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On confluently graph-like compacta
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Abstract. For any class K of compacta and any compactum X we say that: (a)
X is confluently K-representable if X is homeomorphic to the inverse limit of an inverse
sequence of members of K with confluent bonding mappings, and (b) X is confluently
K-like provided that X admits, for every ε > 0, a confluent ε-mapping onto a member
of K. The symbol LC stands for the class of all locally connected compacta. It is proved in
this paper that for each compactum X and each family K of graphs, X is confluently K-
representable if and only if X is confluently K-like. We also show that for any compactum
the properties of: (1) being confluently graph-representable, and (2) being 1-dimensional
and confluently LC-like, are equivalent. Consequently, all locally connected curves are
confluently graph-representable. We also conclude that all confluently arc-like continua are
homeomorphic to inverse limits of arcs with open bonding mappings, and all confluently
tree-like continua are absolute retracts for hereditarily unicoherent continua.

1. Introduction. Confluent mappings for compacta, defined by J. J.
Charatonik in [2] (very similar classes of mappings were earlier studied in
[20]), turned out to be very important. They form a much narrower family
than the one of all continuous mappings. However, this family is essen-
tially larger than any of the following classes of mappings: covering, branch-
covering, open, or monotone. Yet confluent mappings share some important
properties with those listed above. They preserve end points, atriodicity,
tree-likeness [13], the property of Kelley and many other topological proper-
ties of compacta. They even have (approximate) path lifting properties [7].
The class of confluent mappings is, in a sense, more “regular” than some
other well known classes of mappings. For instance, while the inverse limit of
open mappings is not necessarily open, the inverse limit (or even the weakly
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induced limit in the sense of Mioduszewski [15]) of confluent mappings is
always confluent (cf. [9, 17, 10]).

The main purpose of this paper is to study confluently graph-like com-
pacta and to generalize known results for continuous functions to the class
of confluent mappings. A compactum X is said to be confluently graph-like
provided that for every ε > 0 there exists a confluent ε-mapping from X
onto a graph. There are many important examples of confluently graph-like
compacta. The Menger curve and the Sierpiński universal plane curve are
such spaces. More generally, in this paper we prove that all locally connected,
1-dimensional compacta are confluently graph-like (see Corollary 3.16). The
solenoids are confluently graph-like (precisely, they form the class of all con-
fluently circle-like continua, see [4]). Inverse limits of arcs with open bond-
ing mappings (called “Knaster type continua”) are, obviously, confluently
graph-like. Actually, this last class is the class of all confluently arc-like con-
tinua (see Corollary 3.4). “Case continua” [1] and their generalizations [18],
[14] are also confluently graph-like. In a recent paper [5] it was proved that
every inverse limit of trees with confluent bonding mappings is an absolute
retract for hereditarily unicoherent continua, and thus it has many other
strong properties including the fixed point property (see [7], [3], [6] and [5]).
In this paper we show that every confluently tree-like continuum is such a
retract (see Corollary 3.7).

Confluently graph-like compacta share many properties with the mem-
bers of a larger class of all confluently LC-like compacta, i.e., compacta
admitting, for every ε > 0, a confluent ε-mapping onto a locally connected
compactum (LC stands for the class of all locally connected compacta). For
instance such compacta have the arc property of Kelley [4] (cf. Remark 1.1).
This last property, satisfied by all locally connected compacta and all abso-
lute retracts for hereditarily unicoherent continua, is interesting in its own
right. Confluent mappings on such compacta are known to have some ap-
proximate lifting properties [7] (cf. Remark 1.1).

Remark 1.1. Actually, the main results of papers [4] and [7] are formu-
lated for continua, i.e. connected compacta. However, those mentioned above
remain true also for non-connected compacta. The proofs are the same.

Let K be a class of compacta and X be a compactum. We say that
X is confluently K-like provided that X admits, for every ε > 0, a
confluent ε-mapping onto a member of K. If X is homeomorphic to the
inverse limit of an inverse sequence of members of K with surjective con-
fluent bonding mappings, then X is called a confluently K-representable
compactum.

Let K be a class of compacta. It is an easy observation that if a com-
pactum X is confluently K-representable, then X is confluently K-like. In
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this paper we ask for what classes K the converse is true. The following
question is crucial to this paper.

Question 1.1. Let K be any of the classes of : polyhedra, ANR’s, locally
connected compacta, and suppose X is a confluently K-like compactum. Does
it follow that X is confluently K-representable?

In what follows we answer this question in the affirmative for each 1-
dimensional compactum X, and this is the main result of the paper. Within
the class of continuous functions a similar result was obtained by Mardešić
and Segal [12] in 1963. Using this result we obtain a number of conclusions,
some of them mentioned above.

Answering Question 1.1 for compacta of dimension greater than 1 is the
most important problem of this paper that remains open.

All results described above are presented in Section 3. Section 2 con-
tains some results concerning confluent mappings from locally connected
continua onto an arc. Namely, we prove a “confluent” Urysohn’s lemma
(Theorem 2.12) and confluent extension and retraction theorems (Theorem
2.14 and Corollary 2.15).

Spaces are assumed to be metric and mappings to be continuous in this
paper. A (compact) polyhedron of dimension at most 1 is called a graph.
If f : X → Y is a mapping, ε is a positive number and diam(f−1(y)) < ε
for each y ∈ Y , then f is called an ε-mapping. A mapping f : X → Y
is said to be confluent provided that for every subcontinuum K of Y and
every component L of f−1(K) we have f(L) = K. All confluent mappings
considered in this paper are surjective and their domain and range spaces
are compact.

A continuum X is called arc-like (circle-like tree-like, graph-like) if,
for every ε > 0, there exists an ε-mapping fε : X → Yε, where Yε is an
arc (a circle, a tree, a graph, respectively). If, additionally, the mappings
fε are confluent, then we say that X is confluently arc-like (confluently
circle-like, confluently tree-like, confluently graph-like, respectively). If X
is homeomorphic to the inverse limit lim←−(Yn, fn+1

n ), where the mappings
fn+1
n : Yn+1 → Yn are confluent and surjective, and the spaces Yn are

arcs (circles, trees, graph), then X is called confluently arc-representable
(confluently circle-representable, confluently tree-representable, confluently
graph-representable, respectively).

A continuum X is said to be hereditarily unicoherent provided that the
intersection of any two subcontinua of X is connected. If a hereditarily
unicoherent continuum X, whenever embedded into another hereditarily
unicoherent continuum Y , is a retract of Y , then we say that X is an absolute
retract for hereditarily unicoherent continua.
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A compactum X is said to have the arc property of Kelley provided that
for every continuum K ⊂ X, every p ∈ K and every sequence pn converging
to p in X there exists a sequence of arcwise connected continua Kn such
that pn ∈ Kn and Kn converges to K in the sense of the Hausdorff distance.

2. “Confluent” Urysohn’s lemma, confluent extensions and re-
tractions for locally connected continua. In this section we study con-
fluent mappings of locally connected continua onto the unit interval [0, 1].
We will show a stronger, “confluent” variant of the Urysohn lemma for lo-
cally connected continua (see Theorem 2.12). This theorem will be applied
in the next section. Using similar technique we also obtain extension and
retraction theorems for confluent mappings (Theorem 2.14, Corollary 2.15).
We add these last two results for completeness of this study. Some results of
a similar type concerning classes of mappings related to confluent ones can
be found in [21].

To obtain these results we need some preparation. Let X be a continuum.
For any surjective mapping g : X → [0, 1] and any a ∈ (0, 1) let F (g, a) be
the union of all components K of X \ g−1(a) such that

either 0 < inf(g(K)) < a, or a < sup(g(K)) < 1.

Lemma 2.1. For any surjective mapping g : X → [0, 1], where X is a
continuum, the following conditions are equivalent :

(1) The mapping g is confluent.
(2) For any a ∈ (0, 1), any component C of g−1(a) and any ε > 0 there

exists a continuum L ⊂ Nε(C) such that C ⊂ L and a ∈ Int(g(L)).
(3) The set F (g, a) is empty for each a ∈ (0, 1).

Proof. Let g = f ◦m be the canonical representation of g as the com-
position of a monotone mapping m and a light mapping f . Assume that g
is confluent; then it easy to see that f is also confluent. By Lelek and Read
[11], f is open. We next show that condition (2) is equivalent to the open-
ness of f . Suppose f is open and that a ∈ (0, 1) and C is a component is of
g−1(a). Let Jn = [a − 1/n, a + 1/n] ⊂ (0, 1) and let Hn be the component
of f−1(Jn) containing m(C). Then f(Hn) = Jn. Let Ln = m−1(Hn); then⋂
Ln = C and g(Ln) = Jn. Hence, for n sufficiently large, Ln ⊂ Nε(C) and

(2) holds. Conversely, if (2) holds, then for each z ∈ m(X) and each open
set U ⊂ m(X) containing z, f(z) ∈ Int(f(U)) and f is open. Thus (1) is
equivalent to (2).

Suppose (3) does not hold, i.e. there exists an a ∈ (0, 1) with F (g, a) 6= ∅.
Thus there is a componentK of X\g−1(a) such that either 0< inf(g(K))<a,
or a < sup(g(K)) < 1. Suppose 0 < inf(g(K)) < a (the other case is similar).
Let b ∈ K be such that c = g(b) = inf(g(K)). Let C be the component of
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g−1(c) that contains b. Then for any continuum L that contains C and is
sufficiently close to C in the sense of the Hausdorff distance, g(L) ⊂ K.
Thus g(L) ⊂ [c, 1] and c 6∈ Int(g(L)) for such L. Thus (2) does not hold.
Hence (2) implies (3).

Suppose (2) does not hold, i.e. there are a ∈ (0, 1), a component C of
g−1(a) and an ε > 0 such that for every continuum L ⊂ Nε(C) with C ⊂ L
we have a 6∈ Int(g(L)). Since g(L) for L 6= C is an interval, a is either the left
hand end point or right hand end point of g(L) for all such L. Assume the
former case (the latter one is similar). Then for sufficiently small δ > 0, if
we let a′ = a+ δ then the set g−1(a′) separates X between C and any point
p ∈ X with g(p) < a. Hence C is a subset of a component K of X \ g−1(a′)
such that 0 < min g(K) < a′ and thus F (g, a′) 6= ∅. So (3) does not hold.
This completes the proof of the implication from (3) to (2) and of the entire
lemma.

Suppose that g : X → [0, 1] is a surjective mapping and X is a locally
connected continuum. For any a∈(0, 1) and any x ∈ F (g, a) we let g(a)(x)=a
and, for x ∈ X \ F (g, a), let g(a)(x) = g(x). By the local connectedness
of X the set Nε(g−1(a)) contains, for every ε > 0, almost all components
of X \ g−1(a). In particular, this set contains almost all components K of
F (g, a). This observation leads to the conclusion that g(a) : X → [0, 1] is
a continuous mapping. Observe that F (g, a) = {x ∈ X : g(a)(x) 6= g(x)}.
Define I(g) = {a ∈ (0, 1) : g(a) = g} = {a ∈ (0, 1) : F (g, a) = ∅}.

In Propositions 2.2–2.11 we assume that X is a locally connected contin-
uum and g : X → [0, 1] is a surjective mapping. By Lemma 2.1 we observe
that such a mapping g is confluent if and only if I(g) = (0, 1).

Proposition 2.2. If g is not confluent , then there exists an ε > 0 and
an open interval (p, q) ⊂ [0, 1] such that for every surjective mapping h :
X → [0, 1] with dsup(h, g) < ε we have (p, q) ∩ I(h) = ∅.

Proof. Since g is not confluent, there exists a number a ∈ (0, 1) such that
g(a) 6= g, or equivalently, F (g, a) 6= ∅. LetK be a component of F (g, a). Then
either 0 < min g(K) < a, or a < max g(K) < 1. Assume 0 < min g(K) < a
(the proof in the other case is similar). Fix a point x0 ∈ K such that g(x0) =
min g(K) and two numbers p, q ∈ (0, 1) satisfying g(x0) < p < q < a.
Put ε = 1

2 min {|g(x0)− 0|, |p− g(x0)|, |a− q|}, and let h : X → [0, 1] be a
surjective mapping such that dsup(h, g) < ε.

Fix a number r ∈ (p, q). We will complete the proof by showing that
r 6∈ I(h). Indeed, since h is ε-near to g we have h(x) > 0 for each x ∈ K,
h(x0) < p, and h(x) > q for each x ∈ g−1(a). Therefore the set h−1(r)
separates Cl(K) between h(x0) and Bd(K). Thus the component K1 of
X \ h−1(r) that contains x0 satisfies 0 < minh(K1) < r. Hence r 6∈ I(h).
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By the definition we obtain the next proposition.

Proposition 2.3. For each a ∈ (0, 1) we have g(a)(g−1(0)) = {0} and
g(a)(g−1(1)) = {1}.

Proposition 2.4. For each a ∈ (0, 1) we have {a} ∪ I(g) ⊂ I(g(a)).

Proof. Evidently, we have (g(a))(a) = g(a). Thus a ∈ I(g(a)).
Suppose b 6∈ I(g(a)). Thus b ∈ (0, 1) \ {a}. Then there exists a nonempty

componentK of F (g(a), b). For any x ∈ X if g(a)(x) 6= g(x), then g(a)(x) = a.
Using this implication we conclude:

(1) Since neither 0 nor 1 belong to g(a)(K), it follows that neither 0 nor
1 belong to g(K).

(2) Since g(a)(Bd(K)) = {b} 6= {a}, we have g(Bd(K)) = {b}.
(3) Since g(a)(K) contains some numbers different from b, it follows that

g(K) contains some numbers different from b.

From (1)–(3) it follows that K contains a nonempty component K1 of
X \ g−1(b) such that 0 6∈ g(K1) and 1 6∈ g(K1). Therefore K1 ⊂ F (g, b) 6= ∅
and thus b 6∈ I(g). The proposition is proved.

Proposition 2.5. Let a, p, q be numbers such that 0 < p < a < q < 1
and p, q ∈ I(g). Then g(F (g, a)) ⊂ [p, q] and g(a)(F (g, a)) = {a} ⊂ (p, q).

Proof. The second part of the conclusion follows by the definition. To
see the first one suppose, on the contrary, that a component K of F (g, a)
contains a point x such that either g(x) < p or g(x) > q. Assume g(x) < p
(the other case is similar). Then the component of X \ g−1(p) that contains
x is a subset of F (g, p). On the other hand, p ∈ g(I) and thus F (g, p) = ∅,
a contradiction.

Proposition 2.6. Let a1, a2, . . . be a sequence of numbers in (0, 1) such
that Cl({a1, a2, . . .}) = [0, 1]. Then the sequence of mappings fn : X → [0, 1]
defined by f0 = g and fn+1 = f

(an+1)
n uniformly converges to a confluent

mapping f : X → [0, 1].

Proof. Applying Proposition 2.4 inductively we see that for any m ≥ n
we have a1, . . . , an ∈ I(fm). Let x ∈ X. If ai < fn(x) < aj for some
i, j ∈ {1, . . . , n}, then according to Proposition 2.5 we have ai < fm(x) < aj
for all m > n. By the density of {an} in [0, 1] the sequence fn must converge
uniformly.

Let f be the limit of this sequence. Since a1, . . . , an ∈ I(fm) for every
m > n and the set {a1, a2, . . .} is dense in [0, 1], there are no numbers p, q
as in Proposition 2.2 for g = f . Hence f is confluent.

In Propositions 2.7–2.11 we fix a sequence {an} ⊂ (0, 1) such that
Cl({a1, a2, . . .}) = [0, 1], and we assume that mappings fn and f are as
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in Proposition 2.6. For any p ∈ X let Cn(p) be the component of f−1
n (fn(p))

that contains p. Define C(p) as the component of f−1(p) that contains p,
and X0 = {x ∈ X : f(x) = fn(x) for each n ∈ {0, 1, . . .}}. Observe that
X0 is closed in X. The proof of the following proposition is straightforward.
The details are left to the reader.

Proposition 2.7. For every p ∈ X we have:

(1) Cn(p) ⊂ Cn+1(p).
(2)

⋃{Cn(p) : n ∈ {0, 1, . . .}} ⊂ C(p).
(3) If p ∈ X \X0, then

⋃{Cn(p) : n ∈ {0, 1, . . .}} \X0 is open in X and
Bd((

⋃{Cn(p) : n ∈ {0, 1, . . .}}) \X0) ⊂ C(p) ∩X0.

Proposition 2.8. For every x ∈ X each component C of the set C(x)\
X0 is open in X. In particular , we have Bd(C) ⊂ X0 ∩ C(x) for such C,
and thus C(x) ∩X0 6= ∅ for each x ∈ X.

Proof. Let z ∈ C(x) \X0 = C(z) \X0. Then

z ∈ Int(
⋃{Cn(z) : n ∈ {0, 1, . . .}} \X0) ⊂ C(z) = C(x)

by Proposition 2.7, parts (3) and (2), and thus C(x) \ X0 is open. By the
local connectedness of X any component C of C(x) \X0 is open as well.

Proposition 2.9. Let t ∈ [0, 1] and suppose f−1
0 (t) is connected. Then

f−1(t) is connected.

Proof. Let p ∈ f−1
0 (t). If a1 6= t, then C0(p) = C1(p) = f−1

0 (t). If
a1 = t, then C1(p) may properly contain f−1

0 (t) but it must remain con-
nected. Similarly, we can argue that f−1

0 (t) ⊂ Cn(p) for each n. Thus the
set f−1(t) ∩ X0 = f−1

0 (t) is connected. According to Proposition 2.8, for
each x ∈ f−1(t)\X0 we have ∅ 6= C(x)∩X0 ⊂ f−1(t)∩X0, which completes
the proof.

To prove the next proposition we will apply the following lemma.

Lemma 2.10. Let Y be a closed subset of a locally connected compactum Z.
If Y is the union of two locally connected sets A and B such that A is open
in Z, then Y is locally connected.

Proof. First, note that Bd(A) ⊂ B. Let a sequence {xn} ⊂ Y converge
to a point x0 ∈ Y . We prove that for almost all n there are connected sets
Kn ⊂ Y such that x0, xn ∈ Kn and lim diam(Kn) = 0, which will complete
the proof. Since A is open in Z, and Z is locally connected, such Kn’s exist
for x0 ∈ A. Suppose x0 ∈ Y \ A = B \ A. Since Z is a locally connected
compactum, it is locally arc connected. Thus, for almost all n, there are
arcs An ⊂ Z such that x0, xn ∈ An and lim diam(An) = 0. Let pn be the
first point in An (in the ordering from xn to x0) such that pn 6∈ A, and
A′n be the arc in An from xn to pn. Then pn ∈ Bd(A) ⊂ B. Since B is
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locally connected, there are connected sets Ln ⊂ B such that pn, x0 ∈ Ln
and lim diam(Ln) = 0. Note that the sets Kn = A′n ∪ Ln are as desired.

Proposition 2.11. Let t ∈ [0, 1] and suppose f−1
0 (t) is locally connected.

Then f−1(t) is locally connected.

Proof. In view of Proposition 2.8 the set A0 = X0 ∩ f−1(t) is nonempty.
Applying Proposition 2.7(1), we see that A0 is the union of some components
of f−1

0 (t), and thus A0 is locally connected. Using again Proposition 2.8 we
see that the set f−1(t)\X0 =

⋃{C(x)\X0 : x ∈ f−1(t)} is open in X. Thus
the compactum f−1(t) is the union of a locally connected set A0 and an open
subset f−1(t)\X0 of X. Hence f−1(t) is locally connected by Lemma 2.10.

Theorem 2.12. Let X be a locally connected continuum. Then for any
two disjoint closed subsets A and B of X there exists a confluent map f :
X → [0, 1] such that f(A) = {0} and f(B) = {1}. Moreover , the map f can
be chosen so that in addition:

(1) f−1(0) and f−1(0) are locally connected ; and
(2) if A and B are connected , then so are f−1(0) and f−1(1).

Proof. Let f0 : X → [0, 1] be a mapping guaranteed by the Urysohn
lemma such that f−1

0 (0) = A and f−1
0 (1) = B. Let a1, a2, . . . be a sequence

of numbers in (0, 1) such that Cl({a1, a2, . . .}) = [0, 1]. Inductively define
fn+1 = f

(an+1)
n . By Proposition 2.6 the sequence fn uniformly converges to

a confluent mapping f : X → [0, 1]. Applying Proposition 2.3 inductively
we see that fn(A) = {0} and fn(B) = {1} for each n. Hence f(A) = {0}
and f(B) = {1}.

Now we prove part (1). Since X is a locally connected continuum, ev-
ery point of X has arbitrarily small closed, connected and locally connected
neighborhoods. Thus we can slightly enlarge the sets A and B to locally
connected, compact, disjoint sets A′ and B′, and apply the previous argu-
ment for A′ and B′ in place of A and B, respectively [16, Proposition 8.7].
Then part (1) follows by Proposition 2.11.

Part (2) follows from Proposition 2.9.

Remark 2.13. The converse of Theorem 2.12 is false. For example, the
harmonic fan F is not locally connected while it is possible to construct for
each pair of disjoint closed subsets A and B a confluent map f : F → [0, 1]
to an arc such that f(A) = 0 and f(B) = 1.

Theorem 2.14. Let X be a closed subset of a locally connected contin-
uum Y and f : X → [0, 1] be a confluent mapping. Then there exists a
confluent extension f∗ : Y → [0, 1] of the mapping f . Moreover , if the sets
f−1(0) and f−1(1) are (locally) connected , then we can choose f ∗ so that
the sets (f∗)−1(0) and (f∗)−1(1) are also (locally) connected.
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Proof. Since [0, 1] is an absolute retract there exists some extension f0 :
Y → [0, 1] of the mapping f . Let a1, a2, . . . be a sequence of numbers in (0, 1)
such that Cl({a1, a2, . . .}) = [0, 1]. Inductively define fn+1 = f

(an+1)
n . By

Proposition 2.6 the sequence fn uniformly converges to a confluent mapping
f∗ : Y → [0, 1]. To show that f ∗|X = f it suffices to prove that fn|X = f
for each n. Indeed, by the definition of f0 we have f0|X = f . Suppose
fn|X = f for some n and let x ∈ X. If fn(x) = an+1, then fn+1(x) = an+1 =
f(x). Suppose x belongs to a component K of Y \ f−1

n (an+1). Let C be the
component of X that contains x. Then the mapping g = f |C : C → [0, 1]
is confluent. Since fn is an extension of f (and thus of g), the set K must
contain the component K ′ of C \ g−1(an+1) that contains x. The mapping
g is confluent, and thus F (g, an+1) = ∅ (see Lemma 2.1). Therefore either
0 ∈ g(K ′) or 1 ∈ g(K ′). Consequently, either 0 ∈ fn(K) or 1 ∈ fn(K).
This implies that K ∩ F (fn, an+1) = ∅. So fn+1|K = fn|K. In particular
fn+1(x) = fn(x) = f(x). Hence fn+1|X = f .

We have proved that fn|X = f for each n, and thus f ∗|X = f . To see
the last part of the theorem observe that the extension f0 of f can, addition-
ally, satisfy the condition f−1

0 (0) = f−1(0) and f−1
0 (1) = f−1(1). Then the

conclusion follows by Propositions 2.9 and 2.11. The proof is complete.

Corollary 2.15. Let ab be an arc in a locally connected continuum X
with a, b as the end points of ab. Then there exists a confluent retraction r :
X → ab such that the sets r−1(a) and r−1(b) are locally connected continua.

Remark 2.16. No nondegenerate continuum different from an arc can
replace the segment [0, 1] in Theorem 2.14 or the arc ab in Corollary 2.15.
To see this it suffices to show that such a continuum must have each pair of
different points joined by a free arc. The details are left to the reader.

3. Confluently graph-like compacta. In this section we prove the
main results of the paper. First we prove that for any class K of graphs and
any compactum the properties of being confluently K-representable and of
being confluently K-like are equivalent (Theorem 3.2). Then we show (Corol-
lary 3.15) that for any compactum the following three conditions are equiva-
lent: (1) being confluently graph-representable, (2) being confluently graph-
like, and (3) being 1-dimensional and confluently LC-like. In particular, this
theorem implies that each 1-dimensional locally connected compactum is
confluently graph-representable (Corollary 3.16).

Theorem 3.1. Let f : X → F be a confluent mapping from a com-
pactum X onto a graph F . Then for each ε > 0 there is a δ > 0 such that
for every confluent δ-mapping g : X → G from X onto a graph G, there
exists an onto confluent mapping h : G→ F satisfying dsup(h ◦ g, f) < ε.
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Proof. Let e1, . . . , en be mutually different points in F such that all
components of F \ {e1, . . . , en} are open arcs of diameter less than ε/2 and
any two points ei, ej are the two boundary points of at most one, if any,
component of F \ {e1, . . . , en}. Note that, in particular, all end points, all
ramification points and all isolated points of F are included in {e1, . . . , en}.
For any i ∈ {1, . . . , n} define
Li = {ei} ∪

⋃{L : L is a component of F \ {e1, . . . , en} with ei ∈ Bd(L)}.
Notice that diam(Li) < ε for each i. Let σ > 0 be such that Nσ(ei) ⊂ Li

for each i ∈ {1, . . . , n}. Put Ei = f−1(ei) and ξ = min{dX(Ei, Ej) : i 6= j}.
Fix a number δ > 0 such that δ < ξ/2 and, for any pair x, y ∈ X, we have
dF (f(x), f(y)) < σ whenever dX(x, y) < δ. Let g : X → G be a confluent
δ-mapping onto a graph G. Define Di = g(Ei) for i ∈ {1, . . . , n} and note
that the sets D1, . . . ,Dn are mutually disjoint by the definition of δ.

Claim 1. For every component K of G\ (D1∪ . . .∪Dn), if Bd(K)∩Di

6= ∅ then f(g−1(K)) ⊂ Li.
Indeed, suppose there exists a point x ∈ Di∩Bd(K) and let M be a com-

ponent of g−1(K). Since g is confluent, g(M)=K and also dX(M,g−1(x))=0.
Moreover, g−1(x) ∩Ei 6= ∅ and g is a δ-mapping. Therefore dX(M,Ei) < δ.
Thus dF (f(M), ei) < σ by the choice of δ. Since the set f(M) is a connected
subset of F \{e1, . . . , en}, the last inequality implies, by the choice of σ, that
f(M) ⊂ Li. Therefore f(M) ⊂ Li for every component M of g−1(K), and
thus the claim is proved.

Claim 2. For every component K of G \ (D1 ∪ . . .∪Dn) the set Bd(K)
intersects at most two different sets Di, Dj. Moreover , if Bd(K)∩Di 6= ∅ 6=
Bd(K) ∩Dj and i 6= j, then ei, ej are the two different boundary points of
a component L of F \ {e1, . . . , en} and f(g−1(K)) ⊂ L.

Indeed, this is a consequence of Claim 1 and of the fact that any three
different sets Li, Lj , Lk have empty intersection. Since any two different sets
Li, Lj are either disjoint or have a component L of F \ {e1, . . . , en} as their
intersection, the last part of the claim follows.

We are ready to define the desired mapping h : G→ F . For any x ∈ Di

put h(x) = ei. To define h on G let K be a component of G\(D1∪ . . .∪Dn).
First, suppose Di, for some fixed i∈{1, . . . , n}, is such that Bd(K)⊂Di.

Then we put h(x) = ei for each x ∈ K. The only other case is that Bd(K) ⊂
Di ∪ Dj and Bd(K) ∩ Di 6= ∅ 6= Bd(K) ∩ Dj for two different, fixed sets
Di, Dj such there is a component L of F \ {e1, . . . , en} with e1, e2 as their
boundary points (see Claim 2). In this case we apply Theorem 2.12 for the
graph Cl(K) with two disjoint nonempty subsets Bd(K) ∩Di, Bd(K) ∩Dj

and obtain a confluent mapping h from Cl(K) to L ∪ {e1, e2} such that
h(Di) = {ei} and h(Dj) = {ej}. We have defined h(x) for each x ∈ G.
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Notice that h : G→ F is well defined, continuous and onto.

Claim 3. dsup(h ◦ g, f) < ε.

Indeed, let x ∈ X. If x ∈ g−1(Di) for some i, then h ◦ g(x) = ei and
dX(x,Ei) < δ. Thus dF (f(x), ei) < σ by the choice of δ. Therefore f(x) ∈ Li
by the choice of σ, and thus dF (f(x), ei) = dF (f(x), h ◦ g(x)) < ε.

Now assume that x ∈ X \ (g−1(D1)∪ . . .∪ g−1(Dn)). Then g(x) belongs
to a component K of G \ (D1 ∪ . . . ∪ Dn). This component must satisfy
Bd(K)∩Di 6= ∅ for some i. By the definition of h we have h(Cl(K)) ⊂ Cl(Li)
and f(x) ∈ Li (compare Claim 1). Since diam(Cl(Li)) < ε we again have
dF (f(x), h ◦ g(x)) < ε, which completes the proof of the claim.

It remains to show that h is confluent. Suppose, on the contrary, that
there exists a continuum P in F and a component Q of h−1(P ) such that
h(Q) is a proper subset of P . Let p be a boundary point of h(Q) in P and
fix a point q in Q ∩ h−1(p). Choose an arc A in P such that

(i) p is an end point of A;
(ii) A ∩ h(Q) = {p};

(iii) if p ∈ F \ {e1, . . . , en}, then A ⊂ F \ {e1, . . . , en};
(iv) if p = ei for some i, then A ⊂ Li.
Then the component C of h−1(A) that contains q satisfies h(C) = {p}.

Suppose first that C ∩ (D1 ∪ . . . ∪ Dn) = ∅. Then C is contained in a
component K of G \ (D1 ∪ . . . ∪ Dn). Put K ′ = Cl(K) and let {an} be a
sequence of points in A converging to p, An = [p, an] ⊂ A and let Bn be the
component of h−1(An) containing C. Then Bn ⊂ Q and there exists an n
such that Bn ⊂ K. Since h|K ′ is confluent, h(Bn) = An. This contradicts
the definition of p and A.

Hence we may assume that there exists an i such that C ∩ Di 6= ∅
and thus h(C) = ei. Note that A is contained in the closure L′ of a unique
component L of F \{e1, . . . , en} with end points ei and ej . Choose r ∈ C∩Di

and u ∈ g−1(r)∩Ei. Let B be the component of f−1(L′) which contains the
point u. Since f is confluent, f(B) = L′, and hence g(B) is a subgraph of G
which meets Di, Dj and r ∈ g(B) ∩ C.

Let Ki,j denote the union of Di, Dj and all components K of G \ (D1 ∪
. . . ∪Dn) such that ∂K ⊂ Di ∪Dj .

Claim 4. The set g(B) is contained in Ki,j.
Indeed, if a component K of G\ (D1∪ . . .∪Dn) meets g(B) at a point x,

then f(g−1(K)) ∩ L 6= ∅. By Claims 1 and 2 the set f(g−1(K)) must be
contained in some set Lk. But Lk ∩ L 6= ∅ only in the case k ∈ {i, j}.
Therefore f(g−1(K)) ⊂ Li ∪ Lj . We also have Bd(K) ∩Dm = ∅ for each m
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different from i and j because otherwise f(g−1(K)) ⊂ Lm (see Claim 1) and
Lm ∩ L = ∅, which is impossible.

Let Ki denote the union of Di and all components K of G\(D1∪. . .∪Dn)
such that ∂K ⊂ Di. Note that h(Ki) = ei by the definition of h. Recall that
r ∈ C ∩ Di. Let Ki(r) be the component of Ki which contains r. Then
Ki(r) ⊂ Q. Since g(B) meets Dj it follows from Claim 4 that there exists
a component K of G \ (D1 ∪ . . . ∪Dn) such that z ∈ Cl(K) ∩ Ki(r) 6= ∅ 6=
∂K ∩Dj . Hence h(Cl(K)) = Cl(L) and h|Cl(K) is confluent. Let D be the
component of h−1(A) containing the point z; then h(D) = A, and hence
A ⊂ h(Q). This contradicts the choice of p and A, and completes the proof
of the theorem.

Theorem 3.2. Let K be any class of graphs and X be a compactum.
Then X is confluently K-representable if and only if X is confluently K-like.

Proof. Suppose that K is a class of graphs such that for each ε > 0
there exists a confluent ε-map from the compactum X onto a member of K.
We may assume by Theorem 3.1 that there exists a sequence εn → 0, a
countable family of graphs Gn, confluent onto mappings fn : X → Gn and
gn+1
n : Gn+1 → Gn such that

(1) X ∪⋃nGn is a subset of the Hilbert cube Q with metric d,
(2) d(x, fn(x)) < εn for each x ∈ X and each n,
(3) d(gmk (fm(x)), gnk (fn(x))) < ek for each k ≤ m ≤ n and each x ∈ X.

By [15], there exists a continuous and onto mapping f :X→ lim←−(Gn, gn+1
n )

defined by f(x) = (yk), where yk = limn→∞ gnk (fn(x)) for all k. It suffices
to show that f is one-to-one. Let πn : lim←−(Xn, g

n+1
n ) → Xn denote the

natural projection. Suppose that x, y ∈ X are such that d(x, y) > η > 0.
Choose n such that

∑∞
i=n εi < η/6. Then d(πn(f(x)), πn(f(y))) > d(x, y)−

4
∑∞

i=n εi > 0. This completes the proof of the theorem.

Using a different approach the following result about confluently circle-
like continua was also proved in [4].

Corollary 3.3. A continuum X is confluently circle-like if and only if
X is a solenoid.

The next result answers a question from [4].

Corollary 3.4. A continuum X is confluently arc-like if and only if X
is a Knaster type continuum, i.e. X is homeomorphic to an inverse limit of
arcs with open bonding mappings.

Let LC stand for the class of all locally connected compacta.

Corollary 3.5. An atriodic continuum X is confluently LC-like if and
only if X is either a solenoid or a Knaster type continuum.
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Corollary 3.6. Each confluently tree-like continuum is confluently
tree-representable.

In a recent paper [5] it was proved that confluently tree-representable
continua are absolute retracts for hereditarily unicoherent continua. The
question whether the same is true for confluently tree-like ones was an im-
portant inspiration to the research presented here. The next result answers
this question in the affirmative.

Corollary 3.7. Each confluently tree-like continuum is an absolute re-
tract for hereditarily unicoherent continua.

Remark 3.8. It is known that a confluently LC-like continuum must
have the property of Kelley [4]. In particular, a confluently tree-like dendroid
X has the property of Kelley (consequently, X must be smooth). In view
of Corollary 3.7, the question whether every dendroid with the property of
Kelley is confluently tree-like is of some interest (compare [5]). Recently,
the second named author and W lodzimierz Charatonik found an example of
a non-confluently tree-like dendroid with the property of Kelley. The same
example is also a candidate for a non-confluently tree-like absolute retract
for tree-like continua. These results will be presented in a future paper.

Let G be a graph and S be a simplicial complex structure on G. The
0-dimensional elements of such a structure will be denoted by {e1}, . . . , {εn}
and points e1, . . . , en will also be called vertices of S. Denote by S(G) the
family of all simplicial complex structures S such that each pair of two
different vertices ei, ej of S can be boundary points of at most one, if any,
1-dimensional element of S. For any S ∈ S(G) and vertex ei of S, let

Li(S) = {ei} ∪
⋃{Int(F ) : F ∈ S, dimF = 1 and ei ∈ Bd(F )},

and, if F ∈ S with dimF = 1,

LF (S) = Li(S) ∪ Lj(S), where ei, ej are the boundary points of F.

If F = {v} = {ei}, i.e., v = ei is a vertex of S, we also write Li(S) = Lv(S) =
LF (S). Let f : X → G be a mapping, where X is compact. We say that a
family P of sets refines the family Q if for each P ∈ P there exists Q ∈ Q
such that P ⊂ Q. If Q is a family of sets in X and f : X → Y is a mapping
such that the family {f−1(y) : y ∈ Y } refines Q, we say that the mapping
f refines Q. The following observation follows from the compactness of the
domain of the function f .

Observation 3.9. If U is a family of open sets covering a compactum
X and f : X → G is a mapping to a graph G such that f refines U , then
there exists S ∈ S(G) such that the family {f−1(LF (S)) : F ∈ S} refines U .
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Lemma 3.10. Let U be an open cover of a locally connected compactum
X and suppose X admits a mapping , that refines U , onto a graph H. Then
there exists a graph G, a structure S ∈ S(G) and a surjective mapping
g : X → G such that the family {g−1(LF (S)) : F ∈ S} refines U and the set
g−1(F ) is connected for each F ∈ S.

Proof. We begin with the following claim.

Claim 1. There exists a graph H, a mapping h : X → H and a structure
S ∈ S(H) such that the family {h−1(LF (S)) : F ∈ S} refines U and h−1(v)
has finitely many components only for each vertex v of S.

Indeed, let h1 : X → H be a mapping onto a graph H that refines U .
By Observation 3.9 there exists a structure S ∈ S(H) such that the fam-
ily {h−1

1 (LF (S)) : F ∈ S} refines U . Let ξ be the minimum of the num-
bers dX(h−1

1 (ei), h−1
1 (X \ Li(S))) for all vertices ei of S. Since X is a lo-

cally connected compactum and h−1
1 ({e1, . . . , en}) is compact, there exists

a finite collection of continua K1, . . . ,Km in X such that diam(Kj) < ξ,
h−1

1 ({e1, . . . , en})∩Kj 6= ∅ for each j ∈ {1, . . . ,m}, and h−1
1 ({e1, . . . , en}) ⊂

K1 ∪ . . . ∪ Km. The condition diam(Kj) < ξ implies that for each j ∈
{1, . . . ,m} there exists exactly one i ∈ {1, . . . , n} such that Kj∩h−1

1 (ei) 6= ∅,
and we haveKj⊂h−1

1 (Li(S)) for such i. DefineMi=
⋃{Kj :Kj∩h−1

1 (ei) 6=∅}
for i ∈ {1, . . . , n}. For any F ∈ S with dimF = 1 and with end points
ei, ej let Pi,j = Mi ∪ Mj ∪ h−1

1 (F ) and observe that Pi,j is compact.
Then by the Urysohn lemma there exists a mapping hi,j : Pi,j → F such
that h−1

i,j (ei) = Mi and h−1
i,j (ej) = Mj . For each F ∈ S with dimF = 1

and Bd(F ) = {ei, ej}, and for each x ∈ Mi ∪ Mj ∪ h−1
1 (F ), we define

h(x) = hi,j(x). Observe that h : X → H is a well defined continuous func-
tion. Moreover, the set h−1(ei) = Mi is the finite union of continua, and
h−1(LF (S)) ⊂ h−1

1 (LF (S)) for 1-dimensional sets F ∈ S. Hence the family
{h−1(LF (S)) : F ∈ S} refines U , which completes the proof of the claim.

For any graph H, any structure S ∈ S(H) and any mapping h : X → H
such that the family {h−1(LF (S)) : F ∈ S} refines U let k(h, S) be the
difference between the number of components of h−1({e1, . . . , en}) and the
number of nonempty sets h−1({ei}). Fix a graph G1, a structure S1 ∈ S(G1)
with vertices e1, . . . , en, and a mapping g1 : X → G1 such that the family
{g−1

1 (LF (S1)) : F ∈ S1} refines U and the number k(g1, S1) is minimal. By
Claim 1, k(g1, S1) is finite.

Claim 2. For every i ∈ {1, . . . , n} any two different components of
g−1

1 (ei) are subsets of two different components of g−1
1 (Li(S1)).

Suppose, on the contrary, that two different components of g−1
1 (ei) are

contained in the same component of g−1
1 (Li(S1)). Since components of open

subsets of locally connected compacta are arcwise connected and g−1
1 (Li(S1))
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is open in X, there exists an arc ab in g−1
1 (Li(S1)) joining two different

components A and B of g−1
1 (ei) such that ab ∩ g−1

1 (ei) = {a, b}, a ∈ A,
and b ∈ B. Let K1, . . . , Km be all components of g−1

1 ({e1, . . . , en}) with
Km−1 = A and Km = B. Define K ′m−1 = A ∪ ab ∪ B. Using the continua
K1, . . . ,Km−2,K

′
m−1 we modify the mapping g1 to a mapping g′1 : X → G1

(in the same way as the mapping h1 was modified to the mapping h in
the proof of Claim 1) so that the family {(g′1)−1(LF (S1)) : F ∈ S1} re-
fines U and K1, . . . ,Km−2,K

′
m−1 are all components of (g′1)−1({e1, . . . , en}).

Thus we have k(g′1, S1) < k(g1, S1). So k(g1, S1) is not minimal, a contra-
diction.

Now we will prove that k(g1, S1) = 0. Suppose, on the contrary, that
k(g1, S1) > 0. Thus the set g−1

1 (ei) is not connected for some i. Without loss
of generality we can assume that g−1

1 (en) is not connected. Let D be a com-
ponent of g−1

1 (en) and W be the component of g−1
1 (Ln(S1)) that contains D.

Using Claim 2 we see that other components of g−1
1 (en) are contained in

components of g−1
1 (Ln(S1)) different from W .

Let G′1 be a homeomorphic copy of G1 disjoint from G1, and f : G1 → G′1
be a homeomorphism. For each x ∈ X \W we identify the pair x and f(x)
in the disjoint union G1 ∪G′1. Let q : G1 ∪G′1 → q(G1 ∪G′1) be the quotient
map of this identification. Put G2 = q(G1 ∪ G′1) and en+1 = (f ◦ q)(en).
We will identify the graph G1 with q(G1) by the homeomorphism q|G1.
So G1 ⊂ G2. Let S2 ∈ S(G2) be the simplicial complex structure on G2
introduced by vertices e1, . . . , en, en+1. Define g2(x) = g1(x) for x ∈ X \W ,
and g2(x) = (g1 ◦ q ◦ f)(x) for x ∈ W . Observe that g2 : X → G2 is a well
defined, continuous mapping. Moreover, g−1

2 (Li(S2)) ⊂ g−1
1 (Li(S1)) for i ∈

{1, . . . , n} and g−1
2 (Ln+1(S2)) ⊂ g−1

1 (Ln(S1)). This implies that the family
{g−1

2 (LF (S2)) : F ∈ S2} refines U . Note that the sets g−1
1 ({e1, . . . , en})

and g−1
2 ({e1, . . . , en, en+1}) are identical while the number of nonempty sets

g−1
2 (ei) (for i ∈ {e1, . . . , en, en+1}) is 1 greater than the number of nonempty

sets g−1
1 (ei) (for i ∈ {1, . . . , n}). So k(g2, S2) < k(g1, S1), and thus k(g1, S1)

is not minimal, a contradiction.
We have proved that k(g1, S1) = 0. Thus g−1

1 (ei) is connected for each
i ∈ {1, . . . , n}. Now we are ready to define the required mapping g. Let
x ∈ g−1

1 ({e1, . . . , en}). Then we put g(x) = g1(x). Let P be a component
of G1 \ {e1, . . . , en} with the boundary points ei, ej, and let x belong to a
component Q of g−1

1 (P ). If Bd(Q)∩ g−1
1 (ei) 6= ∅ 6= Bd(Q)∩ g−1

1 (ej), we put
g(x) = g1(x). If Bd(Q) meets g−1

1 (ei) only, we put g(x) = ei, and if Bd(Q)
meets g−1

1 (ej) only, we put g(x) = ej . Since X is locally connected, g is a well
defined continuous mapping into G1. Define G = g(X) and let S ∈ S(G) be
the simplicity complex structure on G introduced by the set of vertices E =
{e1, . . . , en} ∩ G. Then for each ei ∈ E we have g−1(Li(S)) ⊂ g−1

1 (Li(S1)),
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and thus the family {g−1(LF (S)) : F ∈ S} refines U . By the construction
the set g−1(ei) is connected for every ei ∈ E. If F ∈ S, dimF = 1 and ei, ej
are the boundary points of F , then every component Q of g−1(F \ {ei, ej})
satisfies g(Q) = F \ {ei, ej}. Employing this last observation and the fact
that the sets g−1(ei), g−1(ej) are connected, we conclude that g−1(F ) is also
connected. The proof is complete.

Theorem 3.11. Let U be an open cover of a locally connected continuum
X and suppose X admits a mapping that refines U onto a graph. Then there
exists a graph G, a structure S ∈ S(G) and a confluent mapping g : X → G
such that the family {g−1(LF (S)) : F ∈ S} refines U and the set g−1(F ) is
a locally connected , connected continuum for each F ∈ S.

Proof. First, let g′ : X → G be a mapping guaranteed by Lemma 3.10
with a structure S ∈ S(G) and vertices {e1, . . . , en}. Then the sets Di =
(g′)−1(ei) for i ∈ {1, . . . , n} are continua. Since X is locally connected, we
can, similarly to the proof of Theorem 2.12(1), slightly enlarge the continua
Di to some locally connected, mutually disjoint continua Vi containing Di.
Let F ∈ S, dimF = 1 and ei, ej be the end points of F . Then the continuum
DF = (g′)−1(F )∪Vi∪Vj is the union of the open subset (g′)−1(F \{ei, ej}) of
X and the locally connected one Vi ∪Vj . So DF is locally connected in view
of Lemma 2.10. By Theorem 2.12, including parts (1) and (2), there exists
a confluent mapping gF : DF → F such that Vi ⊂ g−1

F (ei), Vj ⊂ g−1
F (ej)

and the sets g−1
F (ei), g−1

F (ei) are locally connected continua in X. Define
g : X → G as the combination of the mappings gF for all 1-dimensional
F ∈ S, i.e. g(x) = gF (x) for x ∈ F , and observe that g is a well defined,
continuous, surjective mapping. Note that the set g−1(ei) =

⋃{g−1
F (ei) :

F ∈ S, dimF = 1, ei ∈ F} is a finite union of locally connected continua
with nonempty intersection. Thus g−1(ei) is a locally connected continuum
for each i. Moreover, for each F ∈ S with dimF = 1 and end points ei, ej
the continuum g−1(F ) = DF ∪ g−1(ei) ∪ g−1(ej) is a finite union of locally
connected continua. Thus g−1(F ) is a locally connected continuum. For each
ei we have g−1(Li(S)) ⊂ (g′)−1(Li(S)). Therefore the family {g−1(LF (S)) :
F ∈ S} refines U . Hence g is as desired.

Corollary 3.12. A continuum X is a locally connected curve if and
only if it admits, for every ε > 0, a confluent mapping g : X → G onto a
graph G with a structure S ∈ S(G) such that for each F ∈ S the set g−1(F )
is a locally connected continuum of diameter less than ε.

Let X be a compactum, and let W and U=(U1, . . . , Un) be open covers
of X. Define ord(U) as the maximal number of Ui’s with nonvoid intersec-
tion. Consider the following conditions:

(i) ord(U) = 2.
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(ii) Cl(Ui) ∩ Cl(Uj) 6= ∅ if and only if Ui ∩ Uj 6= ∅.
(iii) The cover (Cl(U1), . . . ,Cl(Un)) refines the cover W.
(iv) Bd(Ui) ∩ Bd(Uj) = ∅ for all i, j ∈ {1, . . . , n} with i 6= j.

It is known [8] that for any 1-dimensional compactum X and any open
cover W of X there exists a cover U = (U1, . . . , Un) that satisfies conditions
(i)–(iv). The following lemma is easy to see.

Lemma 3.13. Let X be a compactum and U = (U1, . . . , Un) be an open
cover of X that satisfies conditions (i), (ii) and (iv). Then for a sufficiently
small positive number δ and for any δ-mapping f : X → Y onto some
compactum Y the family V = (V1, . . . , Vn), where Vi = {y ∈ Y : f−1(y) ⊂
Ui} for i ∈ {1, . . . , n}, is an open cover of Y that satisfies (i) and (ii).

LetX be a compactum with an open cover U = (U1, . . . , Un) that satisfies
conditions (i), (ii), and G be a graph with a structure S ∈ S(G) having
vertices e1, . . . , en such that there is a 1-dimensional element Li,j ∈ S with
end points ei, ej if and only if Ui ∩ Uj 6= ∅. Let Di,j = (Ui ∪ Uj) \

⋃{Uk :
j 6= k 6= i, k ∈ {1, . . . , n}} be defined for all pairs i, j with Ui ∩ Uj 6= ∅. For
every such pair i, j, according to the Urysohn lemma, there exists a mapping
gi,j : Di,j → Li,j such that g−1

i,j (ei) = Ui \
⋃{Uk : k 6= i, k ∈ {1, . . . , n}},

g−1
i,j (ej) = Uj \

⋃{Uk : k 6= j, k ∈ {1, . . . , n}}. If some set Ul does not
intersect other elements of U we let gl(Ul) = {el}. Define g : X → G as the
combination of all mappings gi,j and gl. Then g is a well defined continuous
mapping. Observe that g refines U . We call the pair (G,S) the nerve of the
cover U , and g a natural map of X into the nerve of (G,S) (compare [8]).

Theorem 3.14. Every confluently LC-like compactum X with dimX≤1
is confluently graph-like.

Proof. Fix an ε > 0 and let U = (U1, . . . , Un) be an open cover of X
such that diam(Ui) < ε for i ∈ {1, . . . , n} and the conditions (i), (ii) and (iv)
are satisfied. Let δ be a positive number guaranteed by Lemma 3.13 for the
cover U . By the assumption there exists a confluent δ-mapping f : X → Y
onto a locally connected compactum Y . Then the family V = (V1, . . . , Vn),
where Vi = {y ∈ Y : f−1(y) ⊂ Ui}, is an open cover of Y such that (i)
and (ii) are satisfied for V. Let (G1, S1) be the nerve of the cover V and
g1 : Y → G1 be a natural map into the nerve of (G1, S1). Then g1 refines V.
By Theorem 3.11 there exists a confluent mapping g : Y → G onto a graph
G with a structure S ∈ S(G) such that the family {g−1(LF (S)) : F ∈ S}
refines V. In particular, g refines V. Define h = g ◦ f : X → G and note
that h is confluent. Since the family {f−1(V1), . . . , f−1(Vn)} refines U , we
observe that h refines U , i.e. for each z ∈ G we have h−1(z) ⊂ Ui for some
i ∈ {1, . . . , n}. We also have diam(Ui) < ε. Hence h : X → G is a confluent
ε-mapping onto a graph G.
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The following corollary, a consequence of Theorems 3.2 and 3.14, is one
of the main results of the paper.

Corollary 3.15. For each continuum X the following three conditions
are equivalent :

(1) X is confluently graph-representable;
(2) X is confluently graph-like;
(3) X is confluently LC-like and dimX ≤ 1.

Corollary 3.16. Each locally connected curve is confluently graph-like,
and consequently , it is confluently graph-representable.

We end the paper with the following question that relates this study to
the one of homogeneous curves. All known homogeneous curves that contain
arcs are confluently graph-like, so the following question naturally appears
(compare a discussion of classifying homogeneous curves in [19]).

Question 3.1. Let X be a homogeneous curve that contains an arc.
Must X be confluently graph-like?
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