9)91]92 =1l =

PROPOSITION 17. A small profinite group of finite M-rank has an open
abelian subgroup.

Proof. Suppose not, and let G be a counterexample of minimal M-rank
possible.

CLAIM. G has an open soluble subgroup.

*

Proof of Claim. Suppose not. Note that if H were an infinite *-closed
subgroup of infinite index in G with open normalizer, then Ng(H)/H and
H would have open abelian normal subgroups by inductive hypothesis, and
G would have a 2-soluble open subgroup, a contradiction. Let K be the
subgroup of all elements g whose centralizer C;(g) has finite index in G; this
subgroup is (-invariant and hence closed by Fact 4. Moreover, K contains
all finite subgroups whose normalizer is open in G. As K is characteristic
and cannot have finite index by Lemma 16, it is finite; after replacing G by
an open subgroup intersecting K trivially, we may assume that G has no
nontrivial closed subgroup of infinite index whose normalizer is open in G.
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G contains a minimal subgroup, and hence a *-closed abelian subgroup
B, say, which we may take of maximal M-rank possible; adding finitely
many parameters, we assume B is (l-closed. Suppose B’ is another *-closed
abelian subgroup such that B N B’ has infinite index in B’. Now Cg(b)
is b-closed for any b € B N B’; since it contains B and B’, it has greater
M-rank than B by the M-rank inequalities. It therefore has no open abelian
subgroup, and must be of finite index in G by inductive hypothesis, whence
b=1.

Let N be the subgroup of all ¢ € G such that BY is commensurable
with B. It is (-invariant, and hence (-closed by Fact 4; note that the com-
mensurability is uniform by Lemma 11: just consider BY and BY for generic
m-independent g,¢’ € N. By Fact 13 there is a *-closed normal subgroup
of N commensurable with B, so N cannot be open in G by the first para-
graph of the proof of the claim. Hence N has an open abelian subgroup
by inductive hypothesis, and B is open in N by maximality of M-rank.
It follows that there is an open H < G such that N W H < B. Then
M(BNH)=M(B) and BN H is commensurable with (BN H)Y if and only
if B is commensurable with BY, i.e. for g € N. As NN H = BN H, we may
thus replace G by H and assume that BN BY = {1} for any g € G — B.

If Gy is a finite subgroup of G such that By := BNGY is proper nontrivial,
then BoN B = {1} for all g € Gy — By. Suppose that there is a G-conjugate
BY such that By := Gy N BY is nontrivial, but not Gy-conjugate to By. As
By and B; are self-normalizing in G, and all Gy-conjugates of By or Bj
intersect trivially, we get

|Go| > |Go/Bol(|Bo| — 1) + |Go/Ba|(|B1] = 1) + 1
> 2|G0| — |G[)/BO| — ‘Go/Bl‘ +1,
whence |Go/By| + |Go/B1| > |Go|. We may assume |By| > |B1|, and obtain
|Go/B1] > |Go/Bo| > |Go/B1|(|B1] = 1) > |Go/ B,

a contradiction. Hence all B-conjugates intersecting Gy nontrivially are al-
ready conjugate in Gy.

Consider X := G — UgeG(B — {1})9. By the preceding paragraph, if G
is a finite subgroup of G with By := Gg N B nontrivial, then X N Gy =
Go — Ueq, (Bo — {1})%; by Fact 12 this is a nontrivial normal subgroup
of Gy. As G is locally finite, X is a nontrivial normal subgroup of G, which
is invariant over the parameters used to define B, and thus *-closed by
Fact 4. Since it intersects B trivially, it cannot be open, contradicting the
conclusion of the first paragraph of the proof of the claim. This proves the
assertion. m

By Fact 10 we may assume that G is nilpotent.
CLAM. We may assume that G' < Z(G).
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Proof of Claim. By Fact 4 the subgroups Z,(G) in the upper central se-
ries are (-closed for all n > 1, and there is some minimal n such that Z,(G)
is infinite. Replacing G by an open subgroup intersecting Z,_1(G) trivially,
we may assume n = 1. But now M(G/Z(G)) < M(G); by inductive hy-
pothesis G/Z(G) has an open abelian subgroup H/Z(G) whose preimage H
in G satisfies H' < Z(H). n

For g € G put Hy := {(hZ(G), [h,9]) : hZ(G) € G/Z(G)}, a subgroup
of G/Z(G) x Z(G). Since G/Z(G) x Z(G) is abelian, H, is commensurable
with an e-closed group for some e € acl(()) by Theorem 15. If w1 denotes
the projection onto the first coordinate, then [h, g] = [h, ¢'] for any hZ(G) €
m1(HyN Hy ), whence [h, g'g~'] = 1. However, we may choose g and g’ to be
two independent generic elements such that H, and Hy are commensurable.
Then 71(Hy N Hy) is a subgroup of finite index in G/Z(G), and ¢'g~! is a
generic element of G with |G : Cg(g'g™!)| finite.

The set of all g € G such that Cg(g) has finite index in G is a subgroup
of G, which is (-invariant and closed; since it contains a generic element,
it has finite index in G. Replacing G by an open subgroup, we finish by
Lemma 16. =

DEFINITION 8. A Morley sequence in an orbit o over A is a sequence
(ai : © < w) of elements in the orbit such that a; ™| ,(a; : j < i) and
ap € o(a;/A,a; : j <i) foralli<k<w.

Note that if o is over A, then in an m-stable theory there must be a finite
k < w such that M(A/a; : ¢ < k) is minimal possible. Then A Wﬂ/(ai:Kk) ag;
as ag " ,(a; i < k), the orbit o(ax/a; : i < k) is parallel to o (meaning
that they have a common non-m-forking extension).

THEOREM 18. The M-gap conjecture holds for small profinite groups:
There is no orbit o in a small profinite group with w < M(o) < oco. In
particular, a small profinite m-stable group has finite M-rank.

Proof. Let G be a small profinite group containing a 1-orbit o of infinite
M-rank o < oo. Taking m-forking extensions if necessary, we may assume
a = w; adding parameters, we suppose that o is over (). The subgroup
of elements of finite M-rank is (-invariant and hence closed by Fact 4; it
follows that there is a bound n < w on the M-rank of a l-orbit over ()
of finite M-rank. Let o/ be an m-forking extension of o of M-rank > n,
and (a; : ¢ < w) a Morley sequence in o/. Then there is k¥ < w such that
o(ag/a; : i < k) is parallel to o’ and hence has M-rank > n; it follows that
there is a minimal £ < w such that over (a; : ¢ < k) there is a 1-orbit of
M-rank > n. We add (a; : i < k) to the language. Then n is the maximal
M-rank of a 1-orbit of finite M-rank over (), and there is m > n which is
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the maximal M-rank of a 1-orbit of finite M-rank over a single realization
of o(ax) (which again we call o).

We repeat: Let o/ be an m-forking extension of o of M-rank > m, and
(a; : i < w) a Morley sequence in 0. Let @ = (a; : # < k) be a maximal initial
segment of (a; : i < w) which is m-independent over (). The groups H(a;) of
elements of finite rank over a; are closed for all ¢ > k, and conjugate under
Aut*(G/a). Let H be the closed group of elements of finite rank over @, ag.
Then H(a;) < H fori > k, so there are only finitely many commensurability
classes for H(a;) with i > k by Theorem 15. Hence there are ¢ > j > k such
that H(a;) and H(a;) are commensurable. But M(a;/a;) > M(0") > m, so
a; | a; by the choice of m; by Lemma 11 and Fact 13 there is an imaginary
e € acl(a;) Nacl(a;) = acl(d) and an e-closed subgroup N commensurable
with H (a;). But then for a generic element g € N we get M(g) = M(g/e) =
M(N) = M(H(a;)) = m > n, a contradiction. m

This concludes the proof of Theorem 1.
COROLLARY 19. A small profinite m-stable group has finite exponent.

Proof. By Theorem 1, we may replace G by an open subgroup and as-
sume it is abelian. Let o be an open orbit in G; by local finiteness its elements
have finite order n, say. Then the group generated by o is open in G and
has exponent n. »
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