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Abstract. Let Gd denote the isometry group of Rd. We prove that if G is a para-
doxical subgroup of Gd then there exist G-equidecomposable Jordan domains with piece-
wise smooth boundaries and having different volumes. On the other hand, we construct
a system Fd of Jordan domains with differentiable boundaries and of the same volume
such that Fd has the cardinality of the continuum, and for every amenable subgroup G
of Gd, the elements of Fd are not G-equidecomposable; moreover, their interiors are
not G-equidecomposable as geometric bodies. As a corollary, we obtain Jordan domains
A,B ⊂ R2 with differentiable boundaries and of the same area such that A and B are
not equidecomposable, and intA and intB are not equidecomposable as geometric bodies.
This gives a partial solution to a problem of Jan Mycielski.

1. Introduction and main results. By a well known theorem of
Tarski [12, Corollary 9.2] every discrete group is either paradoxical or amen-
able. A classical theorem of Tits [11] states that for linear groups this di-
chotomy takes the following sharper form: a linear group G either contains
a free subgroup of rank two (and, a fortiori, is paradoxical), or G is almost
solvable, that is, has a normal subgroup H such that H is solvable and G/H
is finite (and, a fortiori, is amenable). Let Gd denote the group of all isome-
tries of Rd. Since Gd is isomorphic to a linear group (see [12, Appendix A]),
it follows that the Tits alternative holds for each subgroup of Gd.

Let G be a subgroup of Gd. We shall say that the sets A,B ⊂ Rd are
G-equidecomposable (and write A G∼ B) if there are finite decompositions
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A = A1∪. . .∪An, B = B1∪. . .∪Bn and transformations g1, . . . , gn ∈ G such
that Bi = gi(Ai) (i = 1, . . . , n). If we want to indicate that we use n pieces in

the decompositions then we shall write A G∼n B. It is well known that if d ≥ 3
then Gd itself contains a free subgroup of rank two. This fact is the basis of
the so-called Banach–Tarski paradox stating that if d ≥ 3 then there exist
Gd-equidecomposable measurable subsets of Rd having different measures;
in fact, whenever A and B are bounded subsets of Rd with nonempty interior

then A
Gd∼ B (see [12]). As an immediate corollary we deduce that if d ≥ 3

then λd, the Lebesgue measure on Rd, cannot be extended to all subsets of Rd
as a finitely additive measure invariant under all isometries. This result was
extended to all paradoxical subgroups of Rd as follows: if G is a paradoxical
subgroup of Gd then λd cannot be extended to all subsets of Rd as a finitely
additive measure invariant under G. See [12, Theorem 11.20] with a simple
proof due to J. Mycielski.

We may ask whether or not the statement of the Banach–Tarski para-
dox itself can be generalized to all paradoxical subgroups of Gd. We cannot
expect that the statement in its full strength generalizes. For example, let
G = Od, the group of all orthogonal linear transformations of Rd (that is,
the group of all isometries that leave the origin fixed). If d ≥ 3 then Od is
paradoxical. On the other hand, it is clear that, say, two balls of different
size cannot be Od-equidecomposable. However, we shall prove that when-
ever G is a paradoxical subgroup of Gd then there are G-equidecomposable
measurable sets of different measure. Moreover, these sets can be chosen to
be Jordan measurable (bounded sets with λd-negligible boundaries), or even
Jordan domains (homeomorphic images of the closed ball) with piecewise
smooth boundary.

Theorem 1. For every paradoxical group G ⊂ Gd there exist Jordan
domains A,B ⊂ Rd with piecewise smooth boundary such that A G∼ B, but
λd(A) 6= λd(B).

For the proof we shall need the following result on groups of isometries.
We shall say that a set H ⊂ Rd is a K-net if for every x ∈ Rd there exists
a y ∈ H with |y − x| ≤ K. By a flat we shall mean a translated copy of a
subspace of Rd.

Theorem 2. For every subgroup G of Gd exactly one of the following
statements is true.

(i) There exists a flat E in Rd such that 0 ≤ dimE < d, and every
isometry g ∈ G maps E onto itself.

(ii) There is a positive number K such that the set {g(x) : g ∈ G} is a
K-net for every x ∈ Rd.
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The proof of Theorem 2 will be based on the following result: For every
convex set C ⊂ Rd, C 6= ∅, C 6= Rd, there exists a flat E such that 0 ≤
dimE < d, and whenever an isometry g ∈ Gd maps C onto itself then g
also maps E onto itself (Lemma 5). We shall prove these statements in the
next section. The proof of Theorem 1 will be given in Section 3.

In the second part of the paper (Sections 4 and 5) we shall consider
amenable subgroups of Gd. It follows from Mycielski’s invariant measure
extension theorem that if G is an amenable subgroup of Rd and if A and B
are measurable and G-equidecomposable subsets of Rd, then λd(A) = λd(B).
(See [12, Corollary 10.9].) In other words, if G is amenable then the con-
dition λd(A) = λd(B) is necessary for the G-equidecomposability of the
measurable sets A and B. As we proved in [6], if the box dimensions of the
boundaries of A and B are less than d, then λd(A) = λd(B) > 0 is sufficient
for the equidecomposability of A and B under the group of all translations.
In particular, if A and B are Jordan domains with Lipschitz boundaries
and if λd(A) = λd(B) holds, then A and B are equidecomposable under
translations. Now the question we address is the following: what happens
under other amenable subgroups of Gd? Suppose that A and B are Jordan
domains with λd(A) = λd(B). Is it possible that some weaker conditions on

the boundaries of A and B imply A G∼ B for some amenable group G? The
case d = 2 is particularly interesting since G2 is amenable. We know that
if A,B ⊂ R2 are Jordan domains of the same area and having rectifiable
boundaries then they are equidecomposable under the group of translations.
Suppose we impose a weaker condition on the boundaries. Assume, for ex-
ample, that A and B have differentiable boundaries. Can we expect that A
and B are equidecomposable using arbitrary plane isometries? In Theorem 3
below we shall prove that the answer to this question is negative.

In 1977 Jan Mycielski introduced two variants of the notion of equide-
composability using regular-open sets as pieces [10]. A set H ⊂ Rd is
called regular-open if it equals the interior of its closure. The family of all
bounded regular-open sets in Rd will be denoted by B∗d. For A,B ∈ B∗d we
shall denote by A ∨ B the interior of the closure of A ∪ B. We say that
A,B ∈ B∗d are equidecomposable in B∗d if there are pairwise disjoint sets
A1, . . . , Ak ∈ B∗d and isometries g1, . . . , gk such that A = A1 ∨ . . . ∨ Ak, the
sets g1(A1), . . . , gk(Ak) are pairwise disjoint, and B = g1(A1)∨ . . .∨ gk(Ak).

A set is called a geometric body if it is bounded, regular-open and Jordan
measurable. The family of geometric bodies in Rd will be denoted by Bd. We
shall say that A,B ∈ Bd are equidecomposable in Bd if they are equidecom-
posable in B∗d in such a way that the pieces of the decompositions belong
to Bd. Clearly, if A and B are equidecomposable in Bd then they are also
equidecomposable in B∗d, and λd(A) = λd(B).
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In [10] Mycielski proved that for d ≤ 2, if A,B ∈ Bd are equide-
composable in B∗d then λd(A) = λd(B). This is a surprising result, as
A = A1 ∨ . . . ∨ Ak does not imply λd(A) = λd(A1) + . . . + λd(Ak) unless
A1, . . . , Ak ∈ Bd (see also [12, pp. 117–119]). Actually, Mycielski’s argu-
ment yields the following generalization. If A,B ∈ Bd are equidecomposable
in B∗d under an amenable subgroup of Rd then λd(A) = λd(B). Indeed, it
follows from Mycielski’s invariant measure extension theorem [12, Theorem
10.8] that the Jordan measure can be extended to all subsets of Rd as a Gd-
invariant finitely additive measure that vanishes on meager sets. It is easy
to see that the existence of such a measure implies the statement above.

In [10] Jan Mycielski posed several problems concerning these notions.
He asked whether or not all nonempty sets in B∗d for d ≥ 3 are pairwise
equidecomposable in B∗d. He noted that this problem is equivalent to Mar-
czewski’s problem (see also [12, Theorem 9.5]). Now the solution of Mar-
czewski’s problem by Dougherty and Foreman ([2] and [3]) implies that the
answer to the problem above is affirmative.

Mycielski also asked whether the conditions A,B ∈ Bd and λd(A) =
λd(B) are sufficient for the equidecomposability of A and B in Bd. In the
next theorem we give a partial answer: we construct sets A,B ∈ Bd with
λd(A) = λd(B) which are not equidecomposable in Bd under amenable
groups of isometries. Since G2 is amenable, our theorem provides a negative
answer to Mycielski’s problem for d = 2. (A similar statement for d = 1 was
announced in [9, p. 180] with a sketch of proof based on the results of [8].)
Mycielski’s problem for d ≥ 3 remains open.

Let ∂A denote the boundary of the set A. Let A ⊂ Rd be a Jordan
domain. We shall say that ∂A is differentiable everywhere and infinitely
differentiable everywhere except at one point if there is a homeomorphism
between ∂A and the sphere S = {x ∈ Rd : |x| = 1} which is differentiable
everywhere and infinitely differentiable everywhere except at one point. Our
main result is the following.

Theorem 3. For every d ≥ 2 there exists a family Fd of Jordan domains
with the following properties.

(i) λd(D) = 1 for every D ∈ Fd.
(ii) For each D ∈ Fd the boundary of D is differentiable everywhere

and infinitely differentiable everywhere except at one point.
(iii) The elements of Fd are pairwise nonequidecomposable under any

amenable subgroup of Gd.
(iv) The interiors of the elements of Fd are pairwise nonequidecompos-

able in Bd under any amenable subgroup of Gd.
(v) The cardinality of Fd is continuum.



Equidecomposability of Jordan domains 155

Corollary 4. There are Jordan domains A,B ⊂ R2 with differentiable
boundaries such that λ2(A) = λ2(B), but A and B are not equidecomposable,
and intA and intB are not equidecomposable in B2.

The proof of Theorem 3 is based on the fact that the amenable sub-
groups of Gd are uniformly amenable, that is, they satisfy a uniform version
of Følner’s condition. In Section 4 we shall prove that all amenable sub-
groups of Gd satisfy one single condition of Følner type, and so they are,
in a sense, uniformly uniformly amenable. Using this result, we shall give
a necessary condition for the equidecomposability of sets under amenable
groups of isometries (Theorem 9). The proof of Theorem 3 will be given in
Section 5. We shall use the following additional notation.

• Bd(x, r) = {y ∈ Rd : |y − x| < r},
• Bd(r) = {y ∈ Rd : |y| < r},
• Ud(r) = {x ∈ Rd : |x| ≤ r} for every r > 0,
• Ud(H, r) = {x ∈ Rd : dist(x,H) ≤ r} for every H ⊂ Rd,
• χH is the characteristic function of the set H,
• |H| is the cardinality of the set H,
• N is the set of positive integers.

2. Two results on groups of isometries

Lemma 5. For every convex set C ⊂ Rd, C 6= ∅, C 6= Rd, there exists
a flat E in Rd such that 0 ≤ dimE < d, and whenever an isometry g ∈ Gd

maps C onto itself then g also maps E onto itself.

Proof. We may assume that C is closed because if an isometry g maps
C onto itself then g also maps the closure of C onto itself. Note that if C
is bounded then every isometry mapping C onto itself fixes the center of
gravity of C. Since every point is a flat (being a translate of the subspace
{0}), the statement of the lemma is true for bounded sets.

First we shall prove the lemma in the case when C does not contain a
line. Let V denote the set of vectors v ∈ Rd such that the set of real numbers
{v ·x : x ∈ C} is bounded from above. (Here v ·x denotes the scalar product
of v and x.) Then V is a cone, that is, if vi ∈ V and λi ≥ 0 (i = 1, 2)
then λ1v1 + λ2v2 ∈ V. We claim that V is not contained in any subspace
of dimension less than d. Suppose this is not true. Then there is a nonzero
vector w perpendicular to every v ∈ V.We prove that if x ∈ C then the whole
line x + tw (t ∈ R) is in C. Indeed, C is the intersection of all half-spaces
containing C. These half-spaces are of the form {x : v ·x ≤ b}, where v ∈ V.
If x ∈ C and v ∈ V then, as v · w = 0, we have v · (x + tw) = v · x for
every t ∈ R. Therefore, if a half-space contains x then it also contains the
line x + tw (t ∈ R). That is, C contains the line x + tw (t ∈ R). However,
C does not contain any line by assumption, so that V cannot be contained
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in any subspace of dimension less than d. Since V is a cone, it follows that
intV, the interior of V , is nonempty. Now we shall distinguish between two
cases.

Case I: V = Rd. We claim that in this case C is bounded. Indeed,
as (1, 0, . . . , 0) ∈ V, it follows from the definition of V that the set C1 of
the first coordinates of the elements of C is bounded from above. Since
(−1, 0, . . . , 0) ∈ V, it follows that C1 is also bounded from below. Similarly,
the set of all coordinates of the elements of C is bounded; that is, C is
bounded. Then, as we saw earlier, the statement of the lemma is true.

Case II: V 6= Rd. Since V is a cone, it follows that there is a subspace E
of dimension d−1 such that V lies in one of the half-spaces determined by E.
The set Bd(1) ∩ intV is nonempty, convex, open, and lies in the half-space
described above. Therefore its center of gravity, c, belongs to Bd(1) ∩ intV,
and is distinct from the origin. If an orthogonal transformation O ∈ Od
maps V into itself then it also maps Bd(1) ∩ intV into itself, and thus O
fixes c.

Now let g ∈ Gd be an isometry mapping C onto itself. Then there is an
orthogonal transformation O ∈ Od and a vector d such that g(x) = O(x)+d
for every x ∈ Rd. We prove that O−1 maps V into itself. Let v ∈ V be
arbitrary. Then there is a b ∈ R such that v · x ≤ b for every x ∈ C.
If x ∈ C then g(x) = O(x) + d ∈ C, therefore v · (O(x) + d) ≤ b and
O−1(v)·x = v ·O(x) ≤ b−v ·d. Hence the set {O−1(v)·x : x ∈ C} is bounded
from above, that is, O−1(v) ∈ V. This proves O−1(V ) ⊂ V. Therefore, as we
showed above, O−1(c) = c and thus O(c) = c. Let H = {x ∈ Rd : c · x = 0}.
Then H is a subspace of dimension d− 1, and O maps H onto itself.

Since c ∈ intV ⊂ V, the set B = {c · x : x ∈ C} is bounded from above.
Let b0 = supB. Since g(C) = {O(x) + d : x ∈ C} = C, it follows that

b0 = sup{c ·O(x) + c · d : x ∈ C} = sup{O−1(c) · x+ c · d : x ∈ C}
= sup{c · x : x ∈ C}+ c · d = b0 + c · d,

that is, c · d = 0. Therefore d ∈ H and thus x 7→ g(x) = O(x) + d maps the
subspace H onto itself. This completes the proof of the lemma in the case
when C does not contain a line.

We shall prove the lemma in the general case by induction on d. If d = 1
then either C is bounded (namely, is an interval), and then, as we saw
above, the statement is true, or C is a half-line. In the latter case the only
isometry that maps C onto itself is the identity, which fixes every point.
Let d > 1, and suppose that the statement is true for every dimension
less than d. Let C ⊂ Rd be convex such that C 6= ∅ and C 6= Rd. If C
does not contain a line then, as we proved already, the statement of the
lemma is true. Therefore we may assume that C contains a line. Let F
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be a flat of maximal dimension which is contained in C. By assumption,
dimF ≥ 1 and, as C 6= Rd, dimF < d. Let dimF = k. We may assume that
F = {(x1, . . . , xd) : x1 = . . . = xd−k = 0}. If x ∈ C then the closed convex
hull of F ∪ {x} contains F + x. Since C is closed and convex, it follows that
F + x ⊂ C for every x ∈ C; that is, C + F = C. Therefore C is of the form
D × Rk, where D ⊂ Rd−k. It is clear that D is closed, convex, D 6= ∅ and
D 6= Rd−k. By the induction hypothesis, there is a subspace E of Rd−k and
a vector a ∈ Rd−k such that 0 ≤ dimE < d− k, and whenever an isometry
h ∈ Gd−k maps D onto itself then h also maps the flat E + a onto itself.
Let E′ = E × Rk and a′ = (a, 0, . . . , 0) ∈ Rd. We shall prove that if g ∈ Gd
maps C onto itself then g maps E ′ + a′ onto itself.

Suppose g ∈ Gd maps C onto itself. Let g(F ) = F ′ + b, where F ′ is a
subspace of Rd of dimension k. We show that F ′ = F. If this is not true
then there is an element x ∈ F ′ \F. Since C is convex and tx+ b ∈ F ′+ b =
g(F ) ⊂ C for every t ∈ R, it follows that 1

2f + t
2x+ b

2 ∈ C for every f ∈ F
and t ∈ R. Therefore, the set F ′′ =

{1
2f + t

2x : f ∈ F, t ∈ R
}

is a subspace
of dimension k + 1 such that C contains a translate of F ′′. Since k was
maximal, this is impossible. Therefore F ′ = F and thus g(F ) is a translate
of F.

Let (x0, y0) ∈ E′ + a′ be fixed, where x0 ∈ E + a and y0 ∈ Rk. We show
that there is a z ∈ Rk and a map h : Rd−k → Rd−k such that g(x, y0) =
(h(x), z) for every x ∈ Rd−k. Indeed, if x, x′ ∈ Rd−k then the vector (x, y0)−
(x′, y0) is perpendicular to F. Since g is an isometry, it follows that g(x, y0)−
g(x′, y0) is perpendicular to g(F ) = F + b or, what is the same, to F.
Therefore the last k coordinates of g(x, y0) and g(x′, y0) must coincide for
every x, x′ ∈ Rd−k. This proves that for a suitable z ∈ Rk, we have g(x, y0) =
(h(x), z) for every x ∈ Rd−k, where h is a suitable map from Rd−k into itself.
It is obvious that h must be an isometry. Since C = D × Rk and g maps C
onto itself, it is also clear that h(D) = D. Then, by the choice of E and a,
we have h(E + a) = E + a. Thus

g(x0, y0) = (h(x0), z) ∈ (E + a)× Rk = E′ + a′.

Since (x0, y0) ∈ E′ + a′ was arbitrary, we have g(E ′ + a′) ⊂ E′ + a′, which
completes the proof.

Proof of Theorem 2. Suppose that (i) of the theorem holds. Then, for
every x ∈ E, the set {g(x) : g ∈ G} is a subset of E and thus it cannot be
a K-net for any K > 0. That is, in this case, the statement (ii) is not true.

Next suppose that (i) does not hold. We prove (ii). First we show that
the set H = {g(0) : g ∈ G} is a K-net for a suitable K > 0. Suppose
this is not true. Then there is a sequence of points xn ∈ Rd such that
rn = dist(xn,H) → ∞ as n → ∞. Choose elements yn ∈ H such that
|yn − xn| < rn+1/n (n = 1, 2, . . .). Let yn = gn(0), where gn ∈ G for every n,
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and put zn = g−1
n (xn). Then dist(zn,H) = rn, and 0 ∈ Bd(zn, rn + 1/n).

The set U =
⋃∞
n=1Bd(zn, rn) contains an open half-space, as rn → ∞ and

0 ∈ Bd(zn, rn + 1/n). Also, U ∩H = ∅. Let C denote the convex hull of H.
Then C 6= ∅ and C 6= Rd, as C ∩ H = ∅. Also, every g ∈ G maps C onto
itself (as every g ∈ G maps H onto itself). By Lemma 5, there exists a flat E
such that 0 ≤ dimE < d, and whenever an isometry g ∈ Gd maps C onto
itself, then g maps E onto itself. Therefore, every g ∈ G maps E onto itself.
This, however, contradicts the assumption that (i) is false, and thus the set
H = {g(0) : g ∈ G} must be a K-net for a suitable K > 0.

Now we prove that for every x ∈ Rd, the set Hx = {g(x) : g ∈ G} is a
2K-net. Indeed, let y ∈ Rd be arbitrary. Since {g(0) : g ∈ G} is a K-net,
there are isometries g1, g2 ∈ G such that |g1(0)−x| ≤ K and |g2(0)−y| ≤ K.
Then |g2g

−1
1 (x)− y| ≤ |g2g

−1
1 (x)− g2(0)|+ |g2(0)− y| ≤ 2K, and thus Hx is

a 2K-net. Therefore (ii) holds, and the proof is complete.

3. Proof of Theorem 1. First we shall consider two special cases.

Lemma 6. For every paradoxical group G ⊂ Od there exist G-equidecom-
posable Jordan domains with piecewise smooth boundaries and different vol-
umes.

Proof. We shall argue by induction on d. For d = 1 the statement is true,
since O1 does not contain paradoxical subgroups. Suppose d > 1 and that
the statement is true for every dimension less than d. Let G be a paradoxical
subgroup of Od. By the Tits theorem, H contains a free subgroup of rank
two; we may clearly assume that G itself is such a group. Let S be the unit
sphere of Rd. We shall distinguish between two cases.

Case I: The action of G on S is not locally commutative. Then we
can choose noncommuting elements g, h ∈ G having a common fixed point
x ∈ S. Being a subgroup of a free group, the group H generated by g and h is
also free and, as g and h do not commute, it contains a free subgroup H1 of
rank two. Let U denote the one-dimensional subspace generated by x; then
the elements of U are fixed under H1. Let V be the complementary subspace
of U ; that is, let V be perpendicular to U of dimension d − 1. Then V is
H1-invariant. We may assume that V = Rd−1. By the induction hypothesis,
there are H1-equidecomposable Jordan domains A,B ⊂ V with piecewise
smooth boundary having different d−1-dimensional volumes. Then A×[0, 1]
and B× [0, 1] are also H1-equidecomposable Jordan domains with piecewise
smooth boundary and different d-dimensional volumes. Since H1 ⊂ G, this
completes the proof of Case I.

Case II: The action of G on S is locally commutative. Then, by [12,
Theorem 4.5], S is paradoxical under G. Let g ∈ G be an element dif-
ferent from the identity, and let x ∈ S be selected such that g(x) 6= x.
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Let δ = |x− g(x)|/2, and put S1 = S \ Bd(x, δ), S2 = S \ Bd(g(x), δ).
We claim that S, S1 and S2 are pairwise G-equidecomposable. Let T de-
note the type semigroup of the action of G on S (see [12, Chapter 8]).
Then to every set A ⊂ S there corresponds a type [A] ∈ T such that
[A] = [B] if and only if A and B are G-equidecomposable. Let [S] = a
and [S1] = [S2] = b. (Note that g(S1) = S2 and thus [S1] = [S2].) Since
S is paradoxical, we have a = 2a. On the other hand, S = S1 ∪ S2 gives
b ≤ a ≤ 2b. Now these relations imply a = b. Indeed, a = 2a ≤ 2b gives
a ≤ b by the inequality version (2a ≤ 2b ⇒ a ≤ b) of the cancellation
law [12, Theorem 8.7], and then a ≤ b, b ≤ a give a = b by the Banach–
Schröder–Bernstein theorem [12, Theorem 3.4]. (We can also argue as fol-
lows: 2b = a + c ⇒ 2b + c = a + 2c = 2a + 2c = 2(a + c) = 4b, and thus
4b = (a + c) + 2b = a + (2b + c) = a + 4b = 4a + 4b = 4(a + b), there-
fore b = a + b by the cancellation law. Then a ≤ b and we infer a = b as
above.)

Now b = a means S1
G∼ S. Let E∗ = {tx : 0 < t ≤ 1, x ∈ E} for

every E ⊂ S. Now we put A = (S1)∗ ∪ {0} and B = Ud(1) = S∗ ∪ {0}.
Then A and B are G-equidecomposable. Indeed, If S = E1 ∪ . . . ∪ En and
S1 = F1∪ . . .∪Fn are decompositions such that Fi = gi(Ei) for some gi ∈ G
(i = 1, . . . , n), then A = E∗1 ∪ . . .∪E∗n∪{0} and B = F ∗1 ∪ . . .∪F ∗n ∪{0}; and
F ∗i = gi(E∗i ) for every i. Since A and B are Jordan domains with piecewise
smooth boundaries and different volumes, this concludes the proof.

Lemma 7. Let G be a paradoxical subgroup of Gd such that (i) its action
on Rd is locally commutative, and (ii) the set {g(x) : g ∈ G} is a K-net for
every x ∈ Rd. Then there are disjoint balls of the same size, B1 and B2,

such that B1
G∼ B1 ∪B2.

Proof. By the Tits theorem, G contains a free subgroup of rank 2. Let
g0, h0 ∈ G be independent elements that generate such a subgroup. It is well
known (and easy to check) that the elements gn = gn0h0g

n
0 (n = 1, 2, . . .) are

also independent; that is, they do not satisfy any nontrivial relation. We
define

N = [(
√
d+ 2)d4d] + 1, M = max

1≤n≤6N
|gn(0)|.

We putB0 = Ud(M+2K). Since the set {g(0) : g ∈ G} is unbounded (in fact,
a K-net), there are elements hn ∈ G such that the balls Bn = hn(B0) (n =

1, . . . , 2N) are pairwise disjoint. Our aim is to show that B1
G∼ B1 ∪B2. We

shall prove this in three steps. First we show that the set X = B1∪ . . .∪B2N
is G-equidecomposable to a subset of the ball Ud(2M + 2K). Next we shall
prove that Ud(2M+2K) is G-equidecomposable to a subset of B1∪ . . .∪BN .
Finally, we shall prove B1

G∼ B1 ∪B2 by using these two statements.
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Step I. X = B1 ∪ . . . ∪ B2N is G-equidecomposable to a subset of
Ud(2M + 2K).

If x ∈ B0 and n ≤ 6N then |gn(x) − gn(0)| = |x − 0| ≤ M + 2K, and
thus |gn(x)| ≤ |gn(0)|+M + 2K ≤ 2M + 2K. Therefore each of g1, . . . , g6N
maps B0 into Ud(2M + 2K). Let Γ0 denote the set of pairs (x, gn(x)) (x ∈
B0, n = 1, . . . , 6N). We consider Γ0 as a bipartite graph between the sets
B0 and Ud(2M + 2K) (multiple edges are allowed). The crucial property of
Γ0 that we shall exploit is that each component of Γ0 contains at most one
cycle. This follows from the fact that g1, . . . , g6N freely generate a group
whose action is locally commutative on Rd by assumption (i) (see the proof
of [7, Theorem 3]). Now let Γn denote the set of pairs (x, y) such that x ∈ Bn
and y = g3(n−1)+i(h−1

n (x)) for at least one i = 1, 2, 3. Then Γn is a bipartite
graph between Bn and Ud(2M + 2K), and the degree of each vertex x ∈ Bn
equals three (counting the edges with multiplicities). In order to show that
X = B1∪ . . .∪B2N is G-equidecomposable to a subset of Ud(2M +2K) it is
enough to prove that the graph Γ =

⋃2N
n=1 Γn contains a matching between

X and a subset of Ud(2M + 2K), that is, a set of independent edges that
covers X. Clearly, it is enough to show that every component C of Γ contains
a set of independent edges that covers X ∩ VC , where VC is the set of the
vertices of the edges belonging to C.

Let C be an arbitrary component of Γ. Then the degree of each vertex
x ∈ X ∩ VC equals three. We claim that C contains at most one cycle.
Indeed, Γ is obtained from Γ0 by replacing the edge (x, g3(n−1)+i(x)) by
(hn(x), g3(n−1)+i(x)) for every x ∈ B0, n = 1, . . . , 2N and i = 1, 2, 3. It
is easy to check that this operation does not produce new cycles and, as
each component of Γ0 contains at most one cycle, the same is true for C.
Therefore either C is a tree (that is, a connected graph containing no cycles),
or C contains exactly one cycle. In the latter case we delete one of the edges
of the cycle contained in C. The remaining graph C ′ is a tree in which the
degree of each vertex x ∈ X ∩ VC is at least two. If C is a tree then we
put C ′ = C. Now we prove that C ′ contains a set of independent edges
covering X ∩ VC . Let x0 ∈ X ∩ VC be a fixed vertex. For every v ∈ VC let
n(v) denote the distance between v and x0, that is, the length of the unique
path from x0 to v. If x ∈ X ∩ VC then the degree of x is at least two, and
thus we can select a vertex yx ∈ Ud(2M + 2K) such that (x, yx) ∈ C ′ and
n(yx) = n(x) + 1. Then the edges (x, yx) (x ∈ X ∩ VC) are independent.
Indeed, suppose x1 6= x2 and yx1 = yx2 = y. Then n(x1) = n(x2) = n(y)−1,
and thus the path P1 from x0 to x1 does not contain x2, and the path P2
from x0 to x2 does not contain x1. But then the union of the paths P1
and P2 together with the edges (x1, y) and (x2, y) contains a cycle, which
contradicts the fact that C ′ is a tree. Therefore {(x, yx) : x ∈ X ∩ VC} is
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a set of independent edges covering X ∩ VC . This concludes the proof of
Step I.

Step II. Ud(2M+2K) is G-equidecomposable to a subset of B1∪. . .∪BN .
First we show that if 0 < s < t, then any set H ⊂ Rd of diameter t can

be covered by at most (
√
d+ 2)d · (t/s)d sets of diameter s. Indeed, H can

be covered by a cube Q of side length t. If we cover Rd by nonoverlapping
cubes of side length s/

√
d, then at most ((t/(s/

√
d))+2)d ≤ (

√
d+2)d(t/s)d

of these cubes can intersect Q. Since these cubes have diameter s and cover
H, the statement follows.

The diameter of the ball Ud(2M + 2K) is 4M + 4K. Therefore it can be
covered by sets H1, . . . ,Hk of diameter M+K, where k ≤ (

√
d+2)d ·4d ≤ N.

Let a point xi ∈ Hi be selected for every i = 1, . . . , k. Since {g(xi) : g ∈ G}
is a K-net, there is an isometry ui ∈ G such that |ui(xi) − hi(0)| ≤ K
(i = 1, . . . , k). Since the diameter of Hi is M + K, it follows that ui(Hi) ⊂
hi(B0) = Bi, and thus H1 ∪ . . . ∪Hk is G-equidecomposable to a subset of
B1∪ . . .∪Bk ⊂ B1∪ . . .∪BN . As Ud(2M + 2K) is a subset of H1∪ . . .∪Hk,
our statement is proved.

Step III. B1
G∼ B1 ∪B2.

Let T denote the type semigroup of the action of G on Rd. Let a ∈ T
denote the type of Ud(2M + 2K), and let b ∈ T denote the type of B1.
Since the balls Bn (n = 1, . . . , 2N) are pairwise G-equidecomposable (in
fact, G-congruent), the type of each Bn is b. By Step I, we have 2Nb ≤ a,
and by Step II, we have a ≤ Nb. Then 2Nb ≤ Nb, and thus 2Nb = Nb.

Therefore, by the cancellation law, 2b = b; that is, B1
G∼ B1 ∪B2.

Now we turn to the proof of Theorem 1. First we note that if the state-
ment of the theorem is true for a groupG then it is also true for the conjugate
group Gt = tGt−1 for every t ∈ Gd. Indeed, the groups G and Gt are isomor-
phic, and thus if Gt is paradoxical then so is G. Also, if the sets A and B are
G-equidecomposable then t(A) and t(B) are Gt-equidecomposable. Finally,
if A and B are Jordan domains with piecewise smooth boundary and with
different volumes then so are t(A) and t(B).

We shall prove the theorem by induction on d. If d = 1 then the statement
is true, since G1 does not contain paradoxical subgroups. Let d > 1, and
suppose that the statement is true for every dimension less than d. Let G
be a paradoxical subgroup of Gd. We may assume that G is a free group of
rank two, since otherwise we replace G by a subgroup with this property.

First we suppose that the action of G on Rd is not locally commutative.
Then we can choose noncommuting elements g, h ∈ G having a common
fixed point p. We may assume that p is the origin, since otherwise we replace
G by the conjugate group tGt−1, where t is the translation x 7→ x−p. Let H



162 M. Laczkovich

denote the group generated by g and h; then H is a subgroup of Od. Being
a subgroup of a free group, H is also free and, as g and h do not commute,
it contains a free subgroup H1 of rank two. In particular, H1 is paradoxical.
Summing up: H1 is a paradoxical subgroup of Od and thus, by Lemma 6,
the statement of the theorem is true.

Therefore we may assume that the action of G on Rd is locally commu-
tative. By Theorem 2, one of the following statements is true:

(i) there exists a flat E ⊂ Rd of dimension k < d such that every element
of G maps E onto itself;

(ii) for a suitable K > 0, the set {g(x) : g ∈ G} is a K-net for every
x ∈ Rd.

By Lemma 7, if (ii) holds then the statement of the theorem is true.
Therefore we may suppose that (i) holds. Replacing G by a suitable conju-
gate group, we may also assume that E = {(x1, . . . , xd) : xk+1 = xk+2 =
. . . = xd = 0}. Then each g ∈ G maps E onto itself.

For every g ∈ G let g denote the restriction of g to E, and put G = {g :
g ∈ G}. Then G is a group of isometries mapping E into itself. We show
that G is paradoxical. Since G is a free group of rank two, it also contains
infinitely many independent elements (as we mentioned already in the proof
of Lemma 7). Let g1, g2, g3, g4 ∈ G be independent. Every word w formed
by the letters gi, g−1

i (i = 1, 2, 3, 4) defines an element of G also denoted
by w. It is clear that if we replace gi and g−1

i by gi and g−1
i in the word w

then the resulting map equals w.
Let G1 denote the group generated by g1 and g2, and let G2 be the

group generated by g3 and g4. We prove that at least one of G1 and G2 is
paradoxical. Since G1 and G2 are both subgroups of G, this will prove that
G is paradoxical.

Suppose that G1 is not paradoxical. Then, in particular, g1 and g2
are not independent. Consequently, there exists a word w1 of the letters
gi, g

−1
i (i = 1, 2) such that w1, as a map from E into itself, is the iden-

tity map. Similarly, if G2 is not paradoxical then there exists a word w2
of the letters gi, g−1

i (i = 3, 4) such that w2 is the identity map. There-
fore every point of E is a common fixed point of the elements w1, w2 ∈ G.
Since G is locally commutative, it follows that w1 and w2 commute, that
is, w1w2 = w2w1. However, both w1w2 and w2w1 are words formed by the
letters gi, g−1

i (i = 1, 2, 3, 4) in such a way that in the juxtapositions w1w2
and w2w1 no cancellation can occur between w1 and w2, since w1 and w2 do
not contain common letters. It follows then that the words w1w2 and w2w1
are formally different and thus, as g1, g2, g3, g4 are independent, they cannot
define the same map. This contradiction shows that at least one of G1 and
G2 is paradoxical, and then so is G.
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If we identify E with Rk then we find that G is a paradoxical sub-
group of Gk. Then, by the induction hypothesis, there are Jordan domains

C, D ⊂ Rk with piecewise smooth boundaries such that C G∼ D, but λk(C) 6=
λk(D). Let U denote the closed unit ball of Rd−k, and put A = C × U and
B = D × U. Then A, B are Jordan domains with piecewise smooth bound-

ary, and λd(A) 6= λd(B). We prove that A G∼ B. Since C G∼ D, there are
decompositions C = C1 ∪ . . . ∪ Cn, D = D1 ∪ . . . ∪Dn, and there are ele-
ments g1, . . . , gn ∈ G such that Di = gi(Ci) (i = 1, . . . , n). It is clear that⋃n
i=1Ci × U is a decomposition of A and

⋃n
i=1Di × U is a decomposition

of B. In order to show A
G∼ B it is enough to prove that gi(Ci×U) = Di×U.

We shall prove the more general statement that whenever C ⊂ E = Rk
and g ∈ G then g(C×U) = g(C)×U. Let Fx = {x}×Rd−k for every x ∈ Rk.
Then Fx is a translated copy of the subspace {0}×Rd−k and is perpendicular
to E for every x ∈ E. Since g is an isometry and maps E onto itself, it follows
that g(Fx) is also perpendicular to E, and thus g(Fx) = Fg(x). If (x, y) ∈
C × U then since (x, y) ∈ Fx we obtain g(x, y) = (g(x), z) = (g(x), z),
where z ∈ Rd−k. Now (x, y) ∈ C × U ⊂ E × U gives |y| ≤ 1, and thus
dist((x, y), E) = |y| ≤ 1. Therefore |z| = dist(g(x, y), E) ≤ 1, that is, z ∈ U,
which proves that g(C × U) ⊂ g(C) × U. The same argument shows that
g−1(g(C)×U) ⊂ C ×U, and thus g(C ×U) = g(C)×U, as we stated. This
completes the proof of Theorem 1.

4. Uniformly amenable groups and a necessary condition for
equidecomposability. A group G is called uniformly amenable if there
is a function c : N × (0,∞) → N with the following property: for every
nonempty finite subset A ⊂ G and for every ε > 0 there exists a nonempty
finite subset U ⊂ G such that |U | ≤ c(|A|, ε) and |(UA) \ U | < ε|U |. If the
condition above is satisfied then we shall say that c is a uniform amenability
function (u.a.f.) of G.

It was proved by G. Keller [5] and M. Bożejko [1] that every solvable
group is uniformly amenable; moreover, the class of uniformly amenable
groups is closed under group extensions. As we mentioned in the introduc-
tion, every amenable subgroup G of Gd is almost solvable, that is, has a
normal subgroup H such that H is solvable and G/H is finite. Since finite
groups are obviously uniformly amenable, the next statement is a conse-
quence of Keller’s and Bożejko’s theorem: Every amenable subgroup of Gd

is uniformly amenable. Now we claim that the amenable subgroups of Gd

are, in fact, uniformly uniformly amenable, in the following sense.

Proposition 8. There exists a function c : N × (0,∞) → N with the
following property. For every almost solvable group G (in particular , for
every amenable subgroup of Gd) there is a positive integer k0(G) such that



164 M. Laczkovich

for every nonempty finite subset A ⊂ G with |A| ≥ k0(G) and for every
ε > 0 there exists a nonempty finite subset U ⊂ G such that |U | ≤ c(|A|, ε)
and |(UA) \ U | < ε|U |.

Proof. We note first that there is a single function c0 that is a u.a.f. of
every Abelian group. Indeed, if k and ε>0 are given, then let N be chosen
such that (1+ε)N−1>Nk, and define c0(k,ε)=Nk. If F ={a1,...,ak} is an
arbitrary k-element subset of an Abelian group G, then put Kn={ai11 ...aikk :
0≤ i1,...,ik<n}. Then |Kn|≤nk for every n. Therefore |Kn+1 \Kn|<ε|Kn|
for at least one n= 1,...,N −1, since otherwise |Kn+1|≥ (1+ε)|Kn| would
hold for every n=1,...,N−1 implying N k≥|KN |≥(1+ε)N−1|K1|, which is
impossible. As FKn⊂Kn+1, we obtain |(FKn)\Kn|≤ |Kn+1 \Kn|<ε|Kn|
and |Kn|=nk≤Nk. In other words, c0 is a u.a.f. of G.

Next we show that there exists a countable system S of functions such
that every almost solvable group G has a u.a.f. belonging to S. Let Gn denote
the class of groups G for which there is a sequence {e} = G0, G1, . . . , Gn
= G such that each Gi−1 is a normal subgroup of Gi and the factor group
Gi/Gi−1 is either finite or Abelian. Since

⋃∞
n=0 Gn contains every almost

solvable group, it is enough to show that for every n there exists a countable
system Sn of functions such that every G ∈ Gn has a u.a.f. belonging to Sn.

We prove this statement by induction on n. The case n = 0 is trivial since
G0 only consists of the one-element group with u.a.f. c ≡ 1. Suppose n > 0
and that there exists a countable system Sn−1 such that every G ∈ Gn−1
has a u.a.f. belonging to Sn−1. For every G ∈ Gn there is a normal subgroup
H of G such that H ∈ Gn−1 and G/H is either finite or Abelian. If G/H
is finite and |G/H| = k then the function c ≡ k is a u.a.f. of G/H. On the
other hand, if G/H is Abelian then, as we saw above, c0 is a u.a.f. of G/H.
By Bożejko’s theorem, G is uniformly amenable. Moreover, what Bożejko
actually proves in [1, Theorem 3] is that to every pair (d1, d2) of functions
there corresponds a function d such that whenever H is a normal subgroup
of G, d1 is a u.a.f. of H and d2 is a u.a.f. of G/H, then d is a u.a.f. of G.
Since there is a countable set of functions containing u.a.f.’s of every group
which is either finite, Abelian or belongs to Gn−1, it is clear that there is a
countable system Sn containing u.a.f.’s of every group G ∈ Gn. This proves
the existence of a countable system S with the required property.

Let c1, c2, . . . be an enumeration of S. We claim that the function c(k, ε)
= max{cn(k, ε) : n ≤ k} satisfies the requirements of the proposition. In-
deed, let G be an arbitrary almost solvable group. Then there is an n such
that cn is a u.a.f. of G. We put k0(G) = n. Let A be a nonempty finite
subset of G with |A| ≥ k0(G). Then there is a nonempty finite set U ⊂ G
such that |(UA) \U | < ε|U | and |U | ≤ cn(|A|, ε). Since cn(|A|, ε) ≤ c(|A|, ε)
because n ≤ |A| and by the definition of c, the proof is complete.
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From now on we shall fix a pair of functions c(k, ε) and k0(G) satisfying
the requirements of Proposition 8.

Theorem 9. For every d ≥ 1 there exists a function Nd : N×(0,∞)→ N
with the following properties.

(i) Whenever G is an amenable subgroup of Gd, Q ⊂ Rd is a closed cube,

A,B ⊂ Q, A
G∼k B, ε > 0, and N ≥ Nd(max(k, k0(G)), ε), then there is

a decomposition of Q into convex sets C1, . . . , CN and there are isometries
ai,j (i, j = 1, . . . , N) such that ai,j(Cj) ⊂ Q for every i, j, and

∣∣∣∣
1
N

N∑

i,j=1

χai,j(A∩Cj)(x)− 1
N

N∑

i,j=1

χai,j(B∩Cj)(x)

∣∣∣∣ < ε(1)

everywhere on Rd.
(ii) Whenever G is an amenable subgroup of Gd, Q ⊂ Rd is a closed cube,

A,B ⊂ Q are equidecomposable in Bd under G using k pieces, ε > 0, and
N ≥ Nd(max(k, k0(G)), ε), then there is a decomposition of Q into convex
sets C1, . . . , CN and there are isometries ai,j (i, j = 1, . . . , N) such that
ai,j(Cj) ⊂ Q for every i, j, and (1) holds everywhere on Rd except at the
points of a nowhere dense set of measure zero.

Proof. For k ∈ N and 0 < ε < 1 we define η = ε(4[
√
d + 2]dk)−1,

N0 = c(k, η), M = [
√
d + 2]dN0 , and Nd(k, ε) = [4N0M/ε] + 1. We shall

prove that Nd(k, ε) satisfies the requirements.
We may assume that Q = [0, 1]d, since otherwise we apply a similarity

transformation γ mapping Q onto [0, 1]d. Then we apply the theorem with
γ(A) and γ(B) instead of A and B, and obtain Ci and ai,j . Clearly, the
decomposition Q =

⋃N
i=1 γ

−1(Ci) and the isometries γ−1ai,jγ will satisfy
the requirements for A and B.

Let G, Q = [0, 1]d, A, B, k, ε be as in (i) of the theorem. Then
there are decompositions A =

⋃k
n=1An and B =

⋃k
n=1Bn such that Bn =

an(An) (n = 1, . . . , k), where a1, . . . , ak ∈ G. We may assume that k ≥
k0(G), since otherwise we replace k by k0(G), and put An = Bn = ∅ and
an = id for every k < n ≤ k0(G).

Put F = {a1, . . . , ak}. By Proposition 8, there is a nonempty finite set
K = {c1, . . . , cs} ⊂ G such that s ≤ N0 and |(KF ) \K| < ηs. We have

s∑

i=1

(χciA − χciB) =
s∑

i=1

k∑

n=1

(χciAn − χciBn)(2)

=
k∑

n=1

s∑

i=1

(χciAn − χcianAn) =:
k∑

n=1

σn.
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In the sum defining σn the terms χciAn with ci ∈ Kan and χcianAn with
cian ∈ K cancel out. Since

|K \ (Kan)| = |(Kan) \K| ≤ |(KF ) \K| < ηs,

it follows that
∑k

n=1 σn =
∑m

µ=1±χDµ , where m ≤ 2kηs = sε(2[
√
d+2]d)−1,

and each Dµ is congruent to a subset of A.
Let t1, t2, . . . be an enumeration of all translations by vectors with integer

coordinates, and let Qr = tr([0, 1)d). Multiplying (2) by χQr we obtain
s∑

i=1

(χ(ciA)∩Qr − χ(ciB)∩Qr) =
m∑

µ=1

±χDµ∩Qr .(3)

Let Tr denote the operator Trf(x) = f(trx) (f : Rd → R, x ∈ Rd). Then
Tr is a linear operator defined on the functions f : Rd → R, and Tr(χH) =
χt−1

r H for every H ⊂ Rd. Applying Tr to both sides of (3), and taking the
sum over all r we obtain

s∑

i=1

∞∑

r=1

(χt−1
r ((ciA)∩Qr) − χt−1

r ((ciB)∩Qr)) =
m∑

µ=1

∞∑

r=1

±χt−1
r (Dµ∩Qr).(4)

(Note that for every i and µ we have (ciA)∩Qr = (ciB)∩Qr = Dµ∩Qr = ∅
for all but a finite number of indices r.)

For every i and r we define P ir = (c−1
i Qr) ∩ [0, 1]d. Then, for every i,

[0, 1]d =
⋃∞
r=1 P

i
r is a decomposition of [0, 1]d into convex sets of which at

most [
√
d + 2]d can be nonempty. Let C1, . . . , CL be an enumeration of all

nonempty sets of the form P 1
r1 ∩ . . . ∩ P srs . Then L ≤ [

√
d + 2]ds ≤ M, and

C1∪ . . .∪CL is a decomposition of [0, 1]d into disjoint convex sets. For every
i and r we have

t−1
r ((ciA) ∩Qr) = t−1

r ci(A ∩ (c−1
i Qr)) = t−1

r ci(A ∩ P ir).(5)

Clearly, for each 1 ≤ i ≤ s and 1 ≤ j ≤ L we can select an r such that
Cj ⊂ P ir . We define ai,j = t−1

r ci; then

ai,j(Cj) ⊂ ai,j(P ir) = t−1
r ci(P ir) ⊂ t−1

r ci(c−1
i Qr) = [0, 1)d.

For every i and r,

t−1
r ci(A ∩ P ir) =

⋃
ai,j(A ∩ Cj),(6)

where the union is taken for all j’s satisfying Cj ⊂ P ir . Let αi,j = χai,j(A∩Cj)
and βi,j = χai,j(B∩Cj). The union on the right hand side of (6) consists of
disjoint sets, and hence by (5) we obtain

∞∑

r=1

χt−1
r ((ciA)∩Qr) =

L∑

j=1

αi,j .(7)
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A similar equation holds with B in place of A and thus, by (4),

∣∣∣
s∑

i=1

L∑

j=1

(αi,j − βi,j)
∣∣∣ ≤

m∑

µ=1

∞∑

r=1

χt−1
r (Dµ∩Qr) ≤ sε/2.(8)

The second inequality of (8) follows from the fact that for every µ, the set
Dµ can be covered by a unit square, and hence the number of indices r with
Dµ ∩ Qr 6= ∅ is at most [

√
d + 2]d. Therefore the middle term of (8) is at

most [
√
d+ 2]dm ≤ sε/2.

Now let N ≥ Nd(k, ε) be arbitrary, and define aνs+q,j = aq,j for every
0 ≤ ν < [N/s], 1 ≤ q ≤ s and j = 1, . . . , L. Then, by (8), we have

∣∣∣
[N/s]s∑

i=1

L∑

j=1

(αi,j − βi,j)
∣∣∣ ≤ [N/s]sε/2 ≤ Nε/2.(9)

Finally, we put Cj = ∅ for every L < j ≤ N and ai,j = id whenever
[N/s]s < i ≤ N or L < j ≤ N. Since L ≤M, s ≤ N0 and 4N0M/ε < N, we
deduce from (9) that

(10)
∣∣∣

N∑

i,j=1

(αi,j − βi,j)
∣∣∣

=
∣∣∣
N∑

i=1

L∑

j=1

(αi,j − βi,j)
∣∣∣

≤
∣∣∣

[N/s]s∑

i=1

L∑

j=1

(αi,j − βi,j)
∣∣∣+
∣∣∣

N∑

i=[N/s]s+1

L∑

j=1

(αi,j − βi,j)
∣∣∣

≤ Nε/2 + s · 2L ≤ Nε/2 + 2N0M < Nε/2 +Nε/2 = Nε.

Dividing (10) by N, we obtain (1), and this completes the proof of (i).
In order to prove (ii), suppose that A,B ∈ Bd are equidecomposable in

Bd under G using k pieces. Then there are disjoint sets A1, . . . , Ak ∈ Bd and
isometries g1, . . . , gk ∈ G such that A = A1∨ . . .∨Ak and B = g1(A1)∨ . . .∨
g1(Ak). It is easy to see that χA(x) =

∑k
i=1 χAi(x) everywhere except at

the points of the boundaries of A1, . . . , Ak. Since the sets Ai are geometric
bodies, it follows that χA =

∑k
i=1 χAi holds everywhere except at the points

of a nowhere dense set of measure zero. Therefore we can follow the proof
of (i) step by step, using the convention that by the equality of functions
we mean that the functions are equal at the points of an everywhere dense
open set of full measure.
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5. Proof of Theorem 3

Lemma 10. For every N ∈ N, 0 < a < b < 1, and δ > 0 there is a
positive number s and a set H ⊂ [a, b]d−1 with the following properties.

(i) H is the union of finitely many disjoint d − 1-dimensional closed
rectangular boxes.

(ii) λd−1(H) > (b− a)d−1/2.
(iii) Whenever A1, . . . , AN are congruent copies of the set

([0, s]d−1 ∪H)× [0, 1]

then A1 ∪ . . . ∪ AN does not contain any d-dimensional ball of radius δ.

Proof. Let P ⊂ (a, b) be a nowhere dense closed set with λ(P ) >
(b− a)/ d−1

√
2. Let [a, b] ⊃ A1 ⊃ A2 ⊃ . . . be a sequence of sets such that⋂∞

n=1An = P, and each An is a finite union of closed intervals. Our aim is
to prove that there exists an n such that s = 1/n and H = Ad−1

n satisfy the
requirements.

It is clear that (i) and (ii) hold true for every n. Suppose that (iii) is
false for every n, and let Cn = ([0, 1/n]d−1∪Ad−1

n )× [0, 1]. Then for every n
there are isometries αn1 , . . . , α

n
N ∈ Gd such that Dn =

⋃N
i=1 α

n
i (Cn) contains

a ball of radius δ. Clearly, we may assume that Bd(δ) ⊂ Dn for every n. We
may also suppose that |αni (0)| ≤

√
d+ δ for every i and n. Indeed, otherwise

αni (Cn) ∩Bd(δ) = ∅, and we may replace αni by the identity map.
Then, selecting a subsequence if necessary, we may suppose that for

every i = 1, . . . , N, the sequence αni (n = 1, 2, . . .) converges to an isometry
αi ∈ Gd in the sense that αni → αi uniformly on every bounded subset of Rd.

Now, it is easy to see, using
⋂∞
n=1An = P and limn→∞ αni = αi, that

N⋃

i=1

αi([{0} ∪ P d−1]× [0, 1]) ⊃ Bd(δ).(11)

Indeed, let y ∈ Bd(δ) be arbitrary. Then y ∈ ⋃N
i=1 α

n
i (Cn) for every n,

and thus there is an i such that y ∈ αni (Cn) for infinitely many n. Since⋂∞
n=1Cn = ({0}∪P d−1)× [0, 1], it is clear that y ∈ αi([{0}∪P d−1]× [0, 1]),

which proves (11). However, the set [{0} ∪ P d−1] × [0, 1] is nowhere dense
in Rd. Thus (11) is impossible, which concludes the proof.

Lemma 11. If C ⊂ [a, b]d is convex then

λd(Ud(∂C, h)) ≤ 4d(b− a+ 2)d−1h for every 0 ≤ h ≤ 1.

Proof. Let f(x) = dist(x, ∂C). By [4, Lemma 3.2.34],

λd(Ud(∂C, h)) =
h�
0

µd−1(f−1({y})) dy
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for every h > 0, where µd−1 denotes the d − 1-dimensional Hausdorff mea-
sure. For every y ≤ h, f−1({y}) consists of at most two convex surfaces cov-
ered by [a−h, b+h]d. Therefore µd−1(f−1({y})) ≤ 2µd−1(∂([a−h, b+h]d)) =
4d(b− a+ 2h)d−1 ≤ 4d(b− a+ 2)d−1, from which the statement is clear.

Now we turn to the proof of Theorem 3. First we fix a Jordan domain
A with infinitely differentiable boundary such that A lies in the half-space
{(x1, . . . , xd) : xd ≤ 0}, the boundary of A contains the d − 1-dimensional
unit cube [0, 1]d−1, and λd(A) = 1/2. We can construct such an A as follows.
Let A0 be a Jordan domain with infinitely differentiable boundary such that
A0 lies in the plane {(x1, xd) : xd ≤ 0}, the boundary of A0 contains the
segment [−

√
d,
√
d]× {0}, and A0 is symmetric about the xd axis. Then we

rotate A0 in Rd about the xd axis, and apply a suitable affine transformation
of the form (x1, . . . , xd) 7→ (x1, . . . , xd−1, txd) in order to get volume 1/2.
We may assume that A ⊂ [−2

√
d, 2
√
d]d−1 × [−1, 0].

We shall construct a sequence of positive numbers 1 = a0 > a1 > . . .
such that an < (an−1/2)2 for every n ≥ 1, and a sequence of functions
fn ∈ C∞(Rd−1) (n = 1, 2, . . .) such that fn vanishes outside the set

Bn := [an−1/2, an−1]d−1,

and 0 ≤ fn ≤ a2
n−1/2 on Bn. We define

Fn = {(x1, . . . , xd) : (x1, . . . , xd−1) ∈ Bn, 0 ≤ xd ≤ fn(x1, . . . , xd−1)}.
Then, for every I ⊂ N, we define fI =

∑
ν∈I fν and FI =

⋃
ν∈I Fν . Fi-

nally, we put BI = FI ∪ (tIA), where the number tI is chosen such that
λd(BI) = 1.

It is clear that for every I ⊂ N the function fI is infinitely differentiable
everywhere on Rd−1 except at the origin. Also, fI is differentiable at the
origin, since x ∈ Bn implies |fI(x)| ≤ a2

n−1/2 ≤ 2|x|2, and fI vanishes
outside

⋃
nBn. Therefore, for every I, the boundary of BI is differentiable

everywhere and infinitely differentiable everywhere except at one point. We
shall prove that for a suitable set I ⊂ P (N) of cardinality continuum, the
Jordan domains BI (I ∈ I) are pairwise nonequidecomposable under any
amenable subgroup of Gd.

Let Q = [−4
√
d, 4
√
d]d. Note that for every I ⊂ N, we have fI ≤ 1/2

everywhere and thus λd(FI) ≤ 1/2. Since λd(A) = 1/2 and the number tI is
selected such that λd(BI) = λd(FI ∪ (tIA)) = 1, it follows that 1 ≤ tI ≤ 2.
Therefore

BI ⊂ (tIA) ∪ [0, 1]d ⊂ [−4
√
d, 4
√
d]d−1 × [−2, 1] ⊂ Q.

Now we turn to the construction of the sequences (an) and (fn). We put
a0 = 1. Let n > 0, and suppose that a0 > a1 > . . . > an−1 > 0 and
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f1, . . . , fn−1 have been defined. Then we define

εn = ad+1
n−1(2d+3λd(Q))−1, N = max

1≤i≤n
Nd(i, εn),

ηn = εn(N222N2
)−1,

(12)

where Nd is the function defined in Theorem 9. The set Sn = ∂A∪⋃i<n ∂Fi
is closed, and λd(Sn) = 0. Therefore we can select a positive number

δn < ηn(12d(8
√
d+ 2)d−1N2)−1

such that

λd(Ud(Sn, δn)) <
ηn

3(2d + 1)N2 .(13)

According to Lemma 10, we can select a number 0 < an < (an−1/2)2 and
a set Hn ⊂ Bn = [an−1/2, an−1]d−1 such that Hn is the union of finitely
many disjoint rectangular boxes, λd−1(Hn) > λd−1(Bn)/2 = ad−1

n−1 · 2−d, and
no ball of radius δn can be covered by any N2 congruent copies of the set
([0, an]d−1 ∪ Hn) × [0, 1]. Then we select a function fn ∈ C∞(Rd−1) such
that fn vanishes outside Hn, 0 ≤ fn ≤ a2

n−1/2 in Hn, and � Bn fn dλd−1 >

ad+1
n−1 · 2−d−1.

In this way we have defined the sequences (an) and (fn). Then we define
the sets BI as described above. Then we have, for every h > 0,

λd(Ud(∂(tIA), h)) ≤ λd(Ud(∂(tIA), tIh)) = tdIλd(Ud(∂A, h))

≤ 2dλd(Ud(∂A, h)),

and thus, by (13),

λd(Ud(∂(tIA), δn)) ≤ 2d
ηn

3(2d + 1)N2(14)

for every n and I.

Lemma 12. If I and J are sets of positive integers such that I \ J is
infinite, then (i) BI and BJ are not equidecomposable under any amenable
subgroup of Gd, and (ii) intBI and intBJ are not equidecomposable in Bd

under any amenable subgroup of Gd.

Proof. Suppose that BI
G∼k BJ , where G is an amenable subgroup of Gd.

Since I \J is infinite, there is an n ∈ I \J such that n > max(k, k0(G)). Note
thatBI∪BJ ⊂ Q = [−4

√
d, 4
√
d]d. Then, by Theorem 9 and by the definition

of N in (12), there is a decomposition of Q into convex sets C1, . . . , CN and
there are isometries ai,j (i, j = 1, . . . , N) such that ai,j(Cj) ⊂ Q for every
i, j, and ∣∣∣∣

1
N

N∑

i,j=1

χai,j(BI∩Cj) −
1
N

N∑

i,j=1

χai,j(BJ∩Cj)

∣∣∣∣ < εn(15)
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everywhere on Rd. We put

U1 =
⋃

ν∈I
ν≥n

Fν , U2 = (tIA)∪
⋃

ν∈I
ν<n

Fν , V1 =
⋃

ν∈J
ν>n

Fν , V2 = (tJA)∪
⋃

ν∈J
ν<n

Fν .

Then BI = U1 ∪ U2 and BJ = V1 ∪ V2. Since

∂U2 ⊂ ∂(tIA) ∪
⋃

i<n

∂Fi and ∂V2 ⊂ ∂(tJA) ∪
⋃

i<n

∂Fi,

it follows from (13) and (14) that

λd(Ud(∂U2, δn)) < (2d + 1)
ηn

3(2d + 1)N2 =
ηn

3N2 ,

λd(Ud(∂V2, δn)) <
ηn

3N2 .
(16)

Since Cj ⊂ Q, it follows from Lemma 11 that

λd(Ud(∂Cj, δn)) ≤ 4d(8
√
d+ 2)d−1δn ≤

ηn
3N2(17)

for every j = 1, . . . , N. Let

g =
N∑

i,j=1

χai,j(V2∩Cj) −
N∑

i,j=1

χai,j(U2∩Cj).

Then, by (15), we have
N∑

i,j=1

χai,j(U1∩Cj) ≥
N∑

i,j=1

χai,j(U1∩Cj) −
N∑

i,j=1

χai,j(V1∩Cj)(18)

> g −Nεn.
Let D1, . . . ,DP be an enumeration of the atoms of the algebra of sets

generated by ai,j(U2 ∩ Cj) and ai,j(V2 ∩ Cj) (i, j = 1, . . . , N) in Q. Then
P ≤ 22N2

, D1 ∪ . . .∪DP is a disjoint decomposition of Q, and g is constant
on each Dµ. Consequently, g =

∑P
µ=1 αµχDµ, where |αµ| ≤ N2 for every µ,

since |g| ≤ N2 everywhere. For every µ = 1, . . . , P, ∂Dµ is covered by
N⋃

i,j=1

[∂(ai,j(U2)) ∪ ∂(ai,j(V2)) ∪ ∂(ai,j(Cj))].

Therefore

λd(Ud(∂Dµ, δn))

≤ N2[λd(Ud(∂U2, δn)) + λd(Ud(∂V2, δn))] +N

N∑

j=1

λd(Ud(∂Cj, δn))

≤ N2(ηn/N2) = ηn
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by (16) and (17). Consequently, if λd(Dµ) > ηn then Ud(∂Dµ, δn) does not
cover Dµ. If x ∈ Dµ \Ud(∂Dµ, δn) then Bd(x, δn) ⊂ Dµ, that is, Dµ contains
a ball of radius δn. Since

U1 =
⋃

ν∈I
ν≥n

Fν ⊂
( ⋃

ν>n

Fν

)
∪ Fn ⊂ ([0, an]d−1 ∪Hn)× [0, 1],

it follows from the choice of Hn that N2 congruent copies of U1 cannot
cover Dµ. That is, if λd(Dµ) > ηn then there is a point y ∈ Dµ such that∑N

i,j=1 χai,j(U1)(y) = 0, and thus g(y) = αµ < Nεn by (18). Therefore we
have

�
Q

g dx =
P∑

µ=1

αµλd(Dµ) =
∑

λd(Dµ)>ηn

αµλd(Dµ) +
∑

λd(Dµ)≤ηn
αµλd(Dµ)(19)

≤ Nεnλd(Q) + PN2ηn

≤ 2Nεnλd(Q) = Nad+1
n−1 · 2−d−2

by (12). On the other hand,�
Q

g dx = Nλd(V2)−Nλd(U2)

= N(1− λd(V1))−N(1− λd(U1))

= Nλd(U1)−Nλd(V1)

≥ Nλd(Fn)−Nλd([0, an]d)

> Nad+1
n−1 · 2−d−1 −Nadn > Nad+1

n−1 · 2−d−2,

which contradicts (19). This completes the proof of (i). The second statement
can be proved in the same way, using (ii) of Theorem 9.

In order to complete the proof of Theorem 3, we take a system I of
infinite sets of positive integers such that I has the cardinality of the con-
tinuum, and either I \ J or J \ I is infinite for every I, J ∈ I, I 6= J. (We
may take

I = {φ({r ∈ Q : r < c}) : c ∈ R},
where φ is any injection from Q into N.) It is clear that the system F =
{BI : I ∈ I} satisfies the requirements of Theorem 3.
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