
FUNDAMENTA
MATHEMATICAE

177 (2003)

Totally proper forcing and the Moore–Mrówka problem

by

Todd Eisworth (Cedar Falls, IA)

Abstract. We describe a totally proper notion of forcing that can be used to shoot
uncountable free sequences through certain countably compact non-compact spaces. This
is almost (but not quite!) enough to produce a model of ZFC + CH in which countably
tight compact spaces are sequential—we still do not know if the notion of forcing described
in the paper can be iterated without adding reals.

1. Introduction. The Moore–Mrówka problem addresses the question
of whether or not countably tight compact spaces (i.e., compact spaces where
the closure operator is determined by how it acts on countable sets) must be
sequential (i.e., the closure operator is determined by iterating the process
of taking limits of convergent sequences). The best introduction to what is
known about this problem is probably Shakhmatov’s article [12] but we will
take a little time to outline the major results known. A famous example
constructed by Ostaszewski in the 1970’s (see [11]) showed that ♦ implies
that there is a countably tight compact space that is not sequential, while
Balogh [1] showed in the late 1980’s that the Proper Forcing Axiom implies
compact spaces of countable tightness are sequential. Other people have had
significant results concerning the influence of the Proper Forcing Axiom on
the structure of countably tight compact spaces. A good survey of these
results can be found in the article [2].

The author and others have been involved in research concerning the
influence of the Continuum Hypothesis on this problem. Over the years,
several results in this vein have been obtained—see, e.g., the papers [6], [4],
and [5]. This paper contains a partial result supporting the conjecture that
CH is not enough to imply the existence of a non-sequential countably tight
compact space. We make some comments at the end of the paper about
what might be needed to completely resolve this question.
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We begin with the basic definitions involved in the statement of the
problem.

Definition 1.1. Let X be a topological space. X is said to be countably
tight (t(X) = ℵ0) if whenever a point z is in the closure of a set A, we can
find a countable A0 ⊆ A such that z is in the closure of A0. X is said to
be sequential if a set A ⊆ X is closed if and only if A contains all limits of
convergent sequences from A.

It is not hard to show that a sequential space is countably tight, and there
are fairly easy examples of countably tight (non-compact!) spaces that are
not sequential. The Moore–Mrówka problem arises when we ask if these
concepts coincide in the class of compact Hausdorff spaces.

In this paper, we show that there is a notion of forcing that will destroy
a fixed counterexample to the Moore–Mrówka problem while not adding
reals. The notion of forcing is proper, but it is not clear if it can be iterated
safely without adding reals. If it can be safely iterated, then we can build
a model of ZFC + CH in which compact spaces of countable tightness are
sequential—in the final section the paper we will show why this is true.

Our strategy is to follow the route of Balogh. In models where CH is
true, a countably tight compact space is sequential if and only if every
countably compact subspace of it is closed (this is a result of Ismail and
Nyikos [9], and in fact only requires the assumption 2ℵ0 < 2ℵ1). Thus a
potential counterexample would consist of a compact, countably tight space
X and a countably compact Y ⊆ X such that Y is not closed in X. This
gives us the first bit of ammunition for our attack on the problem.

A well known result on cardinal functions due to Arkhangel’skĭı tells us
that a compact space is countably tight if and only if it does not contain an
uncountable free sequence. Good references for this result are the monograph
[10] of Juhász, and Hodel’s survey [8]. We recall the definition for those
unfamiliar with it.

Definition 1.2. Let X be a topological space. A sequence {xα : α < κ}
is a free sequence (of length κ) if for each α < κ,

{xβ : β < α} ∩ {xβ : β ≥ α} = ∅.(1.1)

Our strategy is to take a potential counterexample and to “shoot” an
uncountable free sequence through it, thereby wrecking its countable tight-
ness. This is where the results of [6] and [4] come in—in both of these papers,
it is shown that in certain circumstances one can take a countably compact
(regular) space that does not contain an uncountable free sequence, and
then shoot an uncountable free sequence through it without adding new
reals to the ground model. A natural attack on the Moore–Mrówka problem
would be to use the fact that X contains a countably compact, non-compact
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subspace Y and try and shoot an uncountable free sequence through Y and
arrange that it will be an uncountable free sequence in X.

There are two obstacles to this approach. The first is that the results of
[4] and [5] demand that the space under consideration be first countable, and
counterexamples to the Moore–Mrówka problem have got to be far from first
countable. The second obstacle is that we cannot hope to blindly generalize
the methods of [5] because known examples prove that it is impossible—a
result of Hajnal and Juhász [7] tells us that CH implies the existence of
a countably compact, non-compact countably tight space that contains no
uncountable free sequences. In fact, their space is hereditarily separable and
even a topological group.

The space of Hajnal and Juhász does not come up in the study of the
Moore–Mrówka problem, however. The key to this rests on another cardinal
function from topology—hereditary π-character.

Definition 1.3. Let A be a subset of the topological space X. A family
B of subsets of X is a π-network at A in X if every open neighborhood of
A contains some B ∈ B. If B consists of open subsets of X, we say B is a
π-base for A in X. If A is a singleton {x}, we call B a π-network, respectively
π-base, at x in X.

Definition 1.4. We say a point x has countable π-character in X
(πχ(x,X) = ℵ0) if x has a countable π-base in X. If πχ(x,X) = ℵ0 for
every x ∈ X, then we say X has countable π-character and denote this
by πχ(X) = ℵ0. We say that X is hereditarily of countable π-character
(hπχ(X) = ℵ0) if πχ(Y ) = ℵ0 for every subspace Y of X.

A celebrated result of Shapirovskĭı [13] tells us that in compact Hausdorff
spaces, tightness and hereditary π-character coincide (again, see [8] for a nice
proof of this). It is not hard to see that the space of Hajnal and Juhász is not
hereditarily of countable π-character—the quickest way is to take advantage
of the fact that the space is a topological group, for it is well known that
character and π-character coincide in the class of topological groups (see
Comfort’s survey [3] for a proof of this).

The fact that the spaces of concern to us are all hereditarily of countable
π-character is the key to our arguments—in a sense, countably compact
spaces that are hereditarily of countable π-character behave enough like
first countable spaces so that our methods generalize. The moral is that for
countably compact, regular X, the assumption that hπχ(X) = ℵ0 has a
tremendous impact on how badly behaved the space might be. We will see
examples of this phenomenon when we analyze the notion of forcing that
we define.
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2. Elementary submodels. In this section, we investigate how ele-
mentary submodels interact with the topological spaces of interest to us.
We will assume that X is a topological space satisfying the following:

• X is countably compact, non-compact T3,
• F is a maximal free filter of closed subsets of X,
• t(X) = ℵ0,
• |X| = ℵ1.

Not all of the proofs will use all of the assumptions about our space; in
particular, the tightness and cardinality restrictions are not needed in all
cases.

Throughout the rest of the paper, we shall use the phrase “for almost
all x” to mean “the set of such x is in F”.

The next batch of definitions has appeared in various guises in earlier
work of the author, e.g., [4] and [5].

Let N be a countable elementary submodel of H(λ) for some large reg-
ular λ, and assume {X,F} ∈ N .

Definition 2.1. The trace of N , denoted Tr(N), is defined by

Tr(N) =
⋂

A∈N∩F
cl(N ∩ A).(2.1)

Proposition 2.2. Tr(N) is a non-empty closed subset of X.

Proof. We need only worry about showing that Tr(N) is non-empty.
This follows from the countable compactness of X because the collection
{N ∩ A : A ∈ N ∩ F} is countable and centered.

There is another closed subset of X that is natural to consider in this
context.

Definition 2.3. If N is a countable elementary submodel of H(λ) con-
taining X and F , then we define the weak trace of N , denoted wTr(N), by

wTr(N) =
⋂
{A : A ∈ N ∩ F}.(2.2)

Note that wTr(N) is a countable intersection of elements of F , and
therefore wTr(N) is always an element of F . We can certainly conclude that
Tr(N) ⊆ wTr(N), but in general these two sets need not be equal; the next
definition and proposition will shed some light on the situation.

Definition 2.4. We say that (X,F) is of Type A if F is generated by
separable sets, i.e., if for every set E ∈ F , there is a separable E0 ⊆ E such
that E0 ∈ F . We say (X,F) is of Type B if it is not of Type A.

Proposition 2.5. The following statements are equivalent :

(1) Tr(N) ∈ F ,
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(2) (X,F) is of Type A,
(3) Tr(N) = wTr(N).

Proof. Left to reader.

Our next few definitions and propositions work toward developing a no-
tion of diagonal intersection for the filter F .

Proposition 2.6. Let M = 〈Mα : α < ω1〉 be an ∈-increasing chain of
countable elementary submodels of H(λ), continuous at limit ordinals, such
that {X,F} ∈M0 and for α < ω1, 〈Mβ : β < α〉 ∈Mα+1. Then

Tr(M) :=
⋃

α<ω1

Tr(Mα) is closed.(2.3)

Proof. If (X,F) is of Type A, then this follows easily as the set in ques-
tion is just equal to Tr(M0). Thus assume that (X,F) is of Type B.

We prove by induction on α < ω1 that the set

Aα =
⋃

β≤α
Tr(Mβ)(2.4)

is closed; this is sufficient as X is countably tight.
The cases where α = 0 or α is a successor ordinal are already handled

by the induction hypothesis, so assume that α is a limit ordinal.
Let A<α denote

⋃
β<α Tr(Mβ). To show that Aα is closed, it suffices to

prove
A<α \A<α ⊆ Tr(Mα),

so assume that x is a member of A<α \ A<α.
Let U be any neighborhood of x. Since x is not in A<α, our induction

hypothesis implies that U must intersect Aβ for arbitrarily large β < α.
Now given B ∈Mα ∩F , there is some β0 < α with B ∈Mβ0 , and hence

there is β < α such that B ∈Mβ and U ∩ Tr(Mβ) 6= ∅.
By the definition of Tr(Mβ), we see that U ∩Mβ ∩B is non-empty, and

hence U ∩Mα ∩ B is non-empty. Since U was an arbitrary neighborhood
of x and B was an arbitrary member of Mα ∩ F , we have x ∈ Tr(Mα) as
required.

Theorem 1. If M is as in the previous proposition, then Tr(M) ∈ F .

Proof. If (X,F) is of Type A, then this is immediate by Proposition 2.5,
so we assume that X is of Type B.

We know that Tr(M) is closed, so it suffices (because of the maximality
of F) to show that it meets every set in F . Let B ∈ F be arbitrary, and
let N be a countable elementary submodel of H(λ) that contains X, F ,
M, and B. Note that if δ = N ∩ ω1, then Mδ ∩ ω1 = δ as well, and since
|X| = ℵ1, we have N ∩X = Mδ ∩X.



126 T. Eisworth

For α < δ, Mα ∈ N and hence Mα ⊆ N as well. Thus Mδ ⊆ N . Together
with the fact that Mδ ∩X = N ∩X, we have Tr(N) ⊆ Tr(Mδ). Since Tr(N)
is a non-empty subset of B (as B ∈ N ∩ F), we have B ∩ Tr(M) 6= ∅, as
required.

We end this section with a corollary that summarizes the work we have
done so far.

Corollary 2.7. Almost every point of X is a member of Tr(M) for
some appropriate M .

3. Promises. In this section, we investigate promises, a combinatorial
tool that we use to define side conditions for our notion of forcing.

Definition 3.1. Let us say that a subset A of X is large if it meets
every set in F ; otherwise we say that A is small.

Note that since F is closed under countable intersections, any countable
union of small sets is small.

Definition 3.2. A promise is a function f whose domain is a large
subset of X such that for x ∈ dom f , f(x) is an open neighborhood of x,
i.e., f is a neighborhood assignment for a large subset of X.

Definition 3.3. If f is a promise, then we say a point y is banned by f
if

{x ∈ dom f : y ∈ f(x)} is small.(3.1)

We let Ban f be the set of all y ∈ X that are banned by f .

Claim 3.4. If f is a promise, then Ban f is closed.

Proof. Suppose not, and let y be a limit point of Ban f that is not banned
by f . Since X is countably tight, there is a countable set A = {yn : n ∈ ω}
⊆ Ban f such that y ∈ A. Now let

B = {x ∈ dom f : y ∈ f(x)}.(3.2)

Note that B is large as y is not banned by f .
For n ∈ ω, we let

Bn = {x ∈ B : yn ∈ f(x)}.(3.3)

Each Bn is small as yn is banned by f , but since y ∈ A, we have

B =
⋃

n∈ω
Bn,(3.4)

which is a contradiction.

Lemma 3.5. If f is a promise and (X,F) is of Type A, then Ban f is
not in F .
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Proof. Suppose Ban f ∈ F . Since (X,F) is of Type A, there is a sep-
arable set A ⊆ Ban f such that A ∈ F , say A = {yn : n ∈ ω}. Let B =
A ∩ dom f . Since dom f is large and A ∈ F , we deduce that B is large as
well.

Now let Bn = {x ∈ B : yn ∈ f(x)}. Each Bn is small as yn is banned by
f , but since B ⊆ {yn : n ∈ ω}, we have

B =
⋃

n∈ω
Bn,(3.5)

a contradiction.

Lemma 3.6. If f is a promise and (X,F) is of Type B , then Ban f is
not in F .

Proof. Suppose Ban f is an element of F . For each y ∈ Ban f , let Ay be
a set in F such that

Ay ∩ {x ∈ dom f : y ∈ f(x)} = ∅.(3.6)

Now let M = 〈Mα : α < ω1〉 be an ∈-chain of countable elementary
submodels as in the previous section such that both the promise f and the
function y 7→ Ay are elements of M0.

Now choose a point x ∈ dom f ∩ Tr(M), say x ∈ Tr(Mα) ∩ dom f . By
definition of Tr(Mα), we can find a point

y ∈ f(x) ∩Mα ∩ Ban f,(3.7)

and this is a contradiction as Ay ∈Mα ∩ F implies x ∈ Tr(Mα) ⊆ Ay.
Putting the two previous lemmas together, we come to the main point

of this section.

Theorem 2. If f is a promise, then Ban f is a closed set that is not
in F .

4. A notion of forcing. Armed with the results of the previous two
sections, we are now ready to define our notion of forcing. From now on, we
assume that X is a topological space such that

• X is a countably compact, non-compact T3 space,
• hπχ(X) = ℵ0,
• |X| = ℵ1,
• F is a maximal free filter of closed subsets of X,
• C is an open cover of X.

We will define a totally proper (see Definition 5.1) notion of forcing
that will adjoin an uncountable free sequence F = {xα : α < ω1} to X.
Furthermore, we can guarantee that each countable subset of F is covered
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by finitely many members of C, and for each A ∈ F , all but countably many
members of F are contained in A.

Definition 4.1. A condition is a triple p = (σp, Ap, Φp) such that

(1) σp is a one-to-one function from some countable ordinal into X,
(2) [p] := ranσp is covered by finitely many members of C,
(3) cl[p] ∩ Ap = ∅,
(4) Ap ∈ F ,
(5) Φp is a countable collection of promises.

We say that a condition q extends p (written q ≤ p) if

(6) σq ⊇ σp,
(7) Aq ⊆ Ap,
(8) Φq ⊇ Φp,
(9) [q] \ [p] ⊆ Ap,

(10) if f ∈ Φp, then the set

Y (f, q, p) := {x ∈ dom f : [q] \ [p] ⊆ f(x)}
is large, and f�Y (f, q, p) ∈ Φq.

We will have to postpone the proof that this notion of forcing is totally
proper until the next section. For the rest of this section, we will be proving
combinatorial lemmas to aid in the proof of total properness. We start with
and ad hoc definition that will help us investigate how much freedom the
first component of a given condition has to grow.

Definition 4.2. Let p ∈ P be a condition. A point z ∈ X is eligible for
p if there is a condition q ≤ p such that z ∈ [q].

Note that if F ∈ Φp and z ∈ Ban f , then z is not eligible for p; the
promises in Φp put some restrictions on how [p] can grow. However, it turns
out that relatively few points are excluded from membership in [p].

Lemma 4.3. Let p ∈ P be a condition. Then there is a set A ∈ F such
that every point in A is eligible for p.

Proof. Let us define B to be the union of sets of the form Ban f for
f ∈ Φp. By Theorem 2 and the fact that Φp is countable, we know that B is
a small set. Thus there is a set A ∈ F such that A∩B = ∅ and furthermore,
without loss of generality, A ⊆ Ap.

Take a point x ∈ A, and let A′ be a subset of A in F that does not
contain x. For each f ∈ Φp, let Yf = {y ∈ dom f : x ∈ f(y)}. Each Yf is a
large set by the definitions involved. Let α = domσp. We define a condition
q by setting

σq = σp ∪ {〈α, x〉}, Aq = A′, Φq = Φp ∪ {f�Yf : f ∈ Φp}.
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It is straightforward to verify that q is a condition in P that extends p and
satisfies x ∈ [q].

Corollary 4.4. If p ∈ P , then there is a condition q ≤ p such that
[q] \ [p] is non-empty.

Lemma 4.5. Let p ∈ P be arbitrary , and let D ⊆ P be dense open. For
almost every x ∈ X, the collection

D = {[q] \ [p] : q ≤ p and q ∈ D}(4.1)

is a π-network at x ∈ X.

Proof. Clearly, the set of such points x is closed, so it suffices to prove
that the complement of this set is small. Let us define

E = {x ∈ X : D is not a π-network at x in X},
and assume by way of contradiction that E is large.

For each x ∈ E, there is an open set Ux such that x ∈ Ux and there is no
q ≤ p such that q ∈ D and [q]\ [p] is a non-empty subset of Ux. The function
f with domain E defined by f(x) = Ux is a promise (as E is large), and

p′ = (σp, Ap, Φp ∪ {f})
is a condition in P . Since D is dense in P , we can find an extension q of
p′ that lies in D. By Corollary 4.4, without loss of generality [q] \ [p′] is
non-empty.

By the definition of extension, the set

Y (f, q, p′) = {x ∈ dom f : [q] \ [p′] ⊆ f(x)}
is large, hence non-empty. Choose x ∈ Y (f, q, p′). For this particular x, we
have

[q] \ [p] = [q] \ [p′] ⊆ f(x) = Ux,(4.2)

and this contradicts the choice of Ux.

We need to sharpen the previous lemma a bit. We again make a rather
ad hoc definition.

Definition 4.6. Assume p ∈ P , D ⊆ P is dense open, and A ∈ F . We
say that a point x is good to p, D, and A if the set

DA = {[q] \ [p] : q ≤ p, q ∈ D, and [q] \ [p] ⊆ A}
is a π-network at x ∈ X. We let Good(p,D,A) denote the set of points that
are good to p, D, and A.

Lemma 4.7. Given p ∈ P , D ⊆ P dense open, and A ∈ F , almost every
point is good to p, D, and A.

Proof. Again, the set of points that are good to p, D, and A is closed,
so it suffices to prove that the set of such points is in F . Suppose this fails,
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and fix a set B ∈ F such that no x ∈ B is good to p, D, and A. Let N be a
countable elementary submodel of H(λ) that contains {X,F , P, p,D,A,B}.

Fix a point x ∈ wTr(N). Since wTr(N) ⊆ B we know that x has a
neighborhood U such that there is no q ≤ p in D such that [q] \ [p] is a
non-empty subset of U ∩ A. Now let us define

p′ = (σp, Ap ∩ A,Φp).
Then p′ is a condition in P that extends p and, more importantly for our
purposes, p′ ∈ N . The set of points y ∈ X such that {[q] \ [p′] : q ≤ p′ and
q ∈ D} is a π-network at y in X is an element of F , and since all parameters
required to define this set are in N , it is a set in N ∩F . Since x ∈ wTr(N),
this means that there is a q ≤ p′ in D such that [q] \ [p′] is a non-empty
subset of U . This is a contradiction as q is an extension of p in D, and

[q] \ [p] = [q] \ [p′] ⊆ Ap ∩ A ⊆ A.
The proof of the next theorem is where we finally use our hypothesis that

hπχ(X) = ℵ0—it shows that our space is in some sense nicely organized.

Definition 4.8. Assume p ∈ P , D ⊆ P is dense open, and A ∈ F .
A point x ∈ X is nice to p, D, and A if there is a countable family of
conditions {qn : n ∈ ω} such that

• qn ≤ p,
• qn ∈ D,
• {[qn] \ [p] : n ∈ ω} forms a π-network at x in A.

Theorem 3. If p, D, and A are as in the previous definition, then al-
most every point x is nice to p, D, and A.

We will prove this theorem shortly, but first we need a key lemma.

Lemma 4.9. Let X be a countably compact space, and let {An : n ∈ ω}
be a decreasing family of closed sets. Let U be an open set that meets K :=⋂
n∈ω An. Then {U ∩ An : n ∈ ω} is a π-network at U ∩K in X.

Proof. Let V be an open neighborhood of U ∩K. It suffices to show that
there is an n such that (U ∩ An) \ V is finite, because if y ∈ (U ∩ An) \ V
then y 6∈ K and hence (since the sequence is decreasing) there is an m > n
such that y 6∈ Am. Given that (U ∩An) \ V is finite, we can simply increase
n to ensure that (U ∩ An) \ V is empty, i.e., U ∩ An ⊆ V .

Suppose no such n exists. We can then choose distinct points xn for
n ∈ ω such that xn ∈ (U ∩ An) \ V . Since X is countably compact, the
infinite set {xn : n ∈ ω} has a limit point x.

Since each xn is in U , we know that x ∈ U . Since xn ∈ An and the An’s
are decreasing, we have x ∈ K. Thus

x ∈ U ∩K ⊆ V.(4.3)
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This is a contradiction, as we have made sure that no xn is in V , and hence

{xn : n ∈ ω} ∩ V = ∅.(4.4)

Proof of Theorem 3. Since X is countably tight, the set of points that
are nice to p, D, and A is closed. Let N be a countable elementary submodel
of H(λ) containing p, D, A, and the other relevant parameters. We show
that any point in wTr(N) is nice to p, D, and A.

Choose x ∈ wTr(N). By assumption, πχ(x,wTr(N)) = ℵ0, and since X
is regular this implies that we can find a family {Um : m ∈ ω} of open sets
in X such that

• Um ∩ wTr(N) 6= ∅,
• if V is an open neighborhood of x, then there is an m such that

Um ∩ wTr(N) ⊆ V .

Let {Bi : i ∈ ω} be a decreasing family of closed sets in N ∩F generating
N ∩ F and also satisfying B0 ⊆ A. Note that this implies

wTr(N) =
⋂

i∈ω
Bi.(4.5)

For each m < ω, we can apply Lemma 4.9 to conclude that

Bm := {Bi ∩ Um : i ∈ ω}(4.6)

is a π-network at Um ∩ wTr(N).
Now fix i and m. The set Bi is in N ∩F , so by Lemma 4.7 applied in N ,

there is an i′ > i such that Bi′ ⊆ Good(p,D,Bi). Since Um meets wTr(N)
and wTr(N) ⊆ Bi′ , we can find a point ym,i ∈ Um ∩ Good(p,D,Bi). By
definition, this means that there is some condition qm,i such that

• qm,i ≤ p,
• [qm,i] \ [p] 6= ∅,
• qm,i ∈ D,
• [qm,i] \ [p] ⊆ Um ∩Bi.
To finish, we show that the family {qm,i : m, i < ω} witnesses that x is

nice to p, D, and A. For this, we must take an arbitrary neighborhood V of
x and show that for some m and i,

[qm,i] \ [p] ⊆ V ∩A.(4.7)

Given V , there is an m such that Um ∩ wTr(N) ⊆ V . Our definition of
Bm implies that there is an i such that Um ∩ Bi ⊆ V . Our choice of qm,i
means

[qm,i] \ [p] ⊆ Bi ∩ Um ⊆ V,(4.8)

and since Bi ⊆ A, we deduce that qm,i is as required.
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5. Total properness. In this section, we prove that the notion of forc-
ing defined in the last section is totally proper, i.e., it is proper and forcing
with it adds no new reals. We recall the definition for those who are not
familiar with previous work in this area.

Definition 5.1. A notion of forcing P is totally proper if whenever we
are given N ≺ H(λ) countable (with λ “large enough”) such that P ∈ N ,
and p ∈ N ∩ P , we can find q ≤ p such that for every dense open subset D
of P that is in N , there is some p′ ∈ N ∩D with q ≤ p′. Such a q is said to
be totally (N,P )-generic.

It is shown in [6] that a notion of forcing is totally proper if and only if
it is proper and forcing with it adds no new countable subsets to the ground
model.

Let us fix a countable elementary submodel N of H(λ) and assume that
N contains P . Note that N will contain X and F as well—N knows that P
was built from such objects so we can find such objects in N .

Lemma 5.2 (Extension Lemma). Let p ∈ N ∩ P , and let D ∈ N be a
dense subset of P . Given A ∈ N ∩F and an open set U such that U ∩Tr(N)
6= ∅, we can find q ≤ p such that q ∈ N ∩D and [q] \ [p] ⊆ N ∩ U ∩ A.

Proof. By Theorem 3, the set B of points that are nice to p, D, and A
is a member of F , and since B is definable from parameters in N , it is a
member of N as well. Since U ∩Tr(N) 6= ∅, there is a point y ∈ N ∩U ∩B.

Since this y is nice to p, D, and A, there is a family {qn : n ∈ ω} that
witnesses this. By elementarity, we can assume this collection is in N and
hence {qn : n ∈ ω} ⊆ N .

Fix an n such that [qn] \ [p] ⊆ U ∩A. Since [qn] is countable and [qn] \ [p]
is an element of N , we see that [qn] \ [p] is a subset of N . Thus we have
produced qn ≤ p in N ∩D such that [qn] \ [p] ⊆ N ∩ U ∩ A, as required.

Lemma 5.3 (Target Lemma). Let f ∈ N be a promise, and let U be an
open set that meets Tr(N). Then there is an A ∈ N ∩F and an open V ⊆ U
such that

• V meets Tr(N),
• {x ∈ dom f : N ∩ V ∩A ⊆ f(x)} is large.

Proof. Choose z ∈ U∩Tr(N). Since X is regular and πχ(z,Tr(N)) = ℵ0,
we can find a family {Un : n ∈ ω} of open sets such that

• Un ⊆ U ,
• Un ∩ Tr(N) 6= ∅,
• if W is an open neighborhood of z, there is an N such that Un∩Tr(N)

⊆W .
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Let E0 = {x ∈ dom f : z ∈ f(x)}. Note that E0 is large as no element of
wTr(N) is banned by the promise f . If x ∈ E0, then there is an n such that
Un ∩ Tr(N) ⊆ f(x). Since a countable union of small sets is small, there
must be an n for which

E1 := {x ∈ E0 : Un ∩ Tr(N) ⊆ f(x)} is large.

Choose such an n, and define V = Un.
Now let {Ai : i ∈ ω} be a decreasing family in N ∩ F that generates

N ∩ F , and let Bi = N ∩ Ai. Note that Tr(N) =
⋂
i<ω Bi. By Lemma 4.9,

the sets {V ∩ Bi : i ∈ ω} form a π-network at V ∩ Tr(N). Thus if x ∈ E1,
there is an i such that V ∩ Bi ⊆ f(x). Hence there must be a single i such
that

E2 := {x ∈ E1 : V ∩Bi ⊆ f(x)} is large.

If we let A = Ai, then we have N ∩ V ∩A ⊆ N ∩ V ∩Bi, and therefore

E2 ⊆ {x ∈ dom f : N ∩ V ∩A ⊆ f(x)},(5.1)

as required.

Theorem 4. The notion of forcing P is totally proper.

Proof. Given p ∈ N∩P , we must produce a totally (N,P )-generic q ≤ p.
Let {Dn : n ∈ ω} list the dense subsets of P that are elements of N . In ω
stages we construct objects pn, Un, and An such that

(1) p0 = p, A0 = X,
(2) U0 is some open set contained in a member of C that meets Tr(N)

and satisfies U0 6∈ F ,
(3) pn+1 ∈ N ∩Dn,
(4) pn+1 ≤ pn,
(5) Un is an open set that meets Tr(N),
(6) Un+1 ⊆ Un,
(7) An is a member of N ∩ F ,
(8) An+1 ⊆ An,
(9) [pn+1] \ [pn] ⊆ N ∩ Un+1 ∩ An+1,

(10) for each n and f ∈ Φpn , there is a stage m ≥ n for which

{x ∈ Y (f, pm, pn) : N ∩ Am+1 ∩ Um+1 ⊆ f(x)} is large(5.2)

(we say that the promise f is taken care of at stage m+ 1).

At stage n + 1, we are handed pn, Dn, Un, and An, as well as some
promise f appearing in some earlier Φpi that must be taken care of at this
stage.

By the definition of extension for our partial order, we know that f ′ :=
f�Y (f, pn, pi) is an element of Φpn and hence an element of N as well. By
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the Target Lemma (Lemma 5.3) we can find an open Un+1 ⊆ Un that meets
Tr(N), as well as an An+1 ⊆ An in N ∩ F such that

{x ∈ dom f ′ : N ∩An+1 ∩ Un+1 ⊆ f(x)} is large.(5.3)

By the Extension Lemma (Lemma 5.2) we can find pn+1 ≤ pn in N ∩Dn

such that

[pn+1] \ [pn] ⊆ N ∩ An+1 ∩ Un+1.(5.4)

To finish, we need only prove that the sequence {pn : n ∈ ω} has a lower
bound q in P . We define q “one piece at a time”.

First, let σq =
⋃
n∈ω σpn . Clearly σq is a one-to-one function from a

countable ordinal into X as each σp is such a function. Let [q] denote the
range of σq.

We know that [p] is covered by finitely many members of the open
cover C. By construction

[q] \ [p] ⊆ U0(5.5)

and U0 is contained in a member of C. Thus [q] is covered by finitely many
members of C. Since cl[p] 6∈ F and U 0 6∈ F , we have cl[q] 6∈ F .

Let Aq be some member of F that is a subset of wTr(N) and disjoint
from cl[q]. Clearly Aq is a subset of Apn for each n.

If f is a promise appearing in Φpn for some n, there is a stage m ≥ n
such that we take care of f at stage m+1. Recall that this means we ensure

E := {x ∈ Y (f, pm, pn) : Um+1 ∩ Am+1 ∩N ⊆ f(x)} is large.(5.6)

Since our sequences of Un’s and An’s are decreasing, we know

[q] \ [pm] ⊆ N ∩ Um+1 ∩ Am+1,(5.7)

and this means

Y (f, q, pn) := {x ∈ dom f : [q] \ [pn] ⊆ f(x)} is large.(5.8)

Thus if we define

Φq =
⋃

n∈ω
Φpn ∪

⋃

n∈ω
{f�Y (f, q, pn) : f ∈ Φpn},(5.9)

it is straightforward to verify that q = (σq, Aq, Φq) is a condition in P
that is a lower bound for the sequence {pn : n ∈ ω}. Thus q is a totally
(N,P )-generic extension of p and P is totally proper.

6. How close have we come? In this final section, we take a look
at how close we have come to producing a model where the Continuum
Hypothesis holds and in which compact spaces of countable tightness are
sequential.
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Our first task is to show that given a triple (X,F , C), the forcing ac-
tually adjoins an uncountable free sequence through X with the property
that every initial segment of the free sequence is covered by finitely many
members of the given open cover C.

To see this, suppose that G ⊆ P is generic. Let us define

σ =
⋃

p∈G
σp.(6.10)

Since G is a generic filter, it is not hard to see that σ is a function, and
Corollary 4.4 combined with the genericity ofG tells us that σ is a one-to-one
function from ω1 into X. Let F = {xα : α < ω1}, where xα = σ(α). Given
α < ω1, there is a condition p ∈ G such that α ⊆ domσp. By definition, we
know that cl[p]∩Ap = ∅. Thus the closure of every initial segment of F is a
closed set that is not in F . GivenA ∈ F , by genericity we can find a condition
q ∈ G such that Aq ⊆ A. Now for any q′ ≤ q, we know [q′] \ [q] ⊆ Aq ⊆ A,
hence all but countably many members of F are contained in A.

These two facts taken together allow us to “thin out” the sequence F to
an uncountable free sequence, each initial segment of which is covered by
finitely many members of C.

Now how does this relate to the Moore–Mrówka problem? Assume that
the Continuum Hypothesis holds, and that K is a compact space of count-
able tight- ness that is not sequential. By a result of Ismail and Nyikos [9],
we know that K contains a countably compact subspace X that is not closed
in K. Another application of the Continuum Hypothesis tells us that there
is such a subspace of size ℵ1. We let F be a maximal filter of closed subsets
of X that is not fixed.

Now for every point x ∈ X, we can find a set A ∈ F such that x 6∈ A.
Note that this means x 6∈ clK(A), and since K is regular there is an open
neighborhood U of x such that clK(U) ∩ clK(A) = ∅.

For each x ∈ X, fix a neighborhood Ux as above, so clK(Ux) is disjoint
from the closure (in K) of a set in F . Define an open cover C of X by

C = {Ux ∩X : x ∈ X}.(6.11)

The triple (X,F , C) is “vulnerable” to our notion of forcing. Forcing with P
adjoins an uncountable free sequence F through X with the property that
every initial segment of P is covered by finitely many elements of C. By the
definition of C, we can thin out F to an uncountable sequence that forms a
free sequence in K, contradicting the countable tightness of K.

The upshot of this is that if we have a model of CH in which “PFA
restricted to our notion of forcing” holds, then compact spaces of countable
tightness are sequential. Standard arguments tell us that we ought to be
able to achieve this by a countable support iteration of length ω2, but we
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run into trouble because we cannot at present guarantee that the final model
will satisfy the Continuum Hypothesis—the iteration may add new reals at
a limit stage.

There are several conditions known that guarantee an iteration of totally
proper notions of forcing remains totally proper (see the papers [6], [5], and
[14]); however, the notion of forcing described here does not seem to fall
under any of these known frameworks without additional restrictions being
placed on the spaces under consideration. In the language of [14], we can
show that the forcing possesses “medicine against weak diamond” but we
do not know if it possesses “medicine against almost disjoint clubs”.

There are some natural ways of trying to build on the work of this
paper in order to resolve the question of Moore–Mrówka and CH. First, one
may prove that the partial order described in this paper does actually fall
under previously established iteration frameworks—the most likely scenario
in this case would be to prove some topological facts along the lines of
Theorem 3 that will allow one to prove the forcing is weakly <ω1-proper
(see [5] for the definition). Another possibility is that an advance in iteration
technology might make it clear that this notion of forcing can be iterated
without adding new reals. Of course, there is always the possibility that
the Continuum Hypothesis does imply the existence of a compact countably
tight space that is not sequential; such a result, when combined with the
results of this paper, would solve a long-standing open question of Shelah
on weak diamonds (see [15]).
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