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Abstract. We deal with a subshift of finite type and an equilibrium state µ for a
Hölder continuous function. Let αn be the partition into cylinders of length n. We compute

(in particular we show the existence of the limit) limn→∞ n−1 log
∑τn(x)

j=0 µ(αn(T j(x))),

where αn(T j(x)) is the element of the partition containing T j(x) and τn(x) is the return
time of the trajectory of x to the cylinder αn(x).

1. Introduction. Let T : X → X be an ergodic measure preserving
transformation with respect to a probability measure µ on X. Let α be
a countable measurable generating partition of X with finite entropy and
for every x ∈ X let αn(x) denote the only element of the partition αn =∨n−1
j=0 T

−j(α) containing x. Put

τn(x) = min{j ≥ 1 : T j(x) ∈ αn(x)}.(1.1)

Ornstein and Weiss proved in [OW] that for µ-a.e. x ∈ X,

lim
n→∞

1
n

log τn(x) = hµ,(1.2)

where hµ is the measure-theoretical entropy of the mapping T : X → X
with respect to the measure µ.

Assume now additionally that T : X → X is a subshift of finite type, φ :
X → X is a Hölder continuous potential, µ = µφ is the unique equilibrium
state (Gibbs measure) of T and φ, and α is the partition of X into initial
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cylinders of length 1. Let

Snφ =
n−1∑

j=0

φ ◦ T j .(1.3)

We shall use the following important property of Gibbs measures for Hölder
continuous potentials (see, e.g., [Bo]): there exists a constant C such that
for every x ∈ X,

C−1 exp(Snφ(x)− nP(φ)) ≤ µ(αn(x)) ≤ C exp(Snφ(x)− nP(φ)),(1.4)

where P(φ) is the topological pressure of T and φ,

P(φ) = lim
n→∞

1
n

log
∑

A∈αn
exp(sup(Snφ|A)).

Another important property is the following:

P(φ) = hµ +
�

X

φdµ.(1.5)

The following question arises. Given x, consider the sum
τn(x)∑

j=0

µ(αn(T i(x)))(1.6)

(the sum of the measures of the cylinders of the partition αn along the
trajectory of x until time τn when this trajectory reaches the initial cylinder
αn(x)). The question is whether the limit

1
n

log
τn(x)∑

j=0

µ(αn(T i(x)))(1.7)

exists and what its value is. We shall give an answer for µ being a Gibbs
measure for a Hölder continuous potential.

There are at least two naive ways to answer the above question. First,
according to (1.2), the time τn is approximately exp(nhµ), while the mea-
sure of the typical cylinder is close to exp(−nhµ), so it seems that the limit
should be zero.

On the other hand, an atom of the partition αn should be visited by the
trajectory of x with a frequency close to µ(αn), thus the sum (1.6) should
be rather close to ∑

A∈αn
µ(A)τn(x)µ(A).(1.8)

This suggests that the limit (1.7) should be equal to
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(1.9) lim
n→∞

(
1
n

log τn(x) +
1
n

log
∑

A∈αn
µ(A)2

)

= lim
n→∞

(
1
n

log τn(x) +
1
n

log
�

X

µ(αn(x)) dµ(x)
)

provided that this limit exists. It is then easily seen that the limit (1.9)
really exists if µ is a Gibbs measure for a Hölder continuous potential φ for
a subshift of finite type and equals hµ + P(2φ)− 2P(φ).

Indeed, the first summand in (1.9) tends to hµ by (1.2), while the sum∑
A∈αn µ(A)2 can be estimated by using the property of Gibbs measures

∑

A∈αn
µ(A)2 �

∑

A∈αn
sup exp(2Snφ|A − 2nP(φ))

and we conclude that the limit in (1.7) should rather be equal to hµ+P(2φ)−
2P(φ), which is greater than 0 provided φ is not homologous to a constant
(see Remark 1.2 below).

Of course, both “proofs” are wrong. They use some limit estimates for
a given time τn and a growing number of cylinders αn. In particular, in the
second “proof” we see that the time τn is certainly too short to visit all
cylinders αn even once. However, this incorrect proof leads us to a correct
formula. More precisely, we have the following.

Theorem 1.1. If T : X → X is a topologically mixing subshift of finite
type, φ : X → X is a Hölder continuous potential , µ = µφ is the unique
equilibrium state of T and φ, and α is the partition of X into initial cylinders
of length 1, then for µ-a.e. x ∈ X,

lim
n→∞

1
n

log
τn(x)∑

j=0

exp(Snφ ◦ T j(x)) = hµ + P(2φ)− P(φ),(1.10)

lim
n→∞

1
n

log
τn(x)∑

j=0

µ(αn(T j(x))) = hµ + P(2φ)− 2P(φ).(1.11)

Notice that for φ = 0 the above theorem follows immediately from the
result of Ornstein and Weiss. Thus it can be understood as its generalization.

Remark 1.2. The value of the second limit in Theorem 1.1, hµ+P(2φ)−
2P(φ), is non-negative. Moreover, hµ+P(2φ)−2P(φ) = 0 iff φ is homologous
to a constant, i.e. there exists a Hölder continuous function g : X → R and
a constant c ∈ R such that φ = g ◦ T − g + c.

Indeed, it is well known that (under the assumptions of Theorem 1.1) the
function t 7→ P (tφ) is convex and smooth and d

dtP (tφ) = � X φdµtφ. More-
over, this function is strictly convex unless φ is homologous to a constant.
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Thus, using (1.5), we can write

P(2φ) = P(φ) +
2�

1

d

dt
P(tφ) dt ≥ P(φ) +

�

X

φdµφ = P(φ) + P(φ)− hµ

and the inequality is strict if φ is not homologous to a constant. This gives
the required inequality.

Roughly speaking, Theorem 1.1 means that the wrong “proof” above
gives the correct answer because large cylinders αn (i.e. cylinders of large
measure) are visited by the trajectory of x up to time τn(x) with a fre-
quency close to the limit one (given by the Birkhoff Ergodic Theorem).
It turns out that (typically) the time τn(x) is sufficiently long for the
integral � X µ(αn(x)) dµ(x) to be well approximated by the time average

(1/τn(x))
∑τn(x)

j=0 µ(αn(T i(x))). The main tool in the (real) proof of Theo-
rem 1.1 is provided by a detailed analysis of large deviations of the sums
Sn(φ).

After writing this note we found out that questions in this spirit have
been considered before for sequences of independent identically distributed
random variables. It seems that this research was originated by a “new law of
large numbers” (see [ER]), where the average k−1Un, Un = max0≤i≤n−k(Xi+
. . .+Xi+k), k = [c logn], was considered. See also [DDL].

A result analogous to Theorem 1.1 in the context of independent equally
distributed random variables appeared in [To].

2. Proofs. Let T : X → X be an ergodic measure preserving transfor-
mation with respect to a probability measure µ on X. Let φ be a bounded
measurable function defined on X.

We introduce the following notation.

cφ,µ(t) = lim sup
n→∞

1
n

log
�
exp(Sn(tφ)) dµ,

where Snφ is defined in (1.3). In statistical mechanics, cφ,µ(t) is usually
called the free energy function, provided that lim sup can be replaced by
lim. The notion of free energy is closely related to the notion of topological
pressure. We have the following simple

Lemma 2.1. If T : X → X is a topologically mixing subshift of finite
type, φ : X → X is a Hölder continuous potential and µφ is the unique
equilibrium state of T and φ, then cφ,µφ(t) = P((t + 1)φ) − P(φ), where
P((t+ 1)φ) is the topological pressure of the function (t+ 1)φ. In particular ,
in this case, lim sup can be replaced by lim in the definition of cφ,µφ.
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Proof. As before, denote by α the partition into cylinders of length 1. It
is well known that for every x ∈ X,

µφ(αn(x)) � exp(Snφ(x)− P(φ)n)

(see (1.4)), where A � B means that the quotients A/B and B/A are
uniformly bounded from above (and so also from below). For every cylinder
A ∈ αn choose one point xA ∈ A. We then get

log
�
exp(Sntφ) dµ �+ log

∑

A∈αn
µφ(A) exp(Sntφ(xA))

�+ log
∑

A∈αn
exp(Snφ(xA)− P(φ)n) exp(Sntφ(xA))

= log
∑

A∈αn
exp(Sn((t+ 1)φ)(xA)− P(φ)n),

where A �+ B means that the differences A − B and B − A are uniformly
bounded from above (and so also from below). It now immediately follows
from the definition of cφ,µφ(t) and from the definition of topological pressure
that

cφ,µφ(t) = P((t+ 1)φ)− P(φ).

Remark 2.2. We use both free energy and pressure even though these
notions are very closely related to each other in our case. The free energy is
usually used in the statement of the Large Deviation Theorem, which will
be our main tool in the proof of Lemma 2.4.

To prove Theorem 1.1, we shall estimate the sum
∑τn(x)

j=0 exp(Snφ◦T j(x))
from above (Proposition 2.3) and from below (Lemma 2.4). Notice that
the estimate from above holds under much weaker assumptions than the
estimate from below.

Proposition 2.3. Suppose that T : X → X is an ergodic measure pre-
serving transformation with respect to a probability measure µ, and the par-
tition α and the time τn(x) are defined as in (1.1). Let φ be a bounded
measurable function. Then for µ-a.e. x ∈ X,

lim sup
n→∞

1
n

log
τn(x)∑

j=0

exp(Snφ ◦ T j(x)) ≤ hµ + cφ,µ(1).

Proof. Put
gn(x) = exp(Snφ(x)).

Fix ε > 0 and for every n ≥ 1 consider the set

Bn(ε) =
{
x ∈ X :

exp((hµ+ε/3)n)∑

j=0

gn ◦ T j(x) > exp((hµ + cφ,µ(1) + ε)n)
}
.
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Applying Chebyshev’s inequality we obtain

µ(Bn(ε)) ≤ exp(−(hµ + cφ,µ(1) + ε)n)
� exp((hµ+ε/3)n)∑

j=0

gn ◦ T j dµ

≤ exp(−(hµ + cφ,µ(1) + ε)n) exp((hµ + ε/3)n)
�
gn dµ

= exp(−(cφ,µ(1) + 2ε/3)n)
�
gn dµ.

But it follows from the definition of cφ,µ(1) that for all n large enough, say
n ≥ nε, � gn dµ ≤ exp((cφ,µ(1) + ε/3)n). Consequently,

µ(Bn(ε)) ≤ exp(−εn/3)

for all n ≥ nε. Thus the series
∑∞

n=1 µ(Bn(ε)) converges and it follows from
the Borel–Cantelli lemma that there exists a measurable set A′ε such that
µ(A′ε) = 1 and each point of A′ε belongs to finitely many sets Bn(ε) only. In
particular

lim sup
n→∞

1
n

log
exp((hµ+ε/3)n)∑

j=0

gn ◦ T j(x) ≤ hµ + cφ,µ(1) + ε

for all x ∈ A′e. Since by (1.2), limn→∞ n−1 log τn(x) = hµ for µ-a.e. x ∈ X,
we conclude that

lim sup
n→∞

1
n

log
τn(x)∑

j=0

exp(Snφ ◦ T j(x)) ≤ hµ + cφ,µ(1) + ε

for all points x in some measurable set Aε with µ(Aε) = 1. Putting A =⋂
k≥1A1/k, we therefore have µ(A) = 1 and

lim sup
n→∞

1
n

log
τn(x)∑

j=0

exp(Snφ ◦ T j(x)) ≤ hµ + cφ,µ(1) for all x ∈ A.

Our main technical result is the following.

Lemma 2.4. If T : X → X is a topologically mixing subshift of finite
type, φ : X → X is a Hölder continuous potential and µ = µφ is the unique
equilibrium state of T and φ, then for µ-a.e. x ∈ X,

lim inf
n→∞

1
n

log
τn(x)∑

j=0

exp(Snφ ◦ T j(x)) ≥ hµ + cφ,µ(1).(2.1)

Proof. Replacing φ by φ − P(φ) if necessary, we may assume without
loss of generality that P(φ) = 0. Now, we can also assume that φ < 0 in X.
Indeed, since P(φ) = 0, it follows that there exists k ∈ N such that for
every x we have Sk(φ) < 0. So, we can replace φ by φ′ = (Skφ)/k. The



Pressure and recurrence 135

Gibbs states µφ and µφ′ are the same. Since exp(Snφ ◦ T j(x)) differs from
exp(Snφ′ ◦ T j(x)) by a bounded factor, the left-hand side of (2.1) does not
change when φ is replaced by φ′. By the same reason, the right-hand side
does not change either.

From now on we assume that P(φ) = 0 and φ < 0 in X.
Assume that φ is homologous to a constant. In this case the pressure

function t 7→ P (tφ) is affine and (see Remark 1.2) hµ + P (2φ)− 2P (φ) = 0.
Moreover, in this case µ = µφ is simply the measure of maximal entropy
and µ(αn) � exp(−nhµ). Thus, in this case the statement of Theorem 1.1
follows directly from the result of [OW].

So from now on, we assume that φ is not homologous to a constant. Put
ψ = φ+ hµ. We then have

τn(x)∑

i=0

exp(Snφ(T i(x))) = exp(−nhµ)
τn(x)∑

i=0

exp(Snφ(T ix) + nhµ)(2.2)

= exp(−nhµ)
τn(x)∑

i=0

exp(Snψ(T i(x))).

Fix δ > 0. Then, using (2.2), we get
τn∑

i=0

exp(Snφ(T i(x))) ≥ exp(−nhµ) exp(nδ) ·#{i ∈ (0, τn) : Snψ(x) > nδ}.

Since P(φ) = 0, we have � ψ dµ = 0. Thus the Large Deviation Theorem (see
[El, Th. II.6.1]) gives

lim
n→∞

1
n

logµ
({

x :
Snψ(x)
n

> δ

})
= −Î(δ),(2.3)

where Î(δ) is the Legendre–Fenchel transform of the free energy function

cψ,µ(t) = lim
n→∞

1
n

log
�
exp(Sn(tψ)) dµ.

Notice that Î(δ) = I(−hµ + δ), where I is the Legendre–Fenchel trans-
form of the free energy function

cφ,µ(t) = lim
n→∞

1
n

log
�
exp(Sn(tφ)) dµ.

For every n ≥ 1 put

Bδ(n) =
{
x : there exists y ∈ αn(x) such that

Snψ(y)
n

> δ

}
.

Since ψ is a Hölder continuous function, there exists a constant C inde-
pendent of n such that if y ∈ αn(x) then |Snψ(x)−Snψ(y)| < C. Fix ε > 0.
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Since the transform Î is continuous, it follows from (2.3) that for all n large
enough,

µ(Bδ(n)) ≥ µ
({

x :
Snψ(x)
n

> δ − C

n

})
> exp(−n(Î(δ) + ε)).(2.4)

The idea of the computation below is the following. For an integer M =
M(n) we shall estimate from below the number of points in the trajectory
of x under Tn: x, Tn(x), . . . , TMn(x) which fall into the set Bδ(n). As a
tool, we use Chebyshev’s inequality together with weak dependence of the
random variables χBδ(n)◦Tnj . More precisely, we conclude that the frequency
of “times” k ∈ {1, . . . ,M} such that T nk(x) ∈ Bδ(n) is close to the measure
of Bδ(n). This estimate works for all x outside some set An, where µ(An)
is close to 0 (see (2.7), (2.8), (2.10)). The “time” M under consideration
depends on n and is related to the typical return time τn (see (2.8)). If x is
chosen so that for every n > n0 = n0(x) the point x is not in An, we will
get the estimate of

lim inf
n→∞

1
n

log
τn(x)∑

i=0

exp(Snφ(T i(x)))

from below in terms of the value of Legendre–Fenchel transform of the free
energy function evaluated at δ (see (2.13)). Finally, we examine the range of
possible δ’s. This will lead us (using the Legendre–Fenchel transform again)
to the inequality (2.1).

So, let Yn = χBδ(n), the characteristic function of the set Bδ(n). Notice
that the function Yn is constant on each cylinder of the nth generation. We
have E(Yn) = µ(Bδ(n)) and D2(Yn) = µ(Bδ(n))(1 − µ(Bδ(n))). For every
integer M ≥ 1 set

LM,n = Yn + Yn ◦ Tn + . . .+ Yn ◦ TMn.

Our aim now is to estimate the variance D2(LM,n) from above. Let Ỹn =
Yn − E(Yn). Then

D2(LM,n) = E((Ỹn + Ỹn ◦ Tn + . . .+ Ỹn ◦ TMn)2)(2.5)

= (M + 1)E(Ỹ 2
n ) + 2(ME(Ỹn(Ỹn ◦ Tn))

+ (M − 1)E(Ỹn(Ỹn ◦ T 2n)) + . . .+ E(Ỹn(Ỹn ◦ TMn))).

For every l ≥ 0 let

γ(l) = sup
{ |µ(Cn ∩ T−(l+n)(C ′n))− µ(Cn)µ(C ′n)|

µ(Cn)µ(C ′n)
: n ≥ 1, Cn, C ′n ∈ αn

}
.

Since the random variable Ỹn is constant on each cylinder of length n, we
get
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E(Ỹn(Ỹn ◦ T jn))

=
∑

Cn

∑

C′n

µ(Cn ∩ T−jn(C ′n))Ỹn|CnỸn|C′n

=
∑

Cn

∑

C′n

µ(Cn)µ(C ′n)Ỹn|CnỸn|C′n
µ(Cn ∩ T−jn(C ′n))

µ(Cn)µ(C ′n)

=
∑

Cn

∑

C′n

µ(Cn)µ(C ′n)Ỹn|CnỸn|C′n

+
∑

Cn

∑

C′n

µ(Cn)µ(C ′n)Ỹn|CnỸn|C′n
µ(Cn ∩ T−nj(C ′n))− µ(Cn)µ(C ′n)

µ(Cn)µ(C ′n)
.

The first summand on the right-hand side is equal to (E(Ỹn))2 = 0. The
second summand can be estimated from above by γ((j − 1)n)(E(|Ỹn|))2 ≤
γ((j−1)n)E(Ỹ 2

n ). The sequence {γ(k)}∞k=0 converges to 0 exponentially fast
(this is a well-known property of Gibbs measures, see e.g. [Bo]). Using (2.5)
we obtain

D2(LM,n) ≤ (M + 1)E(Ỹ 2
n )
(

1 + 2
∞∑

j=1

γ((j − 1)n)
)
≤ C1ME(Ỹ 2

n ),(2.6)

where C1 is some universal constant independent of M and n. By Cheby-
shev’s inequality we get

µ

({
x :

∣∣∣∣
LM,n(x)
M

− µ(Bδ(n))

∣∣∣∣ > η

})
<
D2(LM,n/M)

η2 .(2.7)

Put

M = M(n) =
[

exp(n(hµ − ε))
n

]
, η =

1
2
µ(Bδ(n))(2.8)

and set

An =
{
x :
∣∣∣∣
LM(n),n(x)

M(n)
− µ(Bδ(n))

∣∣∣∣ >
1
2
µ(Bδ(n))

}
.(2.9)

Since E(Ỹ 2
n ) = D2(Yn) = µ(Bδ(n))(1−µ(Bδ(n))), using (2.4) and (2.6),

for all n large enough, we get

µ(An) ≤
D2
(LM(n),n

M(n)

)
(1

2µ(Bδ(n))
)2 ≤

C2M(n)µ(Bδ(n))(1− µ(Bδ(n)))
M(n)2(µ(Bδ(n)))2(2.10)

≤ C3
n

exp(n(hµ − ε)) exp(−n(Î(δ) + ε))

= C3n exp(n(Î(δ)− hµ + 2ε)),
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where C2 and C3 are some universal constants. We therefore conclude that
if Î(δ) < hµ and ε > 0 is small enough, then the series

∑
µ(An) converges.

Hence, by the Borel–Cantelli Lemma, for µ-a.e. x there exists n0 = n0(x)
such that x 6∈ An for all n ≥ n0(x). In view of (1.2) we may assume without
loss of generality that τn(x) > exp(n(hµ − ε)) for all n ≥ n0(x). Thus, for
all n ≥ n0 we get

#{i ∈ {0, . . . , τn(x)} : Snψ(T i(x)) > nδ}
≥ #{i ∈ {0, . . . , n−1 exp(n(hµ − ε))} : T i(x) ∈ Bδ(n)}
≥ 1

2µ(Bδ(n)) exp(n(hµ − ε)).
Finally, using (2.2) and (2.4) we obtain

(2.11)
τn(x)∑

i=0

exp(Snφ(T i(x)))

≥ 1
2 exp(−nhµ) exp(nδ) exp(−n(Î(δ) + ε)) exp(n(hµ − ε)).

Therefore,

lim inf
n→∞

1
n

log
τn(x)∑

i=0

exp(Snφ(T i(x))) ≥ −hµ + δ − Î(δ)− 2ε+ hµ.(2.12)

Letting ε↘ 0, we get

lim inf
n→∞

1
n

log
τn(x)∑

i=0

exp(Snφ(T i(x))) ≥ δ − Î(δ).(2.13)

The reasoning above works for every δ > 0 such that the series
∑
µ(An) is

convergent. As we have noticed, a sufficient condition for this is that Î(δ)
< hµ. So, in particular, one can take an arbitrary δ such that Î(δ) < δ < hµ.
Notice that the domain of I (the Legendre–Fenchel transform of cφ,µ(t))
is contained in (−∞, 0) (roughly speaking, z is in the domain of I if there
exists t such that c′φ,µ(t) = z). Consequently, the domain of Î is contained in
(−∞,hµ). Therefore, the estimate (2.13) is satisfied for all δ in the domain
of Î(δ) for which Î(δ) < δ. We now argue that such δs exist. Indeed, Î is
differentiable ([El, Th. VI.5.6]) and it attains its minimum Î(0) = 0 (so also
Î ′(0) = 0). Therefore, we have the estimate

lim inf
n→∞

1
n

log
τn(x)∑

i=0

exp(Snφ(T i(x))) ≥ sup
δ
{δ − Î(δ)},

where the supremum is over all δ in the domain of Î. But, again by definition
of Legendre transform, this supremum is precisely the value of the Legendre–
Fenchel transform of Î at the point 1. The Legendre–Fenchel transform of I
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is again cφ,µ(t) (see e.g. [El, Th. VI.5.3]) and the Legendre–Fenchel transform
of Î evaluated at t is

cφ,µ(t) + hµ · t.
So, its value at 1 equals cφ,µ(1) + hµ. This shows that

lim inf
n→∞

1
n

log
τn(x)∑

i=0

exp(Snφ(T i(x))) ≥ hµ + cφ,µ(1).

We now get the main result of this paper, Theorem 1.1, as an immediate
consequence of Proposition 2.3, Lemma 2.4 and Lemma 2.1.

The following remark along with (1.2) shows that Theorem 1.1 can be
used to calculate topological pressure provided that we are given generic
points of equilibrium states of the Hölder continuous potentials 2−jφ, j ≥ 0.

Remark 2.5. If T : X → X is a continuous map of a compact metric
space X and if φ : X → X is a continuous potential, then

P(φ) = htop(T ) +
∞∑

j=0

(P(2−jφ)− P(2−(j+1)φ)).

Moreover
∣∣∣P(φ)−

(
htop(T ) +

n∑

j=0

(P(2−jφ)− P(2−(j+1)φ))
)∣∣∣ ≤ 2−(n+1)‖φ‖∞.

Indeed, for every n ≥ 0 we have

P(φ) =
n∑

j=0

(P(2−jφ)− P(2−(j+1)φ)) + P(2−(n+1)φ),

∣∣∣P(φ)−
(

htop(T ) +
n∑

j=0

(P(2−jφ)−P(2−(j+1)φ))
)∣∣∣= |P(2−(n+1)φ)−htop(T )|

= |P(2−(n+1)φ)− P(0)|

≤ 2−(n+1)‖φ‖∞.

Finally, let us discuss what can be proved in a more general context. In
general, without the strong assumption of Theorem 1.1 we are only able to
prove the following straightforward lower bound:

Proposition 2.6. Suppose that T : X → X is a transformation pre-
serving an ergodic probability measure µ. Let α be a countable measurable
generating partition of X with finite entropy and let τn be defined as in (1.1).
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Let φ : X → R be a bounded measurable function. Then for µ-almost every
x ∈ X we have

lim inf
n→∞

1
n

log
τn(x)∑

j=0

exp(Snφ ◦ T j(x)) ≥ hµ +
�

X

φdµ.

Proof. Fix M > 0 such that |φ| < M . Using Jensen’s inequality, we have

1
n

log
τn(x)∑

j=0

exp(Snφ ◦ T j(x))

=
1
n

log(τn(x) + 1) +
1
n

log
1

τn(x) + 1

τn(x)∑

j=0

exp(Snφ(T j(x)))

≥ 1
n

log(τn(x) + 1) +
1
n

1
τn(x) + 1

τn(x)∑

j=0

Snφ(T j(x)).

The first summand on the right-hand size tends to hµ as n tends to∞. The
second one can be written as

1
n

1
τn(x) + 1

( τn(x)−n∑

j=n

nφ(T j(x)) +
n−1∑

j=0

(j + 1)φ(T j(x))

+
τn(x)∑

j=τn(x)−n+1

(τn − j + 1)φ(T j(x))
)
.

It is easy to see that

1
n

1
τn(x) + 1

τn(x)−n∑

j=n

nφ(T j(x)) =
1

τn(x) + 1

τn(x)−n∑

j=n

φ(T j(x))

tends to � X φdµ, while the remaining part of the sum can be estimated by
1

τn(x)+1 · 2nM . This tends to 0 a.e. since τn(x) grows exponentially fast for
almost every x.

Let us recall the general estimate from above (see Proposition 2.3):

lim sup
n→∞

1
n

log
τn(x)∑

j=0

exp(Snφ ◦ T j(x)) ≤ hµ + cφ,µ(1).

Of course, cφ,µ(1) ≥ � φdµ, but usually the inequality is strict, and in general
we do not get any precise formula analogous to (1.11).
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