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Homotopy dominations within polyhedra

by

Danuta Kołodziejczyk (Warszawa)

Abstract. We show the existence of a finite polyhedron P dominating infinitely
many different homotopy types of finite polyhedra and such that there is a bound on
the lengths of all strictly descending sequences of homotopy types dominated by P . This
answers a question of K. Borsuk (1979) dealing with shape-theoretic notions of “capacity”
and “depth” of compact metric spaces. Moreover, π1(P ) may be any given non-abelian
poly-Z-group and dimP may be any given integer n ≥ 3.

1. Introduction. In the paper, every polyhedron is assumed to be finite
and connected.

Following K. Borsuk, define the capacity C(A) of a compactum A as
the cardinality of the class of shapes of all compacta X such that Sh(X) ≤
Sh(A). (The basic notions and facts of shape theory can be found in [B2],
[DS], [MS].)

A system consisting of k compacta X1, . . . ,Xk is said to be a chain of
length k for a compactum A if Sh(X1) < . . . < Sh(Xk) ≤ Sh(A) (Sh(X) <
Sh(Y ) if and only if Sh(X) ≤ Sh(Y ) holds but Sh(Y ) ≤ Sh(X) fails).

The depth D(A) of a compactumA is the least upper bound of the lengths
of all chains for A. If this upper bound is infinite, we write D(A) = ℵ0.

Let us remark that on ANRs shape theory coincides with homotopy the-
ory. Moreover, in the case where A is a polyhedron, one may replace the
above definitions by their “homotopy versions” (i.e. in the homotopy ca-
tegory of CW -complexes). Indeed, by the classical results in shape theory
(see [HaHe1] or [HaHe2]; [DS, Theorem 2.2.6]; [EG]) there is a 1-1 functo-
rial correspondence between the shapes of compacta shape dominated by a
given polyhedron and the homotopy types of CW -complexes (not necessar-
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ily finite) homotopy dominated by that polyhedron (in both pointed and
unpointed cases). Thus, if X and Y are two compacta shape dominated by
a polyhedron, and X ′ and Y ′ are the corresponding CW -complexes, then
Sh(X) ≤ Sh(Y ) if and only if X ′ ≤ Y ′ (where ≤ denotes homotopy domi-
nation). Furthermore, it is immaterial whether we consider the pointed or
unpointed case (by [D]).

The capacity and depth were introduced by K. Borsuk at the Topolog-
ical Conference in Moscow in 1979 together with some relevant problems
(see [B1]). The answers to most of them were given in [K1] (see also [K]).
In [K5], answering the interesting question (4) of [B1]: Is the capacity of
each polyhedron finite?, we showed that there is a polyhedron dominating
infinitely many different homotopy types of polyhedra (see also [K6]).

In another formulation K. Borsuk stated this problem in 1968, at the
Topological Conference in Herceg-Novi.

It was known earlier (by the results of [M], [Ho], see also [MP]) that
every polyhedron dominates no more than ℵ0 different homotopy types (or
shapes). However, it was rather unexpected that there exists a polyhedron
dominating infinitely many different homotopy types of polyhedra.

In this paper we show that such examples are even frequent: for every
non-abelian poly-Z-group G and integer n ≥ 3, there exists a polyhedron
with this property with fundamental group G and of dimension n. There-
fore there exist polyhedra with nilpotent fundamental groups dominating
infinitely many different homotopy types (or shapes). On the other hand,
in [K4] we proved that every simply-connected polyhedron dominates only
finitely many different homotopy types (or shapes). Recently, we have shown
that the capacity of each polyhedron with finite fundamental group and of
each nilpotent polyhedron is also finite (see [K3]). Thus Borsuk’s question
remains unsettled only for polyhedra with abelian fundamental groups.

Using the above results, we obtain an affirmative answer to the following
question of K. Borsuk (question (8) of [B1], see also [DKN, Problem (6.1)]):

Is there a compactum with infinite capacity and finite depth?

2. Algebraic preliminaries. Let us recall some definitions (see [R,
Ch. 5]). Given a group G we define the lower central series of G,

G = G(0) ⊇ G(1) ⊇ . . .
by setting G(i+1) = [G,G(i)] for each i ≥ 0. Recall that G is nilpotent if
G(i) = 1 for i sufficiently large.

A group G is said to be polycyclic if it has a finite normal series

G = G0 ⊇ G1 ⊇ . . . ⊇ Gl = 1

(Gi C G for i = 1, . . . , l) for which each factor Gi−1/Gi is cyclic (finite or
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infinite). Then the number h(G) of infinite cyclic terms occurring in a series
as above is an invariant of G (independent of the series) known as the Hirsch
number of G (see [R, 5.4.13]).

We call a group G a poly-Z-group if it has a finite normal series with
factors Z.

Since every finitely generated nilpotent group is polycyclic (see for ex-
ample [Ru, 15.4, p. 92]), for finitely generated groups we have the following
inclusions:

0 ⊆ abelian groups ⊆ nilpotent groups ⊆ polycyclic groups.

A group G is polycyclic-by-finite if it is an extension of a polycyclic group
by a finite group, i.e., there exists a polycyclic group H C G such that G/H
is finite.

A homomorphism f : G → H of groups is an r-homomorphism if there
exists a homomorphism g : H → G such that fg = idH . Then H is an
r-image of G (see [B3, Ch. 2]).

Recall that a group G is called Hopfian (see [Ba]) if every epimorphism
f : G → G is an automorphism (equivalently, N = 1 is the only normal
subgroup for which G/N ∼= G).

Similarly, a module M is called Hopfian (see [Hi]) if every epimorphism
f : M → M is an isomorphism (equivalently, M is not isomorphic to a
proper quotient of itself).

Let R be a ring. Recall that a right R-module M is said to be noetherian
if every R-submodule of M is finitely generated (see [La, Ch. VI.1]). We call
a ring R noetherian if it is a noetherian module as a left module over itself.

3. Main results. We start by showing that every nilpotent polyhedron
has finite depth.

Definition 1. A CW -complex X is said to be nilpotent if X is con-
nected, π1(X) is nilpotent and, for every integer i ≥ 2, π1(X) acts nilpo-
tently on πi(X) (see [HMR]).

Recall that an action of a group G on an abelian group M is nilpotent
if there exists a finite composition series

0 = M0 ⊆M1 ⊆ . . . ⊆Mn = M

such that G acts trivially on Mj/Mj−1 for 1 ≤ j ≤ n.

Definition 2. A CW -complex X is called simple if π1(X) is abelian
and acts trivially on all higher homotopy groups πi(X) (i ≥ 2).

Examples of nilpotent polyhedra are, clearly, all the simply-connected
finite CW -complexes and simple finite CW -complexes (hence finite H-spa-
ces), and also Eilenberg–MacLane CW -spaces K(G, 1) for every finitely gen-
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erated nilpotent torsion free group G—it is known that they have homotopy
types of finite CW -complexes (see for instance [Br, Ch. 8, Theorem (7.1)
and Ch. 6]). On the other hand, an example of a non-nilpotent finite CW -
complex with abelian fundamental group is the projective plane RP 2 (and
all the projective spaces RPn for even n).

We prove the following:

Theorem 1. Let P be a nilpotent polyhedron. Then D(P ) is finite.

Proof. Observe that any CW -complex which is homotopy dominated
by a nilpotent CW -complex P is also nilpotent. Firstly, any r-image of a
nilpotent group is also nilpotent since it is known that a homeomorphic
image of a nilpotent group is nilpotent (see [R, 5.1.4]).

Suppose that for a finitely generated abelian group M there exists a
finite composition series

0 = M0 ⊆M1 ⊆ . . . ⊆Mn = M

such that G acts trivially on each Mj/Mj−1 (1 ≤ j ≤ n). Let H be a retract
of G, and let r : M → N be an r-homomorphism. Then there exists a
composition series

0 = N0 ⊆ N1 ⊆ . . . ⊆ Nn = N

in which H acts trivially on Nj/Nj−1 for 1 ≤ j ≤ n. It suffices to take
Nj = r(Mj) for 1 ≤ j ≤ n.

A theorem of Dror [Dr] (see [Ge, Theorem, p. 259]) states that if
f : X → Y is a map of connected CW -complexes which induces an iso-
morphism on integral homology groups, and X and Y are nilpotent spaces,
then f is a homotopy equivalence.

By the well-known structure theorem for finitely generated abelian
groups ([La, Ch. I.10]), any such group has only finitely many r-images up
to isomorphism. Moreover, an r-homomorphism between isomorphic finitely
generated abelian groups is an isomorphism. This follows for example from
the fact that if G and H are abelian groups and ϕ : G → H is an r-
homomorphism, then G ∼= H × kerϕ ([B3, Ch. II, Theorem 1.6]; or [Mo,
(1.3) p. 67]), and from the structure of finitely generated abelian groups
again.

Thus, for each nilpotent polyhedron P , D(P ) is finite.

Answering a question of K. Borsuk [B1, problem (8)] we now show that
there exist polyhedra, even with nilpotent fundamental group, with infinite
capacity and finite depth. For every non-abelian poly-Z-group G and integer
n ≥ 3, there exists an n-dimensional polyhedron P with fundamental group
π1(P ) ∼= G with this property.
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Definition 3. For a group G and integer n ≥ 2, by a (G,n)-complex we
mean a finite, connected CW -complex X of dimension ≤ n with π1(X) ∼= G
and πi(X) = 0 for 1 < i < n.

Definition 4. Recall that a ZG-module M is finitely generated projec-
tive if it is a direct summand of a finitely generated free ZG-module (ZG)(n),
where (ZG)(n) denotes the direct sum of n copies of ZG, and n is an integer.

Two finitely generated projective ZG-modules M and N are called stably
equivalent if there exist two finitely generated free ZG-modules (ZG)(k) and
(ZG)(l) such that

M ⊕ (ZG)(k) ∼= N ⊕ (ZG)(l),

where k and l are integers.
Under the operation of direct sum the stable equivalence classes of finitely

generated projective modules form a group denoted by K̃0(ZG) (see for ex-
ample [Wa]). A finitely generated projective ZG-module M is called stably
free if it represents 0 in K̃0(ZG).

Let us begin with the following:

Lemma 1. Let G be a finitely presented group such that the integral group
ring ZG is noetherian, and let n ≥ 3. Then for every finitely generated stably
free ZG-module Q there exists a (G,n)-complex X with πn(X) ∼= Q.

Proof. We first build by induction a finite CW -complex K of dimension
n+ 1 such that π1(K) ∼= G, πi(K) = 0 for 2 ≤ i ≤ n− 1 and πn(K) ∼= Q.

We begin by constructing in the well-known way a finite 2-dimensional
CW -complex K2 with π1(K2) ∼= G.

Suppose that we have built a finite CW -complex Kr of dimension r ≥ 2
such that π1(Kr) ∼= G and πi(Kr) ∼= 0 for 2 ≤ i ≤ r − 1. Observe that the
ZG-module πr(Kr) is finitely generated.

To see this, recall that for every finite CW -complex L, the k-chains in
the cellular complex of the universal cover L̃, Ck(L̃), have the structure of
a finitely generated module over Zπ1(L) with a basis corresponding to the
k-cells of L (J. H. C. Whitehead [Wh1], or for example [C, Ch. 2, p. 28]).

Thus Cr(K̃r) is a finitely generated ZG-module.
Observe that πr(Kr) ∼= πr(K̃r) ∼= Hr(K̃r) as ZG-modules.
Since ZG is a noetherian ring, every finitely generated ZG-module is

noetherian (see [La, Ch. VI]) and so any submodule of a finitely gener-
ated ZG-module is also finitely generated. Since Zr(K̃r) is a submodule of
Cr(K̃r), it is a finitely generated ZG-module. Thus Hr(K̃r), a quotient mod-
ule of Zr(K̃r), is also a finitely generated ZG-module. Therefore πr(Kr) is
a finitely generated module over ZG.
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Then we can attach finitely many (r + 1)-cells to Kr to kill the genera-
tors of πr(Kr) and obtain Kr+1 with dimKr+1 = r + 1, π1(Kr) ∼= G, and
πi(Kr) = 0 for 2 ≤ i ≤ r.

We stop the construction at dimension n, obtaining a finite CW -complex
Kn with dimKn = n, π1(Kn) ∼= G, and πi(Kn) = 0 for 2 ≤ i ≤ n− 1.

Let l be an integer such that Q⊕ (ZG)(k) ∼= (ZG)(l) for some integer k.
Take a one-point union K of Kn and l n-spheres Sn, K = Kn ∨

∨
l S

n.
It is well known that, for any G and any (G,m)-complex L, we have an

isomorphism of ZG-modules πm(L ∨ Sm) ∼= πm(L)⊕ πm(Sm) (folklore; see
for example [CS, Appendix]).

Thus πn(K) ∼= πn(Kn)⊕ZG(l). Now we can attach to Kn a finite number
of (n+ 1)-cells to kill a finite generating set of the ZG-module πn(Kn) and
then attach l (n + 1)-cells to the wedge

∨
l S

n by the maps corresponding
to the homomorphism (ZG)(l) ∼= Q⊕ (ZG)(k) p→ (ZG)(k) on the generators,
where p is the projection on the summand (ZG)(k). This way we obtain
a finite CW -complex X with π1(X) ∼= G, πi(X) = 0 for 2 ≤ i ≤ n − 1,
πn(X) ∼= Q, and dimX = n+ 1.

We will now modify X to an n-dimensional finite CW -complex X ′ with
the same homotopy groups in dimensions 1, . . . , n by the method used in
[Dy] (cf. [Dy, Proposition 1.4]). Consider the cellular chain complex of the
universal cover X̃ of X,

C : Cn+1(X̃)
∂n+1−→ Cn(X̃)

∂n−→ Cn−1(X̃)
∂n−1−→ Cn−2(X̃)

∂n−2−→ . . .
∂1−→ C0(X̃).

Since πn(X) ∼= Cn(X̃)/Bn(X̃) ∼= Q, we have Cn(X̃)/Bn(X̃) ⊕ (ZG)(k) ∼=
(ZG)(l) for some integers k and l. It is easy to see that the following chain
complex, in which ∂′n = ∂n ⊕ id, ∂′n−1 = ∂n−1 ⊕ 0 and ∂′i = ∂i for i ≤ n− 2,
is also a complex of free, finitely generated ZG-modules:

C′ : Cn(X̃)/Bn(X̃)⊕ (ZG)(k) ∂′n−→ Cn−1(X̃)⊕ (ZG)(k) ∂
′
n−1−→ Cn−2(X̃)

∂′n−2−→ . . .

Now let us changeX into an n-dimensional finite CW -complex as follows.
Take

X ′ =
(
X(n−1) ∨

∨

k

Sn−1
)
∪

l⋃

i=1

eni ,

with the n-cells attached to X(n−1) ∨∨k Sn−1 by the maps corresponding
to the homomorphism ∂′n : (ZG)(l) → Cn−1(X̃)⊕ (ZG)(k) on the generators
of (ZG)(l). Then πn(X ′) ∼= Hn(X̃ ′) = ker ∂′n/im ∂′n+1

∼= πn(X). Thus the
proof is complete.

Corollary 1. Let G be a polycyclic-by-finite group. Then for every
projective, finitely generated , stably free ZG-module Q and n ≥ 3 there
exists a (G,n)-complex X with πn(X) ∼= Q.
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Proof. This follows from Lemma 1. It is known that every poly-(cyclic or
finite) group is finitely presented (for this result of P. Hall see, for example,
[R, Lemma 2.2.4, p. 53, and p. 54]). Hence G is a finitely presented group.
Let us remark that a group is poly-(cyclic or finite) if and only if it is
polycyclic-by-finite (see for example [S, Proposition 2, p. 2]).

If G is a polycyclic-by-finite group, then by another result of Hall, ZG
is a noetherian ring. Indeed, Hall proved that if G is a finite extension of
a polycyclic group and R is a right noetherian ring with identity, then the
group ring RG is right noetherian (see [R, 15.3.3, p. 446]).

In the case of poly-Z-groups, the corollary may be formulated as follows:

Corollary 2. Let G be a poly-Z-group. Then for every projective,
finitely generated ZG-module Q and n ≥ 3 there exists a (G,n)-complex
X with πn(X) ∼= Q.

Proof. This is a consequence of Corollary 1. Note that for every poly-
Z-group G, K̃0(ZG) = 0 (see [Wd], [Q]), thus every projective, finitely
generated ZG-module is stably free.

In what follows we will also use:

Lemma 2. Let G be a poly-Z-group. There exists an integer k such that
any descending sequence of subgroups

G = G0 ⊇ G1 ⊇ . . .
with retractions ri : Gi−1 → Gi for i = 1, 2 . . . contains no more than k
distinct subgroups.

Proof. Note that if h(G) is the Hirsch number of a poly-Z-group G,
H ⊆ G and N C G is such that H = G/N , then h(G) = h(N) + h(H) (see
e.g. [S, Ex. 8, p. 16]).

Let Mi be the kernel of the retraction ri : Gi−1 → Gi. Then

h(Gi−1) = h(Mi) + h(Gi)

for i = 1, 2, . . . , thus

h(G) = h(M1) + . . .+ h(Mi) + h(Gi).

Hence there exists an integer k such that h(Mi) = 0 for all i except no more
than k. Then Mi = 0 for such i. Indeed, being a subgroup of a poly-Z-group,
Mi is a poly-Z-group, and clearly, if a poly-Z-group has Hirsch number 0,
then it is trivial.

Therefore Gi = Gi−1 for those i.
Thus, every descending sequence of subgroups of G contains no more

than k different groups, where k−1 = h(G) is the Hirsch number of G. This
ends the proof.
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The following theorem was proved by J. C. H. Whitehead in 1949:

Theorem ([Wh2, Theorem 14]; see also [Wh1]). Suppose that X and Y
are (G,n)-complexes. Then there exist integers aX and aY such that

X ∨
∨

aX

Sn ' Y ∨
∨

aY

Sn.

where
∨
k S

n, for an integer k, denotes the wedge of k spheres Sn.

Definition 5 (see, for example, [Dy, p. 249]). By a homotopy tree
HT(G,n) we mean a directed tree whose vertices are all the homotopy types
of (G,n)-complexes and where the homotopy type of X is joined by an edge
to the homotopy type of X ∨ Sn.

The tree is partitioned into levels by the Euler–Poincaré characteristic,
i.e. level(X) = (−1)nχ(X)−χmin, where χmin is the minimum of (−1)nχ(Y )
over all the (G,n)-complexes Y .

Let us prove the following:

Lemma 3. Let G be a finitely presented group such that G is Hopfian
and the integral group ring ZG is noetherian. Suppose that Xk and Xl are
two (G,n)-complexes, where n ≥ 2, and Xk 6' Xl. Then Xk ≤ Xl implies
that level(Xk) < level(Xl).

Proof. We first show that if Xl ≥ Xk and Xk 6' Xl, then there exists a
non-trivial ZG-module S such that

πn(Xk)⊕ S ∼= πn(Xl).

To see this, observe that the domination Xl ≥ Xk induces an isomor-
phism of the fundamental groups π1(Xl) → π1(Xk) ∼= π1(Xl). This follows
from the fact that π1(Xl) ∼= G is Hopfian. Indeed, every r-homomorphism
between isomorphic Hopfian groups is an isomorphism.

Recall that πi(Xk) ∼= πi(Xl) = 0 for 2 ≤ i ≤ n−1. Suppose now that the
domination Xl ≥ Xk induces an isomorphism πn(Xl) → πn(Xk). Then, by
the Whitehead theorem, Xk and Xl should be homotopy equivalent, which
is not the case. Thus Xl ≥ Xk and Xk 6' Xl implies that there exists a
non-trivial ZG-module S such that πn(Xk)⊕ S ∼= πn(Xl).

On the other hand, by the Whitehead theorem on trees, there exist
integers a and b such that

Xk ∨
∨

a

Sn ' Xl ∨
∨

b

Sn.

Thus
πn(Xk)⊕ (ZG)(a) ∼= πn(Xl)⊕ (ZG)(b)

as ZG-modules (for a (G,n)-complex X, we have an isomorphism of ZG-
modules πn(X ∨ Sn) ∼= πn(X)⊕ πn(Sn)—see the proof of Lemma 1).
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Suppose that b ≥ a. Then, for the ZG-module T = πn(Xk) ⊕ (ZG)(a),
we have T ⊕ S ⊕ (ZG)(b−a) ∼= T , where b − a ≥ 0. Thus T is isomorphic
to a proper factor module of itself. But this contradicts the fact that the
ZG-module T is Hopfian.

That T is Hopfian follows from the facts that if the integral group ring
ZG is noetherian, then any finitely generated ZG-module is noetherian ([La,
Ch. VI]; compare the proof of Lemma 1), and that if a finitely generated
module is right noetherian, then it is Hopfian (see, for example, [Hi, Propo-
sition 6]). Observe that T is a finitely generated module over ZG because
πn(Xk) is a finitely generated module over ZG (by the arguments as in the
proof of Lemma 1).

Thus we have shown that b < a. This means that level(Xk) < level(Xl)
and finishes the proof.

Corollary 3. Let G be a polycyclic-by-finite group. Suppose that Xk

and Xl are two (G,n)-complexes, where n ≥ 2, and Xk 6' Xl. Then Xk ≤ Xl

implies that level(Xk) < level(Xl).

Proof. In fact, Hirsch proved that every polycyclic-by-finite group is
residually finite, i.e. its subgroups of finite index have trivial intersection
(see [R, 5.4.17] or [S, Theorem 1, p. 17]). It is also known that if a finitely
generated group G is residually finite, then it is Hopfian (see [Ma], [KS]).
Moreover, if G is polycyclic-by-finite, then the integral group ring ZG is
noetherian (see the proof of Corollary 1).

Thus the assertion follows from Lemma 3.

Definition 6. CW -complexes X and Y have the same n-type if there
exists a map f : X(n+1) → Y (n+1) such that fi∗ : πi(X(n+1))→ πi(Y (n+1))
is an isomorphism for all 1 ≤ i ≤ n (see [Wh1]).

Note that any two (G,n)-complexes have the same (n− 1)-type.
We now prove our main results. The next theorem gives an answer to

the question of K. Borsuk mentioned in the introduction:

Theorem 2. For every non-abelian poly-Z-group G and an integer n ≥ 3,
there exists a polyhedron P such that π1(P ) ∼= G, dimP = n, C(P ) is
infinite, but D(P ) is finite.

Proof. In the first step we will obtain a polyhedron P with π1(P ) ∼= G
and dimP = n, homotopy dominating infinitely many polyhedra of different
homotopy types.

The results of Artamonow [Ar] imply that for every non-abelian poly-Z-
group G there exist infinitely many non-isomorphic modules over ZG, say
Mi, i = 1, 2, . . . (of rank 1), which are projective, finitely generated and
(hence) stably free. Precisely, we have Mi ⊕ ZG ∼= ZG⊕ ZG.
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By Corollary 2, for each i and n ≥ 3, there is a finite (G,n)-complex Xi

with πn(Xi) ∼= Mi. Clearly the Xi have different homotopy types. But there
exists an integer d such that Xi ∨

∨
d S

n ' P for some polyhedron P .
We can deduce this, for example, from the following fact (see [K2,

Lemma 1.1, p. 273]) whose proof is similar to the proof of the Whitehead
theorem on trees ([Wh2, Theorem 14, p. 49]): Let Zi, for i = 1, 2, . . . , be
finite CW -complexes with dimZi = n such that the (n − 1)-types of all Zi
are equal. Suppose that for each r and all i, the number of r-cells in Zi is
equal to dr, where dr is some integer. Then there exists an integer d such
that the Zi ∨

∨
d S

n are all homotopy equivalent.
Observe that in our situation, by the construction from the proof of

Lemma 1, each Xi has a fixed number of cells in each dimension. Since on
ANRs shape and homotopy theories coincide, for such a P we have imme-
diately C(P ) = ℵ0.

We now show that D(P ) is finite. According to the remark in the in-
troduction, in the definition of the depth of a polyhedron one can always
consider homotopy dominations over CW -complexes (not necessarily finite).

In the case where π1(P ) ∼= G is a poly-Z-group, we may assume these
CW -complexes to be finite. This follows from the known result of Wall (or
directly from its shape analogue): if X is homotopy dominated by a poly-
hedron P with dimP = m ≥ 2 and K̃0(Zπ1(X)) = 0, then X is homotopy
equivalent to a polyhedron of dimension ≤ max(m, 3) (see [Wa, Theorem F,
p. 66] or [EG, Theorem 1.1], respectively). Recall that K̃0(ZG) = 0 for every
poly-Z-group G and all of its subgroups, which are also poly-Z-groups.

Thus, every X ≤ P , where P satisfies the assumptions of the theorem,
is homotopy equivalent to a polyhedron of dimension ≤ n.

Since π1(P ) ∼= G is a poly-Z-group, by Lemma 2, there exists an integer
s such that for each sequence of polyhedra

P = X0 ≥ X1 ≥ . . . ≥ Xj−1 ≥ Xj ≥ . . . ,
there are at most s non-isomorphic groups among π1(Xj). Hence every Xj in
such a sequence is an (H,n)-complex, where H is one of at most s r-images
of G.

Furthermore, by Corollary 3, if Xk and Xl are two polyhedra from the
tree of the same poly-Z-group H, then Xk ≤ Xl and Xk 6' Xl implies that
level(Xl) < level(Xk).

Now it is easy to see that D(P ) is finite and the proof is finished.

Example. The first example of a poly-Z-group G such that there exist
infinitely many non-isomorphic projective modules over ZG was the group
with presentation

G = 〈r, p, q | pq = qp, q = r−1pr, r−1qr = qp−1, rpr−1 = q−1p, rqr−1 = p〉
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(see [BeDu]). It is known that G = T/T (2), where T is the trefoil knot group,
i.e. the group with presentation

T = 〈a, b | a2 = b3〉,
and T (2) = (T ′)′ (where G′ = [G,G]).

Corollary 4. For every non-abelian nilpotent torsion-free finitely gen-
erated group G there exists a polyhedron P with π1(P ) ∼= G such that C(P )
is infinite, but D(P ) is finite.

Proof. Every finitely generated, nilpotent torsion-free group is a poly-
Z-group (see for example [R, Theorem 5.2.20, p. 133]). Thus the statement
follows from Theorem 2.

There are many examples of finitely generated nilpotent torsion-free non-
abelian groups, thus we obtain:

Corollary 5. There exists a polyhedron P with nilpotent fundamental
group such that C(P ) is infinite, but D(P ) is finite.

Now let us state the following questions:

Question 1. Is it true that for each polyhedron P such that π1(P ) is
abelian, C(P ) is finite?

Question 2. Is it true that for each polyhedron P such that π1(P ) is
a poly-Z-group (or nilpotent group), D(P ) is finite?

It seems to the author that the answer to both questions is affirmative.

3. Final remarks. In the case of nilpotent torsion-free finitely gener-
ated groups, instead of poly-Z-groups, the proof of Lemma 2 can be neatly
simplified. We show below how one can prove it “topologically”.

Proposition. For every finitely generated nilpotent torsion-free group
G, there exists an integer k such that any descending sequence of subgroups

G = G0 ⊇ G1 ⊇ . . .
with retractions ri : Gi−1 → Gi for i = 1, 2, . . . contains no more than k
distinct subgroups.

Proof. Recall that for every finitely generated torsion-free nilpotent
group G, there exists a finite CW -complex K(G, 1) of dimension equal to
the Hirsch number of G (see for example [Br, Ch. 8, Theorem (7.1) and
Ch. 6]). Every r-image of a finitely generated group is clearly finitely gener-
ated. Thus every r-image of a finitely generated nilpotent torsion-free group
is also a group of this kind. So let us associate with each retract H of G a
finite CW -complex K(H, 1). Obviously these spaces are all nilpotent. Recall
that for every homomorphism ϕ : π → % of groups, there exists a unique
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(up to homotopy) pointed map f : K(π, 1)→ K(%, 1) such that π1(f) = ϕ.
Since H is a retract of G it follows that K(H, 1) is homotopy dominated
by K(G, 1).

By Theorem 1, the depth of K(G, 1) is finite. This means that every
descending sequence of subgroups

G = G0 ⊇ G1 ⊇ . . .
with retractions ri : Gi−1 → Gi for i = 1, 2, . . . contains no more than k
different groups up to isomorphism, hence no more than k different groups.
This ends the proof.

Remark. The author expects that Lemma 2 could be proven topologi-
cally even for poly-Z-groups, perhaps in a more complicated way.
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