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Abstract. We show that under appropriate set-theoretic assumptions (which follow
from Martin’s axiom and the continuum hypothesis) there exists a nowhere meager set
A ⊂ R such that

(i) the set {c ∈ R: π[(f + c)∩ (A×A)] is not meager} is meager for each continuous
nowhere constant function f : R→ R,

(ii) the set {c ∈ R: (f + c) ∩ (A × A) = ∅} is nowhere meager for each continuous
function f : R→ R.

The existence of such a set also follows from the principle CPA, which holds in the iterated
perfect set model. We also prove that the existence of a set A as in (i) cannot be proved
in ZFC alone even when we restrict our attention to homeomorphisms of R. On the other
hand, for the class of real-analytic functions a Bernstein set A satisfying (ii) exists in
ZFC.

1. The results. LetM denote the class of all meager subsets of R and
let π: R2 → R be the projection onto the first coordinate. For a function
f : R → R and a set E ⊂ R2 the f -category projection of E is the set
{c ∈ R: π[(f + c) ∩ E] 6∈ M}. (See [CG].) In papers [Da], [N1], and [N2]
their authors considered the second category sets A ⊂ R such that an f -
category projection of A×A has an empty interior for every linear function
f(x) = ax + b. Inspired by these results Bartoszyński and Halbeisen [BH]
recently constructed a second category set A ⊂ R with an even stronger
property: for each polynomial p which is neither constant nor the identity
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Grant No. BW 5100-5-02331-2.

[237]



238 K. Ciesielski and T. Natkaniec

function the set p ∩ (A × A) is finite. In particular, if p is a non-constant
polynomial then the p-category projection of A×A has an empty interior.

These results lead to the following, more general question: for which
classes F of continuous functions does there exist a “big” set A ⊂ R such
that the f -category projection is “small” for every f ∈ F? In particular,
what happens for the classes A of real-analytic functions, C0 of all nowhere
constant functions from R to R, and for the entire class C of all continuous
functions from R to R?

In this note we answer these questions. We use standard terminology
as in [Ci]. We consider only real-valued functions of one variable, unless
otherwise specified. No distinction is made between a function and its graph.
For functions f, g put [f = g] = {x ∈ R: f(x) = g(x)}. A set A ⊂ R
is nowhere meager if A ∩ I 6∈ M for each non-degenerate interval I. The
symbol B(x, r) denotes the open ball centered at x and with radius r, and
id stands for the identity function.

The main general theorem in the positive direction is the following result.

Theorem 1. Let J ⊃ [R]≤ω be a translation invariant ideal on R and
B0 be a family of Borel sets containing all Borel non-meager sets such that

B \⋃G 6= ∅ for every B ∈ B0 and G ∈ [J ]<c.(1)

If F ⊂ C is such that for every f ∈ F ,

the set Lf = {y ∈ R: f−1(y) 6∈ J } belongs to J(2)

then there exists an A ⊂ R intersecting every B ∈ B0 such that for every
f ∈ F ,

(a) there exists a Z ∈ [R]<c such that f ∩ (A× A) ⊂ (A× Z) ∪ id.

Moreover , if (2) holds for every f ∈ (±F)∪ (id−F) then we can also have
the following property for every f ∈ F :

(b) the set {c ∈ R: (f + c) ∩ (A×A) = ∅} intersects every B ∈ B0.

We leave the proof of this theorem to the next section. In the remainder
of this section we discuss several of its corollaries. In particular, applying
Theorem 1 to the ideal [R]≤ω of countable sets and the family B0 of all
uncountable Borel sets we get the following result.

Corollary 2. Let F⊂C be such that the set Lf ={y ∈ R: |f−1(y)|>ω}
is empty for every f ∈ F . Then there exists a Bernstein set A ⊂ R such
that for every f ∈ F ,

(a) there exists a Z ∈ [R]<c such that f ∩ (A× A) ⊂ (A× Z) ∪ id.

In addition, if Lf = ∅ for every f ∈ (±F)∪ (id−F) then we can also have

(b) {c ∈ R: (f + c) ∩ (A × A) = ∅} contains a Bernstein set for every
f ∈ F .
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In particular ,

• there exists a set A satisfying (a) for every countable-to-one function
f ∈ C;
• there exists a set A satisfying (a) and (b) for every analytic function
f ∈ A; moreover , if f 6= id is not constant then |f ∩ (A× A)| < c.

Proof. Clearly the ideal J = [R]≤ω and the family B0 of all uncountable
Borel sets satisfy (1) from Theorem 1. Since we assume that (2) is also
satisfied, the first assertion of the corollary follows from Theorem 1. To see
the “additional” part for analytic functions first notice that F = A satisfies
the assumption for (b), since Lf = ∅ for every non-constant f ∈ A. In
particular, if f 6= id, then by (a) the set π[f ∩ (A × A)] is contained in
(f− id)−1(0)∪⋃z∈Z f−1(z), which is a union of less than c countable sets.

In the proof of the next corollary we need the following simple fact:

If f ∈ C then the set {c: [f + c = id] 6∈ M} is countable.(3)

To see it notice that for each c ∈ R the set [f + c = id] is closed. Therefore,
if [f + c = id] 6∈ M, then there exists a non-empty open interval Ic with
f(x) = x− c for each x ∈ Ic. It is easy to observe that Ic ∩ Id = ∅ if c 6= d.

Corollary 3. There exists a Bernstein set A ⊂ R such that for ev-
ery homeomorphism f : R → R for all but countably many c ∈ R the set
π[(f + c) ∩ (A×A)] is a union of a meager set and a set of cardinality less
than c. In particular , if [R]<c ⊂M then the set

{c ∈ R: π[(f + c) ∩ (A× A)] 6∈ M}
is countable (so meager) for every homeomorphism f : R→ R.

Proof. Let A be as in Corollary 2. So for every homeomorphism f : R→R
and c ∈ R there exists a Z ∈ [R]<c such that (f+c)∩(A×A) ⊂ (A×Z)∪ id.
Notice that π[(f + c) ∩ (A × A)] ⊂ [f + c = id] ∪ π[(f + c) ∩ (A × Z)] and
π[(f + c) ∩ (A × Z)] ⊂ f−1(Z − c) ∈ [R]<c. So there exists a D ∈ [R]<c

such that π[(f + c) ∩ (A × A)] ⊂ [f + c = id] ∪ D. The conclusion follows
from (3).

Notice that the set-theoretic assumption in Corollary 3 is essential.

Theorem 4. It is relatively consistent with ZFC that for every nowhere
meager set A ⊂ R there exists a homeomorphism f : R → R such that the
set {c ∈ R: π[(f + c) ∩ (A× A)] 6∈ M} is nowhere meager.

Proof. This follows immediately from Theorem 12 and Proposition 13,
which will be proven in Section 4.

Applying Theorem 1 to the ideal M and the family B0 of non-meager
Borel sets we also get the following result. (Recall that the set-theoretic



240 K. Ciesielski and T. Natkaniec

assumption about covering by meager sets follows form Martin’s axiom MA
and from the continuum hypothesis CH.)

Corollary 5. Assume that less than continuum many meager sets do
not cover R. Then there exists a nowhere meager set A ⊂ R such that for
every f ∈ C the set {c ∈ R: (f + c)∩ (A×A) = ∅} is nowhere meager in R.
In particular , the f -category projection of A× A has an empty interior.

Proof. The set-theoretic assumption ensures that the ideal J =M and
the family B0 of non-meager Borel sets satisfy assumption (1) of Theorem 1.
Since for J =M, (2) holds for every f ∈ C, there is a set A satisfying (b)
from Theorem 1. Clearly, it has the desired properties.

For the class C0 of nowhere constant functions we have yet another corol-
lary. In its proof we will use the following simple fact:

f−1(M) ∈M for every f ∈ C0 and M ∈ M.(4)

Indeed, if sets Fn are closed and nowhere dense in R such that M ⊂ ⋃n<ω Fn
then f−1(M) ⊂ ⋃n<ω f

−1(Fn). It is enough to notice that f−1(Fn) is closed
and nowhere dense for every f ∈ C0.

Corollary 6. Assume that less than continuum many meager sets do
not cover R and that [R]<c ⊂ M. Then there exists a nowhere meager set
A ⊂ R such that for every f ∈ C0 the set {c ∈ R: π[(f + c)∩ (A×A)] 6∈ M}
is countable.

Proof. Let f ∈ C0 and c ∈ R. By Theorem 1(a) there exists a Z ∈ [R]<c

such that π[(f + c) ∩ (A × A)] ⊂ [f + c = id] ∪ π[(f + c) ∩ (A × Z)]. But,
by (4), π[(f + c) ∩ (A × Z)] ⊂ f−1(Z − c) ∈ M since Z − c ∈ [R]<c ⊂ M.
Thus, π[(f + c) ∩ (A× A)] ∈ M as long as [f + c = id] ∈ M. So the result
follows immediately from (3).

We believe that the conclusion of Corollary 6 cannot be proved in ZFC;
we state this below as a conjecture. (See also the last section of the paper
for some comments on it.)

Conjecture 1. It is relatively consistent with ZFC that for every no-
where meager set A ⊂ R there is an f ∈ C0 such that π[(f+c)∩(A×A)] 6∈ M
for every c ∈ R.

It is worth noting that a set A as in Corollaries 5 and 6 can also be
constructed under the Covering Property Axiom CPA, which extracts the
essence of the iterated perfect set model. (See [CP2, CMP, CP3].) This is
of interest, since under CPA the set-theoretic assumptions of each of these
corollaries are false: CPA implies that c = ω2 and that R can be covered by
ω1 meager sets. In fact, in the theorem we will use only a simpler version of
CPA known as CPAgame

cube .
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Theorem 7. Assume that CPAgame
cube holds. Then there exists a nowhere

meager set A ⊂ R of cardinality ω1 < c such that for every f ∈ C there
exists a countable set Z ⊂ A such that

f ∩ (A× A) ⊂ (A× Z) ∪ id.

In particular , for every f ∈ C0 the set {c ∈ R: π[(f + c)∩ (A×A)] 6∈ M} is
countable and the set {c ∈ R: (f + c) ∩ (A × A) = ∅} is the complement of
a set of cardinality ω1 < c, so it contains a Bernstein set.

Proof. The first assertion will be proved in Section 3. To prove the second
assertion, fix an f ∈ C0. The proof that {c ∈ R: π[(f+ c)∩ (A×A)] 6∈ M} is
countable is exactly the same as for Corollary 6. To see that the complement
D of {c ∈ R: (f + c) ∩ (A × A) = ∅} has cardinality ω1 notice that if
(f + c) ∩ (A× A) 6= ∅ then there are x, y ∈ A such that f(x) + c = y, that
is, c = y− f(x) ∈ A− f [A]. So D equals A− f [A] and has cardinality ω1.

It is also important to notice that the set A in Corollaries 5 and 6 cannot
have the Baire property.

Proposition 8. Suppose that f ∈ C0 and that A ⊂ R is a non-meager
set having the Baire property. Then the f -category projection of A× A has
a non-void interior.

Proof. Let G be a non-empty open set with M = G \ A ∈ M. Fix
x0 ∈ G ∩ A and c0 ∈ R with f(x0) + c0 ∈ G ∩ A, an ε > 0 such that
B(f(x0) + c0, 2ε) ⊂ G, and a δ > 0 such that f [B(x0, δ)] ⊂ B(f(x0), ε). Let
c ∈ B(c0, ε). Since A0 = A ∩ B(x0, δ) 6∈ M and f + c ∈ C0, condition (4)
implies (f + c)(A0) 6∈ M. Since (f + c)(A0) ⊂ G and (f + c)(A0) ∩A 6∈ M,
it follows that c belongs to the f -category projection of A× A.

We finish this section with the following result of Bartoszyński and Hal-
beissen, which was one of the starting points for this note.

Theorem 9 ([BH]). There exists a set A ⊂ R intersecting every perfect
set such that for each non-constant polynomial p 6= id the set p∩ (A×A) is
finite.

Note that Corollary 2 implies immediately a weaker version of Theo-
rem 9: there exists a Bernstein set A for which each set p ∩ (A × A) has
cardinality less than c. However, we see no easy way to deduce the full ver-
sion of the theorem from the results presented above. Nevertheless we wish
to include here a very short proof of Theorem 9, since it is considerably
simpler and completely different from the argument presented in [BH].

Proof. First notice that if A is a transcendental base of R (over Q) then
the set p∩ (A×A) is finite for every polynomial p which is neither constant
nor the identity function. Indeed, if K ∈ [A]<ω is such that p ∈ Q(K)[x],
where Q(K) stands for the algebraic closure of Q(K) in R, then for every
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a ∈ A \ K we have p(a) ∈ Q(K ∪ {a}) \ Q(K), since A is algebraically
independent. (See e.g. [Ku, Lemma 2, p. 99].) So if p(a) ∈ A then p(a) = a.
But this is impossible, since p(a) = a implies that a is a root of a non-zero
polynomial p − id ∈ Q(K)[x]. So π[p ∩ (A × A)] ⊂ K. It is well known
that there are transcendental bases A that are also Bernstein sets ([Ci,
Corollary 7.3.6 and Exercise 2 on page 126]) and any such base satisfies the
conclusion.

2. Proof of Theorem 1. Let {〈fα, Bα〉: α < c} be an enumeration of
F×B0. For each α < c we will choose, by induction on α < c, points xα ∈ Bα
and cα ∈ Bα aiming for A = {xα: α < c}. We will set up the induction in
such a way that for every α < c the set Z satisfying (a) for fα will be
Aα = {xβ: β < α} and, if (2) holds for every f ∈ (±F) ∪ (id − F), that
(fα+ cα)∩ (A×A) = ∅. So assume that for some α < c the sets {xβ: β < α}
and {cβ: β < α} are already constructed. If we need only ensure (a), we put
cα = xα and choose an xα ∈ Bα \

⋃
β≤α Lfβ such that

fβ ∩ ({xα} × (Aα \ Aβ)) = ∅ = fβ ∩ (Aα × {xα})
for all β ≤ α. This is possible by (1), since {Lfβ : β ≤ α} ⊂ J , the singletons
fβ[{a}] are in J for β ≤ α and a ∈ Aα, and {x ∈ R: fβ(x) = xγ} =
f−1
β (xγ) ∈ J for every β ≤ γ < α since xγ 6∈ Lfβ . It is easy to see that such

a choice implies that fα ∩ (A × A) ⊂ (A × Aα) ∪ id for every α < c. So in
what follows we assume that (2) holds for every f ∈ (±F) ∪ (id − F). We
also assume that the following inductive conditions hold for every α < c:

(I) (id− fα)−1(cα) ∪ f−1
α (xβ − cα) ∈ J for every β < α,

(II) f−1
β (xα) ∪ f−1

β (xα − cβ) ∈ J for every β ≤ α.

First choose a cα ∈ Bα \ (Lid−fα ∪
⋃
β<α(xβ + L−fα)) outside the set

{c ∈ R: (fα + c) ∩ (Aα × Aα) 6= ∅} = Aα − fα[Aα] ∈ [R]<c.

Such a choice is possible by (1), since the singletons and the sets Lid−fα and
xβ+L−fα belong to J . Clearly cα 6∈ Lid−fα ensures that (id−fα)−1(cα) ∈ J .
Similarly, cα 6∈ xβ + L−fα implies that cα − xβ 6∈ L−fα and hence the set
f−1
α (xβ − cα) = (−fα)−1(cα − xβ) belongs to J . Thus, condition (I) is

satisfied. Note also that cα 6∈ Aα − fα[Aα] implies that

(i) (fα + cα) ∩ (Aα × Aα) = ∅.
Next choose an xα ∈ Bα \

⋃
β≤α(Lfβ ∪ (cβ + Lfβ)) such that

(fβ + cβ) ∩ ({xα} × Aα) = ∅ = (fβ + cβ) ∩ (Aα × {xα}),(5)

xα 6∈
⋃
γ≤α(id− fγ)−1(cγ), and

fβ ∩ ({xα} × (Aα \ Aβ)) = ∅ = fβ ∩ (Aα × {xα})(6)
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for every β ≤ α. This is possible by (1), since {Lfβ ∪(cβ +Lfβ ): β ≤ α} ⊂ J
and by inductive assumptions (I)&(II) for every a ∈ Aα and β ≤ γ < α the
following sets belong to J :

• {x ∈ R: (fβ + cβ)(x) = a} = f−1
β (a− cβ);

• (fβ + cβ)[{a}];
• (id− fγ)−1(cγ);
• {x ∈ R: fβ(x) = xγ} = f−1

β (xγ);
• fβ[{a}].

Note that xα 6∈
⋃
β≤α Lfβ ensures f−1

β (xα) ∈ J , and xα 6∈
⋃
β≤α(cβ + Lfβ)

implies that xα − cβ 6∈ Lfβ , so the set f−1
β (xα − cβ) is in J . In particular,

(II) is satisfied. This finishes the inductive construction.
Clearly A is nowhere meager, since it meets every non-meager Borel set.

To see that (b) holds notice that by (i) we have (fβ + cβ) ∩ (Aβ × Aβ) = ∅
while (fβ + cβ) ∩ (Aα × Aα) = ∅ for α > β is ensured by the choice of xα
as in (5) and the fact that (fβ + cβ)(xα) 6= xα since xα 6∈ (id − fβ)−1(cβ).
To see that (a) holds pick an f ∈ F and let β < c be such that f = fβ. The
choice of xα for α > β as in (6) implies that f ∩ (A×A) ⊂ (A×Aβ)∪ id.

3. Set A from CPA. To formulate axiom CPAgame
cube we need a few defi-

nitions. Let C denote the Cantor set 2ω. For a Polish space X we use Perf(X)
to denote the family of all subsets of X homeomorphic to C. A subset C of
a product Cω of the Cantor set is said to be a perfect cube if C =

∏
n∈ω Cn,

where Cn ∈ Perf(C) for each n. For a fixed Polish space X let Fcube stand
for the family of all continuous injections from a perfect cube C ⊂ Cω onto
a set P from Perf(X). We consider each function f ∈ Fcube from C onto P
as a coordinate system imposed on P .

We say that P ∈ Perf(X) is a cube if we consider it with (implicitly
given) witness function f ∈ Fcube onto P , and Q is a subcube of a cube
P ∈ Perf(X) provided Q = f [C], where f ∈ Fcube is a witness function
for P and C ⊂ dom(f) ⊂ Cω is a perfect cube. (Here and in what follows
dom(f) stands for the domain of f .)

We say that a family E ⊂ Perf(X) is cube dense in Perf(X) if every cube
P ∈ Perf(X) contains a subcube Q ∈ E . More formally, E ⊂ Perf(X) is cube
dense provided

∀f ∈ Fcube ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E).(7)

We also need a notion of a constant cube: the family Ccube(X) of constant
“cubes” is defined as the family of all constant functions from a perfect cube
C ⊂ Cω to X. We define F∗cube(X) as

F∗cube = Fcube ∪ Ccube.(8)
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Thus, F∗cube is the family of all continuous functions from a perfect cube
C ⊂ Cω into X which are either one-to-one or constant. Now the range of
every f ∈ F∗cube belongs to the family Perf∗(X) of all sets P such that either
P ∈ Perf(X) or P is a singleton. The meaning of “P ∈ Perf∗(X) is a cube”
and “Q is a subcube of a cube P ∈ Perf∗(X)” is defined in a natural way.

For a Polish space X consider the following game GAMEcube(X) of
length ω1. The game has two players, I and II. At each stage ξ < ω1 of
the game Player I can play an arbitrary cube Pξ ∈ Perf∗(X) and Player II
must respond with a subcube Qξ of Pξ. The game 〈〈Pξ, Qξ〉: ξ < ω1〉 is won
by Player I provided ⋃

ξ<ω1

Qξ = X;

otherwise the game is won by Player II. A strategy for Player II is any
function S such that S(〈〈Pη, Qη〉: η < ξ〉, Pξ) is a subcube of Pξ, where
〈〈Pη, Qη〉: η < ξ〉 is any partial game. (We abuse here slightly the notation,
since the function S also depends on the implicitly given coordinate func-
tions fη: Cω → Pη making each Pη a cube.) A game 〈〈Pξ, Qξ〉: ξ < ω1〉 is
played according to a strategy S provided Qξ = S(〈〈Pη, Qη〉: η < ξ〉, Pξ) for
every ξ < ω1. A strategy S for Player II is a winning strategy for Player II
provided Player II wins any game played according to S. Now we can for-
mulate the following axiom (see [CP3]):

CPAgame
cube : c = ω2 and for any Polish space X Player II has no winning
strategy in the game GAMEcube(X).

All we need to know about cube-dense families is the following fact.

Fact 10. Let X be a Polish space and let E ⊂ Perf∗(X) contain all
singletons. If for every P ∈ Perf(X) and every Borel probability measure
µ on P there exists a Q ∈ Perf(P ) ∩ E such that µ(Q) > 0, then E is
cube-dense.

Proof. This follows immediately from [CP1, Claim 3.2]. (See also [CP3,
Claim 1.1.5] or [CP2, Claim 2.3].)

We will apply this fact to X = C, where C is considered with the sup
norm. Notice that for every Q ⊂ C the set

⋃
Q ⊂ R2 is the union of the

graphs of all functions belonging to Q, since functions are identified with
their graphs. In what follows, for a set K ⊂ R2 and x ∈ R we denote
by Kx the vertical section of K above x, that is, Kx = {y: 〈x, y〉 ∈ K}.
Similarly, Kx = {x: 〈x, y〉 ∈ K}. For A ∈ [R]≤ω let E(A) be the family of
all Q ∈ Perf∗(C) such that

• ⋃Q is nowhere dense in R2,
• [
⋃
Q]x is nowhere dense in R for every x ∈ A.
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Lemma 1. The family E(A) is cube-dense for every A ∈ [R]≤ω.

Proof. Without loss of generality we can assume that A is dense in R.
Clearly every singleton belongs to E(A). So let P ∈ Perf(C) and let µ be
a Borel probability measure µ on P . By Fact 10 it is enough to show that
there exists a Q ∈ Perf(P ) ∩ E(A) such that µ(Q) > 0. To see this, fix a
countable base B for R and let 〈〈an, Jn〉: n < ω〉 be an enumeration of A×B.
Notice that for every n < ω there exists a non-empty open set Un ⊂ Jn such
that

µ({f ∈ P : f(an) ∈ Un}) < 2−(n+2).(9)

Indeed, if Un is an infinite family of non-empty pairwise disjoint open subsets
of Jn then for each U ∈ Un the set {f ∈ P : f(an) ∈ U} is open in P
(so µ-measurable) and so condition (9) must hold for some U ∈ Un. Let
W =

⋃
n<ω{f ∈ C: f(an) ∈ Un}. It is clear that W is open and dense in C.

So Q = P \ W = P \ ⋃n<ω{f ∈ P : f(an) ∈ Un} is nowhere dense (and
therefore

⋃
Q is nowhere dense in R2), and by (9), it has µ-measure at least

1 −∑n<ω 2−(n+2) = 2−1 > 0. It is also clear that for every x ∈ A the
set

⋃{Un: an = x} is dense open in R and it is disjoint from [
⋃
Q]x. Thus

Q ∈ E(A).

Proposition 11. Assume that CPAgame
cube holds, let X be a Polish space,

and let S be a mapping associating to every P ∈ ⋃
α<ω1

(Perf∗(X))α

a cube-dense family E(P ) ⊂ Perf∗(X). Then there exists a sequence
〈〈Pξ, Qξ〉: ξ < ω1〉 such that Qξ ∈ Perf∗(Pξ) ∩ E(〈Pζ : ζ < ξ〉) for every
ξ < ω1 and X =

⋃
ξ<ω1

Qξ.

Proof. This follows easily from CPAgame
cube . More precisely, it is enough to

apply CPAgame
cube to the strategy S∗ such that S∗(〈〈Pη, Qη〉: η < ξ〉, Pξ) is a

subcube of Pξ from S(〈Pη: η < ξ〉).
Proof of Theorem 7. First recall that CPAgame

cube implies that the cofinal-
ity of the ideal of meager sets is equal to ω1 < c, that is, there exists an
M0 ∈ [M]ω1 such that every meager set is contained in some M ∈ M0.
(See e.g. [CP1, Sec. 4] or [CP3].) Let B0 be a countable base for R and let
{〈Mξ, Jξ〉: ξ < ω1} be an enumeration of M0 × B0. By simultaneous induc-
tion on ξ < ω1, using Lemma 1, we will define functions S, Q, and k on
(Perf∗(C))ξ such that

(i) S(〈Pζ : ζ < ξ〉) = E({aζ : ζ < ξ}), where aζ = k(〈Pη: η ≤ ζ〉) ∈ R,
and Qξ = Q(〈Pζ : ζ < ξ〉) ∈ E({aζ : ζ < ξ}),

(ii) k(〈Pζ : ζ ≤ ξ〉) belongs to Jξ and to the residual set
⋂

ζ≤ξ
{z ∈ R: (

⋃
Qζ)z and (

⋃
Qζ)z are nowhere dense in R},
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(iii) k(〈Pζ : ζ ≤ ξ〉) does not belong to the meager set

Mξ ∪
⋃

η≤ξ
({(⋃Qη)aζ : ζ < ξ} ∪ {(⋃Qη)aζ : η ≤ ζ < ξ}).

The set as in (ii) is residual by the Kuratowski–Ulam theorem, since each
set

⋃
Qζ is nowhere dense, as Qζ belongs to some E(A). In (iii) for every

η ≤ ζ < ξ the set (
⋃
Qη)aζ ∪ (

⋃
Qη)aζ is nowhere dense by the choice of

aζ = k(〈Pη: η ≤ ζ〉) as in (ii). Finally, for ζ < η the set (
⋃
Qη)aζ is nowhere

dense since, by (i), Qη belongs to S(〈Pζ : ζ < η〉) = E({aζ : ζ < η}).
Now, by axiom CPAgame

cube and Proposition 11, there exists a sequence
〈〈Pξ, Qξ, aξ〉: ξ < ω1〉 such that C =

⋃
ξ<ω1

Qξ and conditions (i)–(iii) are
satisfied. We claim that A = {aξ: ξ < ω1} satisfies the conclusion of Theo-
rem 7.

Clearly, A is nowhere meager since for every non-empty open set U ⊂ R
and every meager set M there exists a ξ < ω1 such that Jξ ⊂ U and
M ⊂ Mξ. But then aξ ∈ (A ∩ Jξ) \Mξ ⊂ (A ∩ U) \M , so A ∩ U 6= M .
To see the first assertion of Theorem 7 take an f ∈ C. Then there exists
an η < ω1 such that f ∈ Qη. We claim that for Z = {aβ : β < η} we have
f ∩ (A × A) ⊂ (A × Z) ∪ id. Indeed, let η ≤ ξ < ω1 and ζ < ω1 be such
that ζ 6= ξ. We need to show that 〈aζ , aξ〉 6∈ f . But if ζ < ξ then, by (iii),
aξ does not belong to [

⋃
Qη]aζ 3 f(aζ), so 〈aζ , aξ〉 6∈ f . Similarly, if ξ < ζ

then, again by (iii), aζ does not belong to [
⋃
Qη]aξ ⊃ f−1(aξ) and once more

〈aζ , aξ〉 6∈ f .

4. Main consistency result. The main goal of this section is to prove
the following theorem.

Theorem 12. It is relatively consistent with ZFC that c = ω2 and the
following two conditions hold simultaneously :

(A) For every family {Bξ: ξ < ω1} of pairwise disjoint nowhere meager
subsets of R2 there exists an increasing homeomorphism f : R → R
such that π[f ∩Bξ] is nowhere meager for every ξ < ω1.

(B) Every nowhere meager set B ⊂ R contains a nowhere meager subset
of cardinality ω1.

We use Theorem 12, in conjunction with the following proposition, to
deduce Theorem 4.

Proposition 13. Assume that c > ω1 and that (A) and (B) hold. Then
for every nowhere meager set A ⊂ R there is a homeomorphism f : R → R
such that {c ∈ R: π[(f + c) ∩ (A×A)] 6∈ M} is nowhere meager.

Proof. By (B) we can assume that |A| = ω1 < c. Let B be a Bernstein
set such that (b+A)∩(b′+A) = ∅ for any distinct b, b′ ∈ B. Let {cξ: ξ < ω1}
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be a nowhere meager subset of B, let Bξ = A× (cξ +A) for ξ < ω1, and let
f : R→ R be as in (A). Then {c ∈ R: π[(f + c)∩ (A×A)] 6∈ M} contains a
nowhere meager set {−cξ: ξ < ω1} since for every ξ < ω1 we have

π[(f − cξ) ∩ (A× A)] = π[f ∩Bξ] 6∈ M,

finishing the proof.

The proof of Theorem 12 is a slight modification of the proof of the main
result (Theorem 2) from [CS]. Also, Theorem 12 easily implies [CS, Theorem
2]. We will use the terminology and notation of [CS]. In particular, according
to the machinery used in that paper, Theorem 12 follows in a standard way
from the following lemma. (More precisely, condition (A) is ensured by the
lemma, while (B) and c = ω2 are guaranteed by the iteration procedure.)

Lemma 2. For every family B = {Bξ: ξ < ω1} of pairwise disjoint
nowhere meager subsets of R2 and for every ω1-oracle M there exists an
M-cc forcing notion QB of cardinality ω1 such that QB forces

there exists an increasing homeomorphism f : R → R such
that π[f ∩Bξ] is nowhere meager for every ξ < ω1.

In what follows we present the proof of Lemma 2. Let

Γ = {λ < ω1: λ is a limit ordinal}.
Recall that an ω1-oracle is any sequence M = 〈Mδ: δ ∈ Γ 〉, where Mδ is
a countable transitive model of ZFC− (that is, ZFC without the power set
axiom) with the property that δ + 1 ⊂ Mδ, δ is countable in Mδ, and the
set {δ ∈ Γ : A ∩ δ ∈ Mδ} is stationary in ω1 for every A ⊂ ω1. With each
ω1-oracleM = 〈Mδ: δ ∈ Γ 〉 there is associated a filter DM generated by the
sets IM(A) = {δ ∈ Γ : A∩δ ∈Mδ} for A ⊂ ω1. It is proved in [Sh, Claim 1.4]
that DM is a proper normal filter containing every closed unbounded subset
of Γ . We will also need the following fact, which, for our purposes, can be
viewed as the definition of the M-cc property.

Fact 14 ([CS, Fact 4]). Let P be a forcing notion of cardinality ≤ ω1,
e: P → ω1 be one-to-one, and M = 〈Mδ: δ ∈ Γ 〉 be an ω1-oracle. If there
exists a C ∈ DM such that for every δ ∈ Γ ∩ C,

e−1(E) is predense in P for every set E ∈ Mδ ∩ P(δ) for
which e−1(E) is predense in e−1({γ: γ < δ}),

then P has the M-cc property.

Let K be the family of all sequences h = 〈hξ: ξ ∈ Γ 〉 such that each hξ is
a function from a countable set Dξ ⊂ R onto Rξ ⊂ R such that hξ is dense
in R2 and

Dξ ∩Dη = Rξ ∩Rη = ∅ for any distinct ξ, η ∈ Γ.
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For each h ∈ K we will define a forcing notion Qh. The forcing QB required
in Lemma 2 will be chosen as Qh for some h ∈ K. So let H be the family
of all strictly increasing functions from finite subsets of R into R and fix an
h ∈ K. Then Qh is defined as

Qh =
{
h ∈ H: h ⊂

⋃

ξ∈Γ
hξ & |h ∩ hξ| ≤ 1 for every ξ ∈ Γ

}

and is ordered by reverse inclusion. In what follows we will use the following
basic property of Qh.

Fact 15. Let h = 〈hξ: ξ ∈ Γ 〉 ∈ K and f =
⋃
H, where H is a V -

generic filter over Qh. Then f is a strictly increasing function from a dense
subset D of R onto a dense subset of R. In particular, f can be uniquely
extended to an increasing homeomorphism f̃ of R.

Proof. Clearly f is a strictly increasing function from a subset D of R
onto a subset R of R. Thus, it is enough to show that D and R are dense
in R. So let U 6= ∅ be open in R and notice that the set

D = {h ∈ Qh: dom(h) ∩ U 6= ∅}
is dense in Qh. Indeed, if h0 ∈ Qh is such that dom(h0)∩U = ∅ then we can
find ξ ∈ Γ such that h∩hξ = ∅. Since the graph of hξ is dense in R2 we can
find 〈x, y〉 ∈ hξ such that x ∈ U and h = h0 ∪ {〈x, y〉} is strictly increasing.
Then h ∈ D extends h0. Similarly we can prove that the set

{h ∈ Qh: range(h) ∩ U 6= ∅}
is dense in Qh. The rest follows from the genericity of H.

Now let B = {Bξ: ξ < ω1} be as in the lemma and fix an ω1-oracle
M = 〈Mδ: δ ∈ Γ 〉. By Fact 15 in order to prove Lemma 2 it is enough to
find an h = 〈hξ: ξ ∈ Γ 〉 ∈ K such that

QB = Qh is M-cc(10)

and Qh forces that, in V [H],

the set π(f ∩Bξ) is nowhere meager for every ξ < ω1,(11)

where the function f is as in Fact 15. To define h we will construct a sequence
〈〈xα, yα〉 ∈ R2: α < ω1〉 aiming at hξ = {〈xξ+n, yξ+n〉: n < ω}, where ξ ∈ Γ .
So let U 63 ∅ be a standard countable basis for R and for every ξ ∈ Γ let
〈〈U ξn, V ξ

n , ζ
ξ
n〉: n < ω〉 be a fixed enumeration of U×U×ξ. Points 〈xξ+n, yξ+n〉

are chosen inductively in such a way that

(i) 〈xξ+n, yξ+n〉 is a Cohen real over Mδ[〈〈xα, yα〉: α < ξ + n〉] for every
δ ≤ ξ, δ ∈ Γ , that is, 〈xξ+n, yξ+n〉 is outside all meager subsets of R2

which are coded in Mδ[〈〈xα, yα〉: α < ξ + n〉];
(ii) 〈xξ+n, yξ+n〉 ∈ (U ξn × V ξ

n ) ∩B
ζξn

.



A big symmetric planar set 249

The choice of 〈xξ+n, yξ+n〉 is possible since the sets (U ξ
n × V ξ

n ) ∩ B
ζξn

are
non-meager and each time we need to avoid only countably many meager
sets. Condition (ii) guarantees that the graph of each hξ will be dense in
R2. Note also that if Γ 3 δ ≤ α0 < . . . < αk−1, where k < ω, then (by the
product lemma in Mδ)

〈〈xαi , yαi〉: i < k〉 is an Mδ-generic Cohen real in (R2)k.(12)

For h ∈ H and 0 < k < ω let U(h, k) stand for the set of all sequences
〈〈ai, bi〉 6∈ h: i < k〉 ∈ (R2)k such that h ∪ {〈ai, bi〉: i < k} ∈ H. Clearly
U(h, k) is an open subset of (R2)k. In fact, it can be easily proved that if
h = {〈xj, yj〉: 0 < j < m}, where x1 < . . . < xm−1, then 〈〈ai, bi〉: i < k〉
belongs to U(h, k) if and only if {〈ai, bi〉: i < k} ∈ H is disjoint from h
and

{〈ai, bi〉: i < k} ⊂
⋃

j<m

(xj , xj+1)× (yj , yj+1),

where x0 = y0 = −∞ and xm = ym = ∞. In particular, if 0 < j0 < . . . <
jk−1 < m and sets Wi 3 〈xji , yji〉, i < k, are open in R2 then there are
non-empty open sets Vi ⊂Wi such that

∏

i<k

Vi ⊂ U(h, k).(13)

For δ ∈ Γ let (Qh)δ = {h ∈ Qh: h ⊂ ⋃ζ<δ hζ}.

Fact 16. Let δ ∈ Γ and let E ∈Mδ be a predense subset of (Qh)δ. Then
for every k < ω and h ∈ (Qh)δ the open set

Bk
h =

⋃
{U(g, k): g ∈ (Qh)δ extends h and some h0 ∈ E}(14)

is dense in U(h, k).

Proof. Let 〈〈ai, bi〉: i < k〉 ∈ U(h, k) ⊂ (R2)k and let W be an open
subset of U(h, k) containing 〈〈ai, bi〉: i < k〉. We need to show that W
intersects U(g, k) for some g ∈ Qh extending h and an h0 ∈ E. Decreas-
ing W if necessary, we can assume that it is of the form

∏
i<kWi. Since

h1 = h ∪ {〈ai, bi〉: i < k} ∈ H, by (13) there are open sets Vi ⊂ Wi

for which
∏
i<k Vi ⊂ U(h, k) ∩ W . In particular, for any choice of points

〈ci, di〉 ∈ Vi we have h1 ∪ {〈ci, di〉: i < k} ∈ H. Since all functions hξ are
dense in R2, we can choose points 〈ci, di〉 from distinct functions hξ in such
a way that h2 = h ∪ {〈ci, di〉: i < k} ∈ (Qh)δ. Since E is predense in
(Qh)δ, there exists a g ∈ (Qh)δ extending h2 ≤ h and some h0 ∈ E. But
{〈ci, di〉: i < k} ⊂ g, so by (13), there are non-empty open sets Ui ⊂ Vi for
which

∏
i<k Ui ⊂ U(g, k) ∩W .
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Now we are ready to prove (10), that is, that Qh is M-cc. So fix a
bijection e: Qh → ω1 and let

C = {δ ∈ Γ : (Qh)δ = e−1(δ) ∈Mδ}.
Then C ∈ DM. (See e.g. [Sh, Claim 1.4(4)].) Take a δ ∈ C and fix an E ⊂ δ,
E ∈ Mδ, for which e−1(E) is predense in (Qh)δ. By Fact 14 it is enough to
show that

e−1(E) is predense in Qh.

So take h0 from Qh, put h = h0�
⋃
η<δDη and h1 = h0 \ h, and notice

that the condition h belongs to (Qh)δ. Assume that h1 = {〈xi, yi〉: i < k},
where x0 < . . . < xk−1. So 〈〈xi, yi〉: i < k〉 ∈ U(h, k). By Fact 16 the set
U(h, k) \ Bk

h is nowhere dense and belongs to Mδ (as it is defined from
(Qh)δ ∈ Mδ). Hence, by (12), 〈〈xi, yi〉: i < k〉 cannot belong to this set, so
〈〈xi, yi〉: i < k〉 ∈ Bk

h. In particular, there is a g ∈ (Qh)δ extending h and
some h0 ∈ e−1(E) such that 〈〈xi, yi〉: i < k〉 ∈ U(g, k). But then g ∪ h1
belongs to Qh and extends h and h0. This finishes the proof of (10). The
proof of (11) is similar.

So fix a ζ < ω1. We will prove that π(f ∩ Bζ) is nowhere meager in R.
Suppose not. Then there exists a U ∗ ∈ U such that π(f ∩ Bζ) is meager
in U∗. Let a condition h∗ ∈ Qh and Qh-names U̇m, for m < ω, be such that

h∗ 
Qh “each U̇m is an open dense subset of U ∗ and

π(f ∩Bζ) ∩
⋂
m<ω U̇m = ∅.”

For each m < ω, since h∗ forces that U̇m is an open dense subset of U ∗,
for every subset U ∈ U of U∗ there is a subset V ∈ U of U and a maximal
antichain 〈hmV,k: k < κmV 〉 in Qh such that each hmV,k forces that V ⊂ U̇m. Note
that each of these antichains must be countable, since the forcing notion Qh
is M-cc and therefore ccc. Combining all these antichains we find a V ⊂ U
and a sequence 〈hmV,k ∈ Qh: m < ω, V ∈ V, k < κmV 〉 such that

• κmV ≤ ω,
• hmV,k 
Qh“V ⊆ U̇m”,
• for every m < ω, h ∈ Qh extending h∗, and every subset U ∈ U of U∗

there is a subset V ∈ V of U and a k < κmV such that the conditions h
and hmV,k are compatible.

Note that for sufficiently large δ ∈ Γ we have hmV,k ∈ (Qh)δ for all m < ω,
V ∈ V, and k < κmV . Now, by the definition of ω1-oracle, the set B0 of all
δ ∈ Γ for which

〈hmV,k ∈ Qh: m < ω, V ∈ V, k < κmV 〉 ∈Mδ and (Qh)δ ∈Mδ

is stationary in ω1. Thus, choose a δ > ζ from B0 and let U,W ∈ U be such
that U ⊂ U∗ and h∗ ∪ {〈x, y〉} ∈ H for every 〈x, y〉 ∈ U ×W . Using clause
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(ii) of the choice of xα’s we may find an n < ω such that 〈xδ+n, yδ+n〉 ∈
(U ×W ) ∩ Bζ . Then h0 = h∗ ∪ {〈xδ+n, yδ+n〉} ∈ Qh extends h∗ and h0 

“xδ+n ∈ U∗ ∩ π(f ∩Bζ)” since 〈xδ+n, yδ+n〉 ∈ f . We will show that

h0 
 “xδ+n ∈
⋂

m<ω

U̇m”,

which contradicts the choice of h∗. Assume that this is not the case. Then
there exist i < ω and h1 ∈ Qh stronger than h0 such that h1 
 “xδ+n 6∈ U̇i”.
Define h = h1�{xα: α < δ} ∈ (Qh)δ and h1 \ h = {〈al, bl〉: l < m}, where
a0 < . . . < am−1. Let j < m be such that 〈xδ+n, yδ+n〉 = 〈aj , bj〉. Consider
the set Z of all 〈〈zl, z′l〉: l < m〉 ∈ (R2)m for which

• there exist V ∈ V, k < κiV , and g ∈ (Qh)δ such that zj ∈ V , g extends
h and hiV,k, and 〈〈zl, z′l〉: l < m〉 ∈ U(g,m).

Claim. The set Z belongs to the model Mδ and it is an open dense
subset of K = {〈〈zl, z′l〉: l < m〉 ∈ U(h,m): zj ∈ U∗}.

Proof. It should be clear that Z is (coded) in Mδ. (Remember the
choice of δ.) It is also obvious that Z is open. To show that it is dense in
U(h,m) we proceed as in the proof of Fact 16. Let 〈〈cl, dl〉: l < m〉 ∈ K
and W be an open subset of K containing 〈〈cl, dl〉: l < m〉. We need
to show that W ∩ Z 6= ∅. As in the proof of Fact 16 we can find an
open set

∏
l<m(Vl × Ul) ⊂ K ∩ W and points 〈cl, dl〉 ∈ Vl × Ul such

that h2 = h ∪ {〈cl, dl〉: l < m} ∈ (Qh)δ. Since h2 ∈ (Qh)δ extends h∗

and Vj is an open subset of U∗, there is a subset V ∈ V of Vj and a
k < κiV such that the conditions h2 and hiV,k are compatible. Let g ∈ Qh ex-
tend h2 and hiV,k. Since h2, h

i
V,k ∈ (Qh)δ we can assume that g ∈ (Qh)δ.

But {〈cl, dl〉: l < m} ⊂ g, so by (13), there are non-empty open sets
U ′l ⊂ Ul and V ′l ⊂ Vl for which

∏
l<m(U ′i × V ′i ) ⊂ U(g,m) ∩∏l<m(Vl × Ul).

Thus, ∅ 6= ∏
l<m(U ′i × V ′i ) ⊂ Z ∩ W . This completes the proof of the

Claim.

Now, 〈〈al, bl〉: l < m〉 belongs to K. Since by the Claim, K \ Z ∈ Mδ

is nowhere dense, by (12) we conclude that this point does not belong to
K \ Z. So 〈〈al, bl〉: l < m〉 ∈ Z. But this means that there exist g ∈ (Qh)δ

and V ∈ V such that:

• g ≤ h, g 
 “V ⊆ U̇i”,
• 〈〈al, bl〉: l < m〉 ∈ U(h,m), and xδ+n = aj ∈ V .

But then h3 = g ∪ {〈al, bl〉: l < m} belongs to Qh and extends both g and
h1. So h3 forces that xδ+n = aj ∈ V ⊆ U̇i, contradicting our assumption
that h1 
 “xδ+n 6∈ U̇i”. This finishes the proof of (11) and of Lemma 2.
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5. A conjecture. We believe that Corollary 5 cannot be proved in ZFC.
We believe the following is consistent with ZFC.

(C) For every nowhere meager set A ⊂ [0, 1] there exists a continuous
Peano-like function p from [0, 1] onto [0, 1]2 such that for every x ∈
[0, 1] the set p[A] ∩ ({x} × [0, 1]) is non-meager in {x} × [0, 1].

Proposition 17. If (C) holds then for every nowhere meager set A ⊂ R
there is an f ∈ C0 such that π[(f + c) ∩ (A× A)] 6∈ M for every c ∈ R.

Proof. Let A ⊂ R be nowhere meager, f be as in condition (C), and let
f0 = π ◦ p: [0, 1] → [0, 1]. Since there exists a meager set M ⊂ [0, 1] such
that p�[0, 1] \M is a homeomorphism between [0, 1] \M and [0, 1]2 \ p[M ],
for every c ∈ [0, 1] we have

π[(f0 + c) ∩ (A× A)] = π[f0 ∩ (A× (A− c))] = A ∩ (f0)−1(A− c) 6∈ M
since A∩(f0)−1(A−c) = A∩p−1(π−1(A−c)) = A∩p−1((A−c)× [0, 1]) and
this last set is equal, modulo M, to p−1(p[A] ∩ ((A− c)× [0, 1])) while, by
(C), the set p[A]∩ ((A− c)× [0, 1]) is not meager (by the Kuratowski–Ulam
theorem). To get a function from R to R glue countably many shifts of f0.
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