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A MAD Q-set
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Arnold W. Miller (Madison, WI)

Abstract. A MAD (maximal almost disjoint) family is an infinite subset A of the
infinite subsets of ω = {0, 1, 2, . . .} such that any two elements of A intersect in a finite
set and every infinite subset of ω meets some element of A in an infinite set. A Q-set is
an uncountable set of reals such that every subset is a relative Gδ-set. It is shown that it
is relatively consistent with ZFC that there exists a MAD family which is also a Q-set in
the topology it inherits as a subset of P (ω) = 2ω.

In this paper we answer a question of Hrušák by showing that it is
consistent that there exists a maximal almost disjoint familyA ⊆ [ω]ω which
is also a Q-set. The reference Hrušák [6] contains some related problems.
A topological space is a Q-set if every subset is aGδ-set. His reason for asking
this question was because in a certain argument involving a topological space
Ψ(A) built from a MAD family it would have been helpful to assume that a
MAD family cannot be a Q-set. Szeptycki [11] contains some results on van
Douwen’s Ψ and also on Q-sets.

Our construction is similar to that in Fleissner and Miller [3] where
a Q-set is obtained which is concentrated on the rationals. In Judah and
Shelah [7] it is shown consistent to have a Q-set while at the same time
b = d = ω1. Their Q-set forcing has the Sacks property. Their forcing is also
used in Nowik and Weiss [10] to construct a Q-set with certain properties and
also in Gruenhage and Koszmider [4] to construct a topological space with
certain properties. In our model as in [3] we have d = c = ω2 and b = ω1.

In Dow [2] and Brendle [1] a type of Q-set forcing is used which preserves
towers (so p = ω1) and which generalizes Hechler dominating real forcing,
and b = d = c.

Theorem 1. It is relatively consistent with ZFC that there exists a MAD
family A ⊆ [ω]ω which is also a Q-set.
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Proof. We begin by forcing a generic MAD family and then we iterate
our Q-set forcing to make the generic MAD into a Q-set. The difficulty is
to ensure the family stays maximal.

Let P be the usual poset for forcing a MAD family: (p, q) ∈ P iff

(1) p : F → 2N for some finite F ⊆ ω1 and N < ω (write F = dom(p)
and N = Np),

(2) q is a partial function from a subset of [F ]2 into N ,
(3) if q(α, β) = n, then for every i with n ≤ i < N either p(α)(i) = 0 or

p(β)(i) = 0.

The uniformity N of lengths in condition (2) is not strictly necessary
but it will be convenient and would occur on a dense set anyway.

Define (p1, q1) ≤ (p2, q2) iff

(1) dom(p1) ⊇ dom(p2),
(2) p1(α) ⊇ p2(α) for all α ∈ dom(p2),
(3) q1 ⊇ q2.

Intuitively, we are describing a family {aα ⊆ ω : α < ω1} as follows:

(1) p(α) = s means (i ∈ aα iff s(i) = 1) for i < |s|,
(2) q(α, β) = n promises that aα ∩ aβ ⊆ n.

Note that (p1, q1) and (p2, q2) are compatible iff there exists p3 ≤ p1, p2 such
that (p3, q1 ∪ q2) is in P.

This forcing is due to Hechler [5]. For G P-generic over M define

xGα =
⋃
{p(α) : ∃q (p, q) ∈ G}.

Let X = {xGα : α < ω1} and let A = {aα ⊆ ω : α < ω1} where each xα is
the characteristic function of aα, i.e.

aα = {n : xα(n) = 1}.
The following lemma is due to Hechler.

Lemma 2. P is ccc. If G is P-generic over M , then in M [G] the set A
is a maximal almost disjoint family of infinite subsets of ω.

We will in a sense need to reprove this lemma since we will show that
after our new version of Q-set forcing our generic family still remains a
maximal almost disjoint family. The idea of the argument is that given a
name τ for some infinite subset of ω, we find an α which is not involved
in deciding n ∈ τ for any n. Then we get a contradiction by swapping the
value of xα(n) = 0 to x′α(n) = 1 while still forcing n ∈ τ . In the usual Q-set
forcing, while the condition forcing n ∈ τ does not directly talk about xα,
it may decide that [s] ⊆ Un where the other condition says xα 6∈ Un. These
conditions may become inconsistent when we change to x′α because it might
be that s ⊆ x′α even though s is not a subset of xα.
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A new Q-set forcing. The following is to motivate our definition of
P∗ Q̃. It would be the definition of the new Q-set forcing in the model M [G]
where G is P-generic.

For x ∈ 2ω, s ∈ 2<ω, k < ω define

swap(x, s, k) = {y ∈ 2ω : s ⊆ y, |{i ≥ |s| : y(i) 6= x(i)}| ≤ k}.
Note that swap(x, s, k) is a countable closed subset of [s]. It contains x if
s ⊆ x. Also swap(x, 〈〉, 0) = {x}.

Suppose we are given X ⊆ 2ω such that for all x 6= y ∈ X there are
infinitely many n with x(n) 6= y(n). For Y ⊆ X define Q(X,Y ) as follows:
r ∈ Q(X,Y ) iff r is a finite subset of

{(n, s) : n < ω, s ∈ 2<ω} ∪ {(n, (x, t, k)) : x ∈ Y, t ∈ 2<ω, n, k < ω}
subject to the condition:

if (n, s) ∈ r and (n, (x, t, k)) ∈ r, then [s] ∩ swap(x, t, k) = ∅.
The ordering is by inclusion: r1 ≤ r2 iff r1 ⊇ r2. The meaning of these

conditions is:

(1) (n, s) means “[s] ⊆ Un”,
(2) (n, (x, t, k)) means “swap(x, t, k) ∩ Un = ∅”.

Now suppose G is Q(X,Y )-generic over a model N . Define

UGn =
⋃
{[s] : ∃r ∈ G (n, s) ∈ r}.

An easy genericity argument shows that

X ∩
⋂

n<ω

UGn = X \ Y.

To see this suppose y ∈ Y and r is any condition. Let n be sufficiently large
so as to not appear in r at all. Then let r′ = r ∪ {(n, (y, 〈〉, 0))} and note
that

r′  y 6∈ Un.
On the other hand let y ∈ X \Y , r be any condition, and n < ω be arbitrary.
Since y is infinitely often different from any element of X mentioned in r
(they must come from Y ), we can find l < ω so that

[y�l] ∩ swap(x, s, k) = ∅
for any (n, (x, s, k)) ∈ r. Now we let r′ = r ∪ {(n, y�l)}. Then

r′  y ∈ Un.
Next we describe the ordering P ∗ Q̃ which is a basic building block of

our iteration. If G is P-generic over M then Q̃G is essentially the same as
Q(X,X).

Define ((p, q), r) ∈ P ∗ Q̃ iff
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(1) (p, q) ∈ P,
(2) r is a finite subset of the union of

{(n, t) : n < Np, t ∈ 2<Np}
and

{(n, (α, s, k)) : α ∈ dom(p), s ∈ 2<Np , n, k < Np},
(3) if (n, (α, s, k)) ∈ r and (n, t) ∈ r, then either s and t are incomparable

or s ⊆ t and
|{i : |s| ≤ i < |t|, t(i) 6= p(α)(i)}| > k.

Condition (3) guarantees that for any x ∈ 2ω such that x ⊇ p(α) we have

swap(x, s, k) ∩ [t] = ∅.
The ordering is given by

((p1, q1), r1) ≤ ((p2, q2), r2) iff (p1, q1) ≤ (p2, q2) and r1 ⊇ r2.

Note that ((p1, q1), r1) and ((p2, q2), r2) are compatible iff there exists p3 ≤
p1, p2 such that ((p3, q1 ∪ q2), r1 ∪ r2) is a condition.

The ω2 iteration. Our iteration can be described as a suborder of the
product

P×
∑

α<ω2

E

where E is the set of all finite subsets of

{(n, t) : n < ω, t ∈ 2<ω} ∪ {(n, (α, s, k)) : α ∈ ω1, s ∈ 2<ω, n, k < ω}
and

∑
α<ω2

E is the set of all r : ω2 → E such that r(δ) is trivial (i.e., the
empty set) for all but finitely many δ.

By induction on β ≤ ω2 define

Pβ ⊆ P×
∑

α<β

E

as follows. Set P0 = P, and suppose that we have defined Pβ and we are also
given a Pβ name Yβ for a subset of ω1, i.e.,

β Yβ ⊆ ω1.

Define ((p, q), r) ∈ Pβ+1 iff

(1) ((p, q), r�β) ∈ Pβ ,
(2) ((p, q), r(β)) ∈ P ∗ Q̃,
(3) ((p, q), r�β) β α ∈ Yβ whenever (n, (α, s, k)) ∈ r(β) for some

n, s, k, α.

For limit ordinals λ ≤ ω2 we define ((p, q), r) ∈ Pλ iff for all β < λ we
have ((p, q), r�β) ∈ Pβ , and r(β) is the trivial condition (i.e. empty set) for
all but finitely many β < λ.
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Since the iteration of a ccc forcing is ccc, all of these forcings are ccc.
To see this directly we can argue as follows: Standard arguments using ∆
systems show that Pβ has precaliber ω1, i.e., any ω1 sequence of conditions
contains an ω1 subsequence which is centered. Start with ((pα, qα), rα) ∈ Pβ
for α < ω1. We can find an uncountable Σ ⊆ ω1 and finite sets F and H
and N < ω so that:

(1) Nα = N for all α ∈ Σ,
(2) dom(pα) ∩ dom(pβ) = F for α 6= β ∈ Σ,
(3) dom(rα) ∩ dom(rβ) = H for α 6= β ∈ Σ,
(4) pα�F are all the same for α ∈ Σ,
(5) qα�[F ]2 are all the same for α ∈ Σ,
(6) rα�H are all the same with respect to {(n, s) : n < ω, s ∈ 2<ω} for

α ∈ Σ.

Then any two (or even finite subset) of them are compatible.
Assuming that the ground model satisfies the GCH, by the usual book

keeping argument we can arrange things so that for any Y ⊆ ω1 which
appears in M [Gω2 ] there will be a name for it in the list Yα for some α < ω2.
The simplest way to do this is to take

{〈Zαβ : β < ω1〉 : α < ω2}
which lists all ω1 sequences of countable subsets of P ×∑α<ω2

E with ω2
repetitions and then define

Yα = {〈p, β̌〉 : β < ω1, p ∈ Zαβ ∩ Pα}.
If we define

xα =
⋃
{s ∈ 2<ω : ∃((p, q), r) ∈ G s = p(α)}, X = {xα : α < ω1},

then X will be the characteristic functions of an almost disjoint family A =
{aα : α < ω1}. Furthermore if we define the open sets

Uβn =
⋃
{[s] : ∃((p, q), r) ∈ G (n, s) ∈ r(β)}

then by the usual genericity argument
⋂

n<ω

Uβn ∩X = {xα : α 6∈ Y G
β }

and so X will be a Q-set.
The nontrivial part of our argument is to prove thatA remains a maximal

almost disjoint family. So let τ be a name for a counterexample, i.e., suppose

((p0, q0), r0)  τ ∈ [ω]ω and ∀α < ω1 τ ∩ aα is finite.

Let Σ ⊆ Pω2 be a countable set of conditions extending ((p0, q0), r0) such
that for any n ∈ ω, Σ contains a maximal antichain beneath ((p0, q0), r0)
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which decides n ∈ τ . Let α0 < ω1 be any ordinal not mentioned in any
condition from Σ. We show aα0 ∩ τ is infinite.

Suppose for contradiction that we have ((p1, q1), r1) ≤ ((p0, q0), r0) and
N1 < ω such that

((p1, q1), r1)  τ ∩ aα0 ⊆ N1.

Without loss of generality we may assume that N1 = Np1 . By tacking on
strings of zeros to the conditions in p1 we may assume that every integer
occurring in r is bounded by N1 − 2 (and not just as required by N1). Let

F = {β : {α0, β} ∈ dom(q1)}.
Define r′ ⊇ r1 as follows:

r′(δ) = r1(δ) ∪ {(n, (α0, t
′, k + 1)) : (n, (α0, t, k)) ∈ r1(δ), t′ ∈ Aδ,n, t′ ⊇ t}

for each δ where

Aδ,n = {t′ ∈ 2N1−1 : t′ is incomparable with all s such that (n, s) ∈ r1(δ)}.
Note that ((p1, q1), r′) is a valid condition because α0 is forced into Yδ

and t′ incomparable with all s which might be a problem. Let G be a generic
filter containing ((p1, q1), r′). Since τG is almost disjoint from each aGβ and
infinite, there exists some n0 ∈ τG with n0 > N1 and n0 6∈ aGβ for all β ∈ F .
Let ((p2, q2), r2) ∈ Σ ∩G be so that

((p2, q2), r2)  n0 ∈ τ.
Since it is from Σ it does not mention α0.

Let ((p∗, q∗), r∗) ∈ G be stronger than both ((p1, q1), r′) and (p2, q2), r2)
and such that N∗ > n0. Note that ((p∗, q1 ∪ q2), r′ ∪ r2) is a valid condition.
Any γ that needs to be forced into some Yβ is already forced in by either
((p1, q1), r′�β) or ((p2, q2), r2�β).

If p∗(α0)(n0) = 1 then we already have a contradiction and there is
nothing to prove. So assume not, and define p′ to be exactly the same as p∗

except p′(α0)(n0) = 1.

Claim. ((p′, q1 ∪ q2), r ∪ r2) is a valid condition, extending both
((p1, q1), r1) and ((p2, q2), r2).

Proof. Note that we have dropped the extra conditions from r′, these
were put there just to prove this Claim. The fact that p′ extends both p1

and p2 uses the fact that n0 > Np1 = N1 and α0 is not in the domain
of p2. Similarly since q2 does not mention α0, it follows that if {α0, β} ∈
dom(q1 ∪ q2), then β ∈ F and we know that p∗(β)(n) = 0 for each β ∈ F .
So making p′(α0)(n) = 1 does not violate any promises of disjointness made
in q1 ∪ q2. So we have (p′, q1 ∪ q2) ∈ P.

Now fix δ; we must check that

((p′, q1 ∪ q2), r1(δ) ∪ r2(δ)) ∈ P ∗ Q̃.
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We need to check condition (3) in the definition of P∗Q̃: if (n, (α, s, k)), (n, t)
∈ r1(δ) ∪ r2(δ) then either s and t are incomparable or s ⊆ t and

|{i : |s| ≤ i < |t|, t(i) 6= p′(α)(i)}| > k.

Suppose it fails. It can only fail if α = α0 and since r2 does not mention
α0 it must be that (n, (α0, s, k)) ∈ r1(δ) and (n, t) ∈ r2(δ). Also it must be
that s and t are comparable with s ⊆ t but

|{i : |s| ≤ i < |t|, t(i) 6= p′(α0)(i)}| ≤ k.
Note also that |t| > n0 > N1 because otherwise

{i : |s| ≤ i < |t|, t(i) 6= p′(α0)(i)} = {i : |s| ≤ i < |t|, t(i) 6= p∗(α0)(i)}.
But then

|{i : |s| ≤ i < |t|, t(i) 6= p∗(α0)(i)}| > k

because ((p∗, q1 ∪ q2), r1(δ) ∪ r2(δ)) ∈ P ∗ Q̃.
Now let t′ = t�(N1 − 1).

Case 1: t′ is comparable with some s′ such that (n, s′) ∈ r1(δ). Recall
that every integer occurring in r1(δ) is bounded by N1 − 1. So it must be
that s′ ⊆ t′ but intuitively this is easy because r1(δ) is already asserting
[s′] ⊆ U δn and this implies [t] ⊆ U δ

n. More formally, s′ ⊆ t′ and therefore s′

and s are both initial strings of t′ and so comparable; but then we know
that

|{i : |s| ≤ i < |s′| < N1, s
′(i) 6= p1(α0)(i)}| > k.

But this is still true for p′ since we have not changed it below N1.

Case 2: t′ ∈ Aδ,n and so we added (α0, t
′, k+ 1) to r′(δ). But remember

((p∗, q1 ∪ q2), r′ ∪ r2) is a valid condition, which means that

|{i : N1 ≤ i < |t|, t(i) 6= p∗(α0)(i)}| > k + 1;

but k < N1 − 2 and p∗(α0) agrees with p′(α0) except at exactly one coordi-
nate so

|{i : |s| < N ≤ i < |t|, t(i) 6= p′(α0)(i)}| > k.

This proves that ((p′, q1 ∪ q2), r1(δ) ∪ r2(δ)) ∈ P ∗ Q̃ for every δ.

Finally we must show that

((p′, q1 ∪ q2), (r1 ∪ r2)�β) β γ ∈ Yβ
whenever (n, (γ, s, k)) ∈ (r1 ∪ r2)(β) for some n, s, k. But by induction

((p′, q1 ∪ q2), (r1 ∪ r2)�β)

extends both ((p1, q1), r1�β) and ((p2, q2), r2�β), one of which does the re-
quired forcing.
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N∗ [t] ⊆ Un in r2(δ)

swap(xα0 , s, k) ∩ Un = ∅ in r1(δ)

swap(xα0 , t
′, N1 − 1) ∩ Un = ∅ in r′(δ)

Fig. 1. The swap

This proves the Claim. The theorem now follows from the contradiction
that

((p1, q1), r1)  τ ∩ aα0 ⊆ N1,

((p2, q2), r2)  n0 ∈ τ,
where n0 > N1 and

((p′, q1 ∪ q2), r1 ∪ r2)  n0 ∈ aα0 .

Remark. The usual Q-set forcing kills the maximality of an almost
disjoint family X. To see this suppose {xn : n < ω} ⊆ X and conditions are
finite consistent sets of sentences of the form “[s] ⊆ Un” or “x 6∈ Un” where
x ∈ X \ {xn : n < ω}. So when we force we get a Gδ-set so that

⋂

n<ω

Un ∩X = {xn : n < ω}.

In the generic extension we can find {kn : n < ω} increasing so that

kn+1 6∈
⋃

i<n

xi, {y ⊆ ω : kn+1 ∈ y} ⊆
⋂

i<n

Ui.

Why? Given p find kn+1 > kn not in any xi for i < n or in any x mentioned
in p and put

p′ = p ∪ {[s1] ⊆ Ui : i < n, s ∈ 2kn+1−1}.
But then {kn : n < ω} is almost disjoint from all elements of X.

Remark. Since there are perfect almost disjoint families, e.g.,

A = {{x�n : n < ω} : x ∈ 2ω} ⊂ P (2<ω),
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there are always MAD families of arbitrarily large Borel order. Obviously a
Q-set cannot have cardinality continuum, but a σ-set can.

Define X ⊆ 2ω to be a σ-set iff for every Borel set B ⊆ 2ω there exists
a Gδ-set G such that B ∩X = G ∩X.

A Sierpiński set is an example of σ-set (Poprougenko, see Miller [9]).

Theorem 3. It is consistent with any cardinal arithmetic that there
exists a MAD σ-set of size continuum.

Proof. This is an easy modification of the argument of the main theorem.
Taking any countable transitive model M first force a generic MAD of size
continuum, then do a finite support iteration of length continuum to make
it into a σ-set.

Remark. H. Woodin (see Larson [8]) has shown that if there exists a
measurable Woodin cardinal κ, and V and V [G] are both models of CH
where V [G] is a generic extension using a partial order of size less than κ,
then V and V [G] model exactly the same Σ2

1 sentences. The existence of a
MAD σ-set is a Σ2

1 sentence. It follows that CH + there exists a measurable
Woodin cardinal implies there is a MAD σ-set.

It is virtually certain that MAD σ-sets have nothing to do with large
cardinals, so we have the conjecture:

Conjecture 4. CH implies there exists a MAD σ-set.

Theorem 5. The generic MAD set A = {aα : α < ω} is concentrated
on {an : n < ω}, i.e., every open set containing {an : n < ω} contains all
but countably many elements of A.

Proof. Let M be a countable standard model of ZFC and G be P-generic
over M . Working in M suppose

 {an : n < ω} ⊆ U, an open set.

Let Σ ⊆ P be countable so that for every s ∈ 2<ω there exists a maximal
antichain in Σ which decides “[s] ⊆ U”.

Claim.  aα ∈ U for any α larger than any mentioned in Σ.

Proof. Suppose not and let (p, q)  aα 6∈ U . Choose some n so that n is
not in the domain of p. Let p′ = p ∪ {(n, s)} where (α, s) ∈ p and let

q′ = q ∪
⋃
{({n, β}, k) : ({α, β}, k) ∈ q}

so (p′, q′) ≤ (p, q) and it says the same things about an and aα. There exists
(p̂, q̂) ∈ Σ compatible with (p′, q′) such that Np̂ > Np and

(p̂, q̂)  [xn�Np̂] ⊆ U.
Let (p∗, q∗) extend both (p′, q′) and (p̂, q̂). Change p∗ to r with the same
domain but r(α) = p∗(n) and other coordinates all the same. But then
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(r, q′ ∪ q̂) is a common extension of both (p′, q′) and (p̂, q̂). And this is a
contradiction.

This proves the Claim and Theorem.

Theorem 6. CH implies there exists a MAD family which is concen-
trated on the finite subsets of ω and is a λ-set (i.e., every countable subset
is a relative Gδ).

Proof. It is easy to construct a MAD family {aα : α < ω1} so that
if fα : ω → aα is the strictly increasing enumeration of α, then for every
α < β we have fα <∗ fβ and for every g ∈ ωω there exists α < ω1 such
that g ≤∗ fα, i.e., they form a scale. Rothberger (see Miller [9]) showed
that any well-ordered subset of (ωω,≤∗) is a λ-set and that any ω1-ordered
unbounded set is concentrated on the rationals.

The same large cardinal results lead to the following conjecture:

Conjecture 7. CH implies there exists a MAD family which is con-
centrated on a countable subset of itself.

Paul Szeptycki pointed out that the Q-set forcing used in Theorem 1 can
be used to prove the following:

Theorem 8. It is relatively consistent that there exists a Q-set X ⊆ [ω]ω

with the property that for every a ∈ [ω]ω for all but countably many x ∈ X
we have |x ∩ a| = |x \ a| = ω, i.e., X is a strong splitting family.

Proof. We replace P by the Cohen real partial order, i.e., just drop the
q’s from the (p, q). We use the same P ∗ Q̃. Note that in the basic argument
for p′ we could have flipped p′(α0)(n0) = 1 − p∗(α0)(n0) and α0 could be
any α < ω1 not mentioned in Σ.

Alan Dow asked if it is possible to have X = {xα ∈ 2ω : α < ω1} and
Y = {yα ∈ 2ω : α < ω1} such that xα =∗ yα for every α < ω1, and X a Q-set
and Y not a Q-set. The answer is yes, in fact, we force something stronger:

Theorem 9. It is relatively consistent to have X = {xα ∈ 2ω : α < ω1}
and {yn ∈ 2ω : n < ω} such that xn =∗ yn for every n < ω, and X a Q-set
concentrated on {yn : n < ω} (hence Y = {yn : n < ω} ∪ {xα : ω ≤ α < ω1}
is not a Q-set).

Proof. This is a variant of the forcing used in Fleissner–Miller [3]. In
that forcing we start by adding an ω1 batch of Cohen reals X = {xα ∈ 2ω :
α < ω1}. The Q-set forcing is modified to always allow statements of the
form e 6∈ Uαn where e is any eventually zero element of 2ω. With this mod-
ification the Q-set X is shown to be concentrated on the eventually zero
elements of 2ω.

We modify this slightly as follows. Let yn be defined by yn(m) = xn(m)
except yn(n) = 1 − xn(n), i.e., we change only one coordinate. Now in the
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inductive construction of Pα we use the yn’s instead of the eventually zero
reals, i.e., if x 6∈ Uα

m ∈ p(α), then either x = yn for some n or p�α  x ∈ Yα.
The rest of the argument is the same as in [3].

I am not sure how to do Theorem 9 with a MAD family. This would
be interesting because it would show that the Ψ space does not determine
whether or not you have a Q-set.
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