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Separating by Gδ-sets in finite powers of ω1
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Abstract. It is known that all subspaces of ω2
1 have the property that every pair of

disjoint closed sets can be separated by disjoint Gδ-sets (see [4]). It has been conjectured
that all subspaces of ωn1 also have this property for each n < ω. We exhibit a subspace
of {〈α, β, γ〉 ∈ ω3

1 : α ≤ β ≤ γ} which does not have this property, thus disproving the
conjecture. On the other hand, we prove that all subspaces of {〈α, β, γ〉 ∈ ω3

1 : α < β < γ}
have this property.

1. Introduction. A topological space X is said to be subnormal if
every pair of disjoint closed sets can be separated by disjoint Gδ-sets. A
subshrinking of an open cover U = 〈Ui : i ∈ I〉 of X is an Fσ-cover F =
〈Fi : i ∈ I〉 of X such that Fi ⊆ Ui for each i ∈ I. A space X is said to be
subshrinking if every open cover has a subshrinking. It is easy to see that
every subshrinking space is subnormal. For these properties, see [2] or [7].

It is well known that ω2
1 is normal but ω1 × (ω1 + 1) is not subnormal.

Moreover it is known [5] that there is a nonnormal subspace of ω2
1 . For

example, X = A × B, where A and B are disjoint stationary sets in ω1,
is such a space. However, in [4] an unexpected result is proved that all
subspaces of ω2

1 are subshrinking, so subnormal. It has been conjectured
that all subspaces of ωn1 are subnormal for every n < ω. In Section 4, we
prove that this conjecture is false.

Theorem 1.1. There exists a nonsubnormal subspace of ω3
1.

On the other hand, all subspaces of

ωn1 |< = {s ∈ ωn1 : s(i) < s(j) for each i < j < n}
are subnormal for an arbitrary n < ω. We prove this in Section 5.
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Theorem 1.2. Every subspace of ωn1 |< is subshrinking , so subnormal ,
for every n < ω.

To prove these theorems, we show some combinatorial lemmas in Sec-
tion 3. We use the concept of trees of finite sequences and state the Pressing
Down Lemma in terms of trees. The Pressing Down Lemma in a more gen-
eral situation appears in [1].

2. Preliminaries. We identify an ordinal α with the set of all ordinals
less than α. We do not distinguish natural numbers from finite ordinals.
Hence a natural number n is the set {0, 1, . . . , n− 1}. A sequence s of finite
length n is a function of domain n, so s = 〈s(0), s(1), . . . , s(n − 1)〉. In
particular, An denotes the set of all functions from {0, 1, . . . , n− 1} into A.

For each sequence s, lh(s) denotes the length of s, and ran(s) denotes
the set {s(i) : i < lh(s)}. Let A be a set of sequences of ordinals. We use
the following notations:

• A|< = {s ∈ A : s(i) < s(j) for each i < j < lh(s)}.
• A|≤ = {s ∈ A : s(i) ≤ s(j) for each i < j < lh(s)}.
• For n < ω, α≤n and α<n denote the sets

⋃
k≤n α

k and
⋃
k<n α

k re-
spectively.

Throughout this paper, each ordinal α is considered to be a space with
the order topology and each subset of αn is considered to be a subspace of
the product space.

A family A = 〈Ai : i ∈ I〉 of subsets of a space is called σ-locally finite
(respectively σ-discrete) if I can be represented as

⋃
j∈J Ij for some J

with |J | ≤ ω such that A�Ij = 〈Ai : i ∈ Ij〉 is locally finite (respectively
discrete) for each j ∈ J .

We will need the following two facts about σ-local finiteness and the
subshrinking property. Their verification is routine.

Lemma 2.1. Let X be a topological space and F = 〈Fi : i ∈ I〉 a σ-
locally finite, closed cover of X such that for each i ∈ I, Fi is subshrinking.
Then X is also subshrinking.

Lemma 2.2. Let X be a topological space, U = 〈Ui : i ∈ I〉 a point finite
family of open sets, and G = 〈Gi : i ∈ I〉 a family of Gδ-sets of X such
that Gi ⊆ Ui for each i ∈ I. Then the union of G is also a Gδ-set.

3. Trees and stationary sets

Definition 3.1. Let λ be a regular uncountable cardinal and n < ω.
A set X ⊆ λn is stationary if Cn∩X 6= ∅ for every closed unbounded (club)
subset C of λ.
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The empty sequence ∅ is considered to be the unique sequence of length 0,
and λ0 = {∅}. Moreover X ⊆ λ0 is stationary if and only if ∅ ∈ X.

Definition 3.2. A set T of sequences of ordinals less than λ is called a
tree of sequences on λ if s�k ∈ T for each s ∈ T and k ≤ lh(s). We only use
trees of finite sequences, so we will omit “of sequences” from now on.

Let λ be a regular uncountable cardinal and n < ω. For a tree T ⊆ λ≤n
and j ≤ n, T ∩ λj (respectively T ∩ λ<j , T ∩ λ≤j) is denoted by Lvj(T )
(respectively Lv<j(T ), Lv≤j(T )).

An n-stationary tree (respectively n-cofinal tree) on λ is a tree T ⊆ λ≤n
such that ∅ ∈ T and {α < λ : ŝ 〈α〉 ∈ T} is stationary (respectively cofinal)
in λ for each s ∈ Lv<n(T ).

Let X ⊆ λn. A function f : X → (λ ∪ {−∞})n is called regressive if for
each s ∈ X and k < n, f(s)(k) < s(k). (−∞ is considered to be less than
every ordinal.)

Lemma 3.1. Let λ be a regular uncountable cardinal and n < ω.

(1) If T is an n-stationary tree on λ, then Lvk(T )|< is stationary in λk

for all k ≤ n.
(2) If X ⊆ λn|< is stationary , then there exists an n-stationary tree T

on λ such that Lvn(T ) ⊆ X.
(3) (The Pressing Down Lemma) If T is an n-stationary tree on λ and

f : Lvn(T ) → (λ ∪ {−∞})n is a regressive function, then there exist an
n-stationary subtree U of T |< and a function g : Lv<n(U) → λ ∪ {−∞}
such that f(s)(k) = g(s�k) for each s ∈ Lvn(U) and k < n.

Proof. (1) is trivial.
(2) We define Xk ⊆ λk|< for each k ≤ n inductively. Put Xn = X and

Xk = {s ∈ λk|< : {α < λ : ŝ 〈α〉 ∈ Xk+1} is stationary}
if k < n. We show that Xk is stationary by downward induction. First, Xn

is stationary by the assumption. Assume that k < n and Xk+1 is stationary.
For each s ∈ λk|< −Xk, pick a club set Cs disjoint from {α < λ : ŝ 〈α〉 ∈
Xk+1} and put

C = {α < λ : α ∈ Cs for all s ∈ αk|< −Xk}.
Note that C is a club subset of λ. If D is a club subset of λ, then there is
an s ∈ Xk+1 ∩ (C ∩D)k+1 since Xk+1 is stationary, and such an s satisfies
s�k ∈ Xk since s(k) ∈ C and s�k ∈ s(k)k|<. Hence, Xk is stationary.

Now T = {s ∈ λ≤n|< : s�k ∈ Xk for all k ≤ lh(s)} satisfies the required
condition.

(3) Pick a regressive function fk : Lvk(T )→ (λ∪{−∞})k for each k ≤ n
inductively. Put fn = f . Assume that k < n and fk+1 is regressive. For each
s ∈ Lvk(T ), As = {α < λ : ŝ 〈α〉 ∈ T} is stationary and fk+1(ŝ 〈α〉)(k) < α
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for each α ∈ As. By the Pressing Down Lemma for λ, there are a stationary
set Bs ⊆ As and a ξs ∈ λ ∪ {−∞} such that fk+1(ŝ 〈α〉)(k) = ξs for all
α ∈ Bs. Since fk+1 is regressive, |{fk+1(ŝ 〈α〉)�k : α ∈ Bs}| < λ. By the
completeness of the club filter, there are a stationary set Ns ⊆ Bs and
fk(s) ∈ (λ ∪ {−∞})k such that fk+1(ŝ 〈α〉)�k = fk(s) for all α ∈ Ns. It is
easily seen that fk is regressive.

Put U = {s ∈ T |< : s(k) ∈ Ns�k for all k < lh(s)}. Then U is an n-
stationary subtree of T |<. Let g(s) = ξs for each s ∈ Lv<n(U). Inductively,
fk(s)(i) = g(s�i) for all i < k ≤ n and s ∈ Lvk(U). So f(s)(k) = fn(s)(k) =
g(s�k) for all s ∈ Lvn(U) and k < n.

Lemma 3.2. Let λ be a regular uncountable cardinal , n < ω, T an n-
cofinal tree on λ, and H = 〈Hi : i ∈ I〉 a family of subsets of Lvn(T )
such that

⋃H = Lvn(T ). Then there exist an n-cofinal subtree U of T ,
I0 ⊆ I, and a family 〈ti : i ∈ I0〉 of elements of U satisfying the following
conditions.

(a) For each t ∈ Lvn(U), there is a unique i ∈ I0 such that ti ⊆ t.
(b) For each i ∈ I0 and t ∈ Lvn(U), if ti ⊆ t then t ∈ Hi.

Moreover , if |I| < λ then we can pick I0 as a singleton {i0} such that
ti0 = ∅.

Proof. By induction on n. If n = 0 then the statement is trivial. Assume
that n = n′ + 1. Put T ′ = Lv≤n′(T ) and Ai(t) = {α < λ : t̂ 〈α〉 ∈ Hi} for
each t ∈ Lvn′(T ) and i ∈ I. Then T ′ is an n′-cofinal tree. Define H′ = 〈H ′i :
i ∈ I〉 by

H ′i = {t ∈ Lvn′(T ) : Ai(t) is cofinal in λ}
for each i ∈ I. Since Lvn′(T ′) = Lvn′(T ) =

⋃H′ ∪ (Lvn′(T ) − ⋃H′),
there is an n′-cofinal subtree T ′′ of T ′ such that either Lvn′(T ′′) ⊆

⋃H′
or Lvn′(T ′′) ⊆ Lvn′(T ) − ⋃H′, by the “moreover” part of the inductive
hypothesis. Moreover, if |I| < λ then Lvn′(T ) =

⋃H′, so the latter case
does not happen.

Case 1: Lvn′(T ′′) ⊆
⋃H′. By the inductive hypothesis, there exist an

n′-cofinal subtree U ′ of T ′′, I0 ⊆ I, and a family 〈ti : i ∈ I0〉 of elements of
U ′ satisfying the following conditions:

(a′) For each t ∈ Lvn′(U ′), there is a unique i ∈ I0 such that ti ⊆ t.
(b′) For each i ∈ I0 and t ∈ Lvn′(U ′), if ti ⊆ t then t ∈ H ′i.

Moreover, if |I| < λ then we can pick I0 as a singleton {i0} such that ti0 = ∅.
Put

U = U ′ ∪ {t̂ 〈α〉 : t ∈ Lvn′(U ′), α ∈ Ai(t) for all i ∈ I0 such that ti ⊆ t}.
It is easy to check that U , I0, and 〈ti : i ∈ I0〉 satisfy the required conditions.



Separating by Gδ-sets 87

Case 2: Lvn′(T ′′) ⊆ Lvn′(T )−⋃H′. Fix a well ordering ≺ on Lvn′(T ′′)
× λ of order type λ. For each 〈t, ξ〉 ∈ Lvn′(T ′′)× λ, pick an i(t, ξ) ∈ I and
an α(t, ξ) ∈ Ai(t,ξ)(t) inductively. Assume that 〈t, ξ〉 ∈ Lvn′(T ′′) × λ and
that i(t′, ξ′) ∈ I and α(t′, ξ′) ∈ Ai(t′,ξ′)(t′) are defined for each 〈t′, ξ′〉 ∈
Lvn′(T ′′) × λ such that 〈t′, ξ′〉 ≺ 〈t, ξ〉. The set

⋃
i∈I Ai(t) is cofinal in λ

since t ∈ Lvn′(T ). On the other hand,
⋃
{Ai(t′,ξ′)(t) : 〈t′, ξ′〉 ∈ Lvn′(T ′′)× λ and 〈t′, ξ′〉 ≺ 〈t, ξ〉}

is not cofinal in λ since t /∈ H ′i for every i ∈ I. So we can pick an i(t, ξ) ∈ I
and α(t, ξ) ∈ Ai(t,ξ)(t) such that ξ ≤ α(t, ξ) and α(t, ξ) does not belong to
the set above.

Put I0 = {i(t, ξ) : 〈t, ξ〉 ∈ Lvn′(T ′′)× λ} and

U = T ′′ ∪ {t̂ 〈α(t, ξ)〉 : t ∈ Lvn′(T ′′), ξ < λ}.
If 〈t, ξ〉, 〈t′, ξ′〉 ∈ Lvn′(T ′′) × λ and 〈t′, ξ′〉 ≺ 〈t, ξ〉, then α(t, ξ) ∈ Ai(t,ξ)(t)
but α(t, ξ) /∈ Ai(t′,ξ′)(t), so i(t, ξ) 6= i(t′, ξ′). Hence 〈t, ξ〉 ∈ Lvn′(T ′′) × λ
satisfying i = i(t, ξ) is unique for each i ∈ I0. For each i ∈ I0, put ti =
t̂ 〈α(t, ξ)〉 where 〈t, ξ〉 is the element of Lvn′(T ′′)× λ such that i = i(t, ξ).

It is easy to check that U , I0, and 〈ti : i ∈ I0〉 satisfy the required
conditions.

Definition 3.3. Let λ be a regular uncountable cardinal, n < ω, T ⊆
λ≤n a tree, and g : T → λ a function. We say that 〈γ, t〉 is a uniformly
n-cofinal subtree of T closed under g if γ = 〈γξ : ξ < λ〉 : λ→ λ is a strictly
increasing, continuous sequence, and t = 〈t(s) : s ∈ λ≤n|<〉 is a family of
elements of T such that:

(i) lh(t(s)) = lh(s), t(s)�k = t(s�k) for each s ∈ λ≤n|<, k ≤ lh(s),
(ii) g(t(s)) < γξ for each ξ < λ and s ∈ ξ≤n|<,
(iii) γs(k) ≤ t(s)(k) for each s ∈ λ≤n|< and k < lh(s).

Lemma 3.3. Let λ be a regular uncountable cardinal , n < ω, T an n-
cofinal tree on λ, g : T → λ a function, and E ⊆ λ a club set. Then there
exists a uniformly n-cofinal subtree 〈γ, t〉 of T closed under g such that
γξ ∈ E for all ξ < λ.

Proof. We define t(s) ∈ Lvlh(s)(T ) for s ∈ ξ≤n|< and γξ ∈ E by induc-
tion on ξ < λ. Assume that ξ < λ and that t(s) ∈ Lvlh(s)(T ) and γζ ∈ E
are defined for all ζ < ξ and s ∈ ζ≤n|<.

First, we define t(s) ∈ Lvlh(s)(T ) for s ∈ ξ≤n|<−
⋃
ζ<ξ(ζ

≤n|<). In case ξ
is a limit ordinal, such an s does not exist. In case ξ = 0, such an s is only ∅,
and put t(∅) = ∅. In case ξ = ζ+1 for some ζ, such an s has length k+1 for
some k < n, s(k) = ζ, and s�k ∈ ζk|<; so t(s�k) ∈ Lvk(T ) is defined and we
can pick t(s) ∈ Lvk+1(T ) such that t(s)�k = t(s�k) and γζ ≤ t(s)(k) since
T is an n-cofinal tree.
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Now, t(s) is defined for all s ∈ ξ≤n|<. We define γξ ∈ E. In case ξ is a
limit ordinal, put γξ = sup{γζ : ζ < ξ}; since E is a club set, γξ ∈ E. In the
other case, pick γξ ∈ E such that γξ > γζ for every ζ < ξ and γξ > g(t(s))
for every s ∈ ξ≤n|<.

It is easy to check that 〈γ, t〉 defined as above satisfies the required
conditions.

4. Nonsubnormal subspaces of ω3
1. In this section, we prove Theo-

rem 1.1.

Theorem 4.1. Let X be a subspace of ω3
1 . If X|< is stationary in ω3

1 ,
X0,1 = {〈α, β〉 ∈ ω2

1 |< : 〈α, α, β〉 ∈ X} and X1,2 = {〈α, β〉 ∈ ω2
1 |< :

〈α, β, β〉 ∈ X} are stationary in ω2
1 , and X0,1,2 = {α ∈ ω1 : 〈α, α, α〉 ∈ X}

is not stationary in ω1, then X is not subnormal.

Proof. Pick a club subset C of ω1 disjoint from X0,1,2. Define

E = {〈α, β, γ〉 ∈ X : α = β and γ ∈ C},
F = {〈α, β, γ〉 ∈ X : β = γ and α ∈ C}.

These are disjoint closed sets. We show that they cannot be separated by
disjoint Gδ-sets.

Assume that Pi and Qi are open subsets of X such that E ⊆ Pi and
F ⊆ Qi for each i < ω. It suffices to show that

⋂
i<ω Pi ∩

⋂
i<ω Qi 6= ∅.

SinceX|<,X0,1∩C2 and X1,2∩C2 are stationary, there are a 3-stationary
tree T and 2-stationary trees U, V on ω1 such that Lv3(T ) ⊆ X|<, Lv2(U) ⊆
X0,1 ∩ C2, and Lv2(V ) ⊆ X1,2 ∩ C2.

Let i < ω. If 〈α, β〉 ∈ Lv2(U), then it also belongs to X0,1 ∩ C2, so
〈α, α, β〉 ∈ E ⊆ Pi. Since Pi is open, we can pick a regressive function
ei : Lv2(U)→ (ω1 ∪ {−∞})2 satisfying

X ∩ ((ei(u)(0), u(0)]2 × (ei(u)(1), u(1)]) ⊆ Pi
for each u ∈ Lv2(U). In the same way, we can pick a regressive function
fi : Lv2(V )→ (ω1 ∪ {−∞})2 with

X ∩ ((fi(v)(0), v(0)]× (fi(v)(1), v(1)]2) ⊆ Qi
for each v ∈ Lv2(V ). By the Pressing Down Lemma, there are 2-stationary
subtrees Ui of U , Vi of V , and functions gi : Lv<2(Ui) → ω1 ∪ {−∞},
hi : Lv<2(Vi)→ ω1∪{−∞} such that ei(u)(k) = gi(u�k), fi(v)(k) = hi(v�k)
for every u ∈ Lv2(Ui), v ∈ Lv2(Vi), and k < 2.

Pick t ∈ Lv3(T ), ui ∈ Lv2(Ui), and vi ∈ Lv2(Vi) for i < ω such that:

(i) gi(∅), hi(∅) < t(0) for all i < ω,
(ii) t(0) ≤ vi(0) for all i < ω,
(iii) t(0) ≤ t(1) and hi(vi�1) < t(1) for all i < ω,
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(iv) t(1) ≤ ui(0) for all i < ω,
(v) t(1) ≤ t(2) and gi(ui�1) < t(2) for all i < ω,
(vi) t(2) ≤ ui(1), vi(1) for all i < ω.

It follows from ei(ui)(0) = gi(ui�0) = gi(∅) < t(0) ≤ t(1) ≤ ui(0) and
ei(ui)(1) = gi(ui�1) < t(2) ≤ ui(1) that

t ∈ X ∩ ((ei(ui)(0), ui(0)]2 × (ei(ui)(1), ui(1)]) ⊆ Pi.
Since fi(vi)(0) = hi(vi�0) = hi(∅) < t(0) ≤ vi(0) and fi(vi)(1) = hi(vi�1) <
t(1) ≤ t(2) ≤ vi(1), we have

t ∈ X ∩ ((fi(vi)(0), vi(0)]× (fi(vi)(1), vi(1)]2) ⊆ Qi.
Hence, t ∈ ⋂i<ω Pi ∩

⋂
i<ω Qi.

For instance, X = {〈α, β, γ〉 ∈ ω3
1 : α ≤ β < γ or α < β ≤ γ} satisfies

the assumption of the theorem above. So Theorem 1.1 holds.

5. Canonical subnormal subspaces of ωn1 . The purpose of this sec-
tion is to prove Theorem 1.2. We start with an easy fact.

Fact 5.1. If X ⊆ ω1 is nonstationary in ω1, then there is a pairwise
disjoint family of clopen, bounded subsets of ω1 which covers X.

We show two ways of deriving the subshrinking property of some spaces
from the properties of simpler spaces.

Lemma 5.1. Let m ≤ n < ω and X ⊆ ωn1 |≤. If Xm = {s�m : s ∈ X}
is not stationary in ωm1 , then there exists a σ-discrete, closed cover F =
〈Fi : i ∈ I〉 of X such that for each i ∈ I, there is a k < m such that
{s(k) : s ∈ Fi} is bounded in ω1.

Proof. By induction on m. Fix an n. In case m = 0, if Xm is not sta-
tionary, then Xm = ∅, so X = ∅. The empty family satisfies the required
condition.

Assume that m < n and the statement holds for m. Let X ⊆ ωn1 |≤ with
Xm+1 = {s�m + 1 : s ∈ X} nonstationary. There is a club subset C of ω1

such that Cm+1 ∩Xm+1 = ∅. Put Y = {s ∈ X : s�m ∈ Cm}. Then Y is a
closed subset of X. Moreover {s(m) : s ∈ Y } is nonstationary in ω1 since
it is disjoint from C. Hence it is covered by a pairwise disjoint family of
clopen bounded sets of ω1 by Fact 5.1. By pulling back this family by the
projection, we obtain a pairwise disjoint family P = 〈Pj : j ∈ J 〉 of clopen
subsets of X, covering Y , such that for each j ∈ J , {s(m) : s ∈ Pj} is
bounded in ω1. For each j ∈ J , Y ∩ Pj is a Gδ-set because

Y ∩ Pj =
⋂

ξ∈µ−C

⋂

k<m

{s ∈ X : s(k) 6= ξ} ∩ Pj
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where µ<ω1 satisfies {s(m) : s∈Pj}⊆µ. By Lemma 2.2, Y =
⋃
j∈J (Y ∩Pj)

is a Gδ-subset of X. Hence, there are a closed cover E = 〈Ei : i < ω〉 of X
such that E0 = Y and Ei ∩ Y = ∅ for every i < ω except 0. If i 6= 0, then
{s�m : s ∈ Ei} is disjoint from Cm, so nonstationary, hence the inductive
hypothesis can be applied to Ei. On the other hand, 〈Y ∩ Pj : j ∈ J 〉 is
a discrete, closed cover of E0. In any case, there exists a σ-discrete, closed
cover Fi = 〈Fi,j : j ∈ Ji〉 of Ei, for every i < ω, such that for each j ∈ Ji,
there is a k < m + 1 such that {s(k) : s ∈ Fi,j} is bounded in ω1. Now
F = 〈Fi,j : i < ω, j ∈ Ji〉 is a σ-discrete, closed cover satisfying the
required condition. Hence the statement also holds for m+ 1.

Corollary 5.1. Let n < ω and X a nonstationary subset of ωn1 . Then
there exists a σ-discrete closed cover F = 〈Fi : i ∈ I〉 of X such that for
each i ∈ I, there is a k < n such that {s(k) : s ∈ Fi} is bounded in ω1.

For the next three lemmas, let T be a fixed n-cofinal tree on ω1 with
n < ω, g : T → ω1 a function such that u(k) ≤ g(u) for each u ∈ T and
k < lh(u), and 〈γ, t〉 a uniformly n-cofinal subtree of T closed under g. From
these objects define l(s,m, k), r(s,m, k), Z(s,m), and Z(s̃) for s, s̃ ∈ ω≤n1 |<,
m ≤ lh(s), and k < lh(s) as follows:

• l(s,m, k) =
{
g(t(s)�k) if k ≤ m,
γs(k−1)+1 if m < k,

• r(s,m, k) =
{
t(s)(k) if k < m,
γs(k) if m ≤ k,

• Z(s,m) =
∏
k<lh(s)(l(s,m, k), r(s,m, k)],

• Z(s̃) =
⋃{Z(s, lh(s̃)) : s ∈ ωn1 |<, s̃ ⊆ s}.

Lemma 5.2. If s ∈ ω≤n1 |<, m ≤ lh(s), and s(k) is a limit ordinal for
every m < k < lh(s), then 〈γs(k) : k < lh(s)〉 ∈ Z(s,m).

Proof. Let (i), (ii), and (iii) be the conditions in Definition 3.3.
Let k < lh(s). Then l(m, s, k) = g(t(s�k)) < γs(k) by (i) and (ii) where

k ≤ m. If m < k then s(k − 1) < s(k) and s(k) is a limit ordinal, hence
s(k − 1) + 1 < s(k), l(s,m, k) = γs(k−1)+1 < γs(k).

We have γs(k) ≤ r(s,m, k) by (iii) where k < m, and it is trivial that
γs(k) ≤ r(s,m, k) where m ≤ k.

Therefore 〈γs(k) : k < lh(s)〉 ∈ Z(s,m).

Lemma 5.3. If s ∈ ω≤n1 |< and m ≤ lh(s), then

Z(s,m) ⊆
∏

k<lh(s)

(g(t(s)�k), t(s)(k)].

Proof. It suffices to show that g(t(s)�k) ≤ l(s,m, k) and r(s,m, k) ≤
t(s)(k) for each k < lh(s). Now, g(t(s)�k) = l(s,m, k) if k ≤ m, and
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r(s,m, k) = t(s)(k) if k < m by definition. If m < k then g(t(s)�k) =
g(t(s�k)) < γs(k−1)+1 = l(s,m, k) by (i) and (ii). And if m ≤ k then
r(s,m, k) = γs(k) ≤ t(s)(k) by (iii).

Lemma 5.4. If s̃ ∈ ω≤n1 |< and X ⊆ ωn1 |<, then X ∩ Z(s̃) is an open
Fσ-subset of X.

Proof. For each limit ordinal ξ < ω1, let 〈e(ξ, i) : i < ω〉 : ω → γξ be a
strictly increasing, cofinal sequence. For each i < ω and 0 < k < n, put

Ei,k = {x ∈ ωn1 |< : x(k − 1) 6∈ (e(ξ, i), γξ] or x(k) 6∈ (γξ, γξ+1]

for every limit ordinal ξ < ω1},
Fi,k = {x ∈ Ei,k : x(k − 1) ≤ γξ and γξ+1 < x(k) for some ξ < ω1}.
Claim. For each i < ω and 0 < k < n, Ei,k and Fi,k are closed in ωn1 |<.

Both {x ∈ ωn1 |< : x(k − 1) ∈ (e(ξ, i), γξ]} and {x ∈ ωn1 |< : x(k) ∈
(γξ, γξ+1]} are clopen for every ξ < ω1. So Ei,k is closed. To see that Fi,k
is closed in Ei,k, let x ∈ Ei,k and let ξ0 < ω1 be the least ordinal such
that x(k − 1) ≤ γξ0 . If ξ0 is a limit ordinal, then γξ0 = x(k − 1) < x(k) and
x(k−1) = γξ0 ∈ (e(ξ0, i), γξ0 ], so γξ0+1 < x(k) and x ∈ Fi,k because x ∈ Ei,k.
Hence, if x ∈ Ei,k − Fi,k then ξ0 is not a limit ordinal and x(k) ≤ γξ0+1. If
ξ0 = 0 then {x ∈ Ei,k : x(k) ≤ γ1} is a neighborhood of x in Ei,k disjoint
from Fi,k. If ξ0 = ξ + 1 then

{x ∈ Ei,k : x(k − 1) > γξ and x(k) ≤ γξ+2}
is a neighborhood of x in Ei,k disjoint from Fi,k. So Fi,k is closed in Ei,k.

Now we return to the proof of the lemma. It is trivial that X ∩ Z(s̃) is
open. We prove that X ∩ Z(s̃) is Fσ. Put m̃ = lh(s̃) and

Z̃ = {x ∈ X : g(t(s̃)�k) < x(k) for every k ∈ n ∩ (m̃+ 1),

and x(k) ≤ t(s̃)(k) for every k < m̃}.
Then Z̃ is closed in X. It suffices to show the following.

Claim. X ∩ Z(s̃) = Z̃ ∩⋃i<ω
⋂
m̃<k<n Fi,k.

Assume that x ∈ X ∩ Z(s̃). There is an s ∈ ωn1 |< such that s̃ ⊆ s

and x ∈ Z(s, m̃). That x ∈ Z̃ is immediate from the definition. For each
m̃ < k < n, let ξ(k) < ω1 be the least limit ordinal such that x(k) ≤ γξ(k)+1.
Since

x(k − 1) ≤ r(s, m̃, k − 1) = γs(k−1) < γs(k−1)+1(∗)
= l(s, m̃, k) < x(k) ≤ γξ(k)+1,

we have s(k− 1) < ξ(k) and x(k− 1) < γξ(k). So there is an i < ω such that
x(k − 1) ≤ e(ξ(k), i) for all m̃ < k < n. Let m̃ < k < n and let ξ < ω1 be a
limit ordinal. If ξ < ξ(k) then x(k) 6∈ (γξ, γξ+1] by the minimality of ξ(k).
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If ξ = ξ(k) then since x(k − 1) ≤ e(ξ(k), i) = e(ξ, i), we have x(k − 1) 6∈
(e(ξ, i), γξ]. If ξ > ξ(k) then x(k) ≤ γξ(k)+1 < γξ implies x(k) 6∈ (γξ, γξ+1].
So x ∈ Ei,k. From (∗), it follows that x ∈ Fi,k. So we have proved the ⊆
inclusion of the claim.

Conversely, assume that x ∈ Z̃ ∩ ⋃i<ω
⋂
m̃<k<n Fi,k. Pick an i < ω

such that x ∈ ⋂m̃<k<n Fi,k. Let s be the sequence of length n such that
s�m̃ = s̃ and for each m̃ ≤ k < n, s(k) < ω1 is the least ordinal satisfying
x(k) ≤ γs(k). If m̃ < k < n then x ∈ Fi,k, so there is a ξ′ < ω1 such that
x(k− 1) ≤ γξ′ and γξ′+1 < x(k); such a ξ′ must satisfy s(k− 1) ≤ ξ′, hence
γs(k−1)+1 ≤ γξ′+1 < x(k) ≤ γs(k) and s(k − 1) < s(k). If k < m̃ < n then
x ∈ Z̃ implies γs̃(k) ≤ t(s̃)(k) ≤ g(t(s̃)) < x(m̃) ≤ γs(m̃), so s̃(k) < s(m̃).
Hence s ∈ ωn1 |< and x ∈ Z(s, m̃) ⊆ Z(s̃). This proves the ⊇ inclusion.

Lemma 5.5. Let n < ω and X ⊆ ωn1 |<. For each open cover U = 〈Ui :
i ∈ I〉 of X, there exists a family F = 〈Fi : i ∈ I〉 of open Fσ-sets of X
such that :

(i) Fi ⊆ Ui for every i ∈ I,
(ii) X −⋃F is nonstationary.

Proof. If X is not stationary, then F = 〈Fi : i ∈ I〉, where Fi = ∅ for
each i ∈ I, satisfies the required condition.

Assume that X is stationary. There is an n-stationary tree T ′′ on ω1

such that Lvn(T ′′) ⊆ X by Lemma 3.1(2). Pick a pairwise disjoint family
H = 〈Hi : i ∈ I〉 such that Hi ⊆ Ui for every i ∈ I and

⋃H = Lvn(T ′′).
Since U is an open cover of X, there is a regressive function f : Lvn(T ′′)→
(ω1 ∪ {−∞})n such that for each i ∈ I and t ∈ Hi,X ∩

∏
k<n(f(t)(k), t(k)]

⊆ Ui. By the Pressing Down Lemma, there are an n-stationary subtree T ′ of
T ′′ and a function g′ : Lv<n(T ′)→ ω1 such that f(t)(k) = g′(t�k) for every
t ∈ Lvn(T ′) and k < n. By Lemma 3.2, there exist an n-cofinal subtree T
of T ′, I0 ⊆ I, and a family 〈ti : i ∈ I0〉 of elements of T satisfying (a), (b).
Pick a function g : T → ω1 such that t(k) ≤ g(t) for every t ∈ T and
k < lh(t), and g′(t) ≤ g(t) for every t ∈ Lv<n(T ). By Lemma 3.3, there
exists a uniformly n-cofinal subtree 〈γ, t〉 of T closed under g.

Put I1 = {i ∈ I0 : t(si) = ti for some si ∈ ω≤n1 |<}. For each i ∈ I1,
there is a unique si witnessing i ∈ I1. Actually, if s ∈ ω≤n1 |< and t(s) = ti,
then lh(s) = lh(ti) and for each k < lh(ti),

γs(k) ≤ t(s)(k) = ti(k) ≤ g(t(s)�k + 1) = g(t(s�k + 1)) < γs(k)+1.

Such an s is unique.
Apply Lemmas 5.2, 5.3, and 5.4 to T, g, and 〈γ, t〉. Put Fi = X ∩ Z(si)

for each i ∈ I1 and Fi = ∅ for each i ∈ I − I1. Let F = 〈Fi : i ∈ I〉.
By Lemma 5.4, Fi is an open Fσ-set for every i ∈ I in X. We show that

conditions (i) and (ii) hold for F .
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For each i ∈ I1 and s ∈ ωn1 |< with si ⊆ s, we have t(s) ∈ Lvn(T ) and
ti = t(si) ⊆ t(s), so t(s) ∈ Hi by condition (b) of Lemma 3.2. Since t(s) ∈
Lvn(T ) ⊆ Lvn(T ′) ⊆ Lvn(T ′′), it follows that f(t(s))(k) = g′(t(s)�k) ≤
g(t(s)�k) for each k < n, and X ∩ ∏k<n(f(t(s))(k), t(s)(k)] ⊆ Ui. By
Lemma 5.3,

X ∩ Z(s, lh(si)) ⊆ X ∩
∏

k<n

(g(t(s)�k), t(s)(k)]

⊆ X ∩
∏

k<n

(f(t(s))(k), t(s)(k)] ⊆ Ui.

Hence (i) holds.
Now, D = {γξ : ξ is a limit ordinal < ω1} is a club subset of ω1. To see

that (ii) holds, it suffices to show that X ∩ Dn ⊆ ⋃F . Let x ∈ X ∩ Dn,
say x = 〈γs(k) : k < n〉 for some s ∈ ωn1 |<. Then s(k) is a limit ordinal for
each k < n and t(s) ∈ Lvn(T ). By Lemma 3.2(a), there is a unique i ∈ I0

such that ti ⊆ t(s). Since t(s�lh(ti)) = t(s)� lh(ti) = ti, we have i ∈ I1 and
si = s� lh(ti) ⊆ s. By Lemma 5.2, x ∈ X ∩ Z(s, lh(si)) ⊆ X ∩ Z(si) = Fi.
Hence X ∩Dn ⊆ ⋃F , so (ii) holds.

Lemma 5.6. Assume that n < ω, X ⊆ ωn1 , and Xk,α = {ŝ t : s ∈ ωk1 ,
t ∈ ωn−(k+1)

1 , ŝ 〈α〉̂ t ∈ X} is subshrinking for each k < n and α < ω1.

(1) If X is nonstationary , then X is subshrinking.
(2) If X ⊆ ωn1 |<, then X is subshrinking.

Proof. (1) Let F = 〈Fi : i ∈ I〉 be a closed cover obtained by Corol-
lary 5.1. By Lemma 2.1, it suffices to show that Fi is subshrinking for every
i ∈ I. Fix an i ∈ I. We have {s(k) : s ∈ Fi} ⊆ µ for some k < n and µ < ω1.
For α < µ, put Cα = {s ∈ Fi : s(k) = α}. Then 〈Cα : α < µ〉 is a closed
cover of Fi. By Lemma 2.1 again, it suffices to show that Cα is subshrinking
for each α < µ. In Xk,α, {ŝ t : s ∈ ωk1 , t ∈ ωn−(k+1)

1 , ŝ 〈α〉̂ t ∈ Cα} is closed
and homeomorphic to Cα, hence Cα is subshrinking.

(2) Let U = 〈Ui : i ∈ I〉 be an open cover of X. Pick a family F = 〈Fi :
i ∈ I〉 of open Fσ-sets of X obtained by Lemma 5.5, and put G =

⋃F . For
each k < n and α < ω1, {ŝ t : s ∈ ωk1 , t ∈ ωn−(k+1)

1 , ŝ 〈α〉̂ t ∈ X − G} is a
closed subset of Xk,α, so subshrinking. Since X−G is nonstationary, we can
apply (1) to X−G, so X−G is subshrinking. Hence, there is a subshrinking
M = 〈Mi : i ∈ I〉 of 〈Ui ∩ (X −G) : i ∈ I〉 in X −G. Since X −G is closed
in X, M is a family of Fσ-sets also in X. Finally, 〈Mi ∪ Fi : i ∈ I〉 is a
subshrinking of U in X. Hence X is subshrinking.

Now we can prove Theorem 1.2.

Proof. Apply Lemma 5.6(2) inductively. Then the statement follows im-
mediately.
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Since all subspaces of ω2
1 are subshrinking (see [4]), the following holds

by Lemma 5.6(1).

Corollary 5.2. All nonstationary subspaces of ω3
1 are subshrinking.

ω3
1 in the corollary above cannot be changed to ω4

1 . Indeed, there is a
nonsubnormal subspace X of ω3

1 by Theorem 1.1. Therefore {0}×X, which
is homeomorphic to X, is a nonstationary and nonsubnormal subspace of ω4

1 .
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